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We provide a procedure to determine if a given nonlocal operator in a large N holographic CFT
is dual to a local bulk operator on the geometry associated with a particular code subspace of the
CFT. This procedure does not presuppose knowledge of the bulk geometry. We are able to pick
out local operators in a large region of the bulk, called the “localizable region,” that can extend
beyond event horizons in certain cases. The method relies heavily on the quantum-error correcting
structure of AdS/CFT and, in particular, on entanglement wedge reconstruction. As a byproduct
of this machinery, we are able to reconstruct the metric in the localizable region up to a conformal
factor. This suggests a connection between our program and the recent light-cone cut approach to
bulk reconstruction.
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I. INTRODUCTION

The emergence of bulk locality in the AdS/CFT cor-
respondence [1, 2] has yet to receive a satisfactory ex-
planation in terms of the behavior of holographic CFTs.
While gravity prohibits exact locality in a quantum the-
ory, when the gravitational coupling is sufficiently small,
local physics must be a good approximation in the bulk.

∗ fabios@berkeley.edu
† sjasonw@physics.ucsb.edu

There should be a manifestation of this “emergence of
locality” in the boundary theory.

One way to tackle this issue is by studying the ways in
which bulk degrees of freedom are encoded in the CFT.
It is thus natural to ask if there is a boundary dual of
local bulk fields in the regime where semiclassical field
theory holds. While the extrapolate dictionary [3] states
that bulk fields at spacelike infinity are dual to local op-
erators on the boundary, points deep in the bulk require
a nonlocal holographic description. There are many well-
known ways to reconstruct bulk fields in terms of non-
local boundary operators [3–6] with support in a variety
of boundary regions. All of these procedures, however,
require solving bulk equations of motion which presup-
poses knowledge of the bulk spacetime. If one were not
explicitly told the metric in the bulk, is there any way to
determine whether or not a given operator is bulk local?
To put this question differently, is the concept of a local
bulk operator in any way distinguished in the boundary
theory?

The primary goal of this work is to address this ques-
tion. We will find that a powerful tool to this end is the
concept of subregion duality. The notion that a bound-
ary domain of dependence should be thought of as being
dual to some region of the bulk, which originally arose
from considerations of causal wedge reconstruction, was
made precise recently by [7–9] where it was concluded
that a bulk operator can be reconstructed in a subregion
of the CFT if and only if its support is contained in the
entanglement wedge of that CFT region [9]. This con-
clusion was made in the context of a new development in
AdS/CFT: the role of quantum error correction. It is now
understood that a semiclassical bulk spacetime descrip-
tion is associated with a code subspace of the boundary
Hilbert space, and that various inequivalent boundary re-
constructions of bulk operators become equivalent when
restricted to the code subspace.

This modern form of subregion duality will reveal a
novel characterization of locality in the bulk. Given a
holographic CFT and a code subspace dual to some un-
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known geometry, we will provide a procedure that can
identify, up to certain caveats, whether or not an opera-
tor is dual to a bulk local operator. As a byproduct of
our method, we are also able to reconstruct the causal
structure (equivalently, the metric up to a conformal fac-
tor) of a large region in the bulk. In some examples, this
region can penetrate event horizons.
Outline. We start, in section II, by reviewing the argu-

ments and motivation for the quantum error correcting
view in holography. In particular, we sketch the proof of
[9] that a bulk operator is reconstructable in a boundary
region if and only if its support is contained entirely in
the entanglement wedge of that boundary region.

Section III contains the major constructions of this
work. We define the notion of a superficially local oper-
ator without making direct reference to the bulk. These
are bulk operators that are “as local as the boundary can
directly tell.” Their defining characteristic is the great
variety of boundary regions in which they can be recon-
structed. In a certain region of the bulk called the lo-
calizable region, operators are local if and only if they
are superficially local. However, there are situations in
which superficially local operators correspond to nonlocal
bulk operators that are supported outside of the localiz-
able region. The bulk regions in which these problematic
operators lie will be referred to as clumps. Fortunately,
clumps appear to always be identifiable from the bound-
ary theory because they are associated with phase tran-
sitions. Thus, they can be identified and thrown away,
leaving only the superficially local operators that are au-
thentically dual to bulk local operators.

The set of superficially local operators can be given an
equivalence relation by identifying two operators when
they can be reconstructed in exactly the same boundary
regions. After removing clumps, the set of equivalence
classes of superficially local operators is naturally identi-
fied with the bulk localizable region.

In IV, we note that the commutation relations amongst
these operators reveals the causal structure in the local-
izable region. Thus, we are able to reconstruct the metric
in this portion of the bulk up to a conformal rescaling.
This approach is similar at heart to that of [10] where
a bulk reconstruction is accomplished by means of light-
cone cuts. We argue, in fact, that there are numerous
interesting connections between our approach and that
involving cut singularities.

II. PRINCIPLES OF SUBREGION DUALITY

This section provides a brief review of the quantum
error correcting view of AdS/CFT. Readers already fa-
miliar with the conclusions of [7, 9] may wish to proceed
to section III

There is a zoo of different methods for expressing bulk
fields in terms of CFT operators. The extrapolate dictio-
nary [3] gives a precise relationship between limiting val-

ues of bulk fields and CFT operators with corresponding
scaling dimensions. It is also possible to express opera-
tors lying deeper in the bulk in therms of CFT quantities
by solving equations of motion in the bulk [3–6, 11]. Of
these approaches, one of relevance for our considerations
is the causal wedge reconstruction, which generalizes the
Rindler reconstruction of [4]. This prescription expresses
local bulk fields in terms of CFT operators localized to
a special boundary subregion. Specifically, if R is region
in the boundary with domain of dependence D∂(R), and
if CW(R) = J+[D∂(R)]∩J−[D∂(R)] is the causal wedge
[12] of R, then causal wedge reconstruction allows a bulk
field in CW(R) to be expressed as a smeared operator in
D∂(R).1

Causal wedge reconstruction suggests the possibility
that subregions in the boundary are enough to under-
stand the physics of associated bulk subregions. How-
ever, despite what is suggested from the analysis of [4],
the causal wedge is, in general, not the largest possible re-
gion that a boundary subregion holographically describes
in the semiclassical limit. Instead, the bulk region dual to
a CFT region R is the entanglement wedge of R, denoted
by EW(R) [13–15]. EW(R) can be defined as follows. Let
Σ be a spacelike bulk surface that, after conformal com-
pactification of M , is a Cauchy slice for the unphysical
bulk spacetime. Require that Σ contains R and its HRT
surface extR. Let S denote the part of Σ between R and
extR. The domain of dependence of S (computed in the
unphysical spacetime) is the entanglement wedge of R.
It is known that EW(R) ⊇ CW(R) [13]. As we review
below, [9] gave a precise sense in which a boundary region
R should really be thought of as being dual to its entan-
glement wedge. This is the most refined and powerful
known form of “subregion duality” [16] in AdS/CFT.

Before discussing entanglement wedge reconstruction,
we note that subregion duality, even in the form of [4],
raises major puzzles [7]. For example, an operator φ(p)
deep within the bulk can be taken to lie in many different
causal wedges. Thus, a causal wedge reconstruction of
the form

φ(p) =

∫
D∂(R)

K(p, x)O(x)dx (II.1)

manifestly commutes with all operators in the comple-
ment region R̄. This argument can be repeated for many
different boundary regions and used to show that a bulk
field φ(p) near the center of AdS can be written in a way
that manifestly commutes with any given operator in the
boundary. This directly implies what should have been
obvious: that each choice of reconstruction for φ(p) is a
different operator in the CFT. This is not an inconsis-
tency. Various reconstructions of φ(p) are distinct CFT

1 The smearing function has to be understood in a distributional
sense. For details see [11, 16]. Such subtleties will not be impor-
tant for what follows.



3

R1

R3

R2

FIG. 1. The operator depicted in the center of this figure is
not in CW(R1), CW(R2), or CW(R3). However, it does lie in
the causal wedge of the union of any two regions CW(Ri∪Rj)
and can thus be written in terms of boundary operators in the
algebra of the combined regions.

operators, but the CFT Hilbert space is much larger2
than the Hilbert space relevant for a bulk operator on
a spacetime background. The explanation of the multi-
tude of distinct CFT operators is therefore that there is a
special subspace of the Hilbert space, the code subspace,
which describes the states that φ(p) is defined on. The
restriction of all reconstructions of φ(p) to this subspace
reproduce φ(p). This is a quantum-error correcting prop-
erty of the CFT: the action of different operators defined
in different regions is the same when restricting to special
subspaces called code subspaces.

The necessity for such a redundant descriptions of bulk
operators was made particularly obvious with the follow-
ing argument [7] illustrated in figure 1 . Consider a par-
tition the boundary into 3 equal regions R1, R2, and R3

which only have points on their boundaries in com-
mon. Taking the vacuum state for simplicity, their causal
wedges will not contain points that are close to the center
of the bulk spacetime. Thus, there is no HKLL smearing
over any one region that reconstructs a local bulk oper-
ator near the center. However, the causal wedge of the
union of any two regions CW(Ri ∪ Rj) does contain the
bulk point of interest and the HKLL procedure can be
used. The different choices cannot represent the same

2 The basic concept that semiclassical excitations give rise to expo-
nentially small subspaces of a Hilbert space describing quantum
gravitational physics has played a role in many related areas.
See, e.g., [17–19]

CFT operator, since their support is on causally discon-
nected regions.3

Review of the DHW argument

The fact that the entanglement wedge EW(R) is the
“largest” bulk region that can be reconstructed from the
algebra of R will play a critical role in our work. For
this reason, we will briefly review the arguments in [7, 9],
focusing especially on the aspects of this literature that
will be the most relevant for the framework that we begin
to develop in section III.

Suppose that we are given4 a particular code subspace
G ⊂ H which is known to be a span of states obtained
by acting with a small number of low energy operators
on a state where a semiclassical bulk exists; in particular,
within G, gravitational backreaction of bulk fields can be
treated perturbatively. Dong, Harlow, and Wall (DHW)
proved that if the support of an operator φ is contained
in EW(R), then that operator can be reconstructed in R
[9]. This means that there is an element of the algebra
of R whose action on states in the code subspace is the
same as the action of φ.

To understand the proof given in [9], we first refer to a
result from quantum information. Refs. [7, 20, 21] show
that if we have a code subspace G and some factorization
of the full Hilbert space G ⊂ HR ⊗HR̄, and if φ is some
operator that acts within G (it’s action send states in the
code subspace to other states in the code subspace), then
the following two statements are equivalent.

1. There exists an operator OR on HR such that for
any |ψ〉 ∈ G,

φ|ψ〉 = OR|ψ〉 φ†|ψ〉 = O†R|ψ〉. (II.2)

2. For any operator XR̄ on on HR̄, we have

[φ,XR̄]
∣∣
G

= 0. (II.3)

While this theorem follows purely from quantum infor-
mation, it plays a critical role in the entanglement wedge
reconstruction argument. As suggested by the notation,
we will associate R with the factorization induced from
boundary regions and G will be a code subspace with
a semiclassical bulk interpretation. We can now discuss
[9], which establishes that bulk semiclassical operators

3 The mutual intersection actually includes points on the bound-
aries of the Ri. However, repeating the argument with slightly
different regions circumvents the possibility that the reconstruc-
tion of φ is achieved only in the algebra of ∂Ri

4 While we take the code subspace as given, it should be possible
to identify code subspaces purely from the CFT. For example, a
necessary (but not sufficient) condition for a collection of states
to lie in the same code subspace is that the collection has the
property that subregions have entanglement entropies differing
only by sub-leading contributions in N .
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satisfy condition II.3, and the reconstructability follows
because this is equivalent to II.2.

We know the boundary Hilbert space can be factor-
ized into a region and its complement H = HR ⊗ HR̄.
For states with a semiclassical bulk interpretation, we
can think about the extremal surface anchored to ∂R as
inducing its own tensor factorization of the code subspace
GEW(R) ⊗GEW(R̄).

Consider two states |ψ0〉, |ψ1〉 ∈ G and the reduced
density matrices obtained by tracing out the appropriate
complement regions in the two factorizations

ρ0
R̄ = TrR|ψ0〉〈ψ0|

ρ0
EW(R̄) = TrEW(R)|ψ0〉〈ψ0| (II.4)

Similarly, the density matrices ρ1
R̄
and ρ1

EW(R̄)
are defined

by the state |ψ1〉.
The statement of a theorem in [9] is that if the states

satisfy:

ρ0
EW(R̄) = ρ1

EW(R̄) =⇒ ρ0
R̄ = ρ1

R̄ (II.5)

then, an operator of the form φ = 1⊗φEW(R) acting only
within the entanglement wedge of R will satisfy the two
equivalent properties of II.2 and II.3.

To understand this, we note that the result in [8] es-
tablished a precise relationship between the bulk and
boundary modular hamiltonian. This provides the con-
nection between the first equality and second equality in
II.5. Now, the operator φ supported in the entanglement
wedge of a boundary region R does not affect the state in
the complement wedge (this just follows from semiclassi-
cal field theory). Thus, if we define |ψ1〉 as

|ψ1〉 = eiεφ|ψ0〉 (II.6)

the first equality in II.5 is satisfied. The second equality
then implies that the expectation value of any operator
in the algebra of R̄ is the same in both states:

〈ψ0|XR̄|ψ0〉 − 〈ψ1|XR̄|ψ1〉 = 0 (II.7)

Rewriting the second term using II.6 and expanding to
first order in ε we obtain II.3.

This proves that within the code subspace, we can ex-
press operators in the entanglement wedge of R in terms
of operators in the algebra of R. Moreover, if an oper-
ator on G has support outside EW(R), it must have no
reconstruction in R. To see this, suppose that an opera-
tor φ on G had support outside EW(R) so that it fails to
commute with some operator φ′ on EW(R̄). The argu-
ment above shows that there exists a reconstruction O′

R̄

of φ′ that acts on R̄. If φ could be reconstructed with an
operator OR on R, we would have [O′

R̄
, OR] = 0 which

contradicts the fact that [φ′, φ] 6= 0.
Our final conclusion is that an operator acting on a

code subspace can be reconstructed in a region R of the
CFT if and only if its support in entirely contained in
EW(R). By exploiting the reconstructability for states

in the code subspace, we now explore how the bulk, in-
cluding the conformal metric, is encoded in the CFT.

We note that the reconstructability argument itself is
a statement about a special class of quantum states and
makes no reference to the plank length in the bulk. How-
ever, in making the connection between the reduced den-
sity matrix in the entanglement wedge [8] and the bound-
ary, one clearly needs to assume some notion of locality.
In particular, this involves taking N →∞.

III. SUPERFICIALLY LOCAL OPERATORS

For the rest of this paper we work in the context of
the “infinite N limit.” It is assumed that there are code
subspaces {G} of the CFT Hilbert space H that are holo-
graphically dual to quantum field theory on (asymptot-
ically AdS) spacetime backgrounds. Setting N = ∞ in
this way may cause discomfort, especially with some of
the more complicated things we discuss below, and for
this reason we have provided appendix A which defines
our quantities while taking the large N limit more care-
fully. Even without reading the appendix, the majority of
our development can made much more precise simply by
replacing equalities with approximate equalities which,
in the large N limit, approach authentic equalities.

In this section we are going to almost completely an-
swer a fundamental question: Suppose that a code sub-
space G is given and that we are told that G is dual to
some unknown field theory on some unknown spacetime
background. Let φ be a given operator on G. Is φ dual to
a local operator? Note that we are given no information
about φ (other than how it acts on G) and, in particu-
lar, it is probably not a local CFT operator. The ability
to answer this question is equivalent to finding all of the
CFT operators that are dual to local bulk operators with
respect to our particular code subspace.

Prior work addresses related issues but falls short of
providing a general identification of local bulk operators.
Consider, again, the HKLL method [4]. If φ is a quantum
field in the bulk M , then, given a point p ∈ M , it is
possible to solve the field equation of motion and obtain
an expression of the form

φ(p) =

(∫
∂M

K(p, x)O(x)dD−1x

) ∣∣∣∣
G

. (III.1)

Here, the boundary field O is the one associated with φ
through the extrapolate dictionary. As discussed above,
the integration kernel K is not unique. While different
choices of K yield different CFT operators, the restric-
tion of these different choices of operators to the code
subspace G must always give the same answer.

At a first glance, equation III.1 appears to not only
identify the nonlocal CFT operators that are dual to lo-
cal bulk operators, but even provides a formula for them.
This is not the case however. The integration kernel
can only be found by solving equations of motion on
the curved spacetime background M , and this assumes



5

FIG. 2. A nonlocal bulk operator φ1 will clearly lie in fewer
regions than an operator φ2 whose support is entirely con-
tained in the first Q(φ1) ⊂ Q(φ2) .

knowledge of what the background is. There are very few
code subspaces for which the corresponding geometry is
known. Another reason that the HKLL procedure is un-
satisfactory for our purposes is that it only identifies a
subset of the boundary operators that are dual to local
bulk operators. We would like to find a more general
characterization of locality in the bulk at leading order
in 1/N .

A. Comparing Locality of Operators

Our guiding principle is that that, roughly speaking,
the more local a bulk operator φ is, the more distinct
boundary regions exist for which φ can be reconstructed.
This follows from subregion duality as explained in sec-
tion II. To make this concept more precise, we are going
to employ the full power of the quantum error-correcting
structure of AdS/CFT to introduce a function Q that
maps operators on G to the collection of all possible
boundary regions that can reconstruct a given operator.
Q will then provide a measure of locality of every opera-
tor. We now explain this precisely.

Let R denote the collection of all D − 2 dimensional
achronal submanifolds of ∂M . Informally, R is the col-
lection of all regions R upon which one would compute a
von Neumann entropy by anchoring stationary surfaces
[22, 23] to ∂R. Note that we are not restricting to a
single time slice of ∂M . If R ∈ R and φ is an operator
that, along with its hermitian conjugate, acts on the code
subspace G, then φ is said to be reconstructable in R if
there exists O in the algebra of R such that O

∣∣
G

= φ and
O†
∣∣
G

= φ†. We now give a critical definition:

Definition. Suppose that φ is an operator on G and

R ∈ R. Then, we define

Q(φ) = {R ∈ R
∣∣ φ is reconstructable in R}.

Whatever the (unknown) geometry of M is, subregion
duality (see section II) gives a geometrical condition for
Q(φ) to contain a region R. Specifically, R ∈ Q(φ) if
and only if the (bulk) support5 of φ is contained in the
entanglement wedge of R. This immediately implies the
following properties of Q:

Proposition III.1. Let φ1 and φ2 be two operators on
the code subspace G. Then,

1. If supp φ1 ⊇ supp φ2 , then Q(φ1) ⊆ Q(φ2),

2. if supp φ1 = supp φ2, then Q(φ1) = Q(φ2).

Note that the converses to these statements, though
seemingly desirable, are false in many cases. This is
somewhat disappointing: the bulk support of an operator
is a property of the operator’s bulk description while Q
is a function that is manifestly defined in the boundary
theory. Our goal is to find a “boundary-only” characteri-
zation of bulk locality, so we would be much better off if
the converse to Proposition III.1 were in fact true.

What Q does accomplish is that it identifies the sup-
port of an operator to the greatest possible “resolution”
that the boundary theory can easily see. For this rea-
son we define an equivalence relation on operators on G:
φ1 ∼ φ2 if Q(φ1) = Q(φ2). We use the notation [φ]
to denote the equivalence class of φ with respect to this
relation. In other words, [φ] = Q−1(Q(φ)). Two oper-
ators are in the same class if they are “the same as far
as Q can tell.” We can attempt to compare the local-
ity of two operators by putting a partial ordering on the
collection of equivalence classes by writing [φ1] ≤ [φ2] if
Q(φ1) ⊆ Q(φ2) (which is a well-defined relation). Note
that a trivial operator like the identity on G, denoted by
1G, can be reconstructed in any region. Thus, [φ] ≤ [1G]
for any operator φ on G.

We are now ready to give a plausible characterization
of a local bulk operator by means of Q.

Definition. Suppose that φ is an operator on G. φ is
said to be superficially local if

1. [φ] 6= [1G] and

2. Every operator φ′ with the property that [φ] ≤ [φ′]
has [φ′] ∈ {[φ], [1G]}.

5 The support of an operator is defined as follows. Let A be a
(possibly nonlocal) operator on a quantum field theory on the
curved spacetime M . Let U be the set of points in M such that
for every point p in U , every local bulk operator at p commutes
with A. Then, the support of A, denoted by supp A, is given by
M \ (J+(U) ∪ J−(U))



6

We emphasize that the definition of a superficially local
operator makes reference only to the boundary theory.
Thus, we can use this definition to offer an answer to the
question posed above: if we are given a largeN CFT with
a Hilbert space H, a subspace G of H, and an operator
φ, and if we told that G is a code subspace corresponding
to an unknown bulk spacetime, then we can guess that φ
is a local operator in the dual bulk theory if it acts on G
and if its restriction to G is a superficially local operator.
This answer turns out to be right in many cases.

The word “superficial” is used for two reasons. First, as
we will shortly see, there are examples of asymptotically
AdS spacetimes for which some local bulk operators (for
instance, those lying close to a spacelike singularity) are
not superficially local. Second, we will not prove that ev-
ery superficially local operator is local in the bulk. The
first of these deficiencies is completely unavoidable and
it is tempting to contemplate its relation to the difficul-
ties of using AdS/CFT to describe points deep within a
black hole interior [24] (although we will not pursue such
contemplations here). The second apparent deficiency
is not a problem: in section IV we will argue that it is
possible to identify when a given equivalence class of su-
perficially local operators contains operators that are not
actually local in the bulk. This argument will be made in
the boundary theory. The concept of superficial locality
therefore provides a way to confidently identify a very
large collection of operators on G that should be inter-
preted as local operators in the bulk. We now explain
exactly which bulk operators can be found in this way.

B. The Localizable Region

As above, letM be the asymptotically AdS bulk space-
time that is dual to a code subspace G of a CFT in the
large N limit with Hilbert space H. In this section we
are going to identify a special subset of M , denoted by
Loc(M), which has the property that local bulk opera-
tors at points in Loc(M) can be successfully identified in
the boundary theory through the consideration of super-
ficially local operators.

Definition. The localizable region of M , denoted
Loc(M), is the set of points p ∈M satisfying

1. If supp φ = {p}, then φ is superficially local and

2. if supp φ = {p} and [φ′] = [φ], then supp φ′ = {p}.

Elements of Loc(M) will sometimes be called localizable
points. Note that Loc(M) is a subset of the bulk and
its definition makes reference to the concept of the bulk
support of an operator, so this definition is not particu-
larly transparent from the boundary theory. However, a
connection with the boundary theory becomes apparent
when Loc(M) = M :

Proposition III.2. If Loc(M) = M , an operator φ on
G is superficially local if and only if it is local in the

bulk. Moreover, if φ1 and φ2 are two superficially local
operators with [φ1] = [φ2], then they must be local at the
same bulk point.

Proof. If φ is a local operator, the definition of Loc(M)
immediately demands that φ is superficially local. Con-
versely, let suppose that φ is superficially local. If φ is
not local in the bulk, then there are at least two dis-
tinct points p and q in the support of φ. Let φ′ be a
local operator at p. By Proposition III.1, the fact that
supp φ′ ⊆ supp φ means that [φ] ≤ [φ′]. But φ is su-
perficially local and φ′ is nontrivial so we conclude that
[φ] = [φ′]. The definition of the localizable region now
demands that supp φ = {p}, a contradiction.

Now suppose that φ1 and φ2 are two superficially local
operators with [φ1] = [φ2]. From what we just proved,
we know that φ1 is local at some point, so the definition
of the localizable region immediately demands that φ1

and φ2 are local at the same point.

This result is a first step to providing a boundary de-
scription of Loc(M) because the notion of superficial lo-
cality is one of the boundary theory. Unfortunately the
hypothesis of Proposition III.2 is often too much to ask
for. To better understand this, consider the following
result which which establishes a geometrical bulk inter-
pretation of Loc(M).6

Theorem III.1. p ∈ Loc(M) if and only if there exists
a subset R0 of the collection of boundary regions R such
that ⋂

R∈R0

EW(R) = {p}.

Proof. Suppose first that there exists R0 satisfying the
condition given in the statement of the theorem. Fix a
local bulk operator φ at p so that supp φ = {p}. Q(φ)
must contain all regions R with p ∈ EW(R) so, in par-
ticular, R0 ⊆ Q(φ). If φ′ is some operator on G with
[φ′] ≥ [φ], then Q(φ) ⊆ Q(φ′) so we have

supp φ′ ⊆
⋂

R∈Q(φ′)

EW(R) ⊆
⋂

R∈Q(φ)

EW(R)

⊆
⋂

R∈R0

EW(R) = {p}.

This implies that φ is superficially local so the first con-
dition for p ∈ Loc(M) is satisfied. If it happens that the
operator φ′ above satisfies [φ′] = [φ], our argument still
applies and we must therefore have supp φ′ ⊆ {p}. It is
not possible to have supp φ′ = ∅ since this would require

6 Theorem III.1 elucidates the connection between our program
and the ideas of [25–30]. Note this work is primarily interested
in the reconstruction of bulk geometry while our focus is on op-
erator reconstruction. However, below in section IV we will re-
construct aspects of the bulk geometry.
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that [φ′] = [φ] = R which is false. We conclude that
supp φ′ = {p} and thus that p ∈ Loc(M).

We now prove the converse. Let p lie in Loc(M).
Suppose that there does not exist any R0 ⊆ R with⋂
R∈R0

EW(R) = {p}. Let φ be a local operator at p
which requires that φ is superficially local. There must
exist a point q ∈M with

q ∈

 ⋂
R∈Q(φ)

EW(R)

 \ {p}.
Now consider a local operator φ′ at the point q. Since
q lies in the entanglement wedge of every region whose
entanglement wedge contains p, we have [φ] ≤ [φ′]. The
superficial locality of φ, along with the fact that φ′ is
not trivial, implies now that [φ] = [φ′] which, by the
definition of Loc(M), implies that supp φ′ = {p} which
is a contradiction.

Theorem III.1 is a useful tool for identifying examples
of localizable regions in asymptotically AdS spacetimes
as we will do in section IIID. For now, we only advertise
some facts that may be of interest. Localizable regions
can extend quite far into the bulk spacetime. For the
same reason that extremal surfaces can penetrate event
horizons in some cases, Loc(M) can intersect a black hole
interior. However, points that are too close to space-
like singularities are not localizable. Another interesting
property of localizable regions is that they are not al-
ways subsets of the portion of the bulk that is accessible
to boundary-anchored extremal codimension 2 surfaces
with minimal area. In other words, Loc(M) can have
a nonempty intersection with the entanglement shadow
[31]. Before discussing these examples, however, we are
going to introduce an object that will greatly increase
the motivation for studying the localizable region.

C. The Space of Classes

The object that we now study is the collection of all
equivalence classes of superficially local operators on G.
We suggestively denote this set by M̃ :

M̃ =
{

[φ]
∣∣ φ is a superficially local operator on G

}
.

Given that an element P ∈ M̃ is a set of operators, all
of which have the same value of Q, it is convenient to let
define Q(P ) as Q(φ) for any choice of φ ∈ P .

An intuitive picture of M̃ is clear when M = Loc(M).
In this case, Proposition III.2 shows that there is a one-
to-one correspondence between M̃ and M . The corre-
spondence is that a point p ∈ M is identified with the
collection of all local operators at p. This reveals a new
approach to bulk reconstruction from the boundary the-
ory, somewhat similar in spirit to that of [10], which we
will explore below.

Let us now make no assumptions about Loc(M) and
determine the general structure of M̃ . What we are going
to find is that M̃ is equal to Loc(M) with the possible
addition of some extra points in M̃ . We refer to these
unwanted extra points as “clumps.”

First suppose that p ∈ Loc(M) and let φ be a local bulk
operator at p. Then, [φ] consists only of local operators
at p. (This follows directly from the definition of the
localizable region.) As a consequence, a copy of Loc(M)

can always be identified in M̃ . Another thing that we can
immediately show is that if Φ is any superficially local
operator whose support consists of more than one point,
then supp Φ ∩ Loc(M) = ∅. To see, this, suppose that
p ∈ supp Φ∩Loc(M) and consider a local operator φ at p.
We would then have [Φ] ≤ [φ] with Φ superficially local
so [Φ] = [φ]. This contradicts the definition of Loc(M)
since Φ is nonlocal.

We cannot exclude the possibility that there exist non-
local superficially local operators. To investigate this is-
sue carefully, we introduce a map C that sends a point
P in M̃ to a subset of M as follows:

C(P ) =
⋃

Φ∈P
supp Φ.

C has some nice properties:

Proposition III.3. Suppose that P and Q are elements
of M̃ . Then,

1. If every element of P is a local bulk operator, then
there exists a point p ∈ Loc(M) such that C(P ) =
{p},

2. if P contains a nonlocal operator, then C(P ) ∩
Loc(M) = ∅,

3. if C(P )∩C(Q) 6= ∅, then P = Q and, in particular,
C is injective.

Proof. 1. If P consists of only local operators, then all of
those operators must be at the same bulk point. To see
this, suppose that φ1 and φ2 are two local bulk operators
at bulk points p1 and p2 respectively. Now Q(φ1) =
Q(φ2) so any linear combination αφ1 + βφ2 must satisfy
[φ1] ≤ [αφ1 + βφ2]. The superficial locality of φ1 now
proves that [φ1] = [αφ1 + βφ2] which contradicts the
assumption that P consists only of local operators unless
p1 = p2. Now let p denote the unique point in M where
the elements of P are supported. It is obvious now that
C(P ) = {p}. Moreover, every local operator at p must lie
in P and since there are no operators in P with support
beyond {p} we conclude that p ∈ Loc(M).

2. Assume that P contains a nonlocal bulk operator
and suppose that q ∈ C(P ) ∩ Loc(M). Let φ denote a
local operator at q. There must be some operator Φ ∈ P
with q ∈ supp Φ so [Φ] ≤ [φ] from which the superficial
locality of Φ implies that [Φ] = [φ] which is equivalent
to the statement that [φ] ∈ P . But this means that φ,
a local operator in Loc(M), is equivalent to a nonlocal
operator. This is a contradiction.
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3. Suppose that there exists a bulk point x ∈ C(P ) ∩
C(Q). Let φ denote a local operator at x. An argument
identical to what was given for the proof of statement
2 shows that φ ∈ P and φ ∈ Q. But P and Q are
equivalence classes so the fact that they share an element
means that P = Q.

This argument shows that M̃ can be thought of as the
union of Loc(M) with some extra points. Each extra
point P has the property that C(P ) is a subset of M
with more than one element. These objects are subtle
enough to deserve a name:

Definition. Suppose that P ∈ M̃ has the property that
C(P ) has more than one element. Then, we will call both
P and C(P ) a clump.

Clumps are somewhat problematic because both local
and nonlocal operators in clumps are superficially local.
They therefore represent a potential threat to our ap-
proach. However, there is good news: we will argue in
section III E that clumps can be identified and removed
using only the boundary theory (e.g. without relying on
concepts like the bulk support of operators). Roughly
speaking, clumps are associated with phase transitions
for holographic entanglement entropy, and such phase
transitions are visible in the boundary.

We are now in a position to give a much stronger an-
swer to the fundamental question posed at the beginning
of this section about identifying the operators on G that
are dual to local operators in the bulk.

Theorem III.2. If there are no clumps, an operator φ
on the code subspace G is dual to a local bulk operator in
the localizable region if and only if φ is superficially local.

If we assume the clump conjecture of section III E, which
provides a way to identify and eliminate clumps, this
conclusion provides the boundary dual to the concept of
a bulk local operator (within a certain region of the bulk).

D. Examples

Examples can greatly clarify the machinery we have
been developing. In particular, the spacetimes below
demonstrate several features:

• Despite being associated with HRT surfaces,
Loc(M) can probe entanglement shadows.

• Loc(M) can intersect black hole interiors (but it
does not extend arbitrarily closely to spacelike sin-
gularities).

• In regions that are close to spacelike singularities,
local operators are not superficially local.

• Clumps can occur, but the only known examples
are associated with phase transitions where ex-
tremal surfaces “jump” around them.

FIG. 3. Conical AdS is an example of how points in the bulk
that are not directly probed by extremal surfaces can still be
in the localizable region. Despite the entanglement shadow
(the grey cylinder), points can be localized because they can
intersect boundaries of entanglement wedges.

Vacuum AdS

The simplest example is when M is vacuum AdS space
(or any small perturbation of vacuum AdS) with dimen-
sion D ≥ 2 + 1. For any point p ∈ M , theorem III.1
immediately shows that p ∈ Loc(M). This is because
in AdS space, one can always construct D − 1 codi-
mension 2 stationary surfaces intersecting p, whose tan-
gent spaces at p are pairwise distinct, and then find the
corresponding boundary regions R1, . . . RD−1 on which
these stationary surfaces are anchored. To prove that
p ∈ Loc(M), we then consider the collection of regions
{R1, . . . RD−1, R̄1, . . . , R̄D−1} and apply this set to the-
orem III.1.
Conclusion: If we somehow know that G is dual to

a spacetime close to vacuum AdS, then an operator on
G is local if and only if it is superficially local. The
space of classes of superficially local operators, M̃ , is a
reconstruction of the bulk.

Conical AdS

Anti-de Sitter space with a conical deficit is a simple
example of a spacetime with an entanglement shadow7

7 To our knowledge, [31] and related work has only studied re-
gions that are not probed by minimal surfaces anchored to static
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[31]. Given that Loc(M) can be defined by means of HRT
surfaces, one might suspect that for conical AdS, Loc(M)
is a proper subset of M . We will explain why this is not
the case and that, in fact, we again have Loc(M) = M .

Let n be an integer greater than 1 and consider, for
example, M = AdS2+1/Zn. The metric can be written
as

ds2 = −
(

1

n2
+
r2

L2

)
dt2 +

(
1

n2
+
r2

L2

)−1

dr2 + r2dφ2

(III.2)
where −∞ < t < ∞, r > 0, and φ ∈ [0, 2π). There is a
critical radius rcrit such that no HRT surface intersects
the region r < rcrit. If {Rs} is a continuous nested fam-
ily of boundary regions with R−1 a small region and R1

wrapping around almost the entire boundary, the HRT
surface anchored to Rs, extRs , will discontinuously jump
around the shadow at some critical value of s. Note that
this phenomenon is not related to extremal surface barri-
ers [32] but is instead a consequence of there being more
than one stationary codimension 2 surface anchored to
any given boundary region: no HRT surface enters the
shadow because there would always be another station-
ary surface that does not enter the shadow with smaller
area. The discontinuous jump can be regarded as a phase
transition in the sense that the von Neumann entropy
S(Rs), regarded as a function of the parameter s, has a
discontinuous derivative at the jump.

If p ∈ M lies outside of the entanglement shadow, we
must have p ∈ Loc(M) for the same reason that every
point is localized in vacuum AdS. On the other hand,
suppose that p lies within the entanglement shadow. To
show that p ∈ Loc(M), all we need, by theorem III.1, is
a finite set of boundary regions such that the intersection
of their entanglement wedges is {p}.

This can by done by considering regions like those
shown in figure 3. Note that only two regions are shown
in the figure but that the point can be completely local-
ized by adding other boundary regions such as rotations
of the regions depicted. The trick here is easy to under-
stand: it is not necessary for HRT surfaces to intersect
localized points as long as boundaries of entanglement
wedges intersect them instead.
Conclusion: If G is dual to a spacetime close to

AdS2+1/Zn, then an operator on G is local if and only
if it is superficially local. The space of classes of superfi-
cially local operators, M̃ , is a reconstruction of the bulk.

Two-Sided Black Holes

In the case where M is an eternal AdS-Schwarzschild
geometry, which has two disconnected boundary compo-
nents, the localizable region extends into the black hole

boundary regions rather than the general stationary surfaces ap-
pearing in the calculation of covariant holographic entanglement
entropy. Below we assume that the general features of the entan-
glement shadow in standard examples are unchanged if non-static
surfaces are considered.

Loc(M)

R1R2

FIG. 4.

interior but does not probe all the way to the singularity.
This is depicted in figure 4. Many points in the interior
region can be localized by considering boundary regions
that consist of two disconnected components lying in dif-
ferent boundaries (see figure 4). HRT surfaces, however,
do not reach points that are arbitrarily close the future or
past singularities: there is a critical radius rcrit (smaller
than the black hole radius) that no boundary-anchored
extremal surface extends beyond [14, 32]. Figure 5 proves
that local operators at points with radius r < rcrit are
not superficially local. This portion of the spacetime is
completely missed by our methods and will thus be called
the inaccessible region.
Conclusion: If G is dual to an eternal AdS-

Schwarzschild geometry (with two boundary CFTs), then
an operator φ on G is superficially local if and only if it
is dual to a local bulk operator at a bulk point with
r > rcrit. The space of classes of superficially local op-
erators, M̃ , is a reconstruction of the region of M with
r > rcrit.

Dynamical Black Holes

The previous example might have given the impression
that Loc(M) cannot intersect a black hole interior with-
out appealing to entanglement between two CFTs. This
is not the case. Consider a black hole that forms from
collapse in an asymptotically AdS spacetime. Then, it
has been demonstrated [33] that HRT surfaces probe the
black hole interior (although they do not approach the
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FIG. 5. When a point (purple) is close to a spacelike singu-
larity, it is very difficult for the point to be in Loc(M). Quite
generally, HRT surfaces are prevented from approaching such
singularities [14, 32]. In this figure, the horizontal dashed line
is a surface with the property that no HRT surface intersects
its future. (This is more restrictive than an extremal surface
barrier, which would prohibit smooth deformations of station-
ary surfaces.) A local operator at the purple point cannot be
superficially local since a point in its past (blue) will typically
be contained in strictly more entanglement wedges.

singularity arbitrarily closely). Because such HRT sur-
faces can be anchored to boundary regions at a variety
of angular positions, we conclude that Loc(M) enters the
black hole interior in this case. Note, however, that figure
5 again explains why regions too close to the singularity
are not localizable.

Bag of Gold

Our fourth example is a “bag of gold” spacetime (see, e.g.,
[34]). The manifold M is an AdS-Schwarzschild space-
time with one of its two asymptotic regions removed and
replaced with a patch of de Sitter space. The spacetime
is static and spherically symmetric. Its Penrose diagram
is shown in figure 6. We will label the regions in the
diagram I-IV as shown in the figure (note that region
II includes the de Sitter patch). It is very important to
understand that unlike the two-side AdS-Schwarzschild
spacetime, M has only one asymptotic boundary with
topology SD−2 ×R. The time slice Σ that is marked in
figure 6 has the topology of RD−1. In particular, Σ is
simply connected and the homology constraint for HRT
surfaces will not play any interesting role here. The dot-
ted line in region I is a surface beyond which no HRT
surface probes.

We will argue the following.

1. Loc(M) is the portion of region I that is probed by
HRT surfaces.

2. M̃ has a single clump whose image under C (see
section III C) is all of region II. Thus, we will say
that region II is a clump.

3. The rest of the spacetime (including regions II and
IV) is neither localizable nor within clumps. It is
“inaccessible.”

I

IV

II

III

� σ

Σ

FIG. 6. The bag of gold geometry we consider is obtained by
removing an asymptotic region from an AdS black hole and
replacing it with a patch of de Sitter space. As discussed in
the text, the localizable region is the portion of region I that
is accessible to HRT surfaces and region II is a single clump.
The remaining portion of the spacetime is “inaccessible” in
the sense that no operator with support in these regions is
superficially local.

First let us discuss why region II is a clump. Like con-
ical AdS, this spacetime exhibits phase transitions in its
HRT surfaces as well as an entanglement shadow. Con-
sider the boundary time slice σ = ∂Σ and let Rψ be a
spherical cap on σ with opening angle ψ (defined so that
Rπ = σ). The spacetime in region I is identical to region I
of AdS-Schwarzschild so the structure of stationary codi-
mension 2 boundary-anchored surfaces must also be the
same and, in particular, there are always two distinct sta-
tionary surfaces anchored to Rψ. At ψ = π/2, there is a
phase transition with a discontinuity in the first deriva-
tive of S(Rψ). At this transition, the minimal surface
jumps around the entire region II. Note also that HRT
surfaces fail to even contact the bifurcation throat: there
is, once again, a minimal radius in region I, rcrit, greater
than the black hole radius, within which no HRT surface
extends.

If ψ < π/2, the spatial region Vψ on Σ between Rψ
and its HRT surface extRψ is confined to region I. Thus
EW(Rψ) is confined to region I; this follows from the fact
that EW(Rψ) = D(Vψ) after compactification. Mean-
while, When ψ > π/2, Vψ contains the entire intersec-
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tion of Σ with region II and EW(Rψ) must contain all
of region II. These observations were made for a simple
spherical cap on the time-reversal symmetric slice Σ, but
they hold very generally: any time we consider a nested
family of boundary regions {Rs ∈ R}, EW(Rs) is con-
fined to region I for s smaller than some critical value
and EW(Rs) contains all of region II when s exceeds this
value.

What this shows is that if φ1 and φ2 are two bulk op-
erators with support in region II, we must have Q(φ1) =
Q(φ2). Moreover, note that any operator φ which is sup-
ported in region II must be superficially local. To see this,
consider any x ∈M \( region II). If x is in region I or III,
take a spherical cap like Rψ with ψ > π/2, but place it
on a boundary time slice at very early time. No matter
how early time time is taken, time-translation invariance
guarantees that region II is still contained in EW(Rψ),
but by sending the boundary time slice to −∞, we can
put any point in regions I or III in the future of extRψ.
This means that there exists some R ∈ Q(φ) \ Q(φ′) so
φ � φ′. The same argument can be made if x is in region
IV by sending the boundary time slice to +∞. We con-
clude that φ must be superficially local and region II is
thus a clump (since all operators with support in region
II are superficially local and have the same image under
Q).

Let us finally study the remainder of the spacetime.
The portion of region I that is probed by HRT surfaces is
readily seen to be contained in Loc(M). We now outline
an argument that, in fact, this probed region is exactly
Loc(M). Figure 5 gives an explanation of why local op-
erators in region III cannot be localized. More generally,
consider a local bulk operator φx at a point x lying out-
side of the region probed by HRT surfaces but also lying
outside of the clumped region II. If R is a boundary re-
gion with x ∈ EW(R), then R must be large enough to
have undergone a phase transition so that region II is
contained in the entanglement wedge of R as well. This
means that if Φ is any superficially local operator in the
clump, we have Q(φx) ( Q(Φ). This shows that φx can-
not be superficially local.

Conclusion: Suppose that G is dual to the bag of gold
geometry. If φ is a superficially local operator, then it is
either a local operator in the portion of region I probed by
extremal surfaces or it is some operator (which need not
be local) with support in region II. The clump conjecture
of section III E is valid for this spacetime, so the prob-
lematic superficially local operators can be identified and
discarded. After doing so, the remaining superficially lo-
cal operators exactly form the collection of all bulk local
operators in Loc(M).

E. The Clump Conjecture8

In this section we propose a way to use the boundary
theory to identify and remove clumps from M̃ . Specif-
ically we give an alternative definition of a clump that
does not make direct reference to the bulk and we con-
jecture that our two definitions are equivalent. We know
of no counterexamples to the conjecture and there is good
evidence for its general validity.

The basic motivation is as follows. If P ∈ M̃ is a
clump, then, by definition, C(P ) contains more than one
bulk point. Generically, clumps have nonzero spacetime
volume. On the other hand, we know that no entangle-
ment wedge can contain only part of a clump: if R ∈ R,
then either C(P ) ⊆ EW(R) or C(P ) ∩ (EW(R))◦ = ∅.
These observations indicate that if Rs is a continuous
nested one-parameter family of regions in R such that
Rs ∈ Q(P ) for s > 0 and Rs /∈ Q(P ) when s < 0, we
must have some form of a discontinuity in the entangle-
ment wedges EW(Rs) as a function of s at s = 0. Such
discontinuities occur when the HRT surfaces anchored to
{Rs} jump discontinuously. But such a jump can often
be seen in the boundary theory in the form of a disconti-
nuity in a derivative of the von Neumann entropy of the
boundary regions Rs.

Before stating the conjecture formally, we give a useful
definition:

Definition. Let φ be an operator on G and R ∈ Q(φ).
R is said to be minimal if whenever R′ ( R, R /∈ Q(φ).

We will also introduce the map Q̄ by letting Q̄(φ) denote
the collection of minimal elements of Q(φ). Additionally,
if P ∈ M̃ , we will define Q̄(P ) as Q̄(φ) for any choice of
φ ∈ P (all choices of φ have the same Q̄(φ)).

As suggested above, phase transitions in the boundary
theory will play a role in the boundary identification of
clumps. To be clear, a “phase transition” refers to the
following situation. Suppose that {Rs

∣∣ − 1 < s < 1}
is a regular9 one-parameter family of boundary regions
with Rs1 ( Rs2 whenever s1 < s2. Let S(Rs) denote
the von Neumann entropy of the boundary region Rs in
any state10 in the code subspace G. We say that there
is a phase transition at s = 0 if some derivative of S(Rs)
at s = 0 is discontinuous. Moreover, if R ∈ R, we will
say that there is a phase transition at R if there is some

8 Section III E presents material that significantly strengthens our
conclusions. However, it may be distracting to focus on such
technicalities and some may choose to pass over this section.

9 By “regular” we mean that Rs deforms smoothly enough that
we are not introducing discontinuities in any derivative of von
Neumann entropy by choosing an awkward parameterization of
regions.

10 S(Rs) is state-dependent, but the spacetime background is ap-
proximately fixed within the code subspace G, so assertions
about phase transitions will be state-independent at leading or-
der.
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one parameter deformation of the form above, {Rs}, with
R0 = R.

We now state our proposal for identifying and remov-
ing clumps. We will refer to it as the clump conjecture:

Suppose that P ∈ M̃ . P is a clump if and only if for
every R ∈ Q̄(P ), there is a phase transition at R.

We immediately note that this conjecture is consistent
with the examples provided in section IIID. The only ex-
ample we gave of a clump is that of the bag of gold space-
time which always features phase transitions for minimal
regions. Consider, however the example of AdS2+1/Zn.
This may appear to contradict the clump conjecture be-
cause it is a spacetime with no clumps but which does
posses phase transitions. However, consider regions like
the ones depicted in figure 3. These are indeed mini-
mal regions for the operator at the point depicted (which
corresponds to a point in M̃ . However, there is no phase
transition at such a region. This is why the statement
of the clump conjecture requires that there is a phase
transition for every R ∈ Q̄(P ).

IV. RECONSTRUCTION OF CAUSAL
STRUCTURE AND BEYOND

From here on we assume the validity of the clump con-
jecture (which we strongly expect) and use a new defini-
tion of M̃ :

M̃ =
{

[φ]
∣∣ φ is superficially local and [φ] is not a clump

}
This can be done using only the boundary theory. Simply
begin with M̃ as defined previously, and then remove
clumps from it by using the clump conjecture.

With this new definition, a major conclusion of section
III is that in some sense M̃ is isomorphic to Loc(M)
although we have not been very clear about what sort of
isomorphism this is. We are now going to take the view
that M̃ can be thought of as a reconstruction of the bulk
very seriously. We will successfully determine a metric
on M̃ up to a conformal rescaling. This will be done
using only information available in the boundary theory
(which includes the definition of M̃ itself). The manifold
M̃ and its causal structure will exactly reproduce that of
Loc(M). This constitutes a boundary reconstruction of
the metric on Loc(M) up to its conformal factor.

A. Spacelike Separation and Microcausality

The key insight to identifying a causal structure on M̃
is to note that M̃ consists of collections of operators on
the code subspace G and that the commutation relations
amongst those operators must betray an aspect of the
bulk spacetime geometry. This suggests the following
definition:

Definition. Suppose that P,Q ∈ M̃ . We say that P and
Q are spacelike separated if for every φ1 ∈ P and φ2 ∈ Q,
we have [φ1, φ2] = 0. Otherwise, we say that P and Q
are causally related.

There are two things to immediately notice about this
definition. First, while we have defined the statement
that P and Q are causally related, we have not yet given
meaning to the statement that P is to the future of Q.
This will be addressed below. Second, note that for P
and Q to be causally related, all that is necessary is that
there exists some φ1 ∈ P and some φ2 ∈ Q such that φ1

and φ2 fail to commute. It is certainly not necessary that
all such operators would fail to commute.

In special cases, it is possible to conclude that P and Q
are spacelike separated without relying directly studying
the commutativity of their operators. If it happens that
there exists R1 ∈ Q(P ), R2 ∈ Q(Q) with the property
that R1 and R2 are spacelike separated in the boundary,
meaning that(

J∂+(R1) ∪ J∂−(R1)
)
∩R2 = ∅,

then microcausality in the boundary field theory guar-
antees that any operators O1 and O2 in the algebras of
R1 and R2 respectively must have [O1, O2] = 0. In par-
ticular, for any φ1 ∈ P and φ2 ∈ Q, we can find recon-
structions of φ1 and φ2 in R1 and R2 respectively and
conclude that [φ1, φ2] = 0. However, this situation is too
much to ask for in general.

In the case where two classes P and Q are causally
related, the above logic indicates that there absolutely
cannot be any R1 ∈ Q(P ), R2 ∈ Q(Q) with the property
that R1 and R2 are spacelike separated in the boundary.
This is consistent with a theorem in bulk geometry which
is a necessary result for the consistency of entanglement
wedge reconstruction:

Proposition IV.1. Let M be an asymptotically AdS
spacetime and suppose that p, q ∈M are bulk points with
q ∈ I+(p). Suppose, moreover, that there exist boundary
regions R1, R2 ∈ R such that p ∈ EW(R1), q ∈ EW(R2).
Then,

(
I∂+(R1) ∪ I∂−(R1)

)
∩R2 6= ∅.

Proof. Choose a Cauchy surface σ of ∂M with R1 ⊆ σ
and let R̄1 = σ \ R1. Let Σ be any AdS-Cauchy surface
for the bulk with ∂Σ = σ and write Σ = S ∪ S̄ where
S ∩ S̄ is the HRT surface of R1. Then, q /∈ EW(R̄1).
(This follows from the fact that EW(R1) = D(S) and
EW(R̄1) = D(S̄).)

Suppose that we had R2 ⊆ D∂(R̄1). Wall’s entangle-
ment wedge nesting theorem [14] implies that this would
require that EW(R2) ⊆ EW(R̄1) which contradicts the
fact that q ∈ EW(R2). Thus, R2 is not contained (en-
tirely) in D∂(R̄1). On the other hand, the boundary is
flat so D(R̄1) = ∂M \ (I∂+(R1) ∪ I∂−(R1)). We conclude
that R2 intersects I∂+(R1) ∪ I∂−(R1).
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B. Time Orientation

Suppose that P and Q are points in M̃ that are
causally related. Then, the corresponding bulk points,
p and q respectively, must either have p ∈ J+(q) or
q ∈ J+(p). But how do we know which?

There may be a very direct way to answer this ques-
tion. Here, however, we give a topological answer. In
appendix B we explain how M̃ be be made into a topo-
logical space. The basic idea is fairly obvious: two points
in M̃ are close to each other if their images under Q are
close. Because this topology will be consistent with the
bulk topology on Loc(M), we can make use of topological
features of the causal structure of the spacetime Loc(M).

Of particular use is the fact that if p ∈M , J+(p) is con-
nected (as is J−(p)). Because Loc(M) may be a proper
subset of M , it is possible that J+(p) ∩ Loc(M) is not
connected. Nonetheless, we can consider the connected
component of J+(p)∩Loc(M) that contains p. The same
construction must be possible in M̃ , but we have to be
somewhat more careful. For P ∈ M̃ , we can consider the
set of points K that are causally related to P . This in-
cludes P itself. We can then consider K\{P} and look at
the two connected components of K that are arbitrarily
close to P . (There must be exactly two such compo-
nents because the topology on M̃ needs to be consistent
with that of Loc(M).) We label these two components
J̃±(P ) with the understanding that we have yet to de-
termine which component deserves a plus sign and which
deserves a minus sign.

Suppose we arbitrarily choose which of the two regions
is to be called J̃+(P0) for one particular point P0. In
all but the most pathological of connected spacetimes,
this fixes the time orientation for every other point in
the spacetime. For example, suppose that P1 is another
point in M̃ and that P1 ∈ J̃+(P0). (Here we are making
use of our arbitrary decision about J̃+(P0).) Then, we
must assign the orientation at P1 so that P0 ∈ J̃−(P1).
But now, if we find another point P2 ∈ J̃−(P1), we must
have that J̃+(P2) contains P1. Continuing in this way,
we can expect to be able to fix the time orientation for
every point in M̃ as long as it is connected. This process
is depicted in figure 7

But what about the overall time orientation? That
is, how do we decide on J̃+(P0) in our example above?
This can be done by beginning with a point in M̃ that
corresponds to local boundary operators at some bound-
ary point. On ∂M , we already have a notion of future
and past. Thus, if we take P0 to be an equivalence class
consisting only of local boundary operators at a point
x ∈ ∂M , we can decide upon J̃+(P0) by requiring that if
P1 is another class of local boundary operators lying at
a point y then P1 ∈ J̃+(P0) only if y ∈ J∂+(x).

We have now succeeded in defining a causal structure
on M̃ that must be consistent with that on Loc(M).
As a consequence, we have reconstructed the metric in
Loc(M) up to an undetermined conformal factor.

P0

P1

P2

FIG. 7. If the definition of the future and past of a point
P0 ∈ M̃ is chosen, there is an immediate constraint on the
time orientation at other points in M̃ . In this figure, the
orientation at P0 also fixes the orientation at P1 and P2.

C. Comparison with Light-Cone Cut
Reconstruction

There is a compelling connection between the bulk re-
construction developed here and a recent approach to
bulk reconstruction involving light-cone cuts due to En-
gelhardt and Horowitz [10]. Cut reconstruction is a new
area of research [35–38], and remarkably, a number of the
ideas involving cuts appear to have analogs in superficial
locality reconstruction. We now detail the similarities
and differences between the two approaches.

• Large N : Both cut reconstruction and reconstruc-
tion with superficial locality require in their cur-
rent forms that the classical limit be taken. Light
cone cuts are associated with singularities of corre-
lation functions of local boundary operators that
only resolve in the large N limit. These singu-
larities in the boundary theory are at first mys-
terious but have a simple explanation if one knows
about the dual bulk: if there is a bulk point p in
the causal wedge of the boundary, then cut singu-
larities are singularities of boundary n-point func-
tions < O(x1) . . . O(xn) > that can occur when the
boundary points lie on the future and past cuts of
p: C±(p) = (∂J±(p)) ∩ ∂M . These singularities
are generally known as bulk-point singularities and
have been considered in several contexts prior to
that of cuts [39, 40]. In particular, [40] provided an
example showing that such singularities are not ex-
pected to arise without sending N to infinity. This
is consistent with the fact that there should not be
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any notion of a local bulk scattering point when
N is finite. Similarly, our consideration of superfi-
cially local operators and their equivalence classes
is certainly only expected to reproduce local bulk
physics in the large N limit. At finite N there are
no local (gauge-invariant) observables in the quan-
tum gravity [41, 42], so it is not clear why one would
even seek to study any notion of exactly local bulk
operators in this case. It is, of course, interest-
ing to contemplate whether or not either of these
approaches suggests new ways to think about ap-
proximate locality at finite but large N .

• Specification of a state: Cut reconstruction, in its
original form, presupposes that we are given a par-
ticular quantum state ψ in the CFT Hilbert space
and that we are told that ψ is dual to some unknown
bulk geometry.11 The task is then to study correla-
tion functions in that state (which can be done us-
ing the boundary theory only) to determine aspects
of the bulk interpretation of ψ (like the bulk ge-
ometry). Similarly, throughout this paper we have
assumed that we are given a code subspace G and
that we are told that G has the bulk interpretation
of being the Hilbert space of a quantum field the-
ory on some unknown spacetime background. We
then consider various operators acting onG and ask
which of them are superficially local (which can be
done using the boundary theory only).

• Identification of points with a boundary object : The
next step in cut reconstruction is to make an iden-
tification between the set of light-cone cuts and the
set of points in the causal wedge of the bound-
ary. On the other hand, here we identify points
in Loc(M) with equivalence classes of superficially
local operators.

• Reconstruction of the Conformal Metric: It is pos-
sible to assign a causal structure to the set of cuts.
This causal structure is consistent with the causal
structure in the set of bulk points corresponding to
the cuts (with some caveats that can be addressed).
As a result, the set of cuts provides a reconstruction
of the metric in the causal wedge of the boundary,
CW(∂M), up to a conformal factor. Similarly, we
are able to identify a causal structure on M̃ , the
set of classes of superficially local operators, and we
therefore obtain a reconstruction of the conformal
class of the metric in the bulk region Loc(M). It is
known that in some cases, Loc(M) extends further
into the bulk than CW(∂M) does: in the case of
a dynamical black hole, Loc(M) can intersect the

11 In [38], the theory of cuts was put into a framework that did not
strictly rely on the presumption of the existence of a bulk, but
where an extra dimension can be seen to emerge in appropriate
cases.

black hole interior. We do not know whether or not
it is always the case that CW(∂M) ⊆ Loc(M).

• Local operators and the connection between the two
methods: The premise of our approach was to solve
a different problem from bulk reconstruction. Su-
perficial locality provides a way to identify the op-
erators on a code subspace G that are dual to local
bulk operators. Identification of bulk local opera-
tors has not yet been a goal of light-cone cut re-
construction, but it is a promising direction. In
fact, such considerations suggest a way to directly
relate cut reconstruction to our program. Consider
a point P ∈ M̃ and also consider a light-cone cut
C± associated with singularities in correlation func-
tions computed in a state ψ ∈ G. We would like to
know how to tell if the bulk point associated with
P is the same as the bulk point associated with C±
(clearly this is only plausible for bulk points in the
intersection of CW(∂M) and Loc(M).

We suggest the following approach to this prob-
lem. Consider a superficially local operator φ ∈ P
and take a collection of boundary points x1, . . . , xn
close to points in C. Now, consider two different
correlation functions:

Fn(x1, . . . , xn) = 〈ψ|O(x1) . . . O(xn)|ψ〉
Gn(x1, . . . , xn) = 〈ψ|φ O(x1) . . . O(xn)|ψ〉.

If φ is indeed a local operator at the vertex of the
cut C, then a signature of that property will be
encoded in the relationships between Fn and Gm
for various values of n and m. We do not pursue
this idea further in the present work.

V. DISCUSSION

Relying only on subregion duality between the bound-
ary and bulk spacetimes, our construction addresses the
following question. Given a CFT and a code subspace
dual to an unknown geometry, can we tell if some op-
erator is dual to a bulk local operator? To answer this
question, we exploit the curious feature that numerous
distinct boundary regions can reconstruct a local bulk
operator. Once we identify the set of local bulk opera-
tors in the localizable region, the relations among those
operators reveal bulk causal structure.

Furthermore, because the program focuses on entan-
glement wedges, as opposed to the extremal surfaces
themselves, the operators we identify can lie behind hori-
zons and within entanglement shadows in many exam-
ples. As expected, however, there are still regions for
which our procedure fails to completely describe locality
(these regions are often behind horizons). If we assume
bulk locality still holds even within these regions, its en-
coding in the CFT is different than that of operators in
the localizable region.
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Subregion duality is a common property of hologra-
phy. The holographic entanglement entropy prescription
[22, 23] and the fact that entanglement wedge reconstruc-
tion is possible [9], lead us to the conclusion that quan-
tum error correction is a feature of any theory with a
holographic description. This is an extra constraint on
holographic CFTs, which must encode information in a
way consistent with bulk reconstruction, and can be seen
as a requirement of CFTs having a bulk dual.

Remaining Considerations

Finite N : While we have addressed how locality, for the
portion of the bulk in the localizable region, emerges from
quantum error correction, there are still gaps that need
to be understood. To what extent does locality fail at
finite N? Gravitational effects prohibit the existence of
local bulk observables. However, the quantum error cor-
recting properties of subregion duality hold beyond lead-
ing order and it may therefore be elucidating to consider
an approximate form of our approach at finite N . This
may shed light on the subtleties of the large N limit and
the relationship between exact quantum gravity and the
infinite N theory.
The conformal factor : While there is no obvious way

to reconstruct the conformal factor on M̃ , we can argue
that more information than just the causal structure is
available to us. Consider a point P ∈ M̃ with the special
property that for some boundary region R ∈ R, both R
and its complement R̄ lie in Q(P ). The only geometri-
cal interpretation of this scenario is that operators in P
correspond to a point on the HRT surface ext R. This
means that in addition to the conformal metric on M̃ we
also know the minimal area anchored extremal surfaces
as well as the (regulated) areas of those surfaces, deter-
mined by the von Neumann entropies of corresponding
boundary regions [22, 23, 43, 44]. Noting that stationary
surfaces and their areas are not invariant under confor-
mal transformations, the conformal factor on the metric
is significantly constrained. We leave further investiga-
tion in this direction to future work.

Note: during the final stages of this project, [45] ap-
peared on the arXiv which discusses related ideas.
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Appendix A: The large N limit

In discussing the main concepts in the text, we have as-
sumed that local bulk operators exist, hoping to present
our construction in an intuitive fashion. However, exact
bulk locality only exists when N =∞, and gravitational
effects are turned off. When N is large but finite, grav-
itational effects demands that any gauge invariant bulk
operator will be nonlocal in some way [41, 42]. Never-
theless, bulk effective field theory still makes sense within
the code subspace of holographic CFTs. This is possible
because nonlocal effects become small, since they come
with some positive power of the gravitational coupling.
The suppression in N allows us to discuss local bulk fields
(perhaps smeared over a region ∼ lp) and perturbatively
add nonlocal effects (by appropriately dressing the fields
for example), so long as we work in the appropriate code
subspace.

Here, we explain how the constructions in the main
text can be made precise by appropriately applying the
large N limit to decouple nonlocalities due to gravity.
Consider a CFT satisfying the appropriate requirements
for having a bulk dual (see e.g. [46]). The theory has
some parameter, ε(N), which corresponds to the gravi-
tational coupling in the bulk and taking ε → 0 means
turning off gravitational effects (i.e. sending N → ∞).
Different values of ε correspond to different boundary
theories (with different central charges) with an associ-
ated Hilbert space Hε.

For ε 6= 0, no gauge-invariant operator φε, restricted
to the appropriate code subspace Gε, will be local in the
bulk. However, as we decrease ε, the strength of nonlocal
gravitational effects decreases, and some operators and
some operators in the CFT will start to resemble what
one expects for local operators in semiclassical field the-
ory; intuitively these would be the operators that would
limit to local fields in the ε = 0 limit. For example, if we
think about semiclassical fields that are gravitationally
dressed, the gravitational coupling suppresses the nonlo-
cal dressing.

Consider now a family of operators, {φε}ε>0, with φε
acting on the code subspace Gε for all ε > 0. 12

Definition. Let R ∈ R be a boundary region and let R̄
be a complement ofR. We say that a family {φε}ε>0 is re-
constructable in R if for any family of operators {OR̄ε }ε>0

in the algebra of R̄ for Hε and for any family of states
{ψε}ε>0 with ψε ∈ Gε,

lim
ε→0
〈ψε|[φε, OR̄ε ]|ψε〉 = 0 (A.1)

12 Decreasing ε decreases the strength of gravitational backreac-
tion. In order to keep any nontrivial background fixed while
changing the value of ε, we must separate “background matter”
from excitations. As we send ε → 0, the stress tensor for the
background matter must be rescaled appropriately to maintain
a nontrivial background. This emphasizes the subtlety in the
definition of Gε
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As reviewed in section II, this implies that, when ε is
very small, there is some operator ORε in the algebra of
R, whose action on Gε is that of the operator φε (up to
corrections in ε).

Note that most of these families of operators will not
limit to a semiclassical local bulk field. The “limit” might
be a smeared operator in EW(R) or the family of opera-
tors could oscillate forever within EW(R) and never con-
verge in any sense. However, some special class of such
families do limit to local operators.

In order to test whether or not a collection of operators
approaches a local field as ε becomes small, we introduce
a generalization of the procedure in the text. The idea is
to make the fundamental object of study the collection
of ε-dependent families of operators as opposed to the
set of operators on a fixed code subspace. Following the
framework from section III, we introduce a map Q that
acts on families of operators as follows:

Q({φε}ε>0) = {R
∣∣{φε}ε>0 is reconstructible in R}

(A.2)
For some of these sequences, the set Q({φε}ε>0) will

be the result expected for a field localized to a point in
the bulk. If this is the case, we can think of {φε}ε>0 as
a set of operators whose bulk interpretation is a semi-
classical field (built on a background associated with a
code subspace) whose nonlocal gravitational effects dis-
appears as ε→ 0. For such sequences of operators, taking
the ε → 0 limit is can be thought of as “undressing” φ
by consistently tuning down gravitational effects while
keeping the background fixed.

We can use this new definition of Q to define equiva-
lence classes of families of operators and then the notion
of superficial locality13 exactly as we do in section III.
All of the developments in the main text can be done in
this formalism.

Appendix B: Topology of M̃

In this appendix we explain how a topology on M̃ can
be constructed using only the boundary theory. We make
no assumptions here about whether or not clumps are
present. Despite appearances, the purpose of this con-
struction is not so much to demonstrate mathematical
rigor as it is to provide motivation for the statement that
M̃ , an object defined in the boundary theory, can be re-
garded (in the absence of clumps) as a “copy” of Loc(M),
a region of spacetime that certainly has a nice topological
structure.

The boundary theory is taken to be on a flat space
which, after conformal compactification, is a cylinder.
(The case where there are multiple disconnected bound-
aries is a straightforward generalization of the construc-
tion below.) A spatial region R ∈ R is thus bounded so
its boundary, ∂R, is compact. Choose some global coor-
dinate system on this flat spacetime (that is, fix a confor-
mal frame), and define a Euclidean metric d between two
points via geodesic (Euclidean) distance. We can now
give a metric on R denoted by D, by defining D(R,R′)
as the Hausdorff distance between ∂R and ∂R′.14 This
definition of distance is problematic in the case where
∂R = ∅. However, if ∂R1, ∂R2 = ∅ and ∂R3 6= ∅, we
simply define D(R1, R2) = 0 and D(R1, R3) =∞.

Given ε > 0, let Bε(R) be the subset of R consisting
of regions R′ with D(R,R′) < ε. A topology on M̃ can
now be obtained by taking P ∈ M̃ and defining Uε(P ) as
the set of points P ′ ∈ M̃ such that for every R ∈ Q(P ),
there exists R′ ∈ Q(P ′) ∩ Bε(R). The collection of sets
{Uε(P )

∣∣ ε > 0, P ∈ M̃} forms a topological base from
which a topology can be defined.
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