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We discuss the source of the apparent ambiguities arising in the calculation of the dynamics of binary

black holes within the Post-Newtonian framework. Divergences appear in both the near and far zone

calculations, and may be of either ultraviolet (UV) or infrared (IR) nature. The effective field theory

(EFT) formalism elucidates the origin of the singularities which may introduce apparent ambiguities.

In particular, the only (physical) ‘ambiguity parameters’ that necessitate a matching calculation correspond

to unknown finite size effects, which first appear at fifth Post-Newtonian (5PN) order for non-spinning

bodies. We demonstrate that the ambiguities linked to IR divergences in the near zone, that plague the

recent derivations of the binding energy at 4PN order, both in the Arnowitt, Deser, and Misner (ADM)

and ‘Fokker-action’ approach, can be resolved by implementing the so-called zero-bin subtraction in the

EFT framework. The procedure yields ambiguity-free results without the need of additional information

beyond the PN expansion.



1 Introduction

The calculation of high accuracy Post-Newtonian (PN) templates for binary inspirals (for extensive

reviews see [1–3]) plays a key role in the data analysis program in this nascent era of gravitational wave

(GW) science [4–8]. The PN formalism is a systematic expansion in the relative velocity, v, of the

constituents during the early stages of the inspiral, for which v/c� 1. The expansion parameter also serves

to separate out the relevant length scales in the problem: The orbital radius r and the wavelength of the

radiation λrad ∼ r/v. In addition, there is a third scale, namely the typical radius of the constituents, R,

which is, in general, independent of r and v. The starting point of a perturbative approach corresponds

to a multipole expansion where extended objects, such as neutron stars or black holes, are treated as

localized sources. In principle, this is logically independent of the PN expansion, and it is valid even in the

relativistic limit, as long as the typical wavelength (or frequency) of the perturbation, λ, obeys λ � R.

For a bound state of compact objects (R ∼ 2GNm), 1 the virial theorem relates the size of the bodies to

the orbital radius, R/r ∼ v2, and therefore all relevant scales in the problem are organized in powers of v.

In the PN formalism, after the constituents are replaced by point-like sources, the calculations are

then separated into regions, the near (or potential) zone entailing quasi-instantaneous modes (p0 � |p|)
of the gravitational field varying on the scale of the bound state radius, and the far (or radiation) zone,

where modes propagate (p0 ∼ |p|) with the typical wavelength of the GW emission. The calculations are

performed in the two regions –in principle– independently. A matching procedure is required to read off the

relevant parameters entering in the GW amplitude and phase in the radiation region (multipole moments)

in terms of quantities from the near zone.

While the full computation within general relativity (GR) –using extended bodies and without sepa-

rating into zones– is devoid of UV divergences, there may be IR singularities, which are due to the long

range nature of the Newtonian potential. For the computation of the GW amplitude, the IR sensitiv-

ity has two sources: The unknown value of the phase as the GW enters the detectors’ band, and the

resulting phase shift associated with scattering off of a long range potential. The former is absorbed

into an initial conditions and the latter cancels out in the total radiated power.2 On the other hand,

the approximation scheme in which we split the calculation into regions generates new singular integrals.

These additional divergences may be either of IR or UV origin. The latter appear as a consequence of the

point-particle approximation, whereas the former may include spurious poles which are not present in the

full theory calculations.

The effective field theory (EFT) framework (NRGR) [9] is particularly useful to, not only organize the

computation systematically, but also to elucidate the origin of IR and UV divergences, and consistently

eliminate them. For reviews of the EFT approach see [10–15]. In the EFT formalism the near/far zone

separation is accomplished at the level of the action, by splitting the gravitational field into potential and

radiation modes, such that each term scales homogeneously in v. Since all observables are computed in

terms of Feynman diagrams, whose vertices and propagators are fixed by the effective action, it is a simple

matter to determine which ones contribute at any given order in the expansion parameter.

Near zone calculations, which involve the potential field, may contain UV divergences due to the

point-particle approximation, and can be removed by counter-terms that include all possible terms in the

action compatible with the symmetries of the problem. In this sense, the removal of classical divergences

is identical to renormalization in quantum field theories [16, 17]. It can be shown that, up to order

1For objects other than black holes, the compactness: c ≡ R/(2GNm) depends on the equation of state. Therefore, while

finite size effects will be organized in powers of v, there could be large coefficients, e.g. c5 for neutron stars, that may enhance

the naive power counting.

2Let us emphasize a cancellation occurs for physical observables, and may not be the case for gauge-dependent, unphysical,

quantities.
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(R/r)5 ∼ v10 (or 5PN), the only unknown parameters (in addition to GN ) are the masses of constituents,

for non-rotating compact bodies. This is known as the effacement theorem [18]. In the EFT formalism, this

result follows from the fact that the first term –beyond minimal coupling– that one can write down in the

worldline effective action is proportional to the square of the electric and magnetic components of the Weyl

tensor [9]. The coefficients are known as the Love numbers [12,19]. (For spinning objects [20], on the other

hand, finite size effects appear already at 2PN order [21–23]. We will only deal with non-rotating bodies

in what follows.) Thus, from the point of view of renormalization, there can be no physically relevant

divergences until 5PN order, or in other words, no ‘ambiguity parameters’ are needed until this order.

At 5PN, after the divergence is subtracted away, the remaining finite part is chosen such that it matches

the physical value of the Love number for the underlying constituent. Moreover, the divergence must be

UV in origin, since it arises from the short-distance region of the Feynman integral, which in the full theory

is cut off by the size of the constituents. While the subtraction scheme is arbitrary, the physical results

are not, and the independence from the choice of renormalization scale translates into the renormalization

group evolution of the coefficients of the effective theory [9, 15].

In the far zone we also encounter UV divergences as a conseqence of the multipole expansion in

which the binary (as a whole) is also replaced by a point-like source. In that case, a counter-term is

needed which is proportional to the (time-dependent) multipole moments of the binary [24]. However,

the previously alluded to matching condition takes care of the ambiguity in the remaining finite part of

the (renormalized) multipoles, since these are obtained in terms of masses, positions, velocities, etc., of

the constituents. (Because of the non-linearities of GR, the binding energy of the system also contributes

to the source multipoles.) On other hand, because the effective theory is constructed to agree with the

full theory in the IR, IR divergences in the far zone will be identical to the ones in the complete GR

computation, and consequently cancel out [24,25].

The near zone, on the other hand, may introduce spurious IR divergences if the split into regions is not

handled with care. In principle, IR singularities cannot develop with potential modes. This would signal

a region of momenta in the Feynman integrals which is much softer than what is allowed –by definition–

in the near zone. In other words, the near region should be cut off where the far zone begins. Hence, the

IR divergences in the computation of the binding potential cannot have a physical origin. The solution to

this problem is to remove from the integrals in the near zone the contribution from Fourier modes with

wavelengths larger than r. The procedure goes by the name of the zero-bin subtraction [26]. The purpose

of this note is to demonstrate how to implement the latter in the PN framework, without the need of

ambiguity parameters. The logic we are about to describe holds to all orders in the PN expansion.

We will implement the zero-bin subtraction using dimensional regularization (dim. reg.), for which the

procedure becomes more transparent, due to the preservation of the symmetries and lack of additional

momentum scales, unlike say a cut-off regulator. However, in principle the zero-bin subtraction is inde-

pendent of the regularization scheme, and in particular it can be utilized also with the methods described

in e.g. [1]. As an explicit example we will consider the conservative binding energy at 4PN order, where

the spurious IR divergences in the near zone first appear [27–33]. An illustrative case is presented in full

in a companion paper, where similar considerations apply [34].

2 The zero-bin subtraction

The calculation of the binding energy in full-fledged GR is finite, therefore the IR/UV divergences

appear as a result of the approximation scheme. The above mentioned IR singularities that arises in near

zone calculations is a signal of double-counting. Modes which are thought to be confined to the bound

state are overlapping with the radiation region. Therefore, a consistent methodology must ensure that

spurious IR divergences are absent. In the EFT formalism such a methodology entails including “zero-bin”
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subtractions [26]. We sketch the basic steps here, see [26] for more details.

The binding energy in NRGR is determined by convolutions of Green’s functions of potential and

radiation modes. Hence, if we denote by Vfull the full gravitational potential, we have

Vfull = Vpot + Vrad , (2.1)

where Vpot is the potential mode contribution in NRGR, and Vrad is the conservative part of the tail

corrections in the radiation theory. In principle, at a given nPN order we will have a result of the form

V
(n)
pot (q) =

A
(n)
pot

εUV
+
B

(n)
pot

εIR
+ f

(n)
pot(q, c

(n)
i , µ) , (2.2)

with q ∼ 1/r, and εUV/IR ≡ (d− 4)UV/IR in dim. reg., which we use to regularize the divergent integrals.

The factors of µ appear also from dim. reg. since, in d 6= 4, Newton’s constant acquires an extra mass scale

proportional to µd−4. The A
(n)
pot term can be either set to zero by a coordinate transformation for n ≤ 4;

or removed by a counter-term, (c
(n)
i )c.t. ∝ 1/εUV, using the coefficients of the effective action (beyond

minimal coupling) for n ≥ 5.3 The finite part, encoded in c
(n)
i (µ), accounts for the finite size effects

starting at 5PN order. The µ-independence of physical results leads to a renormalization group evolution

for these coefficients [9, 15]. By explicit calculation it is known that B(n) = 0 for n ≤ 3. On the other

hand, the far zone contribution to the conservative part of the potential will be of the form4

V
(n)
rad (ω) =

A
(n)
rad

εUV
+
B

(n)
rad

εIR
+ f

(n)
rad (ω, µ) , (2.3)

with ω ∼ v/r. For our purposes we will take B
(n)
rad = 0, since IR divergences do not appear in the

conservative contributions from the radiation sector. From the computation of the tail effect we find

A
(n)
rad 6= 0 for n ≥ 4, and A

(n)
rad = −B(n)

pot. This relationship is key in the cancellation of the spurious IR/UV

divergences in the far/near zones from the conservative sector [35]. The role of the zero-bin subtraction is

to remove the IR divergent contribution from the potential region, and transform it into the required UV

pole to cancel the one arising from the far zone. In other words, we must shift

Vpot → Vpot − Vzero-bin, (2.4)

where Vzero-bin corresponds to an asymptotic expansion of the integral around the region responsible for

the IR singularity. This procedure removes the double counting induced by the overlap between the

IR-sensitive part of Vpot and the contribution from Vrad.

In dim. reg., the zero-bin part may involve a scaleless integral.These are usually set to zero, however,

the procedure is more subtle for integrals which are simultaneously IR and UV divergent. That is because

we need to isolate the UV and IR divergences, which otherwise could be incorrectly removed. This is a

key aspect for the correct implementation of the zero-bin subtraction. For example, consider the following

scaleless integral in the limit d→ 4,

I =

∫
ddk

k4
, (2.5)

which is clearly both IR and UV sensitive. One can easily manipulate the integrand and re-write it as IR

and UV divergent parts, with M some generic scale,

I =

∫
ddk

k2 −M2

1

k2
−
∫

ddk

k2 −M2

M2

k4
. (2.6)

3The divergences with n ≤ 4 can be equally absorbed into counter-terms, which can be removed by field redefinitions [9].

4In principle we also need to incorporate the running of the multipole moments, e.g. Iij(µ), see [24]. However, these effects

–which do not introduce ambiguities– will enter at much higher orders. We suppress their contribution here for simplicity.
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To regularize the integral, in the first term we use a UV regularization, εUV < 0, whereas in the second

we chose εIR > 0, leading to

I ∝
(

1

εUV
− 1

εIR

)
. (2.7)

The zero-bin is often of this form, i.e.

V
(n)
zero-bin = B

(n)
pot

(
1

εIR
− 1

εUV

)
, (2.8)

such that the IR part is precisely what we need to cancel the pole from the potential region.5 At the same

time, the remaining UV pole readily removes the divergence from the far zone. Hence, after the zero-bin

is incorporated, we have

V
(n)
pot − V

(n)
zero−bin + V

(n)
rad → V

(n)
tot (q, ω, c

(n)
i (µ), µ) , (2.9)

where the c
(n)
i (µ) are the only parameters which require a matching computation beyond the PN frame-

work, first entering at 5PN order according to the effacement theorem [9, 15, 18]. For the case n ≤ 4,

the final expression is not only finite, but also all the logµ terms –associated to either IR or UV poles–

cancel out (or are removed by a coordinate transformation). This is the situation we encounter at 4PN

order, we describe below. Before we move on, let us emphasize an important point. While using dim. reg.

(for both IR and UV divergences) the zero-bin subtraction may turn out to be algebraically trivial, as in

the example at hand, that will not be the case with other regularization procedures or more complicated

scenarios. Moreover, even in dim. reg. the zero-bin could involve non-trivial momentum dependence, see

for [36] for an example of this sort.

3 The conservative dynamics at 4PN order

The complete conservative dynamics of a gravitationally bound (non-spinning) two-body system has

been recently determined at 4PN order in [27–33]. However, the calculations thus far have been plagued

by ambiguity parameters. Unlike previous ambiguities at 3PN order, which are due to UV singularities

and can be removed by coordinate transformations [1] (or field redefinitions in the EFT language [9,15]),

on this occasion the ambiguities are due to the scheme-dependence introduced in [27–33] to handle the

presence of IR divergences. Hence, the exact form of the analytic contribution to the gravitational binding

energy at leading order in the symmetric mass-ratio, ν = m1m2

(m1+m2)2 , has been derived after a comparison

with gravitational self-force results was made [29, 32], see also [37]. However, one should not have to rely

on calculations outside the scope of the PN expansion to remove spurious divergences which are due to the

approximation scheme. (If for no other reason that it requires unnecessary extra work.) In fact, this issue

will re-emerge at higher PN orders, involving IR-sensitive contributions at O(νk), with k ≥ 2, for which

self-force computations may not be available. The zero-bin subtraction [26], on the other hand, removes

the need of ambiguity parameters altogether, yielding IR-safe quantities. We illustrate the procedure for

the calculation of the 4PN gravitational potential below.

5Let us remark this is not a totally foreign procedure within dim. reg. See for example appendix B in [24], where scaleless

integrals are essential to remove IR divergences in the computation of the tail contribution to the radiative multipole moments,

and also to obtain the correct renormalization group equations.
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3.1 The ambiguities

In [27, 28], where the calculation was performed using dim. reg. in the Arnowitt, Deser, and Misner

(ADM) formalism, the regularized gravitational potential contains an IR pole,6∫
dt V JS4PN(t, µ) = −G

2
NM

5

∫
dω

2π
ω6Iij(−ω)Iij(ω)

(
1

εIR
− 2 log(µr)

)
+ local/finite . (3.1)

We may attempt to remove the IR divergence from the near zone calculation, by subtracting it away.

However, as it was originally understood by the authors of [27,28], this is totally arbitrary since one could

subtract either 1/εIR or 1/εIR+constant. In general, different subtraction schemes, or even choices of

regulators, e.g. graviton-mass, momentum cut-off, Hadamard, etc., would produce a non-unique result.

Therefore, the final answer would be ambiguous and the 4PN near zone Hamiltonian would depend on a

regularization scale, µ, as well as an undetermined dimensionless constant, C, through (the factor of 2/5

is a convention)

V JS(C) ≡
2

5
C G2

NM
(
Iij(3)(t)

)2

. (3.2)

The same type of ambiguities (in principle more than one) were introduced in the computation of the

Fokker-action in harmonic gauge [31,32]. The existence of these extra parameter(s) was also discussed in

more detail in [30]. In the ADM and Fokker-action approaches, the value of C is fixed after importing

knowledge from an independent calculation. Since the ambiguity shows up at leading order in ν, the

constant C (in principle more than one) was fixed by comparison with existent self-force calculations [29,32].

On the other end, we have the contribution to the gravitational potential at 4PN order from radiation-

reaction, which was computed within the EFT approach in [35] (see also [38]), yielding∫
dt Vtail(µ) =

G2
NM

5

∫
dω

2π
ω6 Iij(−ω)Iij(ω)

[
1

εUV
+ log

ω2

µ2
+ finite

]
. (3.3)

We notice that, instead of IR issues, we encounter a UV divergence. The alert reader will immediate

realize that the IR and UV near/far zone poles in (3.1) and (3.3) have –up to a crucial sign– the same

coefficients [35], provided the IR divergence from [27, 28] is reproduced in NRGR (see below).7 In our

language, an expression like (3.2) would arise if we were to use two different subtraction scales for the IR

and UV poles (i.e. µIR and µUV), leading to an ambiguity parameter, C ∝ log(µUV/µIR) [35]; however,

this would be inconsistent.8 We show in what follows how to unify the treatment of the potential and

radiation singularities in the EFT formalism.

3.2 Infrared divergences in the EFT framework

While the UV pole in the conservative sector from the tail effect identified in [35] was expected, the

IR divergences in the potential region have not been yet fully isolated in NRGR. Hence, we must first

identify the terms from the near zone which yield IR poles at 4PN order. There are many diagrams which

contribute to the gravitational potential at this order [41,42]. One such term is depicted in fig. 1. Following

6As it turns out, the derivation in [27, 28] uses a combination of regularization methods before matching the calculation

into the far zone later on in [29]. This exacerbates the ambiguous nature of the computation.

7As emphasized in [35], this must be the case since the factors for the pole and logarithm are related in dim. reg., and the

coefficient for the latter is fixed by the long-distance contribution to the binding energy, first obtained in [39] and re-derived

in [35] (see also [40]).

8The dim. reg. prescription must be universally applied in both regions (regardless of whether we have IR or UV divergent

integrals) with a d-dimensional GN entering in the Einstein-Hilbert action.
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Figure 1: A contribution in NRGR to the gravitational potential from the near zone at 4PN order. We use the

decomposition introduced in [43] in terms of (φ,Ai, γij) fields. As described in [42], the diagram may be cast as a

‘three-loop’ self-energy amplitude in gauge theory, which can be further decomposed in a series of master integrals.

the representation in [42], the integral may be written as

fig. 1 = m2
1m

3
2

∫
k1,k2,k3

Num(ki,p)

k2
2 k

2
3 k

2
12 k

2
13 k

2
23 p

2
2 p

2
3

, (3.4)

where
∫
ki
≡
∫

dd−1ki

(2π)d−1 , pi ≡ p − ki and kij ≡ ki − kj . The numerator, Num(ki,p), depends on the loop

momenta, ki, as well as the Fourier variable, p, related to the relative distance, r ≡ x1 − x2. In principle

this topology contributes at O(G4
N ), and naively it would have entered also at 3PN order. However, the

φ3 vertex introduces an extra factor of v2 [43]. Therefore, the diagram in fig. 1 enters at order G4
Nv

2,

namely 4PN. The calculation can be reduced to a series of master integrals, in particular one such integral

will be of the form

M(p) =

∫
k1,k2,k3

1

k2
1k

2
2k

2
3d

2
2d

2
3

, (3.5)

with d2 = p + k1 − k2, d3 = p + k1 − k2 − k3, so that the contribution to the gravitational potential is

given by,

Vfig.1 = cMm
2
1m

3
2

∫
p

p2M(p)eip·r + · · · , (3.6)

with some numerical pre-factor, cM ∝ G4
N .

The master integral may be computed in d-dimensions and is IR divergent for d→ 4. The relevant IR

divergent part is given by9

M∝ |p|−1+ 3
2 εIR Γ[εIR] · · · . (3.7)

The origin of this divergence can be traced down to the standard formula,

I[n1, n2] ≡
∫
k

1

[[k2]n1(k + p)2]
n2

(3.8)

=
Γ[n1 + n2 − (d− 1)/2]Γ[(d− 1)/2− n2]Γ[(d− 1)/2− n1]

Γ[n1]Γ[n2]Γ[(d− 1)− n1 − n2]

(
p2
)(d−1)/2−n1−n2

,

which can be used repeatedly (three times) to factorize the integral. The IR divergence is manifest by the

fact that at some point a term may become singular for d < 4.

3.3 Removing the double-counting

The implementation of the zero-bin subtraction for the master integral in (3.5) is relatively straight-

forward in dim. reg. Because it can be factorized, the IR pole can be isolated from (see (3.8))

I

[
3− ε

2
,

1− ε
2

]
∝ |p|−1+ 3

2 εΓ[ε], (3.9)

9See [44] for the complete expression which includes various Γ-functions.
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which contains the expected term ∝ 1/εIR coming from the region k� p, which must be subtracted away.

Hence, expanding the factor of (k + p), we find

Izero-bin [n1, n2] =

∫
k

1

[k2]n1 [p2]n2

(n1→3/2,n2→1/2)−−−−−−−−−−−−→ |p|−1

∫
k

1

k3
∝ |p|−1

(
1

εUV
− 1

εIR

)
. (3.10)

Notice the zero-bin subtraction removes the IR pole, essentially transforming it into a UV singularity.

This example illustrates how the procedure works at the level of the master integrals.10

Plugging the expression for the master integral into (3.6), including the zero-bin subtraction, we get a

term,

Vfig. 1 →
G4
Nm

2
1m

3
2v

2

r4

(
− 1

εUV
+ 2 logµr

)
+ · · · , (3.11)

where the IR pole turned into a UV divergence. Using the equations of motion (EOM), we have

G2
N (m1 +m2)(Iij(3))2 EOM−−−→

G4
N

(
m2

1m
3
2 +m2

2m
3
1

)
v2

r3

(
1 +O(v2)

)
, (3.12)

such that the contribution from fig. 1 to the gravitational binding potential has the correct structure to

cancel the UV divergence from the conservative part of the tail effect (and logµ factor), as advertised [35].

The zero-bin subtraction must be implemented in all of the IR-sensitive master integrals that enter at

O(G4
Nv

2). Notice that, while we referred to the specific contribution from fig. 1, the argument applies

more generally to the integral in (3.5), and ultimately the one in (3.8). The latter will enter in the

decomposition of many of the three-loop amplitudes, and therefore IR poles may appear in principle from

a series of Feynman diagrams, not just the one in fig. 1. In fact, it turns out all of the IR-sensitive

contributions, from the master integrals entering in the full computation at 4PN, can be reduced to the

one-loop integral in (3.8).11 After the zero-bin subtraction, the result will take the form in (3.11) simply

from dimensional analysis.

The reader may wonder about the above procedure if momentum cut-offs were invoked to regularize

the divergences in (3.8), for example adding a small mass in the IR and using Pauli-Villars regularization

in the UV. In such scenario –which is not the one advocated here since it breaks the symmetries of the

theory– the contribution from the zero-bin integral would read:∫
k

1

[k2 −m2
g]

3/2[p2]1/2
−
∫
k

1

[k2 − Λ2]3/2[p2]1/2
∝ |p|−1

(
logmg − log Λ

)
, (3.13)

instead of (3.10). The logmg term would cancel out against a similar IR singularity in the original integral

prior to the zero-bin subtraction, whereas the log Λ removes the UV pole from the tail contribution [35],

which must be consequently also regularized using a Pauli-Villars cut-off. Notice there is no sense in

which (3.13) can be set to zero in this framework. We should stress, however, that in general breaking

diffeomorphism invariance (also adding a graviton mass) introduces several other problems which we refrain

from discussing in the present work.

10Let us emphasize once again that one cannot set to zero these type of integrals when IR divergences are present [17].

Moreover, they are key to obtaining the correct renormalization group evolution for the Wilson coefficient in the effective

action, e.g. [24]. Hence, the zero-bin subtraction not only properly removes the IR divergences in the conservative sector,

it will also play a crucial role at 5PN and higher orders to compute the renormalization group equations for the finite size

terms in the effective theory.

11This has been shown to be the case in the (soon to appear) complete computation using the EFT approach at 4PN order,

following the methodology discussed in [42] and integration-by-parts. (Notice there are no IR divergences at O(G5
N ) [42].)

We thank Riccardo Sturani (private communication) for confirming this to us.
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4 Concluding remarks

The gravitational binding energy contains a logarithmic contribution, Elog ∝ v8 log v, in GR. When

performing PN calculations, using all the present methodologies, one splits the problem up into near and

far zone, which leads to both IR and UV logarithmically divergent integrals. The sum of these results

reproduces the aforementioned logarithm, but at the cost of introducing a set of spurious new poles. While

the UV divergences are well understood, the presence of IR divergences is a new development in the PN

framework, which first entered scene at 4PN order for non-rotating bodies.12 The IR sensitivity in the near

region has led to the introduction of ambiguity parameters in the methodology implemented in [27–33].

This occurs in any framework in which the IR/UV divergences, from the near/far zone contributions

to the gravitational potential, are treated independently. That is what happens in the computations

in [27–32], which removed the IR singularity in the near zone prior to appending the contribution from the

far region, obtained independently in [45, 46]. However, by implementing the zero-bin subtraction there

are no ambiguity parameters at any stage of the calculation. The procedure removes the near zone IR

divergences, transforming them into UV poles which readily cancel the singularities from the far region.

We illustrated the zero-bin subtraction in the calculation of the conservative dynamics at 4PN order using

dim. reg., in which case it replaces εIR → εUV by subtracting from the near region calculation a series of

scaleless integrals. This procedure justifies the claims in [35] that the sum of the near/far region IR/UV

poles in dim. reg. must cancel each other out. However, the formalism is more general and may be also

implemented for other regularization schemes, where a cancellation of IR and UV divergences may be far

less obvious, including the ones in [27–33]. (See [26] for a discussion of the zero-bin subtraction in the

confines of a cut-off regulator.) The virtue of our procedure is precisely the independence from the regulator

and subsequent lack of ambiguities to all orders in the PN expansion. The zero-bin subtraction not only

provides finite results, it also uniquely fixes the analytic (local) contribution to the potential without the

need of extra matching conditions beyond the PN framework. An explicit example is described in [34] in

the context of electrodynamics.

Note added: In a recent paper [47] it was shown how the implementation of dim. reg. for both

IR/UV divergences (as advocated here) removes an ambiguity parameter within the formalism of [31,32],

also confirming our original claim that the near and far zone divergences (as well as factors of µ) cancel

each other out without the need of extra information [35]. As it was argued in [35], the cancelation

in [47] is achieved by identifying εIR ↔ εUV which, as we discussed here, is formally justified by the zero-

bin subtraction. Moreover, it was noted that the remaining ambiguity parameter still present in [47] is

automatically fixed within the EFT framework –with the correct coefficient previously obtained in [35], i.e.

κ = 41/60 (see Eq. 5.6 in [47])– provided the completion of the local part of the 4PN potential, initiated

in [41,42], agrees with the derivation in [31,32], as it is expected to be the case within the harmonic gauge.
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