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Abstract

We construct a generalization of Witten’s Kaluza-Klein instanton, where a higher-

dimensional sphere (rather than a circle as in Witten’s instanton) collapses to zero

size and the geometry terminates at a bubble of nothing, in a low energy effective

theory of M theory. We use the solution to exhibit instability of non-supersymmetric

AdS5 vacua in M Theory compactified on positive Kähler-Einstein spaces, providing a

further evidence for the recent conjecture that any non-supersymmetric anti-de Sitter

vacuum supported by fluxes must be unstable.



1 Introduction

Stability is an important criterion for consistency of Kaluza-Klein vacua. Due to non-

trivial topologies of their internal spaces, the standard positive energy theorem [1–3] does

not necessarily apply. In fact, it was shown by E. Witten [4] that the original Kaluza-

Klein theory [5, 6] on a product of the four-dimensional Minkowski spacetime and a circle

is unstable against a semi-classical decay process, unless protected by boundary conditions

on fermions. The instanton that mediates the decay is the analytical continuation of five-

dimensional Schwarzschild solution,

ds2 =
dr2

1− R2

r2

+ r2dΩ2
3 +

(
1− R2

r2

)
dφ2,

where dΩ2
3 is metrics on the unit three-shpere, and φ is the coordinate on the Kaluza-Klein

circle. Smoothness of the solution at r = R requires φ to be periodic with period 2πR, and

the Kaluza-Klein radius at r =∞ is R. As we move toward small r, the circle collapses and

becomes zero size at r = R, where the geometry terminates. Another analytic continuation

of the polar angle on the three-sphere turns this into a Lorentzian signature solution, where

the “bubble of nothing” expands with velocity that asymptotes to the speed of light.

Witten’s instanton has also played a role in stability of anti-de Sitter (AdS) vacua.

There have been several proposals for non-supersymmetric AdS geometries. Among them

is AdS5×S5/Γ, where Γ is a discrete subgroup of the SU(4) rotational symmetry of S5 [7].

Supersymmetry is completely broken if Γ does not fit within an SU(3) subgroup of the

SU(4) symmetry. It turns out that, if Γ has a fixed point on S5 or if the radius of S5 is

not large enough, the perturbative spectrum on AdS5 contains closed string tachyons that

violate the Breitenloner-Freedman bound [8, 9]. When Γ has no fixed point and S5 is suffi-

ciently large, the instability modes are lifted and the configuration becomes perturbatively

stable. However, in this case, S5/Γ is not simply connected, and there is a Witten-type

instanton where a homotopically non-trivial cycle on S5/Γ collapses to zero size at a bubble

of nothing [10]. This eliminates AdS5×S5/Γ as a candidate for a stable non-supersymmetric

AdS geometry.

In this paper, we present instanton solutions where a higher-dimensional sphere rather

than a circle collapses, in a low energy effective theory of M theory. Such generalizations of

Witten’s instanton were attempted earlier, for example in [11], where it was found that fluxes

needed to cancel the intrinsic curvature on the sphere prevent it from collapsing. Motivated

by the recent conjecture [12] (see also [13–15]) that any non-supersymmetric AdS vacuum

supported by fluxes must be unstable, we found examples in non-supersymmetric setups

which avoid the difficulty in the earlier attempt.

We will focus on AdS5 times positive Kähler-Einstein spaces, which break supersymme-

try [16]. AdS5×CP3 is the only example of this type known to be stable against linearized

supergravity perturbations [17]. Since its internal space is simply connected, we do not

expect it to have a Witten-type instanton, where an S1 collapses to zero size at a bubble.
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On the other hand, CP3 can be realized as S2 fibration over S4, and it is possible for its S2

fibers to collapse. Indeed, we find such instanton solution with finite action.

Our solution avoids the difficulty with fluxes encountered in [11] as follows. The AdS5

geometry in question is supported by the 4-form flux in M Theory, with non-zero components

both on the S2 fibers and on the S4 base of the internal space. As we move toward the

center of AdS5, the 4-form flux re-orient itself. By the time we reach the bubble of nothing,

the flux has no components in the S2 fiber direction. Thus, the S2 can collapse at the

bubble without violating the flux conservation.

AdS5 × CP3 is only marginally stable with normalizable mode at the Breitenlohner-

Freedman bound. Thus, this vacuum is also in danger of becoming unstable by higher

derivative corrections to the eleven-dimensional supergravity. It is interesting to point out

that in our instanton solution the normalizable mode at the Breitenlohner-Freedman bound

is turned on and is responsible for triggering the collapse of the S2 fiber.

If there is a “bubble of nothing” instanton in AdS, it causes an instability that can be

detected instantaneously on the boundary of AdS [10, 18]. This is because any observer in

AdS can receive signals from any point on a Cauchy surface within a finite amount of time,

and an observer at the boundary in particular has access to an infinite volume space near

the boundary within an infinitesimal amount of time. Therefore, our new instanton solution

in the perturbatively stable non-supersymmetric AdS5 configuration offer further evidences

for the conjecture of [12].

The plan of the paper is the following. In section 2 we describe the AdS5×CP3 solution

and introduce our instanton ansatz. Boundary conditions on the instanton at the bubble

and at the infinity are discussed in section 3. It turns out that there are algebraic relations

among variables in our ansatz, as shown in section 4. These relations reduce the problem to

a second order ordinary differential equation on a single function, which we will numerically

solve in section 5. Finiteness of the instanton action is verified in section 6. In section

7, we discuss AdS5 × SU(3)
U(1)×U(1)

. It is not know whether this geometry is stable against

linearized supergravity perturbation. Regardless, we will show that it allows a bubble of

nothing solution and is therefore unstable non-perturbatively. In the final section, we discuss

additional features of our instanton solutions.

2 AdS5 × CP3 Geometry and Instanton Ansatz

For any Kähler-Einstein sixfold M6, there exists an AdS5 ×M6 solution [16] to the eleven-

dimensional supergravity equations of motion,

RMN =
1

3
(FM

PQRFNPQR −
1

12
gMNF

PQRSFPQRS),

∇MF
MPQR = − 1

576
εM1...M8PQRFM1M2M3M4FM5M6M7M8 .

(1)

Such a solution can be found by setting the 4-form field strength as,

F = c ω ∧ ω, (2)
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where ω is the Kähler 2-form of internal space and c is some constant, which will be related

to the AdS radius. With this ansatz, the right-hand side of the second equation in (1)

vanishes since F is nonzero only on M6, and the left-hand side vanishes by the Kähler

integrability condition on ω. On the other hand, the first equation in (1) gives,

Rµν = −2c2gµν , Rmn = 2c2gmn, (3)

where µ = 0, . . . , 4 is index in the non-compact directions and m = 5, . . . , 10 are on M6.

Therefore, the non-compact directions can be chosen to be AdS5, and M6 must be an

Einstein manifold. The configuration breaks supersymmetry [16, 19] since there are no

non-trivial solutions to δΨM = 0 for supersymmetry variation of the gravitini,

δΨM = DMε = ∇Mε+
1

144

(
ΓMNPQRF

NPQR − 8 ΓNPQFM
NPQ

)
ε. (4)

As we mentioned in the introduction, the only known perturbatively stable case is M6 =

CP3. This space can be realized as S2 fibration, and we look for instanton solution where

the fiber collapses. In the next few sections we focus on M6 = CP3 and in section 7 we show

that instanton solution for M6 = SU(3)
U(1)×U(1)

can be constructed similarly.

To make the S2 fibration explicit, we use the following set of coordinates on CP3 [20]:

e1 =
√
g(r)dµ,

ei =

√
g(r)

2
sinµΣi−1 for i = 2, 3, 4,

e5 =
√
h(r)(dθ − A1 sinφ+ A2 cosφ),

e6 =
√
h(r) sin θ(dφ− cot θ(A1 cosφ+ A2 sinφ) + A3),

(5)

where

Σ1 = cos γ dα + sin γ sinα dβ,

Σ2 = − sin γ dα + cos γ sinα dβ,

Σ3 = dγ + cosα dβ,

Ai = cos
(µ

2

)2
Σi.

(6)

Here the first 4 tetrad corresponds to the base S4 and the last two correspond to the S2

fiber. We multiplied them by the functions g(r), h(r) to make their sizes dynamical. We

take the vierbein on Euclidean AdS space to be,

e7 = dr,

ek =
√
f(r) êk for k = 8, 9, 10, 11,

(7)

where êk is any tetrad on the S4. The metric in this frame is,

ds2 = g(r)

(
dµ2 +

1

4
sin2 µ

3∑
i=1

Σ2
i

)
+ h(r)

(
dθ − A1 sinφ+ A2 cosφ

)2
+h(r) sin2 θ

(
dφ− cot θ(A1 cosφ+ A2 sinφ) + A3

)2
+ dr2 + f(r)dΩ2

4.

(8)
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We used the freedom of coordinate redefinition by fixing the coefficient near dr2 to be 1.

The next step is to write an ansatz for the 4-from field, utilizing the SU(3)-structure of

the squashed CP3 given by 2-form J and 3-form Ω as [21–24],

J = − sin θ cosφ(e12 + e34)− sin θ sinφ(e13 + e42)− cos θ(e14 + e23) + e56,

Re Ω = cos θ cosφ(e126 + e346) + cos θ sinφ(e136 + e426) + sinφ(e125 + e345)

− cosφ(e135 + e425)− sin θ(e146 + e236),

Im Ω = − cos θ cosφ(e125 + e345)− cos θ sinφ(e135 + e425) + sinφ(e126 + e346)

− cosφ(e136 + e426) + sin θ(e145 + e235).

(9)

Here e12 = e1 ∧ e2 e.t.c.. These forms satisfy,

d6J =
3

2
W1 Im Ω,

d6Im Ω = 0,

d6Re Ω = W1 J ∧ J +W2 ∧ J,

(10)

where d6 is external derivative of CP3, and W1 and W2 are torsion classes of the SU(3)-

structure given by,

W1 =
2

3

g(r) + h(r)

g(r)
√
h(r),

W2 =
2h(r)− g(r)

g(r)
√
h(r)

(
2

3
J − 2e56

)
.

(11)

A general manifold with SU(3) structure has more terms in the relations (10), but in the

case of our interest (squashed CP3) other torsion classes vanish.

Note, that this SU(3)-structure is different from the usual Fubini-Study Kähler structure

of CP3. We use ω to denote the Fubini-Study Kähler 2-from to distinguish it from J . These

two SU(3)-structures are associated to different realizations of CP3 as coset spaces. The

first is CP3 = SU(4)
U(3)

, which is a symmetric space and the complex structure of SU(4) gives

the Fubini-Study structure. The second is CP3 = Sp(2)
S(U(2)×U(1))

, which is not manifestly

symmetric but homogeneous. Therefore, we can use the latter even after we change the

relative sizes of the base S4 and the fiber S2. This is the reason why we use the second

structure to build an ansatz for the 4-form field.

Left-invariant 2-forms and 3-forms are spanned by J,W2 and Re Ω, Im Ω respectively.

Therefore, the most general ansatz for the 4-form respecting the symmetries is

F4 = ξ1(r)J ∧ J + ξ2(r)J ∧ e56 + d
(
ξ3(r)Im Ω

)
+ d
(
ξ4(r)Re Ω

)
+ ξ5(r)e

8,9,10,11. (12)

With the ansatz for the metric (8) and the 4-form field strength (12), we are ready to

impose the eleven-dimensional supergravity equations of motion (1). The second equation
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in (1), namely the Maxwell equation for the 4-form, can be solved by,

ξ1(r) =
C1

g(r)2
, ξ2(r) = − 2C1

g(r)2
+

C2

g(r)h(r)
,

ξ3(r) = 0, ξ4(r) = − 3
√

2 ξ(r)

g(r)h(r)1/2
, ξ5(r) = 0,

(13)

where the function ξ(r) satisfies the differential equation,

ξ′′ +
2f ′ξ′

f
−

4h
(
ξ − 3

2

)
g2

− 2ξ

h
= 0. (14)

From now on, we will set the dimensionful constant in (2) to be c =
√

2. In order for the

4-form (12) coverge to (2) as r → ∞, one must impose C1 = 9
√

2, C2 = 0 and ξ(∞) = 1.

Thus, the 4-form can be expressed as,

F4 =
9
√

2

g(r)2
J ∧ J − 18

√
2

g(r)2
J ∧ e56 − d

(
3
√

2 ξ(r)

g(r)h(r)1/2
Re Ω

)
. (15)

The next step is to express the first equation in (1), namely the Einstein equations, in

our ansatz as,

−g
′′

2g
− f ′g′

fg
− g′h′

2gh
− g′2

2g2
− ξ′2

24g2h
− ξ2

12g2h2
− h

g2
−

2
(
ξ − 3

2

)2
3g4

+
3

g
= 0,

−h
′′

2h
− f ′h′

fh
− g′h′

gh
− ξ′2

24g2h
− ξ2

3g2h2
+
h

g2
+

(
ξ − 3

2

)2
3g4

+
1

h
= 0,

−f
′′

2f
− f ′g′

fg
− f ′h′

2fh
− f ′2

2f 2
+

ξ′2

12g2h
+

ξ2

6g2h2
+

(
ξ − 3

2

)2
3g4

+
3

f
= 0,

8f ′g′

fg
+

4f ′h′

fh
+

3f ′2

f 2
+
h′2

2h2
+

4g′h′

gh
+

3g′2

g2
− ξ′2

4g2h

+
ξ2

2g2h2
+

2h

g2
+

(
ξ − 3

2

)2
g4

− 12

g
− 2

h
− 12

f
= 0,

ξ′′ +
2f ′ξ′

f
−

4h
(
ξ − 3

2

)
g2

− 2ξ

h
= 0.

(16)

For our reference below, we added the Maxwell equation equation for the 4-form (14) in

the end. There are four independent functions, four Einstein equations and one Maxwell

equation. Due to the Bianchi identities, only three out of four Einstein equations are

independent.

As a consistency check, we can easily verify that the Euclidian version of AdS5 × CP3,

f(r) = sinh2 r, h(r) =
1

2
, g(r) =

1

2
, ξ(r) = 1, (17)
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solves these equations. There is another simple solution,

f(r) =
4

3

(
2

3

)2/3

sinh

(
1

2

(
3

2

)5/6√
2r

)2

, h(r) =

(
2

3

)2/3

,

g(r) =
1

21/332/3
ξ(r) =

4

3
,

(18)

which is a stretched CP3 solution [25]. One can see that h(r) = 2g(r), i.e., CP3 is stretched

along its fiber.

3 Boundary Conditions

In this section, we will study boundary conditions to instanton solutions at the infinity of

AdS and at the bubble of nothing.

For r → ∞, the solution should approach the vacuum AdS5 × CP3, and we can lin-

earlize (16). In this set of equations, three are second order differential equations for g,

h, ξ and one is first order for f (modulo the redundancy by the Bianchi identities). We

should also note that there is translational invariance in r, which is the residual symme-

try in our gauge (8). Therefore, there are six linearly independent modes, and they are

e2(±
√
7−1)r, e2(±

√
10−1)r, e−2r, and r ·e−2r. Among them, three are normalizable and three are

non-normalizable. Note that e−2r and r · e−2r are at the Breitenlohner-Freedman bound.

Conformal invariance on the boundary requires the r · e−2r mode to vanish [26]. This con-

dition also guarantees that the instanton action is finite, as we will see in section 6. For

now, we only set the two diverging modes, e2(
√
7−1)r and e2(

√
10−1)r, to vanish at r =∞. We

will keep the r · e−2r mode to be adjustable in the next couple of sections and demand it to

vanish in section 6.

Let us turn our attention to boundary conditions at the bubble of nothing. In order for

the S2 fiber to shrink to zero size, the 4-form flux should not have components on the S2,

otherwise the flux conservation would prevent it from collapsing. Thus, ξ(r) in (15) must

be chosen in such a way that F4 is proportional to the volume form of the base S4. For this

purpose, it is convenient to rewrite (15) as,

1

3
√

2
F4 =

4
(
3
2
− ξ(r)

)
g(r)2

e1234 − 2 ξ(r)

g(r)h(r)
J ∧ e56 +

ξ′(r)

g(r)
√
h(r)

Re Ω ∧ dr. (19)

Note that the second and third terms in the right-hand side have h(r) and
√
h(r) in the

denominators, which should vanish at the bubble. However, e56 and Re Ω also go to zero

since they have the factors h(r) and
√
h(r) respectively. Therefore these second and third

terms vanish if we set ξ = 0 and ξ′ = 0, and F4 becomes proportional to the volume form

e1234 on the base.

Suppose the S2 fiber becomes zero size at r = r0. This means we set h(r0) = 0. We

also require ξ(r0) = ξ′(r0) = 0 due our analysis in the previous paragraph. Combining these
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boundary conditions with the equations of motion (16), we find,

ξ(r) = ξ0 (r − r0)2 +O((r − r0)4),
f(r) = f0 +O((r − r0)2),
g(r) = g0 +O((r − r0)2),
h(r) = (r − r0)2 +O((r − r0)4).

(20)

In order for the geometry to terminate smoothly, we need h(r) = (r − r0)2 + · · · with the

coefficient 1 in the leading term. This condition turns out to be implied by the Einstein

equations. This is in contrast to the case of Witten’s instanton, for which an analogue of

h(r) = (r − r0)2 + · · · has to be imposed as an additional boundary condition.

Thus, we find that there are three parameters f0, g0 and ξ0 at the bubble. As we will

see below, they can be fixed by demanding the three non-normalizable modes, e2(
√
7−1)r,

e2(
√
10−1)r, and r · e−2r, to vanish at the infinity. The location r0 of the bubble is fixed by

demanding f(r)/ sinh2 r → 1 for r →∞.

4 Algebraic Relations

Interestingly, both the equations of motion and the boundary conditions defined in the last

two sections are compatible with two simple algebraic relations between the three functions

g(r), h(r), ξ(r). In fact, if we set,

g(r) = G(h(r)),

ξ(r) = S(h(r)),
(21)

and substitute them into the equations of motion (16), we find a couple of equations that

are independent of f(r):

3

G
− h

G2
− S2

12h2G2
−

2
(
S − 3

2

)2
3G4

+ Ġ

(
S2

3G3h
− 1

G
− h2

G3
−
h(S − 3

2
)2

3G5

)
= −h′(r)2

(
Ġ2

2G2
− G̈

2G
+
ĠṠ2

24G3
− Ġ

2hG
− Ṡ2

24hG2

) (22)

and

−
4h
(
S − 3

2

)
G2

− 2S

h
+ Ṡ

(
2 +

2h2

G2
− 2S2

3hG2
+

2h
(
S − 3

2

)2
3G4

)

= −h′(r)2
(
S̈ − 2ĠṠ

G
− Ṡ3

12G2

)
,

(23)

where ˙ = d/dh. Demanding that these equations hold independently of h′(r), we obtain

four differential equations on G(h) and S(h) with respect to h. Remarkably, these four
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equations can be solved algebraically by imposing the simple relations,

ξ = 3−
√

2g (3g + h) ,

1 =
√

2g
(
h+ g

)
.

(24)

These algebraic relations are also consistent with the boundary conditions at r = r0 and

∞: Setting h(r) = (r − r0)
2 gives g(r) = 2−1/3 and ξ(r) = 24/3(r − r0)

2 as expected at

the bubble, and h = 1/2 at r = ∞ gives g = 1/2 and ξ = 1 as required for AdS5 × CP3.

We found these relations experimentally, and it would be interesting to find their deeper

origins. In the following, we will use them to numerically integrate the rest of the equations

of motion.

5 Numerical solution

Using of the algebraic relations (24), the equations of motion (16) collapse to the following

three equations for the two functions f(r) and g(r),

−g
′′

2g
− g′2

4g2
− f ′g′

fg
− 1

6g4
(1− 5

√
2g3/2 + 12g3) = 0,

−f
′′

2f
− f ′2

2f 2
− 3f ′g′

4fg

1− (2g)3/2

1−
√

2g3/2
+

3g′2

2g2

√
2g3/2

1−
√

2g3/2
+

1

12g4
(1− 8

√
2g3/2 + 48g3) +

3

f
= 0,

3f ′2

f 2
+

6f ′g′

fg

1− (2g)3/2

1−
√

2g3/2
+
g′2

8g2
(9− 96

√
2g3/2 + 192g3)

(1−
√

2g3/2)2
+

1

4g4
1− 5

√
2g3/2

1−
√

2g3/2
− 12

f
= 0.

(25)

Only two of these three equations are independent. Eliminating f(r), one finds the following

equation for g(r),(
1−
√

2g3/2
)2
g6
(
4g′′′g′ − 5g′′2

)
− 3

4

(
1 + 14

√
2g3/2 − 42g3

)
g4g′4

−
(

5− 16
√

2g3/2 + 22g3
)
g5g′2g′′ − 2

(
1− 3

√
2g3/2

)(
1− 2

√
2g3/2

)(
1−
√

2g3/2
)2
g3g′′

−
(

1−
√

2g3/2
)2 (

4− 9
√

2g3/2 − 12g3
)
g2g′2

−1

9

(
1− 3

√
2g3/2

)2 (
1− 2

√
2g3/2

)2 (
1−
√

2g3/2
)2

= 0.

(26)

This is a third order differential equation for g(r). Since it does not depend on r explicitly,

one can lower its order by one. The numerical integration of this equation shows the desired

behavior, i.e., g(r) goes from 2−1/3 to 1/2 as r goes from r0 to ∞.

We would like to comment on two important features of our numerical solutions:
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Figure 1: Numerical solution to the equation (26)

1. The equation for g(r) is singular at the bubble, and the coeffieint of g′′′ vanishes with

g(r0) = 2−1/3. Therefore, instead of numerically integrating the equation with the

initial value of g(r0) = 2−1/3, we computed first few terms in the Taylor expansion

analytically and matched them to a numerical solution.

2. In this section, we are not requiring the r · e−2r mode to vanish at r →∞. Thus, we

are left with one free parameter f0, which is the size of the bubble.

We presented the typical behavior of the solution on the Figure 1, where we set f0 = 1.

The horizontal axis is r − r0, where r0 is fixed by demanding f(r)/ sinh2 r → 1 as r → ∞.

One can see that the solution exhibits the desired behavior: h(r) → 1/2, g(r) → 1/2,

ξ(r)→ 0 and f ′(r)/f(r)→ 2 as r →∞.

6 Instanton Action

We have shown that there is a family of solutions parameterized by the size f0 of the bubble,

which approach AdS5×CP3 at infinity. However, there is one more non-normalizable mode

r·e−2r we need to fix. In this section, we show that one can turn off this mode by adjusting f0.

This also makes the instanton action finite.
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For general value of the parameter f0, the solution at the infinity behaves as

g(r) =
1

2
+
(
a(f0) + b(f0)r

)
e−2r + · · · . (27)

Numerically, b(f0) vanishes at f0 = 0.6203025... To show that b(f0) can be set exactly

equal to zero by adjusting f0, we present Figure 2 for α(r) =
(
g(r)− 1

2

)
e2r. Since α(r) ∼

a(f0) + b(f0)r for r → ∞, we see that b(f0) changes its sign near 0.62. Therefore, there

must be f0 near 0.62 such that b(f0) = 0.

5 10 15 20 25 30

r-r0
0.4

0.5

0.6

0.7

0.8

0.9

α(r)

5 10 15 20 25 30

r-r0

0.005

0.010

dα/dr

Figure 2: The graphs of α(r) and its derivative. The horizontal axises are r− r0. Values of

f0 from top to bottom are 0.63, 0.62, 0.61 respectively.

The action for 11-dimensional supergravity takes the form,

S =

∫
M11

√
detG

(
1

4
R− 1

48
FMNPQF

MNPQ + . . .

)
, (28)

where we have ignored the Chern-Simons terms and fermions, which are irrelevant to our

discussion. Using the supergravity equations (1), the 4-form kinetic term is related to the

Einstein term, FMNPQF
MNPQ = 36R. Therefore, the instanton action reduces to,

S = −1

2

∫
M11

√
detG R. (29)

It is straightforward to see that, with the r · e−2r mode removed, the instanton action is

finite and positive after subtracting the value for the vacuum AdS.

We conclude that AdS5 × CP3 is unstable due to the finite action instanton.

7 Instability of AdS5 × SU(3)
U(1)×U(1)

In this section, we will show that AdS5 × SU(3)
U(1)×U(1)

model has an instanton that mediates

its decay. It is not know whether this solution is perturbative stable or not. In either case,

the existence of the bubble of nothing solution shown here means that it is unstable.
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To construct the solution, let us first review the geometry of SU(3)
U(1)×U(1)

. It can be viewed

as a flag manifold F(1, 2, 3) or a twistor space over CP2. It admits Kähler structure with

an Einstein metric and therefore is a solution of the supergravity equations of motion. It is

also an S2 fibration over CP2 base. The last fact is best understood from the coset point of

view. One can choose SU(2) subgroup in SU(3) and decompose SU(3) = SU(3)
SU(2)

× SU(2).

The former term in the product is homogeneous space S5 and the latter is S3. Therefore,

SU(3) is a S3 fibration over S5. The two U(1) subgroups in the denominator of the coset
SU(3)

U(1)×U(1)
turn each sphere into complex projective space resulting in S2 ↪→ SU(3)

U(1)×U(1)
→ CP2

fibration.

It worth mentioning that both CP3 and SU(3)
U(1)×U(1)

are twistor spaces of S4 and CP3 [22].

This fact seems to be the main reason of the similarity between the collapsing solutions of

the models. Choosing the vielbein as [20,27]:

e1 =
√

2g(r)dµ,

e2 =

√
g(r)

2
sinµΣ1,

e3 =

√
g(r)

2
sinµΣ2,

e4 =

√
g(r)

2
sinµ cosµΣ3,

e5 =
√
h(r)(dθ − A1 sinφ+ A2 cosφ),

e6 =
√
h(r) sin θ(dφ− cot θ(A1 cosφ+ A2 sinφ) + A3),

(30)

with

Σ1 = cos γ dα + sin γ dβ,

Σ2 = − sin γ dα + cos γ dβ,

Σ3 = dγ + cosα dβ,

A1 = cosµΣ1,

A2 = cosµΣ2,

A3 =
1

2

(
1 + cos2 µ

)
Σ3,

(31)

all the formulas and results become exactly the same as in CP3 case. Namely, SU(3)
U(1)×U(1)

has

the SU(3)-structure defined by (9) and has torsion classes (11). Since the SU(3)-structure

is the same, the ansatz for the flux will have the same solution (13). Finally and most

importantly, the equations of motion of supergravity take exactly the same form (16). The

last fact makes all the results of the previous sections applicable to this case. The only thing

which is different is the expression of the vielbein in terms of the coordinates.

One might wonder why the equations are exactly the same. It follows from the fact that

we constructed the ansatz which respects all the symmetries of the model with squashed

11



fiber. The bases of the compact manifold in both cases are Einstein manifolds and therefore

their contribution to the Einstein equations will enter in a similar manner. Besides, the

SU(3)-structure is rooted in the twistor origin of both spaces and it is used to build the

ansatz for the flux. Because of the same origin, it gives the same result in both cases.

8 Discussion

We would like to end this paper by explaining how our solution evades the issue raised

in [11]. Suppose we try to collapse a d-dimensional sphere in the internal space supported

by a flux, at the bubble located at r = r0. The flux gives contribution to the Einstein

equations proportional to 1/h(r)d, where h(r) is the square radius of the sphere, while

the contribution from curvature is proportional to 1/(r − r0)
2. Taking into account that

h(r) ∼ (r − r0)
2 for the smoothness, it was argued in [11] that the only possible way to

make this two terms of the same order is to set d = 1, i.e., a circle. However, this does not

apply to our case since the amount of flux on the sphere can vary.

It is instructive to see it explicitly in the Einstein equation (16) for h(r),

−h
′′

2h
− f ′h′

fh
− g′h′

gh
− ξ′2

24g2h
+
h

g2
+

(
ξ − 3

2

)2
3g4

+
1

h
− ξ2

3g2h2
= 0. (32)

One can see that curvature contribution (first term) is of order 1/(r − r0)2, while the flux

(last term) is of order ξ(r)2/h(r)2 (flux for the S4 is proportional to the 4th power of g(r) as

it should). This is consistent with the estimate of [11] for d = 2. However, in our solution,

these two terms can balance each other since ξ(r)→ 0 when h(r)→ 0. In this way, the flux

evaporates from the S2 fiber, and the Einstein equations can be satisfied.

Another possibility to deal with flux conservation is to introduce a domain wall at

the bubble to absorb the flux. This idea was used in [10] to collapse the supersymmetry

breaking S1 in the AdS5 × S5/Γ geometry of [7]. More recently, instanton solutions with

S2 collapsing have been constructed in some models in six dimensions. Blanco-Pillardo,

et al. [29] considered the Einstein gravity in six dimensions coupled to SU(2) Yang-Mills

gauge field and an adjoint Higgs field with a specific potential to break the gauge group

to U(1) and found a smooth solution of this type. Brown and Dahlen [30] considred the

Einstein-Maxwell system without the Higgs and added a domain wall as a source. It would

be interesting to realize such solutions in a low energy effective theory of M/string theory

in a controlled approximation.

According to [17], AdS5 × CP1 × CP2 and AdS5 × CP1 × CP1 × CP1 are not stable

perturbatively. Thus, we do not need instantons for these geometries to be consistent with

the conjecture of [12]. In fact, our ansatz is not applicable to them since the configurations

are too restrictive for the fluxes to slip off. In our solution, it is important that CP3 has

the non-trivial fibration structure and not a direct product since this allows our non-trivial

solution to the 4-form equations. A similar argument applies to the Freud-Rubin type

compactification (when the flux is proportional to the volume form of the AdS) and the

12



compactifications where the flux is proportional to the volume form of the compact space

(unless one can turn on other lower dimensional form).

Finally, we want to mention that it is possible that our solution is related to resolved

M-theory conifold solutions with G2-holonomy [28]. They are Ricci-flat seven-dimensional

manifolds which have conic structure and its metrics reads,

ds2 =
1

1− 1
r4

dr2 +
1

4
r2
(

1− 1

r4

)
|dAu|2 +

r2

2
ds2M4

, (33)

where M4 is either S4 or CP2 and |dAu|2 is metrics on the S2 fiber which are exactly the

same as in the present paper for CP3 and SU(3)
U(1)×U(1)

respectively. Moreover, the S2 fiber

collapse at finite r = 1, while M4 radius stays finite. Unfortunately, the radii grow linearly

at infinity. It may be possible to construct a desirable solution by multiplying this geometry

with the flat R4 and by adding some flux along the conifold in order to change the behavior

at infinity from the linear growth to constant. An idea along this line may allow us to

generalize our solutions further.
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