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The number of nonrelativistic axions can be changed by inelastic reactions that produce photons
or relativistic axions. Any odd number of axions can annihilate into two photons. Any even number
of nonrelativistic axions can scatter into two relativistic axions. We calculate the rate at which
axions are lost from axion stars from these inelastic reactions. In dilute systems of axions, the
dominant inelastic reaction is axion decay into two photons. In sufficiently dense systems of axions,
the dominant inelastic reaction is the scattering of four nonrelativistic axions into two relativistic
axions. The scattering of odd numbers of axions into two photons produces monochromatic radio-
frequency signals at odd-integer harmonics of the fundamental frequency set by the axion mass. This
provides a unique signature for dense systems of axions, such as a dense axion star or a collapsing
dilute axion star.
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Introduction. The particle nature of the dark matter
of the universe remains one of the greatest mysteries in
contemporary physics. One of the most strongly moti-
vated possibilities from a particle physics perspective is
the axion [1], which is the pseudo-Goldstone boson as-
sociated with a U(1) symmetry that solves the strong
CP problem of QCD. The axion is a spin-0 particle with
a very small mass and extremely weak self-interactions.
Nonrelativistic axions with high occupation numbers can
be produced in the early universe by a combination of the
cosmic string decay mechanism [2, 3] and the vacuum
misalignment mechanism [4–6]. The vacuum misalign-
ment mechanism produces coherent axions.

A metastable gravitationally bound configuration of
axions is called an axion star. The ground state of an
axion star is a Bose-Einstein condensate (BEC). In the
well-known solutions for axion stars, the attractive forces
from gravity and from the 4-axion interaction are bal-
anced by the kinetic pressure [7, 8]. We refer to these
solutions as dilute axion stars, because the number den-
sity remains small enough that 6-axion and higher inter-
actions are negligible. There is a critical mass M∗ for the
dilute axion star beyond which the kinetic pressure is un-
able to balance the attractive forces. There may also be
dense axion stars, in which multi-axion interactions play
an important role in the balance of forces [9].

Spacial fluctuations in the vacuum misalignment of the
axion field in the early universe naturally produce gravi-
tationally bound “miniclusters” of axions with total mass
in a range that includes the critical mass M∗ of a dilute
axion star [10, 11]. Sikivie and collaborators have pointed
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out that gravitational interactions can thermalize axion
dark matter [12, 13]. They drive an axion minicluster
towards an axion star and then towards its BEC ground
state. Gravitational thermalization also allows the axion
star to accrete more axions. If accretion of axions in-
creases the mass of the dilute axion star to above M∗, it
will collapse. The fate of a collapsing axion star has not
been established. The collapse could produce a bosenova,
the emission of a burst of relativistic axions from inelastic
reactions amplified by the increasing density [14]. Such a
phenomenon has been observed in collapsing BECs of ul-
tracold atoms [15]. The remnant after the collapse could
be a black hole [16, 17], a dense axion star [18], or a dilute
axion star.

The number of nonrelativistic axions is almost con-
served. The number can be decreased by inelastic re-
actions in which any odd number of axions annihilates
into two photons or any even number of axions scatters
into two relativistic axions. In this paper, we calculate
the loss rate of axions from axion stars. We also point
out that monochromatic radio-frequency signals at odd-
integer harmonics of a fundamental frequency provides a
unique signature for dense systems of axions, such as a
collapsing dilute axion star or a dense axion star.

Relativistic axion field theory. Axions can be de-
scribed by a relativistic quantum field theory with a real
scalar field φ(x). The Hamiltonian has the form

H = 1
2 φ̇

2 + 1
2∇φ · ∇φ+ V(φ). (1)

The potential V is a periodic function of φ with period
2πfa, where fa is the axion decay constant. The prod-
uct mafa of the mass of the axion and its decay con-
stant is (8 × 107 eV)2 [1]. Astrophysical and cosmologi-
cal constraints restrict fa to the window between about
5×1017 eV and about 8×1021 eV [1]. The window for ma
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is therefore from about 10−6 eV to about 10−2 eV. The
expansion of V in powers of φ determines dimensionless
coupling constants λ2j for axion self-interactions:

V =
1

2
m2
aφ

2 +m2
af

2
a

∞∑
j=2

λ2j

(2j)!

(
φ

fa

)2j

. (2)

The relativistic axion potential V is produced by non-
perturbative QCD effects, and it depends on quark mass
ratios [20]. It can be approximated by the chiral potential
[19]:

V = m2
πf

2
π

(
1−

[
1− 4z

(1 + z)2
sin2(φ/2fa)

]1/2
)
, (3)

where z = mu/md is the up/down quark mass ratio. For
z = 0.48, the first few coupling constants are λ4 = −0.34,
λ6 = −0.13, and λ8 = −0.87. A simple model for the
relativistic potential is the instanton potential:

V = m2
af

2
a [1− cos(φ/f)] , (4)

for which the coupling constants are λ2n = (−1)n+1.
The Lagrangian for the coupling of the axion to the

electromagnetic field is

Lem =
cemα

16πfa
εµναβFµνFαβφ. (5)

where α ≈ 1/137 and cem is a numerical coefficient that
depends on the axion model [1]. For example, cem =
−1.95 for the simplest KSVZ model [21, 22] and cem =
0.72 in a simple DFSZ model [23, 24]. The decay rate of
the axion into two photons is

Γa =
c2emα

2m3
a

256π3f2
a

. (6)

In the simplest KSVZ model with ma = 10−4±2 eV, the
axion decay rate is Γa = 6×10−60±10 eV. (Here and below,
upper and lower error bars in an exponent correspond to
increasing and decreasing ma by two orders of magnitude
from 10−4 eV.) The axion lifetime is 3×1036∓10 years.
This is tens of orders of magnitude larger than the life-
time of the universe, which is about 1010 years.

The relativistic axion potential implies that there are
inelastic reactions that change the axion number, such
as (2j)a → 2a with j ≥ 2. By the optical theorem, the
rate for (2j)a→ 2a is proportional to the imaginary part
of the amplitude for (2j)a→ (2j)a from two-axion cuts.
Since each axion loop is suppressed by a factor of m2

a/f
2
a ,

which is 3×10−48±8, the rate for the reaction (2j)a→ 2a
is suppressed by m2

a/f
2
a compared to the rate for the elas-

tic scattering process (2j)a → (2j)a. Inelastic reactions
with more than two outgoing axions are suppressed by
more powers of m2

a/f
2
a and can be ignored.

Nonrelativistic axion effective field theory. Ax-
ions whose kinetic energies are much smaller than ma

FIG. 1: Tree diagrams for 4a → 2a in the relativistic axion
theory.

FIG. 2: Tree diagrams for 6a → 2a in the relativistic axion
theory.

can be described by a nonrelativistic effective field the-
ory called axion EFT with a complex scalar field ψ(r, t)
[25]. The effective Hamiltonian has the form

Heff =
1

2ma
∇ψ∗ · ∇ψ + Veff(ψ∗ψ). (7)

In the case of an axion BEC, the effective potential Veff

gives the mean-field energy of the condensate as a func-
tion of its number density ψ∗ψ. The expansion of the
Veff in powers of ψ∗ψ defines dimensionless coupling con-
stants vj for axion self-interactions:

Veff = maψ
∗ψ +m2

af
2
a

∞∑
j=2

vj
(j!)2

(
ψ∗ψ

2maf2
a

)j
. (8)

The coupling constants vj can be derived by matching
low-energy scattering amplitudes at tree level in the rel-
ativistic theory and in axion EFT [25]. The first few
coupling constants are v2 = λ4, v3 = λ6 − 17λ2

4/8, and
v4 = λ8 − 11λ4λ6 + 49λ3

4/4 [25].
The Hamiltonian for axion EFT has a U(1) phase sym-

metry. The associated conserved quantity is the number
N of low-energy axions defined by

N =

∫
d3r ψ∗ψ. (9)

Reactions in the relativistic axion theory that decrease
the number of low-energy axions cannot be described ex-
plicitly within axion EFT, but their effects on nonrela-
tivistic axions can be reproduced by the imaginary part
of the effective potential, which we denote by −iWeff . By
the optical theorem, the rate for (2j)a→ 2a with j ≥ 2 is
proportional to the imaginary part of the elastic scatter-
ing amplitude for (2j)a → (2j)a. The low-energy limit
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FIG. 3: Tree diagrams for 3a → γγ and 5a → γγ in the
relativistic axion theory.

of the imaginary part of this amplitude is reproduced in
axion EFT by the vertex from the (ψ∗ψ)2j term in Weff .
SinceWeff comes from matching one-loop diagrams in the
relativistic theory, it is suppressed by a factor of m2

a/f
2
a

relative to Veff . It can be expanded in powers of ψ∗ψ:

Weff = m4
a

∞∑
j=2

wj+1

[(2j)!]2

(
ψ∗ψ

2maf2
a

)2j

. (10)

The tree diagrams for 4a → 2a and 6a → 2a in the
relativistic theory are shown in Figs. 1 and 2, respectively.
They determine the dimensionless coupling constants for
the (ψ∗ψ)4 and (ψ∗ψ)6 terms in Eq. (10):

w3 =
√

3 [λ6 − λ2
4]2/(64π), (11a)

w4 =
√

2 [λ8 − λ4λ6]2/(48π). (11b)

For the chiral potential in Eq. (3) with z = 0.48, these
coefficients are w3 = 5.1×10−4 and w4 = 7.9×10−3. For
the instanton potential in Eq. (4), they are w3 = 0 and
w4 = 0. We have verified that w5 is also zero for the
instanton potential. We have no deep explanation for
the vanishing of these coefficients.

The decay of the axion into two photons cannot be de-
scribed explicitly within axion EFT, because the energies
of the photons in the axion rest frame are ma/2, which
is beyond the range of validity of the low-energy effective
theory. However the effects of the decay on nonrelativis-
tic axions can be reproduced by a term −iΓaψ∗ψ/2 in
the effective Hamiltonian density, where Γa is the decay
rate in Eq. (6). In the relativistic theory, any larger odd
number 2j+1 of axions can also annihilate into two pho-
tons. By the optical theorem, the rate for (2j+1)a→ γγ
is proportional to the imaginary part of the amplitude for
(2j + 1)a → (2j + 1)a through a photon loop. The low-
energy limit of the imaginary part of this amplitude is re-
produced in axion EFT by the vertex from the (ψ∗ψ)2j+1

term in an additional imaginary part of the effective po-
tential that we denote by −iWem. That potential can be
expanded in powers of ψ∗ψ:

Wem = 1
2Γaψ

∗ψ

1 +

∞∑
j=1

uj+1

[(2j + 1)!]2

(
ψ∗ψ

2maf2
a

)2j
 .
(12)

The tree diagrams for 3a → γγ and 5a → γγ in the
relativistic theory are shown in Fig. 3. They determine

the dimensionless coupling constants for the (ψ∗ψ)3 and
(ψ∗ψ)5 terms in Eq. (12):

u2 = 81λ2
4/64, (13a)

u3 = 625[λ6 + 5λ2
4/4]2/576. (13b)

For the chiral potential with z = 0.48, these coefficients
are u2 = 0.15 and u3 = 4.8×10−4. For the instanton
potential, they are u2 = 1.3 and u3 = 5.5.

The imaginary parts of the effective potential, Weff in
Eq. (10) and and Wem in Eq. (12), are functions of ψ∗ψ,
so they are invariant under the U(1) symmetry. The ef-
fective Hamiltonian obtained by adding −i(Weff +Wem)
to the effective potential V in Eq. (7) therefore commutes
with the number operator N in Eq. (9). This may seem
to suggest that the time evolution generated by the effec-
tive Hamiltonian conserves the number N of low-energy
axions. However it is intuitively obvious that the number
of low-energy axions must decrease with time as inelastic
reactions convert nonrelativistic axions into pairs of rel-
ativistic axions or into pairs of photons. The resolution
to this puzzle is that the effective density matrix for low-
energy axions evolves in time according to a Lindblad
equation, with local Lindblad operators that are deter-
mined by the local anti-Hermitian terms in the effective
Hamiltonian [26].

Axions can be lost from an axion star by the in-
elastic reactions (2j)a → 2a for any j = 2, 3, . . . and
(2j + 1)a → γγ for any j = 0, 1, 2, . . .. The local rate
of decrease in the number density n = ψ∗ψ of a BEC of
axions from (2j)a → 2a is given by the (ψ∗ψ)2j term in
Weff in Eq. (10) multiplied by 2j. The local rate of de-
crease in n from (2j+1)a→ γγ is given by the (ψ∗ψ)2j+1

term in Wem in Eq. (12) multiplied by 2j + 1. The total
loss rate for nonrelativistic axions is obtained by adding
all the terms in the local loss rate and integrating over
the volume of the star:

1

N

dN

dt
= −m

3
a

f2
a

∞∑
j=2

2jwj+1 〈n2j−1〉
[(2j)!]2(2maf2

a )2j−1

−Γa

(
1 +

∞∑
j=1

(2j + 1)uj+1 〈n2j〉
[(2j + 1)!]2(2maf2

a )2j

)
,(14)

where 〈nk〉 =
∫
d3r nk+1/N .

In Ref. [27], the authors proposed a mechanism for the
decay of axion stars in which three axions from a BEC
make a transition to a single relativistic axion. The reac-
tion 3a→ a violates conservation of energy and momen-
tum. The authors suggested that momentum conserva-
tion can be ignored, because a tiny recoil momentum of
the entire star would allow momentum to be conserved.
However there is no physical mechanism that can effec-
tively transfer momentum from the few axions partic-
ipating in the reaction to the many axions that make
up the star. That the 3a → a reaction is not a viable
mechanism for the loss of low-energy axions is clear from
axion EFT. In the low-energy limit, the amplitude for
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3a → a → 3a in the relativistic theory is reproduced in
axion EFT by the coupling constant v3 for the (ψ∗ψ)3

term in Weff in Eq. (10). The coupling constant for this
operator has an imaginary part proportional to u2 from
the 3a→ γγ reaction, but it has no imaginary part that
would correspond to a 3a → a reaction. That the reac-
tion 3a→ a proposed in Ref. [27] is not a viable mecha-
nism for the emission of axions from a BEC is also clear
from experiments on BEC’s of ultracold atoms [28–30].
The dominant mechanism for the loss of atoms is usually
the 3-body recombination reaction 3a→ (aa) + a, where
(aa) represents a diatomic molecule [31]. This reaction
conserves energy and momentum.

Dilute axion stars. Approximate solutions for dilute
axion stars were first found numerically by Barranco and
Bernal [7] using the relativistic axion field theory with the
instanton potential V in Eq. (4) and with gravitational in-
teractions described by general relativity. Accurate solu-
tions were obtained more simply by Chavanis and Delfini
using a nonrelativistic axion field theory with the effec-
tive potential Veff truncated after the (ψ∗ψ)2 term and
with gravitational interactions described by Newtonian
gravity [8]. They obtained an analytic result for the crit-
ical mass M∗ above which there are no stable spherically
symmetric solutions:

M∗ = 10.15 |λ4|−1/2fa/
√
Gm2

a. (15)

If ma = 10−4±2 eV, the critical mass for the chiral po-
tential with z = 0.48 is 10−13∓4M�, where M� is the
solar mass. The solutions for axion stars are conve-
niently parametrized by the central number density n0.
The critical value of the dimensionless central density
n̂0 = n0/(

1
2maf

2
a ) is 800λ−2

4 Gf2
a [8], which is 2×10−13∓4

for the chiral potential with z = 0.48. We refer to the
branch of axions stars with masses extending up to the
critical mass M∗ in Eq. (15) as dilute axion stars, because
the number density is always small enough that Veff in
Eq. (8) can be truncated after the (ψ∗ψ)2 term.

The dominant contribution to the loss rate of axions
from a dilute axion star is from the decay a → γγ. The
lifetime of the dilute axion star is therefore the same as
the lifetime 1/Γa of the axion. Other individual contribu-
tions to the axion loss rate in Eq. (14) are shown in Fig. 5
as functions of the mass M of the dilute axion star. At
the critical mass M∗, the loss rate from 3a→ γγ is sup-
pressed by about 10−32. For the chiral potential, the loss
rate at M∗ from 4a → 2a is suppressed by about 10−47.
For the instanton potential, the operators in Eq. (10) give
no contribution to the loss rate from (2j)a→ 2a, at least
for j = 2, 3, 4. For j = 2, the largest contribution comes
from gradient operators, such as ψ∗ψ∇ψ∗ ·∇ψ. The two
gradients give an additional suppression factor of |µ|/ma,
where µ is the chemical potential. The chemical potential
at the critical mass M∗ is −36|λ4|−1Gmaf

2
a [8]. Thus the

suppression factor |µ|/ma is about 10−17∓4 at M∗. As
the mass M decreases, the fractional loss rates in Fig. 5
decrease. For M � M∗, the fractional loss rate from
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FIG. 4: Axion loss rates from a dilute axion star as functions
of the mass M of the axion star (normalized to M�). The
fractional loss rates |dN/dt|/N for ma = 10−4 eV are normal-
ized to the axion decay rate Γa = 6.2 × 10−60 eV. The loss
rates are for the chiral potential with z = 0.48 (dashed lines)
and for the instanton potential (solid lines).

3a→ γγ decreases roughly as M8.3 for the chiral poten-
tial and M8.7 for the instanton potential. The fractional
loss rate from 4a → 2a decreases roughly as M12.4 for
the chiral potential.

Dense axion stars. The possibility of other branches
of much denser axion stars has recently been suggested
[9]. In a dense axion star, the number density ψ∗ψ be-
comes too large for the effective potential Veff to be ap-
proximated by a truncation of its expansion in powers of
ψ∗ψ. In Ref. [25], a systematically improvable sequence
of approximations to the effective potential of axion EFT
that resum terms with all powers in of ψ∗ψ was devel-
oped. For the instanton potential in Eq. (4), the first in
this sequence of approximations to Veff is

V(0)
eff = 1

2maψ
∗ψ +m2

af
2
a

[
1− J0(n̂1/2)

]
, (16)

where n̂ = ψ∗ψ/( 1
2maf

2
a ). This effective potential was

derived previously by using a nonrelativistic reduction
of the relativistic axion field theory [32]. For the chi-
ral potential in Eq. (3), there is no analytic expression
for the effective potential analogous to Eq. (16). In
Ref. [9], the differential equations for axion EFT with
the instanton effective potential in Eq. (16) and with
gravitational interactions described by Newtonian grav-
ity were solved to obtain solutions for dense axion stars.
For m = 10−4±2 eV, the branch of dense axion stars be-
gins at a lower critical mass 1.2×10−20∓6M�. The lower
critical mass for the chiral potential is not known. For
the instanton potential, the dimensionless central den-
sity n̂0 is 13 at the lower critical mass. The accurate
numerical solution of the differential equations for the ax-
ion star becomes increasingly challenging as n̂0 increases.
The mean-field energy of the axion BEC also becomes in-
creasingly large compared to the kinetic energy of the ax-
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FIG. 5: Axion loss rates from a dense axion star as functions
of the massM of the axion star (normalized toM�). The frac-
tional loss rates |dN/dt|/N for ma = 10−4 eV are normalized
to the axion decay rate Γa = 6.2 × 10−60 eV. The loss rates
are for the chiral potential with z = 0.48 in the Thomas-Fermi
approximation (dashed lines) and for the instanton potential
(solid lines). The vertical dotted line is the critical mass for
a dilute axion star with the instanton potential.

ions. The solution can therefore be simplified using the
Thomas-Fermi approximation, in which the kinetic en-
ergy term for the axion field in the differential equations
for the axion star is neglected [34]. The Thomas-Fermi
approximation was used in Ref. [9] to extend the branch
of dense axion stars up to the upper endpoint 1.9M�,
beyond which there is no solution within this approxi-
mation. For the effective chiral potential analogous to
Eq. (16), it is relatively easy to calculate the solutions
for dense axion stars using the Thomas-Fermi approxi-
mation.

The individual contributions to the axion loss rate in
Eq. (14) from a dense axion star are shown in Fig. 5 as
functions of the mass M of the axion star. For the chiral
effective potential analogous to Eq. (16) with z = 0.48,
the solutions for dense axion stars were calculated using
the Thomas-Fermi approximation. This approximation
begins to break down a few orders of magnitude above
the lower critical mass. Since the Thomas-Fermi approx-
imation does not predict such a critical point, the frac-
tional loss rates in Fig. 5 for the chiral potential have
been extended all the way to the left end of the plot.
The fractional loss rates in Fig. 5 increase very slowly
over most of the range of M . That range includes the
critical mass M∗ for a dilute axion star. For the chiral
potential with z = 0.48, the largest loss rate is from the
reaction 4a → 2a. At the critical mass M∗ for a dilute
axion star, the loss rate from 6a → 2a is smaller by a
factor of 0.9 and the loss rate from a → γγ is smaller
by a factor of 3× 10−5. For the instanton potential, the
largest loss rate from producing relativistic axions may
come from a gradient operator, such as ψ∗ψ∇ψ∗·∇ψ. At
M∗, this loss rate has Thomas-Fermi suppression on top

of the suppression by |µ|/ma, which is about 10−16∓4.
Even if the loss rates from the reactions (2j + 1)a→ γγ
are orders of magnitude smaller than the loss rates from
(2j)a → 2a, these reactions may still be important be-
cause they produce monochromatic photons in the radio-
frequency range that could be observed. At the critical
mass M∗ for a dilute axion star, the fractional loss rates
for a dense axion star from 3a → γγ and from 5a → γγ
are smaller than Γa by 3× 10−2 and by 5× 10−6 for the
chiral potential. The fractional loss rates from 3a → γγ
and from 5a → γγ are smaller than Γa by 0.29 and by
0.10 for the instanton potential.

Odd-integer harmonics. One of the most puzzling
discoveries in astrophysics in recent decades is fast radio
bursts [35]. There are proposed mechanisms for fast ra-
dio bursts involving monochromatic radio-frequency sig-
nals from dilute axion stars. Iwazaki suggested that a
signal with frequency ma could be produced in the colli-
sion of a dilute axion star and a neutron star by coherent
electric-dipole radiation from electrons in the atmosphere
of the neutron star [36]. Tkachev suggested that a sig-
nal with frequency ma/2 could be produced by a maser
mechanism in a collapsing dilute axion star [37]. Raby
recently suggested that a signal with frequency ma could
be produced in the collision of a dilute axion star and
a neutron star by coherent electric-dipole radiation from
neutrons in the outer core of the neutron star [38]. With
any of these mechanisms, odd-integer harmonics of the
fundamental frequency should also be produced, but at
rates smaller by tens of orders of magnitude. For the
analogous mechanisms involving a dense axion star or
any other dense systems of axions, each successive odd-
integer harmonic may only be smaller by one or two or-
ders of magnitude. While cosmological and gravitational
red shifts can change the fundamental frequency deter-
mined by ma, they will not affect the odd-integer ratios
of the harmonics. Thus monochromatic radio-frequency
signals at odd-integer harmonics of a fundamental fre-
quency are a unique signature for dense axion stars and
collapsing dilute axion stars.
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