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Abstract

It has been revealed from the path-integral formulation of the hadronic tensor that
there are connected sea and disconnected sea partons. The former is responsible for
the Gottfried sum rule violation primarily and evolves the same way as the valence.
Therefore, the DGLAP evolution equations can be extended to accommodate them
separately. We discuss its consequences and implications vis-a-vis lattice calculations.

1 Introduction

Partonic structure of the nucleon has been discovered and extensively studied in deep inelastic
scattering (DIS) of leptons. Further experiments in Drell-Yan process, semi-inclusive DIS
(SIDIS) help to identify and clarify the flavor dependence, particularly the sea partons [1].
The first experimental evidence that the sea patrons have non-trivial flavor dependence is
revealed in the experimental demonstration of the violation of Gottfried sum rule. The
original Gottfried sum rule, IG ≡

∫ 1
0 dx[F p

2 (x) − F n
2 (x)]/x = 1/3, was obtained under the

assumption that ū and d̄ sea partons are the same [2]. However, the NMC measurement [3]
of
∫ 1
0 dx[F p

2 (x)− F n
2 (x)]/x turns out to be 0.235± 0.026, a 4 σ difference from the Gottfried

sum rule, which implies that the ū = d̄ assumption was invalid. The correct expression for
the Gottfried sum in the quark parton model should be [3]

Ip−n ≡
∫ 1

0

[F p
2 (x)− F n

2 (x)]

x
dx =

1

3
+

2

3

∫
dx(ū(x)− d̄(x)) +O(α2

s) (1)

so that the x-integrated difference of the ū and d̄ sea is
∫ 1

0 [d̄(x)− ū(x)]dx = 0.148± 0.039.
This striking result from the NMC was subsequently checked using an independent ex-
perimental technique. From measurements of the Drell-Yan (DY) cross section ratios of
(p+ d)/(p+ p), the NA51 [4] and the Fermilab E866 [5] experiments clearly observed the ū
and d̄ difference in the proton sea over the kinematic range of 0.015 < x < 0.35.

This came as a surprise at the time, because it was previously assumed that the sea
partons originate from the gluon splitting (i.e. g → uū, dd̄, ss̄) in a flavor-blind manner.
Since the perturbative calculation leading to ū− d̄ difference is at the two loop level which
is too small to explain the size of the difference [6, 7], it must have come from the intrinsic
higher Fock-space wavefunction of the nucleon, e.g. q4q̄ component. Several meson cloud
models [8, 9, 10] have been used to explain this difference via the Sullivan process [11]. The
non-perturbative origin for such a difference is explained in QCD itself via the Euclidean
path-integral formulation of the hadronic tensor [12, 13, 14]. It is shown that there are
two kinds of sea partons – the connected sea (CS) and disconnected sea (DS) partons and
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the Gottfried sum rule violation comes exclusively from the CS at the isospin symmetry
limit [12]. In view of this ū − d̄ difference discovered in DIS and the similar finding in DY
process of non-unity ratio of ū(x)/d̄(x), the global fitting have since accommodated this.
However, the CS origin of ū− d̄ has not be incorporated in the fitting of ū+ d̄ and it is not
recognized that ū and d̄ have two origins, i.e. the CS and DS and only the DS part has the
same small x behavior as that of s̄. An attempt to separate the CS and DS parts of ū + d̄
has been carried out [15] by combining the the CT10 global fitting with the HERMES data
on s + s̄ and a lattice calculation of 〈x〉s/〈x〉u/d (DI) where 〈x〉u/d (DI) is the momentum
fraction of u/d in the disconnected insertion (DI) calculation on the lattice [16].

To separate CS and DS u and d parton distributions and fitted to different experiments
at different kinematics, they need to be evolved from one Q2 to another. In this manuscript,
we shall present the extended evolution equations which accommodate differently evolved
CS and DS. We shall start by reviewing the status-quo DGLAP evolution equations in
Sec. 2. The formulation of the hadronic tensor in the path-integral formalism is given in
Sec. 3. The classification of the parton degrees of freedom is given in Sec. 4 with an example
of separating the CS from the DS by combining results from SIDIS results of the strange
parton distribution, the global fitting of the parton distribution function (PDF) and the
lattice calculation. The extended NNLO evolution equations accommodating CS and DS
separately are given in Sec. 5. Also included in Sec. 5 are comments of their implications
and their relation to lattice calculations. Finally, a summary is given in Sec. 6.

2 NNLO Evolution Equations

To begin with, we shall review the present implementation of the NNLO evolution equations
which starts with the following DGLAP equations [17, 18, 19] with t ≡ lnµ

dqi
dt

=
∑

k

(Pik ⊗ qk + Pik̄ ⊗ q̄k) + Pig ⊗ g; (2)

dq̄i
dt

=
∑

k

(Pīk ⊗ qk + Pīk̄ ⊗ q̄k) + Pīg ⊗ g; (3)

dg

dt
=
∑

k

(Pgk ⊗ qk + Pgk̄ ⊗ q̄k) + Pgg ⊗ g. (4)

where the splitting function (kernel in the integral) P are [17, 18]

Pik = Pīk̄ = δikP
v
qq + P s

qq, , Pīk = Pik̄ = δikP
v
qq̄ + P s

qq̄, (5)

Pig = Pīg ≡ Pqg; Pgi = Pgī ≡ Pgq. (6)

The practical approach takes the following combinations of quark PDF’s so that some of
the combined PDF’s evolve independently.
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Σ ≡
∑

i

(qi + q̄i); Σv ≡
∑

i

(qi − q̄i); (7)

q+
i ≡ qi + q̄i −

1

Nf

Σ; q−i ≡ qi − q̄i. (8)

The evolution equations are written in terms of these combined distributions

dΣv

dt
= Pvv ⊗ Σv; (9)

dq+
i

dt
= P+

qq ⊗ q+
i ; (10)

dq−i
dt

= P−qq ⊗ q−i + (P s
qq − P s

qq̄)⊗ Σv, (11)

dΣ

dt
= PΣΣ ⊗ Σ + PΣg ⊗ g, (12)

dg

dt
= PgΣ ⊗ Σ + Pgg ⊗ g, (13)

with

Pvv = P v
qq − P v

qq̄ +Nf (P
s
qq − P s

qq̄); (14)

P+
qq = P v

qq + P v
qq̄; P−qq = P v

qq − P v
qq̄; (15)

PΣΣ = P v
qq + P v

qq̄ +Nf (P
s
qq + P s

qq̄); (16)

PΣg = 2NfPqg; PgΣ = Pgq. (17)

Notice that there is an inhomogeneous term Σv in Eq. (11) which is the sum of all flavors.
Since q−i has usually been defined as the valence quark by conventional wisdom, it seems
to imply, on the surface, that a valence u quark can evolve into a valence d quark and
vice versa. This is not possible in QCD, of course, since it does not have flavor-changing
couplings. To trace its origin, one can see that it comes from the P s

qq and P s
qq̄ terms in

Eqs. (5) which are different. This is due to the exchange of three gluons between the quark
loop with current insertions and the quark line from the nucleon (valence or sea) as shown
in Fig. (1b) in Ref. [20]. This gives rise to a difference in the parton and anti-parton
distributions in the disconnected sea (i.e. in the quark loop) which is not valence. For
example, s−(x) = s(x) − s̄(x) is not valence in the nucleon even though the net valence
strangeness is zero, i.e.

∫
dx s−(x) = 0. Therefore, the definition q−i is not valence in NNLO,

since the parton-antiparton difference can be generated in the disconnected sea. As we shall
see later in Sec. 5, when we expand the evolution equations to separate out the valence, the
connected sea and the disconnected sea, Eq. (11) is actually a linear combination of two
equations, one involves the valence and and the connected sea and other the disconnected
sea. This will help clarify the meaning and definition of q−(x).
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3 Hadronic tensor in path-integral formalism

The deep inelastic scattering of a muon on a nucleon involves the hadronic tensor which,
being an inclusive reaction, includes all intermediate states

Wµν(q
2, ν) =

1

2

∑

n

∫ n∏

i=1

[
d3pi

(2π)32Epi

]
〈N |Jµ(0)|n〉〈n|Jν(0)|N〉spin ave.(2π)3δ4(pn−p−q). (18)

Since deep inelastic scattering measures the absorptive part of the Compton scattering, it
is the imaginary part of the forward amplitude and can be expressed as the current-current
correlation function in the nucleon, i.e.

Wµν(q
2, ν) =

1

π
ImTµν(q

2, ν) = 〈N |
∫ d4x

4π
eiq·xJµ(x)Jν(0)|N〉spin ave.. (19)

It has been shown [12, 13, 14, 21, 22, 42] that the hadronic tensor Wµν(q
2, ν) can be

obtained from the Euclidean path-integral formalism. In this case, one considers the ratio
of the four-point function 〈χN(~p, tf )

∫ d3x
4π
e−i~q·~xJν(~x, t2)Jµ(0, t1)χN(~p, t0)〉 and the two-point

function 〈χN(~p, tf )χN(~p, t0)〉, where χN(~p, t) is an interpolation field for the nucleon with
momentum p at Euclidean time t.

As both tf−t2 � 1/∆Ep and t1−t0 � 1/∆Ep, where ∆Ep is the energy gap between the
nucleon energy Ep and the next excitation (i.e. the threshold of a nucleon and a pion in the
p-wave), the intermediate state contributions from the interpolation fields will be dominated
by the nucleon with the Euclidean propagator e−Ep(tf−t0). From the four-point and two-point
functions on the lattice

Gαβ
pWp =

∑

~xf

e−i~p· ~xf
〈
χαN( ~xf , tf )

∑

~x

e−i~q·~x

4π
Jµ(~x, t2) Jν(0, t1)

∑

~x0

ei~p· ~x0 χβN( ~x0, t0)

〉
, (20)

Gαβ
pp =

∑

~xf

e−i~p· ~xf
〈
χαN( ~xf , tf )χ

β
N( ~x0 = 0, t0)

〉
, (21)

we define

W̃µν(~q, ~p, τ) =
Ep
mN

Tr(ΓeGpWp)

Tr(ΓeGpp) tf − t2 � 1/∆Ep, t1 − t0 � 1/∆Ep

=
Ep
mN

|Z|2mN (Ep+mN )
E2

p
e−Ep(t−t0) < N |∑~x

e−i~q·~x

4π
Jµ(~x, t2)Jν(0, t1)|N >

|Z|2(Ep+mN )
Ep

e−Ep(t−t0)

= < N |
∑

~x

ei~q·~x

4π
e−i~q·~xJµ(~x, τ)Jν(0, 0)|N >, (22)

where τ = t2 − t1, Z is the transition matrix element 〈0|χN |N〉, and Γe = 1+γ4
2

is the
unpolarized projection to the positive parity nucleon state. Inserting intermediate states,
W̃µν(~q

2, τ) becomes

W̃µν(~q
2, τ) =

1

4π

∑

n

(
2mN

2En

)
δ~p+~q, ~pn〈N(p)|Jµ(0)|n〉〈n|Jν(0)|N(p)〉spin ave.e−(En−Ep)τ . (23)
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Formally, to recover the delta function δ(En−Ep+ν) in Eq. (18) in the continuum formalism,
one can carry out the inverse Laplace transform with τ being treated as a dimensionful
continuous variable

Wµν(q
2, ν) =

1

2mN i

∫ c+i∞

c−i∞
dτ eντW̃µν(~q

2, τ), (24)

with c > 0. This is basically doing the anti-Wick rotation back to the Minkowski space.
We will discuss the numerical lattice approach to this conversion from Euclidean space to
Minkowski space later.

4 Parton degrees of freedom

In addressing the origin of the Gottfried sum rule violation, it is shown [12, 13, 14, 42] that
the contributions to the four-point function of the Euclidean path-integral formulation of the
hadronic tensor W̃µν(~q

2, τ) in Eq. (23) can be classified according to different topologies of
the quark paths between the source and the sink of the proton. Fig. 1(a) and 1(b) represent
connected insertions (C.I.) of the currents. Here the quark fields from the interpolators χN
contract with that in the currents such that the quark lines flow continuously from t = 0 to
t = tf and the current insertions are at t1 and t2. Fig. 1(c), on the other hand, represents a
disconnected insertion (D.I.) where the quark fields from Jµ and Jν self-contract and, as a
consequence, the quark loop is disconnected from the quark paths between the proton source
and sink. Here, “disconnected” refers only to the quark lines. Of course, quarks propagate
in the background gauge fields and all quark paths are ultimately connected through the
gluon field fluctuations.

0 tf

JµJν

t2t1

t
(a)

0 tf

JµJν

t2t1

t
(b)

0 tf

JµJν

t2t1

t
(c)

Figure 1: Three gauge invariant and topologically distinct diagrams in the Euclidean-path
integral formulation of the nucleon hadronic tensor. In between the currents at t1 and t2,
the parton degrees of freedom are (a) the valence and connected sea (CS) partons qv+cs, (b)
the CS anti-partons q̄cs. Only u and d are present in (a) and (b) for the nucleon hadronic
tensor. (c) the disconnected sea (DS) partons qds and anti-partons q̄ds with q = u, d, s, and
c.

We first note that Fig. 1(b), where the quarks propagate backward in time between t1
and t2 corresponds to the connected sea (CS) anti-partons ūcs and d̄cs, since the quark lines
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are connected to the nucleon interpolation fields at t = 0 and t = tf . This is referred to as
‘intrinsic bound-valence’ partons [24]. By the same token, Fig. 1(a) gives the valence and
CS partons uv+cs and dv+cs. Here the valence is defined as

uv(dv)(x) ≡ uv+cs(dv+cs)(x)− ūcs(d̄cs)(x), (25)

with
ucs(x) ≡ ūcs(x); dcs(x) ≡ d̄cs(x). (26)

On the other hand, Fig. 1(c) gives the disconnected sea (DS) qds and q̄ds with {q = u, d, s, c}.
We see that while u and d have both CS and DS, strange and charm have only DS.

The flavor and valence-sea classification of PDG is summarized in the following Table 1.

Table 1: Classification of PDF in the nucleon for different flavors.

Valence and Connected Sea Disconnected Sea
uv+cs(x) ūcs(x) dv+cs(x) d̄cs(x) uds(x)/ūds(x) dds(x)/d̄ds(x) s(x)/s̄(x) c(x)/c̄(x)

It is clear from the path-integral diagrams that there are two sources of the sea partons,
one is CS and the other is DS. In the isospin limit where ūds(x) = d̄ds(x), the DS do not
contribute to the Gottfried sum rule (GSR) violation which reveals that

∫ 1
0 dx[ū(x)−d̄(x)] < 0

from DIS experiments. The isospin symmetry breaking due to the u and d mass difference
should be of the order of (md −mu)/mN and cannot explain the large violation of GSR.
Rather, the majority of the violation should come from the CS [12].

4.1 Small x behavior

Since the CS parton is in the connected insertion which is flavor non-singlet like the valence,
its small x behavior reflects the leading reggeon exchanges of ρ, ω, a2... and thus should be
like x−1/2. On the other hand, the DS is flavor singlet and can have Pomeron exchanges, its
small x behavior goes like x−1. Therefore, we have

uv+cs(x), dv+cs(x), ūcs(x), d̄cs(x) ∼
x→0

x−1/2, (27)

uds/ūds(x), dds/d̄ds(x), sds/s̄ds(x) ∼
x→0

x−1. (28)

Since the Gottfried sum rule violation is primarily due to the CS, one expects
ū(x)− d̄(x) = ūcs(x)− d̄cs(x) up to small isospin violation in the DS. Thus, it is not surpris-
ing to find that x(ū(x)− d̄(x)) −→

x→0
0 in the globally analysis of PDF [25], the E866 Drell-Yan

experiment [26], and the HERMES SIDIS experiment [27].
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4.2 OPE and lattice calculation of moments

Since the fermions are represented by anti-commuting Grassmann numbers, the operator
product expansion (OPE) entails a short-distance Taylor expansion in the Euclidean path-
integral [14]. Under this short-distance expansion of the hadronic tensor between the current
insertions in the path-integral formalism, Fig. 1(a) and Fig. 1(b) become the connected
insertions (CI) in Fig. 2(a) for a series of local operators

∑
nO

n
q in the three-point functions

from which the nucleon matrix elements for the moments of the CI are obtained. Here the
flavor q = u, d are the valence flavors from the interpolation field. By the same token, the
disconnected four-point functions in Fig. 1(c) become the disconnected insertions (DI) in
Fig. 2(b) for the three-point functions to obtain the DI moments. Here q = u, d, s, c are the
DS flavors in the DI. The main advantage of the path-integral formalism over the canonical
formalism in Minkowski space is that the parton degrees of freedom are tied to the topology
of the quark skeleton diagrams in Figs. 1(a), 1(b), and 1(c) so that the CS and the DS can
be separated.

0 tf

∑
nOn

q

t1

t
(a)

0 tf

∑
nOn

q

t1

t
(b)

Figure 2: The three-point functions after the short-distance expansion of the hadronic tensor
from Fig. 1. (a) The connected insertion (CI) is derived from Fig. 1(a) and Fig. 1(b). (b)
The disconnected insertion (DI) originates from Fig. 1(c). Onq are local operators which are
the same as derived from OPE.

Lattice QCD can access these three-point functions for the CI and DI which separately
contain the CS and DS and calculations of the moments of the unpolarized and polarized
PDFs for the quarks [28, 29, 30, 31] and glue [32, 33, 34] have been carried out. At the present
stage, lattice calculations have reached the physical pion mass point and the systematic errors
due to finite volume and finite lattice spacings are beginning to be controlled [35, 33, 36].
However, lattice calculation of the parton moments is limited to a few low moments (about
2 or 3). The higher moment calculation is impeded by the complication of renormalization
and mixing with lower-dimension operators which leads to power divergences.
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4.3 Separation of CS and DS Partons

In the global fittings of parton distribution function (PDF), the CS is not separated from
the DS and it had been implicitly assumed that all the anti-partons are from the DS. That’s
why the GSR violation came as a surprise. As a result, the fitting has accommodated the
ū(x) − d̄(x) difference from experiment. However, it is still mostly assumed in the PDF
parametrization that the ū(x) + d̄(x) has the same x dependence as that of s(x) + s̄(x). As
we discussed above, ū(x) + d̄(x) = ūcs(x) + d̄cs(x) + ūds(x) + d̄ds(x) have both the CS and
DS partons and they have different small x behaviors. This is in contrast to s(x) + s̄(x)
where there are only DS partons. An attempt to separate CS from DS anti-partons has been
pursued [15]. Combining HERMES data on the strangeness parton distribution [37], the
CT10 global fitting of the ū(x)+ d̄(x) distributions [25], and the lattice result of the moment
ratio of the strange to u/d in the disconnected insertion, i.e. 〈x〉s+s̄/〈x〉u+ū(DI) [16], it is
demonstrated [15] that the CS and DS partons can be separated and the CS ūcs(x) + d̄cs(x)
distribution of the proton is obtained in the region 0.03 < x < 0.4 at Q2 = 2.5 GeV2. This
assumes that the distribution of ūds(x)+ d̄ds(x) is proportional to that of s(x)+ s̄(x), so that
the CS partons can be extracted at Q2 = 2.5 GeV2 through the relation

ūcs(x) + d̄cs(x) = ū(x) + d̄(x)− 1

R
(s(x) + s̄(x)), (29)

where (s(x) + s̄(x)) is from the HERMES experiment [37], ū(x) + d̄(x) is from the CT10
gobal fitting of PDF [25], and R is defined as

R =
〈x〉s+s̄

〈x〉u+ū(DI)
, (30)

and the lattice result R = 0.857(40) [16] is used for the extraction.

10-2 10-1 100

x

0

0.2

0.4

0.6

x
(u

+
d
)

x(u +d)CS

x(u +d)DS

x(u +d) CT10

10-2 10-1 100

x

0.1

0.0

0.1

0.2

0.3

0.4

x
(d

±
u
)

x(d +u)CS

x(d-u) E866
x(d-u) HERMES

Figure 3: (Left panel) x(ūcs(x) + d̄cs(x)) obtained from Eq. (30) is plotted together with
x(d̄(x) + ū(x)) from CT10 and 1

R
x(s(x) + s̄(x)) which is taken to be x(uds(x) + ūds(x)).

(Right panel) x(ūcs(x) + d̄cs(x)) is plotted together with x(ūcs(x) − d̄cs(x)) from the E866
and HERMES experiments.

The results of x(ū(x) + d̄(x)− 1
R

(s(x) + s̄(x)), x(ūds(x) + d̄ds(x) = 1
R
x(s(x) + s̄(x)) and

x(ū(x) + d̄(x)) from CT10 at Q2 = 2.5 GeV2 are plotted in the left panel of Fig. 3. We see
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that ūds(x) + d̄ds(x) is indeed more singular than ūcs(x) + d̄cs(x) at small x as expected from
Eqs. (27) and (28). We also plot the extracted x(ūcs(x)+ d̄cs(x)) and x(ūcs(x)− d̄cs(x)) from
E866 Drell-Yan experiment [26] and HERMES SIDIS experiment [27]. We see that they are
in the same x-range and peak around x = 0.1. It should be pointed out that the CS partons
from Eq. (29) was based on the HERMES data in 2008 [37]. These results will be updated
with the 2014 HERMES data [38] and the lattice result of R in Eq. (30) at the physical
pion point and with the associated systematic errors on infinite volume and continuum
limits taken into account [39, 40]. Since the new HERMES data on x(s̄(x) + s̄(x)) [38] are
generally smaller than those of the 2008 data [37] in the range of 0.03 < x < 0.4 and if the
new lattice value of R is not too far from the one [16] used to extract the CS partons shown
in Fig. 3, the to-be-updated CS partons are expected to be more prominent in this range of
x. The results of the CS partons will change somewhat, but their qualitative features are
expected to remain.

4.4 Lattice calculation of PDF

The extraction of ūcs(x)+ d̄cs(x) in Eq. (29) is based on the assumption that the distribution
of s(x)+s̄(x) is proportional to that of uds(x)+ūds(x) or dds(x)+d̄ds(x) so that their ratio can
be obtained via the ratio R in Eq. (30). It would be better to calculate W̃µν represented in
Figs. 1(a), 1(b) and 1(c) directly on the lattice. However, there is a numerical complication
in that an inverse Laplace transform is involved in converting W̃µν to Wµν in Minkowski space
as in Eq. (24). An improved Maximum Entropy Method (MEM) [41] which can lead to more
stable fit is proposed to solve this inverse problem [42]. Recently, there is another approach
to calculating PDF on the lattice via the quasi-PDF [43, 44, 45, 46] in the large momentum
frame. Both approaches are at their infancy and still face many numerical challenges. They
are not as mature as the lattice calculation of moments and matrix elements which are at
the stage of finalizing the calculations with all the systematic errors under consideration.

5 NNLO evolution equations for the valence, CS, and

DS

We see from Sec. 4.2, that, under the short-distance expansion of the hadronic tensor, the
connected four-point functions in Fig. 1(a) and Fig. 1(b) become the connected insertions
(CI) in Fig. 2(a) for a series of local operators

∑
nO

n
q in the three-point functions from which

the nucleon matrix elements for the moments of the CI are obtained. Here the flavor q = u, d
are the valence flavors from the interpolation field. By the same token, the disconnected
four-point functions in Fig. 1(c) become the disconnected insertions (DI) in Fig. 2(b) for the
three-point functions to obtain the DI moments. It is clear from the operator analysis of
operator scaling and mixing, only the DI can mix with the glue operator. Since the quark
lines in the CI are connected between the current operators and the interpolation fields of
the nucleon source and sink , it does not have the annihilation channel to mix with glue
operators. As a consequence, one deduces that the CS evolves the same way as the valence,
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i.e. they can evolve into valence, CS, and DS. But the DS cannot evolve into valence and
CS. On the other hand, the gluons can split into DS, but not into the valence and CS, since
their operators do not mix.

With the above operator analysis, it is straightforward to write down the extended NNLO
DGLAP evolution equations which accommodates the separately evolved CS and DS.

dqv+cs
i

dt
= P c

ii ⊗ qv+cs
i + P c

īi ⊗ q̄csi ; (31)

dq̄csi
dt

= P c
ī̄i ⊗ q̄csi + P c

īi ⊗ qv+cs
i ; (32)

dqdsi
dt

=
∑

k

P cd
ik ⊗ qdsk +

∑

k

P cd
ik̄ ⊗ q̄dsk +

∑

k

P d
ik ⊗ qv+cs

k +
∑

k

P d
ik̄ ⊗ q̄csk + Pig ⊗ g; (33)

dq̄dsi
dt

=
∑

k

P cd
īk̄ ⊗ q̄dsk +

∑

k

P cd
īk ⊗ qdsk +

∑

k

P d
īk ⊗ qv+cs

k +
∑

k

P d
īk̄ ⊗ q̄csk + Pig ⊗ g; (34)

dg

dt
=
∑

k

(Pgk ⊗ (qv+cs
k + qdsk ) + Pgk̄ ⊗ (q̄csk + q̄dsk )) + Pgg ⊗ g, (35)

where P c
ii = P c

ī̄i, P
c
īi = P c

īi and they involve only connected diagrams where the quark line is
connected between the initial quark and the pinched current point (e.g. Fig. 2a and the left
most one in 2b in Ref. [50]). P d, on the other hand, involves only the quark-line disconnected
diagrams where the pinched point is on the quarks/antiquarks in the loop (e.g. two right
diagrams in Fig. 2b in Ref. [50]). Note that in NNLO, there is three-gluon exchange between
the quark loop with current insertions and the quark line from the nucleon (both valence
and DS) as illustrated in Fig. 1(b) in Ref. [20]. This implies P d

ik = P d
īk̄ 6= P d

ik̄ = P d
īk. Thus in

NNLO, the evolution itself can induce qdsi 6= q̄dsi by the valence and the DS. P cd
ik = P cd

īk̄ and
P cd
īk = P cd

ik̄ involve evolutions from DS to DS and they have both connected and disconnected
diagrams, i.e.

P cd
ik = P c

iiδik + P d
ik. (36)

We shall compare these equations to Eqs. (9,10,11,12,13). We first note that the quantities
defined in Eqs. (7) and (8) have the following comnponents

q−i ≡ qi − q̄i = qv+cs
i − q̄csi + qdsi (x)− q̄dsi (x); (37)

Σ ≡
∑

i

(qi + q̄i) =
∑

i=u,d

(qv+cs
i + q̄csi ) +

∑

i=u,d,s

(qdsi + q̄dsi ); (38)

q+
i ≡ qi + q̄i −

1

Nf

Σ =




qv+cs
i + q̄csi + qdsi + q̄dsi − 1

Nf
Σ i = u,d;

s+ s̄− 1
Nf

Σ i = s
(39)

Taking the combination Eq. (31) - Eq. (32) + Eq. (33) - Eq. (34), we have

dq−i
dt

= P−qq ⊗ q−i + P−ds ⊗
∑

k

q−k , (40)
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with
P−qq = P c

qq − P c
qq̄ ≡ P v

qq − P v
qq̄; P−ds = P d

qq − P d
qq̄ ≡ P s

qq − P s
qq̄. (41)

This is just Eq. (11) with the inhomogeneous term being the sum of q−k . The first term in
Eq. (40) is from the difference of Eqs. (31) and (32) and the flavor-diagonal parts (δik) of the
first two terms in Eqs. (33) and (34); while the second term is from the rest of Eqs. (33) and
(34). Thus, we now understand that Eq. (11) is the sum of the evolution of qv+cs

i − q̄csi and
qdsi − q̄dsi . Note the inhomogeneous term only enters in NNLO where P d

ik = P d
īk̄ 6= P d

ik̄ = P d
īk.

It is clear now that q−(x) is not the valence, as discussed in Sec. 2, it includes qdsi (x)− q̄dsi (x).
in Eq. (37). The proper definition of the valence is Eq. (25). Eq. (9) is simply the sum of
Eq. (40) over flavor.

Utilizing Eq. (36), the equation for Σ is

dΣ

dt
= P+

qq ⊗ ((
2∑

i=1

qv+cs
i + q̄csi ) +

∑

k

(qdsk + q̄dsk ))

+
∑

i,k

(P d
ik + P d

īk)⊗ (qv+cs
k + q̄csk + qdsk + q̄dsk ) + 2

∑

i

Pig ⊗ g. (42)

This can be written in terms of Σ

dΣ

dt
= PΣΣ ⊗ Σ + PΣg ⊗ g, (43)

with

PΣΣ = P c
qq + P c

qq̄ +Nf (P
d
qq + P d

q̄q); (44)

(45)

Given P c
qq ≡ P v

qq and P d
qq ≡ P s

qq, Eq. (43) is just Eq. (12).

Similarly, one can show that the equation for q+ has the following form for i = u, d and s

dq+
i

dt
= P+

qq ⊗ q+
i , (46)

which is the same as in Eq. (10) where P+
qq = P c

qq + P c
qq̄ ≡ P v

qq + P v
qq̄. Finally, Eq. (35) is just

Eq. (13) with PgΣ = Pgq = Pgq̄.

5.1 Comments

Now that the extended evolution equations are derived, several comments are in order.

• Due to the linear nature of the DGLAP equations, the 9 equations in Eqs. (9,10,11,12,13)
can be obtained from the linear combinations of the extended 11 evolutions equations
in Eqs. (31, 32, 33, 34, 35). The two extra equations is to accommodate the CS partons
for the the u and d flavors. These extended equations are ready to accommodate the
most general case with s 6= s̄, uds 6= ūds, dds 6= d̄ds in addition to flavor dependent DS.

11



• The valence is defined as qvi ≡ qv+cs
i − q̄csi which is not the same as q−i unless qdsi = q̄dsi .

This alleviates the potential confusion that strange partons are part of the valence
when s(x) 6= s̄(x).

• If one does not distinguish CS from DS, the usual DGLAP equations in Eqs. (9,10,11,12,13)
are adequate. Why does one need to extend them to have separate CS and DS? One
of the major reasons is to be able to compare with lattice calculation and, in some
cases, they can be used to help constrain the global PDF analysis. As we explained
in Sec. 4.4, the lattice calculations of nucleon matrix elements are mature with all the
systematic errors taken into account. They are ready to produce results which can
confront experiments. However, the lattice calculation are organized in terms of CI in
Fig. 2(a) which are the moments for the valence and CS partons and DI in Fig. 2(b)
which are for the DS partons. On the other hand, the current global fittings of PDF
do have the valence separated, but the CS and DS are lumped together as the total
sea. Consequently, no direct comparison can be made between the lattice moments
and those of PDF, except for a few quantities such as 〈x〉u−d and 〈x〉s.

• The need to separate CS from DS is particularly acute in the polarized PDF where much
interest is focused on the quark and glue spins, and their orbital angular momenta. To
address the ‘proton spin crisis’ where the quark spin is found to contribute only ∼ 30%
of the proton spin, the lattice calculation can be carried out for the flavor-singlet axial-
vector current matrix elements in the CI and DI. Lattice calculations [51, 52, 53, 54,
55, 56, 57, 58] have shown that the the matrix element from the DI of the flavor-singlet
axial-vector current is negative. This reduces that from the CI to make the total quark
spin smaller than expected from the valence contribution. Further examination of
the negative DI contribution can be understood in terms of the cancellation between
the pseudoscalar density term and the anomaly term through the anomalous Ward
identity [59]. One would like to compare these findings to experiments. But this is not
attainable unless and until the global fitting manages to separate the CS from the DS
in polarized DIS and Drell-Yan processes.

• An example is given to separate CS from DS in Sec. 4.3 which utilizes the combined
global PDF, experimental data and lattice calculation to do the job. This is done
for one Q2. Only through the fully separated CS and DS degrees of freedom in the
extended evolutions can the CS and DS remain separated at different Q2. This aspect
is essential for the global analysis of PDF with fully separated CS and DS as a function
of both x and Q2.

6 Summary

The roles of the connected-sea (CS) and disconnected-sea (DS) partons, as revealed in the
path-integral formulation of the hadronic tensor in the Euclidean space, are clarified in
terms of the Gottfried sum rule violation, their small x behaviors, the moments of PDF, and
evolution. An example is given to show how the CS can be separated from DS by combining
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the CT10 PDF, HERMES SIDIS data on the strange parton distribution and the lattice
calculation of the ratio of the second moment of the strange vs the u/d in the DI.

From the short-distance expansion which is equivalent to OPE in Minkowski space, it is
shown that the valence and CS partons merge in the moments of the connected insertion
(CI), while the DS goes into the moments of the disconnected insertion (DI). Since only the
DI mixes with the glue operators, it implies that the CS evolves the same way as the valence.
The extended DGLAP equations are thus derived which entails separate equations for the
CS and DS. Upon linear combinations, it is shown that they reproduce the conventional
DGLAP equations where the CS and DS are not separated.

Special emphasis is placed on the need to have separately evolved CS and DS so that
comparison with lattice calculations of unpolarized and polarized moments of PDF can be
made. Only with the extended DGLAP equations will the CS and DS remain separated at
different Q2 to facilitate global fitting of PDF with separated CS and DS partons.
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