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Abstract

We study four-dimensional N = 2 supersymmetric U(N) gauge theory with 2N fundamental

hypermultiplets on the self-dual Ω-background. The partition function simplifies at special points of
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on S2. We also consider the insertion of a Wilson loop operator in two-dimensional Yang-Mills

theory, and find the corresponding operator in the four-dimensional N = 2 gauge theory.
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I. INTRODUCTION

The powerful N = 2 supersymmetry in four dimensions imposes stringent constraints on

the low energy behavior of supersymmetric theories. All terms with at most two derivatives

and four fermions in the effective action are expressed in terms of a single holomorphic

quantity, the prepotential F , whose quantum corrections are one-loop exact in the pertur-

bation theory, and generated non-perturbatively only by instantons. The exact form of the

prepotential F was first determined for certain theories by Seiberg and Witten indirectly

based on several assumptions on the strong coupling behavior of the theory [1, 2]. It was

then extended to more general N = 2 theories (see [3] for a recent review).

It is useful to deform the supersymmetric theories by putting them on nontrivial super-

gravity backgrounds [4, 5]. The prototypical example is the so-called Ω-background [4], in

which the theory is deformed by two parameters ǫ1, ǫ2 parameterizing the SO(4) rotation of

R4. The Ω-deformation provides an IR regularization which preserves a part of the deformed

supersymmetry. The calculation of the supersymmetric partition function is dramatically

simplified and can be performed using equivariant localization techniques. The dependence

of the partition function with respect to parameters ǫ1, ǫ2 contains profound physical in-

formation. In particular, it gives the prepotential of the low energy effective action of the

undeformed theory on R4, as well as the couplings of the theory to the N = 2 supergravity

multiplet.

Soon after the exact computation of the partition function on the Ω-background was

done, an interesting relation between supersymmetric gauge theory and topological string

theory was discovered [6, 7]. On the gauge theory side, we have the four-dimensional N = 2

supersymmetric U(N) gauge theory with 2N − 2 fundamental hypermultiplets. Its parti-

tion function on the self-dual Ω-background simplifies dramatically at a special point of the

parameter space and is identified with the disconnected partition function of A-type topolog-

ical string theory on S2. The higher Casimir operators in the four-dimensional gauge theory

map to gravitational descendents of the Kahler form in the topological string theory. It was

later further generalized in [8] by adding g adjoint hypermultiplets in the four-dimensional

gauge theory and replacing S2 with a genus g Riemann surface.

Inspired by the previous results, we explore the possible simplification of the partition

function of the four-dimensional N = 2 supersymmetric U(N) gauge theory with 2N fun-
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damental hypermultiplets in this paper. We find that the partition function on the self-dual

Ω-background at a special point of the parameter space can be related to the partition func-

tion of two-dimensional Yang-Mills theory on S2 [9, 10]. The rank of the gauge group of the

two-dimensional theory has nothing to do with the four-dimensional gauge group U(N).

Once the correspondence is established, one may study each side using the information of

the other side. In this paper, we consider the Wilson loop operator in the two-dimensional

Yang-Mills theory. The exact expectation value of the Wilson loop operator has been known

for a long time. We show that inserting a Wilson loop operator in the fundamental repre-

sentation corresponds to adding a nontrivial operator in the four-dimensional N = 2 gauge

theory. The generalization to other representations are more involved and will be discussed

in the future.

The structure of this paper is as follows. In Section II, we review the partition function

of four-dimensional N = 2 supersymmetric U(N) gauge theory with 2N fundamental hy-

permultiplets on the Ω-background, and describe the Y-observable that will turn out to be

useful in our discussion. We show that the partition function simplifies at special points of

the parameter space. In Section III, we show that the simplified partition function can be re-

lated to the partition function of two-dimensional Yang-Mills theory on S2. We then study

the effect of inserting a Wilson loop operator in the two-dimensional Yang-Mills theory.

Finally, in Section IV, we provide some further discussions.

II. INSTANTON PARTITION FUNCTION OF FOUR-DIMENSIONAL N = 2

GAUGE THEORY

In this paper, we are interested in the N = 2 supersymmetric U(N) gauge theory with

2N fundamental hypermultiplets. The Lagrangian and the vacua are parameterized by the

coupling constant q = exp (2πiτ), the vacuum expectation value a = diag (a1, · · · , aN) of

the scalar field in the vector multiplet, and the complex masses m = diag (m1, · · · , m2N) of

the matter hypermultiplets. We refer to [11] for a detailed analysis and references for the

supersymmetric partition function of very general N = 2 supersymmetric gauge theories on

the Ω-background.
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A. Partition function on the self-dual Ω-background

Let us first recall the partition function of the four-dimensional N = 2 gauge theory on

the Ω-background [4]. The Ω-background breaks the translational invariance by deforming

the theory in a rotationally covariant way, with parameters ǫ1, ǫ2. In the following, we always

set ǫ1 = −~, ǫ2 = ~.

The supersymmetric partition function of N = 2 theory consists of three parts: the

classical, the one-loop, and the instanton parts,

Z (a,m, q; ~) = Zclassical (a, q; ~)Z1−loop (a,m; ~)Z instanton (a,m, q; ~) . (1)

The classical part is simply

Zclassical (a, q; ~) = q
1

2~2

∑N
α=1 a

2
α. (2)

The one-loop part is given as a product of contributions from the vector multiplet and the

matter hypermultiplets using Barnes double Gamma function. The one-loop contribution

of a vector multiplet is

Z
1−loop
vector (a; ~) =

∏

1≤i<j≤N

[Γ2 (ai − aj + ~|~,−~) Γ2 (ai − aj − ~|~,−~)]−1
, (3)

while the one-loop contribution of fundamental hypermultiplets is

Z
1−loop
fund (a, m; ~) =

N
∏

i=1

2N
∏

f=1

Γ2 (ai −mf |~,−~) . (4)

The instanton partition function is defined as an equivariant integral over the instanton

moduli space. Applying the equivariant localization method, the integral can be reduced

to a sum over contributions of the fixed points of the moduli space. There is a one-to-one

correspondence between the fixed points and colored partitions Λ =
(

λ(α)
)N

α=1
, with each

partition λ(α) being a weakly decreasing sequence of non-negative integers,

λ(α) =

(

λ
(α)
1 ≥ λ

(α)
2 ≥ · · · ≥ λ

(α)

ℓ(λ(α))
> λ

(α)

ℓ(λ(α))+1
= · · · = 0

)

, (5)

whose size is denoted to be |λ(α)| =
∑

i λ
(α)
i . Accordingly the instanton partition function

becomes a statistical model of random partitions [4],

Z instanton (a,m, q; ~) =
∑

Λ

q|Λ|µΛ (a,m; ~) , (6)
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where |Λ| =
∑N

α=1 |λ
(α)|. The contribution to the measure of a vector multiplet is given by

µΛvector (a; ~) =
∏

(α,i) 6=(β,j)

aα − aβ + ~
(

λ
(α)
i − λ

(β)
j + j − i

)

aα − aβ + ~ (j − i)
, (7)

and the contribution to the measure of fundamental hypermultiplets is

µΛfund (a,m; ~) =

N
∏

α=1

2N
∏

f=1

∏

�∈λ(α)

(c� −mf)

= ~2N |Λ|

N
∏

α=1

2N
∏

f=1

∏

i

Γ
(

aα−mf

~
+ 1 + λ

(α)
i − i

)

Γ
(

aα−mf

~
+ 1− i

) , (8)

where for each box � = (i, j) ∈ λ(α), we define its content as

c� = aα + ǫ1 (i− 1) + ǫ2 (j − 1) . (9)

The contribution to the measure of an anti-fundamental hypermultiplet with mass m is

equal to the contribution to the measure of a fundamental hypermultiplet with mass −m

on the self-dual Ω-background.

For the undeformed theory on R4, we can perturb the theory by adding gauge-

invariant chiral operators to the ultraviolet prepotential, while keeping the ultraviolet anti-

prepotential unchanged,

F̄UV =
τ̄

2
TrΦ̄2. (10)

For example, we can add single-trace operators,

FUV →
τ

2
TrΦ2 +

∞
∑

j=2

τj

j
TrΦj , (11)

which get deformed on the Ω-background. The localization computation still works, and

partition function becomes

Z (a,m, q; τ ; ~) = Zclassical (a, q; ~)Z1−loop (a,m; ~)
∑

Λ

q|Λ|µΛ (a,m; ~) exp

(

1

~2

∞
∑

j=2

τj

j
chj (a,Λ)

)

.

(12)

Here chj (a,Λ) =
∑N

α=1 chj

(

aα, λ
(α)
)

, with

chj (a, λ) = aj+

∞
∑

i=1

(

(a+ ~ (λi + 1− i))j − (a+ ~ (λi − i))j − (a+ ~ (1− i))j + (a− ~i)j
)

.

(13)
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For example,

ch2 (a, λ) = a2 + 2~2|λ|, (14)

ch3 (a, λ) = a3 + 6~2a|λ|+ 3~3
∑

i

λi (λi + 1− 2i) . (15)

Multi-trace operators can also be added, and can be analyzed using Hubbard-Stratonovich

transformation. The full set of gauge-invariant chiral operators can be expressed as

FUV →
τ

2
TrΦ2 +

∞
∑

~k

t~k

∞
∏

j=1

1

kj!

(

1

j
TrΦj

)kj

, ~k = (k1, k2, · · · ) , (16)

and partition function is deformed to be

Z (a,m, q; t; ~) = Zclassical (a, q; ~)Z1−loop (a,m; ~)×

×
∑

Λ

q|Λ|µΛ (a,m; ~) exp





1

~2

∞
∑

~k

t~k

∞
∏

j=1

1

kj!

(

1

j
chj (a, λ)

)kj



. (17)

B. Y-observable

With the identification of instanton partition function with a statistical model (6), we

can compute the expectation value of observables on the Ω-background as

〈O〉 =

∑

Λ q
|Λ|µΛO[Λ]

∑

Λ q
|Λ|µΛ

, (18)

where O[Λ] is the value of O at the fixed point labeled by Λ.

An important observable in the analysis of non-perturbative information of four-

dimensional N = 2 gauge theory is the Y-observable, which is defined using the gauge-

invariant polynomials of the adjoint scalar field φ in the vector multiplet, evaluated at the

fixed point of the rotational symmetry SO(4),

Y(x) = xN exp

(

−
∞
∑

j=1

1

jxj
Tr (φ(0))j

)

. (19)

Classically, it is given by

Y(x)classical = det (x− φ(0)) =

N
∏

α=1

(x− aα) . (20)
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However, there are quantum corrections due to instantons. Denote the outer and the inner

boundaries of the partition λ as ∂+λ and ∂−λ, respectively. The value of Y(x) on the self-dual

Ω-background at the fixed point labeled by Λ is [12]

Y(x)[Λ] =
N
∏

α=1

∏

⊞∈∂+λ(α) (x− c⊞)
∏

⊟∈∂
−
λ(α) (x− c⊟)

=
N
∏

α=1

∞
∏

i

x− aα − ~
(

λ
(α)
i − i+ 1

)

x− aα − ~
(

λ
(α)
i − i

) . (21)

Notice that the expression (21) is highly redundant, and there can be many cancellation

between the numerator and the denominator. For example, the contribution from the box
(

n + 1, λ
(α)
n+1 + 1

)

∈ ∂̃+λ(α) cancels the contribution from the box
(

n, λ
(α)
n

)

∈ ∂̃−λ(α) for

n > ℓ(λ(α)). Hence, Y(x)[Λ] does not change if we truncate the range of the index i to

1 ≤ i ≤ n for an arbitrary integer n ≥ ℓ(λ(α)).

C. Simplification of partition function

Up to this point we assumed that the expectation values a1, · · · , aN and masses

m1, · · · , m2N are generic. Then the partition function (6) contains an infinite sum over

colored partitions. For special value of masses, the partitions Λ that we sum over can be

constrained. As a result, the partition function (6) gets simplified.

It is easy to see that if aα = mf for some α ∈ {1, 2, · · ·N} and f ∈ {1, 2, · · · , 2N}, then

λ(α) = ∅ otherwise (8) is zero. Therefore, if we choose a particular point on the parameter

space

aα = m2α−1 = m2α, α = 1, · · · , N, (22)

the partitions λ(α) = ∅ for all α = 1, 2, · · · , N , and the instanton partition function is

trivially one. This simplification of instanton partition function has been known for a long

time. Physically, when one of the aα is equal to two masses, two of the hypermultiplets

become massless, and can be Higgsed so that the U(N) theory with 2N flavors is reduced

to a U(N − 1) theory with 2N − 2 flavors. However, the instanton partition function will

not change since it is a Coulomb-branch quantity which is independent of the manipulation

on the hypermultiplet side.
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Now let us relax the condition (22) a little bit. We still fix

aα = m2α−1 = m2α, α = 2, · · · , N, (23)

so that the partitions λ(α) = ∅ for α = 2, · · · , N . We effectively reduce the U(N) gauge

theory with 2N fundamental hypermultiplets to the U(1) theory with 2 fundamental hyper-

multiplets. At the same time, we choose

a1 = m1 + n~ = m2 + n~, (24)

where n is a positive integer. We see from (8) that if λ
(1)
n+1 ≥ 1, then the contribution of the

box � = (n + 1, 1) ∈ λ(1) makes µΛfund vanish. Hence, the length of the partition λ(1) is at

most n. We can set the length of the partition λ(1) to be n by adding zeros to the end of

the partition if its precise length is less than n. In this case, the measure in the instanton

partition function simplifies.

The case n = 1 is special, since now λ(1) is no longer a two-dimensional partition. The

measure of the vector multiplet completely cancel the measure of the fundamental hyper-

multiplets, and the instanton partition function is

Z instanton =
∞
∑

λ
(1)
1 =0

qλ
(1)
1 =

1

1− q
. (25)

In the following, we always assume that n ≥ 2. In this case, the measure of the vector

multiplet (7) becomes

µΛvector =





∏

i 6=j

~
(

λ
(1)
i − λ

(1)
j + j − i

)

~ (j − i)









N
∏

β=2

∏

i,j

a1 − aβ + ~
(

λ
(1)
i + j − i

)

a1 − aβ + ~ (j − i)





2

=

(

∏

1≤i<j≤n

λ
(1)
i − λ

(1)
j + j − i

j − i

)2




n
∏

i=1

Γ (n+ 1− i)

~λ
(1)
i Γ

(

n+ 1 + λ
(1)
i − i

)





2

×

×





N
∏

β=2

n
∏

i=1

Γ
(

a1−aβ
~

− i+ 1
)

~λ
(1)
i Γ

(

a1−aβ
~

− i+ λ
(1)
i + 1

)





2

, (26)

while the measure of the fundamental hypermultiplets (8) becomes

µΛfund =

2N
∏

f=1

n
∏

i=1

Γ
(

a1−mf

~
+ 1 + λ

(1)
i − i

)

Γ
(

a1−mf

~
+ 1− i

)

= ~2N |λ(1)|





n
∏

i=1

Γ
(

n+ 1 + λ
(1)
i − i

)

Γ (n+ 1− i)





2
N
∏

α=2





n
∏

i=1

Γ
(

a1−aα
~

+ 1 + λ
(1)
i − i

)

Γ
(

a1−aα
~

+ 1− i
)





2

.(27)
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After many cancelations between µΛvector and µΛfund, the remaining measure is

µΛ = µΛvectorµΛfund =

(

∏

1≤i<j≤n

λ
(1)
i − λ

(1)
j + j − i

j − i

)2

. (28)

In this case, the Y-observable (21) also simplifies,

Y(x)[Λ] =

∏n+1
i=1

(

x− a1 − ~
(

λ
(1)
i + 1− i

))

∏n

i=1

(

x− a1 − ~
(

λ
(1)
i − i

))

= (x− a1 + n~)

n
∏

i=1

(

x− a1 − ~
(

λ
(1)
i + 1− i

))

(

x− a1 − ~
(

λ
(1)
i − i

)) . (29)

As we see, at the point (23) (24) of the parameter space, the instanton partition function

is independent of the gauge group rank N , and the difference for different N in the full

partition function is an overall constant which is irrelavant in our discussion. Therefore,

we shall concentrate on the case N = 1 in the following discussion, and drop some of

the subscript 1. Notice that the U(1) gauge theory with 2 fundamental hypermultiplets is

nontrivial due to the inexplicit non-commutative deformation.

III. RELATION TO TWO-DIMENSIONAL YANG-MILLS THEORY

In this section, we shall relate the partition function discussed in Section II to the partition

function of two-dimensional Yang-Mills theory on S2.

A. Partition function of two-dimensional Yang-Mills theory

Two-dimensional Yang-Mills theory is an exactly solvable model and has been extensively

studied from many different points of view (see [10] for a review). Its partition function on

a Riemann surface Σ of genus g is defined as

ZYM2
Σ (ε,A(Σ), G) =

1

Vol(G)

∫

DADφ exp

(

i

∫

Σ

TrφFA +
ε

2

∫

Σ

dµTrφ2

)

, (30)

where ε is the coupling constant, A(Σ) is the area of the Riemann surface Σ, and Tr denotes

the invariant, negative-definite quadratic form on the Lie algebra g of the gauge group G.

The partition function (30) can be expressed as a sum over all finite-dimensional irreducible
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representations R of the gauge group G [9, 13, 14],

ZYM2
Σ (̺,G) = e−β(2−2g)−γεA(Σ)

∑

R

(dimR)2−2g exp
(

−
̺

2
C2(R)

)

, (31)

where the prefactor is the regularization-dependent ambiguity, dimR is the dimension of the

representation R, C2(R) is the quadratic Casimir of the representation R, and ̺ = εA(Σ)

is the dimensionless coupling contant.

B. Matching the parameters

We would like to find the precise relation between the partition function (17) and the

partition function of two-dimensional Yang-Mills theory (31), both for the group SU(n) and

for the group U(n).

1. SU(n) theory

For the group G = SU(n), the irreducible representations R are parametrized by the

partition (λ1 ≥ λ2 ≥ · · · ≥ λn−1 ≥ λn = 0). The dimension and the quadratic Casimir of

the representation R are

dimR =
∏

1≤i<j≤n

λi − λj + j − i

j − i
, (32)

C2(R) =

n
∑

i=1

λi (λi − 2i+ 1) + n|λ| −
|λ|2

n
. (33)

We see that both the dimension and the quadratic Casimir are independent of the overall shift

of λ’s. Therefore, the difference between the summation over λ1 ≥ λ2 ≥ · · · ≥ λn−1 ≥ λn ≥ 0

and λ1 ≥ λ2 ≥ · · · ≥ λn−1 ≥ λn = 0 in the partition function is merely an irrelevant overall

constant.

To identify the partition function of two-dimensional SU(n) Yang-Mills theory on S2 with

the partition function of the four-dimensional N = 2 U(1) gauge theory with 2 fundamental

hypermultiplets at the degenerate point of the parameter space, we need to set a = 0 and
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turn on operators with couplings t0,1, t0,2 and t0,0,1 in (17). The partition function becomes

Z (a = 0, m1 = m2 = −n~, q; τ ; ~)

= Γ2 (n~|~,−~)2
∑

λ

q|λ|

(

∏

1≤i<j≤n

λi − λj + j − i

j − i

)2

× (34)

× exp

{

1

~2

[

t0,1

2
ch2 (0, λ) +

t0,2

8
(ch2 (0, λ))

2 +
t0,0,1

3
ch3 (0, λ)

]}

= Γ2 (n~|~,−~)2
∑

λ

q|λ|

(

∏

1≤i<j≤n

λi − λj + j − i

j − i

)2

×

× exp

{[

t0,1|λ|+
t0,2~

2

2
|λ|2 + t0,0,1~

∑

i

λi (λi + 1− 2i)

]}

. (35)

Ignoring the unimportant prefactor coming from the one-loop contribution, the partition

function is equal to partition function of two-dimensional Yang-Mills theory on S2 (31) with

gauge group SU(n) when

log(q)|λ|+ t0,1|λ|+
t0,2~

2

2
|λ|2 + t0,0,1~

∑

i

λi (λi + 1− 2i)

= −
̺

2

(

n
∑

i=1

λi (λi − 2i+ 1) + n|λ| −
|λ|2

n

)

, (36)

which gives

t0,1 = −
̺n

2
− log (q) , t0,2 =

̺

n~2
, t0,0,1 = −

̺

2~
. (37)

2. U(n) theory

For the group U(n), the irreducible representations R are parametrized by n integers

(µ1 ≥ µ2 ≥ · · · ≥ µn−1 ≥ µn) without positivity restriction. It is convenient to use the de-

composition of the representation R of U(n) in terms of representation R of SU(n) and the

U(1) charge p,

µi = λi + r, i = 1, 2, · · · , n− 1

µn = r,

p = |λ|+ nr, r ∈ Z. (38)
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The dimension of representation R of group U(n) has the same form (32) as the group

SU(n), while the quadratic Casimir is given by

C2 (R) = C2 (R) +
p2

n
=

n
∑

i=1

λi (λi − 2i+ 1) + (n+ 2r) |λ|+ nr2. (39)

To relate the four-dimensional theory to two-dimensional Yang-Mills theory with gauge

group U(n), we no longer need to turn on the double-trace operators. Instead, we turn on

operators with parameter τ2 and τ3 in (12),

Z (a,m, q; τ ; ~)

= Γ2 (n~|~,−~)2
∑

λ

(

∏

1≤i<j≤n

λi − λj + j − i

j − i

)2

×

× exp

[

(τ2 + log(q))

(

a2

2~2
+ |λ|

)

+ τ3

(

a3

3~2
+ 2a|λ|+ ~

∑

i

λi (λi + 1− 2i)

)]

.(40)

We now set

a = m1 + n~ = m2 + n~ = r~, (41)

where r ∈ Z, and ignore the irrelevant prefactor coming from the one-loop contribution, the

partition function becomes

Z (r~, (r − n)~, q; τ ; ~)

=
∑

λ

(

∏

1≤i<j≤n

λi − λj + j − i

j − i

)2

×

× exp

[

(τ2 + log(q))

(

r2

2
+ |λ|

)

+ τ3~

(

r3

3
+ 2r|λ|+

∑

i

λi (λi + 1− 2i)

)]

. (42)

Now we consider the sum over r ∈ Z with a possible weight depending on r,

∑

r∈Z

exp
(

−f2r
2 − f3r

3
)

Z (r~, (r− n)~, q; τ ; ~)

=
∑

r∈Z

∑

λ

(

∏

1≤i<j≤n

λi − λj + j − i

j − i

)2

×

× exp

[

(τ2 + log(q))

(

r2

2
+ |λ|

)

+ τ3~

(

r3

3
+ 2r|λ|+

∑

i

λi (λi + 1− 2i)

)

− f2r
2 − f3r

3

]

(43)

which is equal to the partition function of two-dimensional Yang-Mills theory on S2 (31)
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with gauge group U(n) when

τ3~
∑

i

λi (λi + 1− 2i) + (τ2 + log(q)) |λ|+ 2τ3~|λ|r +

(

τ2 + log(q)

2
− f2

)

r2 +

(

τ3~

3
− f3

)

r3

= −
̺

2

[

n
∑

i=1

λi (λi − 2i+ 1) + n|λ|+ 2r|λ|+ nr2

]

, (44)

which gives that

τ2 = −
̺n

2
− log (q) , τ3 = −

̺

2~
, f2 =

̺n

4
, f3 = −

̺

6~
. (45)

Therefore, we have the relation

∑

r∈Z

exp
(

−
̺n

4
r2 +

̺

6~
r3
)

Z
(

r~, (r − n)~, q; τ2 = −
̺n

2
− log (q) , τ3 = −

̺

2~
; ~
)

= ZYM2
S2 (̺, U(n)) .

(46)

C. Wilson loop operator in two-dimensional Yang-Mills theory

The correspondence was hitherto at the level of the partition functions. We would like to

deepen it by studying the Wilson loop operator in the two-dimensional Yang-Mills theory.

Suppose that a loop Γ decomposes S2 into two disjoint connected components Σ1 and Σ2.

Associated to the curve Γ we have a representation RΓ of the gauge group and we define a

Wilson loop operator

W (Γ, RΓ) = TrRΓ
P exp

∮

Γ

A. (47)

The expectation value of the Wilson loop operator W (Γ, RΓ) is given by

〈W (Γ, RΓ)〉
YM2 = ZYM2

S2 (εA (Σ1 ∪ Σ2))
−1
∑

R1,R2

(dimR1) (dimR2)×

× exp

(

−
εA(Σ1)

2
C2(R1)−

εA(Σ2)

2
C2(R2)

)

N (R1 ⊗RΓ, R2) (48)

whereN (R1 ⊗ RΓ, R2) is the fusion number defined by the decomposition of a tensor product

into irreducible representations

R1 ⊗ RΓ =
⊕

R2

N (R1 ⊗ RΓ, R2)R2. (49)

In this paper, we are interested in the simple case that RΓ is the fundamental representation.

The fusion number is one if the Young diagram associated to R2 is obtained by adding a

13



box in the Young diagram associated to R1, and zero otherwise. We can make an analogy

with (18) and write

〈W (Γ,�)〉YM2 = ZYM2
S2 (εA (Σ1 ∪ Σ2))

−1
∑

R

(dimR)2 exp

(

−
εA(Σ1 ∪ Σ2)

2
C2(R)

)

W (Γ,�) [R] .

(50)

Here W (Γ,�) [R] is the value of W (Γ,�) evaluated at the representation R,

W (Γ,�) [R] =
∑

R+=R⊗�

dimR+

dimR
exp

(

−
ε∆A

2
(C2(R+)− C2(R))

)

, (51)

where ∆A = A(Σ2)−A(Σ1).

First we consider the case when the gauge group is SU(n). Suppose that the Young

diagram associated to the representation R is (λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0), and becomes the

Young diagram associated to the representation R+ by adding a box in the lth row. From

(32) and (33), we obtain that

dimR+

dimR
=
∏

i 6=r

λi − (λl + 1) + l − i

λi − λl + l − i
, (52)

C2(R+)− C2(R) = 2 (λl − l + 1) +
n2 − 1− 2|λ|

n
. (53)

It is interesting to notice that

Res
x=a1+~

(

λ
(1)
l

+1−l
)

(

x+ n~

Y (x)[Λ]

)

=
dimR+

dimR
. (54)

The appearance of the Y -observable should not be surprising. Recall that the physical

meaning of the Y -observable is to add or remove a point-like instanton. Hence, the four-

dimensional operator corresponding to W (Γ,�) [R] is

1

2πi

∮

dx
x+ n~

Y (x)[Λ]
e−ε∆Ax exp

(

−ε∆A

(

n2 − 1

2n
−

1

n
q
∂

∂q

))

. (55)

For the case of U(n), the equations (52) and (54) still hold. The difference between the

Casimirs now is simpler

C2(R+)− C2(R) = 2 (λl − l + 1) + n+ 2r. (56)

Hence, the four-dimensional operator corresponding to W (Γ,�) [R] is now

1

2πi

∮

dx
x+ n~

Y (x)[Λ]
exp

(

−ε∆A
(

x+
n

2

))

. (57)
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IV. DISCUSSIONS

In this paper, we study a generalization of the correspondence between four-dimensional

N = 2 supersymmetric U(N) gauge theory with 2N − 2 fundamental hypermultiplets and

A-type topological string theory on S2. In our correspondence, the partition function of

the four-dimensional U(N) gauge theory with 2N fundamental hypermultiplets at a suit-

able nongeneric point of the parameter space is related to the partition function of two-

dimensional Yang-Mills theory on S2. We also study the expectation value of a Wilson

loop operator in the fundamental representation in the two-dimensional Yang-Mills theory.

The corresponding operator in the four-dimensional theory can be found for the fundamen-

tal representation. It appears that the correspondence is more complicated than the old

correspondence in [6–8].

The relation between four-dimensional supersymmetric gauge theory and two-dimensional

Yang-Mills theory on S2 was discovered in many other places. For example, the supersym-

metric Wilson loops restricted to an S2 submanifold of four-dimensional space in N = 4 su-

persymmetric Yang-Mills theory [15, 16] can be consistently truncated to a two-dimensional

Yang-Mills theory on S2. However, the number of supersymmetry in four-dimensional gauge

theory and the way to identify the Wilson loop operator in their work is quite different from

our story. One another similar relation is the identification of the superconformal index of

a class of four-dimensional N = 2 theories with a deformation of two-dimensional Yang-

Mills theory on punctured Riemann surfaces [17]. However, in their correspondence, the

four-dimensional gauge theory is a compolicated quiver theory, and there are necessarily

a number of punctures in the Riemann surface. Hence, all these old relations are indeed

different from ours.

So far, the correspondence discussed in this paper is only a mathematical coincidence of

two different partition functions. It will be nice if one can embed our correspondence into

a string theory setup and provide a physical interpretation of the results we have got. The

procedure (23) and (24) is similar to the approach to introduce surface operators or vortices

in the previous discussions of AGT correspondence, and one may effectively describe the

surface operator as some two-dimensional gauge theory. One may wonder whether the two-

dimensional Yang-Mills theory we discuss is somehow related to the gauge theory in this

construction. However, we would like to point out that this is not the case. Notice that if we
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want to have a surface operator in a U(N) gauge theory, we can consider a two-dimensional

gauge theory coupled to the U(N) gauge theory, or we can start with a U(N) × U(N ′)

theory and tune the Coulomb moduli in the U(N ′) part of the theory. Furthermore, in this

case, the two-dimensional gauge theory lives inside the spacetime of the four-dimensional

gauge theory. Instead, we suggest that the proper physical origin of our result should come

from the compactification of little string theory. The four-dimensional gauge theory and the

two-dimensional Yang-Mills theory live in the perpendicular spaces. This is also the case for

the old correspondence between supersymmetric gauge theory and topological string theory

[6, 7].

There are many open problems which remain to be answered.

First, we only studied the Wilson loop operator which is inserted in the two-dimensional

Yang-Mills theory is in the fundamental representation. We can insert Wilson loop operators

in arbitrary representations of the gauge group, and define a quantity similar to (51),

W (Γ, RΓ) [R] =
∑

R+

dimR+

dimR
exp

(

−
ε∆A

2
(C2(R+)− C2(R))

)

N (R ⊗RΓ, R+) . (58)

Now N (R⊗RΓ, R+) is more complicated. What are the corresponding four-dimensional

operators?

Second, we only consider the first nontrivial simplification of instanton partition function

at a nongeneric point of the parameter space in this paper. It is natural to extend our

analysis to the cases

a1 = m1+n1~ = m2+n1~, a2 = m3+n2~ = m4+n2~, a3 = m5 = m6, · · · , aN = m2N−1 = m2N .

(59)

Then the length of the partition λ(1) is at most n1, the length of the partition λ(2) is at most

n2, while all the other partitions are empty. Similar to the case discussed in the paper, there

are many cancellations in the measure. The resulting measure is

µ =

(

∏

1≤i<j≤n1

λ
(1)
i − λ

(1)
j + j − i

j − i

)2(
∏

1≤i<j≤n2

λ
(2)
i − λ

(2)
j + j − i

j − i

)2

×

×





n1
∏

i=1

n2
∏

j=1

a1 − a2 + ~
(

λ
(1)
i − λ

(2)
j + j − i

)

a1 − a2 + ~ (j − i)





2

×

×





n1
∏

i=1

Γ
(

a1−a2
~

+ n2 + 1 + λ
(1)
i − i

)

Γ
(

a1−a2
~

+ n2 + 1− i
)





2



n2
∏

i=1

Γ
(

a2−a1
~

+ n1 + 1 + λ
(2)
i − i

)

Γ
(

a2−a1
~

+ n1 + 1− i
)





2

. (60)
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What is the physical interpretation of such partition function?
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