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The time-evolution of matter fields in black hole exterior spacetimes is a well-studied subject,
spanning several decades of research. However, the behavior of fields in the black hole interior
spacetime, has only relatively recently begun receiving some attention from the research community.
In this paper, we numerically study the late-time evolution of scalar fields in both Schwarzschild
and Kerr spacetimes, including the black hole interior. We recover the expected late-time power-law
“tails” on the exterior (null infinity, time-like infinity and the horizon). In the interior region, we
find an interesting oscillatory behavior that is characterized by the multipole index ` of the scalar
field. In addition, we also study the extremal Kerr case and find strong indications of an instability
developing at the horizon.

I. INTRODUCTION

Study of fields in black hole (exterior) spacetimes has
been a popular area of research over many decades. Such
research has often yielded many intriguing aspects of
black hole physics. For instance, the notion of quasi-
normal ringing as a characteristic feature of such space-
times recently helped LIGO discover gravitational waves
from a binary black hole system [1, 2] for the first time
ever.

Another interesting feature of physical fields evolving
in black holes spacetimes is their late-time, power-law
decay behavior – so-called “tails”. This discovery was
made by Richard Price nearly half-a-century ago in the
context of a Schwarzschild black hole [3]. However, it has
continued to be an area of active research in the Kerr
black hole context [4, 5] even as recently as the last few
years [6].

Naturally, nearly all the focus of research in this area
happens to be in the context of the black hole exte-
rior spacetime. However, recently interest in the inte-
rior spacetime has also been increasing and a number of
intriguing results have emerged [7–11].

In this paper, we study the late-time behavior of scalar
fields (to linear order) over the entire black hole space-
time, including the interior region. We consider both
Schwarzschild and Kerr black holes for this study. Late-
time tail results for the exterior black hole spacetimes are
known, and we compare our results with those (horizon,
timelike and null infinity) for validation purposes. The
main new results we present in this work relate to the
late-time behavior of scalar fields in the black hole inte-
rior region. In order to perform such a study, we make
use of advanced mathematical (hyperboloidal compact-
ification) and computational techniques (high-precision
GPU-computing), the details of which appear in the fol-
lowing sections. In this work, we focus on axisymmetric,
scalar field configurations. Other, more general cases will
be presented elsewhere.

Our work involves using compactified ingoing Kerr co-
ordinates to perform computations that cover the entire
interior and exterior black hole spacetime. These coor-
dinates were successfully used in recent work to perform
a detailed study of the Cauchy horizon [9] of a rotating
black hole. We find that while there is a way to view the
late-time decay of the fields in the black hole interior as
a power-law tail, an infalling physical detector would ac-
tually record a finite number of oscillatory cycles1 before
encountering the spacetime singularity. The number of
oscillatory cycles depends on the multipole index of the
field, and also whether the black hole is spinning or not.

We also include a short section on the late-time be-
havior of scalar fields at the horizon of an extremal Kerr
black hole, and report on an indication of the formation
of an asymptotic instability, as very recently uncovered
in the research literature [13, 14].

This paper is organized as follows: Section II offers
details on our methodology, i.e. the approach we take
in solving the scalar Teukolsky equation using suitable
coordinates that allow us to “penetrate” the black hole
horizon and continue to evolve the fields into the inte-
rior region; Section III documents our numerical results
and the comparisons with expectations based on previ-
ous work; and finally, we end with a brief summary and
statement on future work in Section IV.

II. NUMERICAL SOLUTION OF THE
TEUKOLSKY EQUATION

In this section we briefly document the background
and computational methods used to generate the results
in the upcoming sections of this paper. We provide here
a description of the coordinate-systems used, the relevant

1 These are different from the oscillations on the Cauchy horizon
as found by Ori in 1992 [12] in the context of a Kerr black hole.
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evolution equations and the computational techniques
employed.

The main context of this work is the behavior of scalar
fields in the spacetime of a rotating black hole (Kerr), in-
cluding the special case of a non-rotating (Schwarzschild)
hole. The common coordinate system that is used to de-
scribe the spacetime of black holes is the Boyer-Lindquist
system (t, r, θ, ϕ) that has close similarities with spherical
coordinates. However, Boyer-Lindquist coordinates are
not the best suited to study the black hole interior space-
time because they suffer from a coordinate-singularity at
the horizon locations. Since we are interested in studying
the behavior of fields in the interior region too, we instead
make use of a better suited coordinate system, i.e. ingo-
ing Kerr coordinates. These are a Kerr spacetime gener-
alization of the better-known Eddington-Finkelstein co-
ordinates that are able to smoothly “penetrate” the hori-
zon of a Schwarzschild black hole. In the following sub-
section, we review the relationship between these differ-
ent coordinate systems and emphasize some of their im-
portant aspects.

The main evolution equation of interest in this work
is the Teukolsky master equation that describes scalar,
vector and tensor field perturbations in the spacetime
of a Kerr black hole [15] to linear order. We numeri-
cally solve this equation for the scalar field case using a
compactified form of the ingoing Kerr coordinates. Us-
ing hyperboloidal compactification allows us to directly
sample the behavior of fields throughout the spacetime,
including even null infinity I +. One important aspect
of this work worth noting is that we must evolve the
fields for a long duration because we are interested in the
late-time, power-law decay behavior of the fields. This
behavior typically appears after the quasi-normal modes
of the system have exponentially decayed enough to be-
come subdominant. This posed certain challenges that
are explained in some detail in the following sections.

The following subsections offer additional details in-
cluding the main expressions for the quantities involved
and also our computational methodology.

A. Teukolsky Equation in Ingoing-Kerr
Coordinates

We begin with an expression of the usual Boyer-
Lindquist coordinate version of the Kerr spacetime met-
ric and the associated Teukolsky equation [15]. The met-
ric has the form

ds2 = (1− 2Mr/Σ) dt2

+
(
4Mar sin2 θ/Σ

)
dtdϕ−

(
Σ

∆

)
dr2 − Σdθ2

− sin2 θ
(
r2 + a2 + 2Ma2r sin2 θ/Σ

)
dϕ2, (1)

where Σ = r2 + a2 cos2 θ and ∆ = r2 − 2Mr + a2. Here
M refers to the black hole mass and the Kerr parameter
a characterizes the hole’s spin. It is clear that the metric

exhibits pathological behavior at the horizon locations,
i.e. when ∆ = 0. Note that this coordinate singularity
can be easily removed by a suitable change of coordinates.
The Teukolsky master equation takes the form

−
[

(r2 + a2)2

∆
− a2 sin2 θ

]
∂ttΨ−

4Mar

∆
∂tφΨ

−2s

[
r − M(r2 − a2)

∆
+ ia cos θ

]
∂tΨ

+ ∆−s∂r
(
∆s+1∂rΨ

)
+

1

sin θ
∂θ (sin θ∂θΨ) +[

1

sin2 θ
− a2

∆

]
∂φφΨ + 2s

[
a(r −M)

∆
+
i cos θ

sin2 θ

]
∂φΨ

−
(
s2 cot2 θ − s

)
Ψ = 0, (2)

where in addition to the previously defined quantities, s
refers to the “spin weight” of the matter field. As re-
marked before, this evolution equation determines the
dynamical behavior of matter fields in the spacetime of
a Kerr black hole. The s = 0 version of this equation
describes the evolution of a scalar field Ψ in a black hole
spacetime, which is the case of interest in this work.

To remove the coordinate singularity at the horizon
locations, we consider the above equations in a differ-
ent coordinate system. We summarize below the ingoing
Kerr coordinate system (t̃, r, θ, ϕ̃) and also the Teukolsky
equation in these so-called “horizon penetrating” coordi-
nates. In ingoing Kerr coordinates, the Kerr metric is
given by

ds2 =

(
1− 2Mr

Σ

)
dt̃2 −

(
1 +

2Mr

Σ

)
dr2 − Σ dθ2

− sin2 θ

(
r2 + a2 +

2Ma2r

Σ
sin2 θ

)
dϕ̃2 − 4Mr

Σ
dt̃ dr

+
4Mra

Σ
sin2 θ dt̃ dϕ̃+ 2a sin2 θ

(
1 +

2Mr

Σ

)
dr dϕ̃ . (3)

These coordinates are related to the Boyer-Lindquist co-
ordinates through the transformations ϕ̃ = ϕ+

∫
a∆−1 dr

and t̃ = t− r+ r∗, where the “tortoise” radial coordinate
r∗ =

∫
(r2 +a2)∆−1 dr. This system does not suffer from

any pathologies at the horizon locations and is therefore
well-suited for analyzing fields both in the exterior and
interior spacetimes of a rotating black hole.

It is important to point out how the physical meaning
of these (t̃, r, θ, ϕ̃) coordinates changes as one approaches
and crosses the horizon from the exterior region of the
black hole spacetime into the interior. To illustrate this,
we switch to the Schwarzschild case for simplicity, by set-
ting the Kerr parameter a = 0. In that case, the ingoing
Kerr coordinates relate to the more familiar Eddington-
Finkelstein coordinates via t̃ = v− r, and exhibit similar
qualitative behavior at the (outer) horizon. In Figure 1
we show the Kruskal diagram of the t̃ = constant slices
over the entire exterior and interior regions. It is clear
that the slices stay well behaved as they cross the hori-
zon and even stay spacelike throughout. However, this is
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not the case for the r = constant slices. The constant-r
slices (note that for these slices ds2 =

(
1− 2M

r

)
dt̃2 if

dθ = dϕ̃ = 0) are timelike outside the horizon and switch
to becoming spacelike in the black hole interior region.

The fact that the constant-r slices are not timelike ev-
erywhere poses a challenge in how we interpret the time
evolution results of a physical field. Typically, a scalar
field’s values Ψ(t̃, r, θ, ϕ̃) at a fixed (r, θ, ϕ̃) location would
be interpreted as the time-series result of a detector sam-
pling the field at that spatial point. The detector is, of
course, a physical object and therefore it must have a
timelike worldline through the spacetime. This works
just as expected in the exterior region of the black hole
spacetime. However, in the black hole interior, clearly
the detector cannot be located at a constant value of
r because that would translate to a spacelike worldline.
Any physical detector must take a timelike path which
results in a decrease in its r coordinate value as t̃ ad-
vances. Once the r = 0 singularity is reached (which
occurs in a finite proper time), any physical meaning as-
sociated to these mathematical quantities is simply lost.
Thus, caution must be taken in interpreting any results
from a t̃ evolution in the black hole interior region.

Finally, it is useful to note that at the horizon location
at late times, the t̃ variable is essentially the null variable
v = t+ r∗.

-2 -1 0 1 2 3 4 5
Kruskal u

0

1

2

3

4

K
ru

sk
al

 v

˜t=1M

r=0

r=2M, t=infinity

r=2M, t=-infty

˜t=5M

˜t=2M

FIG. 1: Constant-t̃ slices of Schwarzschild spacetime plotted
on a background of Kruskal coordinates u and v as defined,
in terms of Schwarzschild (t, r) coordinates, in Eqs. (31.18),
and as pictured in Fig. 31.4(b) of Ref. [16]. The diagonal
line on the right is the event horizon at r = 2M . The curves
plotted show how the constant t̃ slices extend from the black
hole interior to exterior regions.

The Teukolsky equation for the scalar field Ψ in these
ingoing Kerr coordinates can be derived using a rescaling

of the Kinnersley tetrad [17]. It is given by

(Σ + 2Mr)
∂2Ψ

∂t̃2
−∆

∂2Ψ

∂r2
− 2(r −M)

∂Ψ

∂r

− 1

sin θ

∂

∂θ

(
sin θ

∂Ψ

∂θ

)
− 1

sin2 θ

∂2Ψ

∂ϕ̃2
− 4Mr

∂2Ψ

∂t̃∂r

−2a
∂2ψ

∂r∂ϕ̃
− 2M

∂ψ

∂t̃
= 0 , (4)

and is well-behaved at the horizon locations, and there-
fore can be used to safely evolve data across it.

The last ingredient that goes into the setup of our
coordinate system is hyperboloidal compactification as
developed by Zenginoǧlu [18]. To do this, we define a
compactified coordinate system (τ, ρ, θ, ϕ̃) by

τ = t̃− r2/(r + S) + 4 ln[S/(r + S)] (5)

and

ρ = r/[1 + r/S] (6)

where a free parameter S controls both the domain and
also the foliation. Note that ρ ∈ [0, S) maps r ∈ [0,∞)
and is therefore a one-to-one compactifying coordinate.
A Penrose diagram of the slices defined by these co-
ordinates in the Kerr spacetime context, adapted from
Ref. [9], is presented in Fig. 2. We do not show the final
form of the Teukolsky master equation in these compact-
ified coordinates because of the lengthy nature of the
expression and the fact that it is not particularly illumi-
nating. We simply refer the reader to the recent relevant
research literature [19, 20] wherein additional details may
be found.

The computational grid is defined as a uniform grid
over the compactified ρ coordinate. As pointed out ear-
lier, this allows us to access null infinity directly on the
computational grid (ρ = S maps to I +). Moreover,
the compactification offers a “clean” solution to the so-
called “outer boundary problem” in numerical relativity.
Typical boundary conditions used in the research com-
munity lead to spurious wave reflections from the edge
of the computational grid. However, with the approach
of hyperboloidal compactification, one is able to extend
the computational domain to infinity, making it possible
to completely eliminate any such reflections [19]. In ad-
dition, the compactification allows us to employ a very
dense computational grid (typically, S ∼ 20) which re-
sults in highly accurate numerical results. Those details
are provided in the next subsection.

Once again, it is useful to point out that at the horizon
locations the τ variable is essentially the same as the null
variable v.
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FIG. 2: Penrose diagram of the computational domain for
the Kerr spacetime case, adapted from Ref. [9]. The con-
stant ρ (dotted lines) and constant τ (solid lines) slices are
clearly marked. In addition, on the initial Cauchy slice Σ we
also mark (thick black) where the compactly-supported initial
data is non-zero.

B. Computational Methodology

The numerical approach used to solve the Teukolsky
equation in the compactified ingoing Kerr coordinate sys-
tem is very similar to the one presented in our earlier
work [19]. We simply outline the main steps here and
refer the reader to that reference for additional details.
We begin by taking advantage of Kerr spacetime’s ax-
isymmetry and separating out the ϕ̃ dependence of the
system using an exp(imϕ̃) form for the scalar field Ψ.
This transforms the original (3+1)D equation into a sys-
tem of (2+1)D equations. In this work we restrict our-
selves to axisymmetric fields only, and therefore we set
m = 0 throughout. Next, we cast the equations into a
first-order hyperbolic partial differential equation form,
by defining a new “momentum” field that is related to
the derivative of the scalar field Ψ. Finally, we imple-
ment a time-explicit, two-step Richtmeyer-Lax-Wendroff,
second-order2 finite-difference evolution scheme3 This
numerical method is stable, and converges to the ex-

2 In fact, the angular differentiation (the θ-derivatives) are imple-
mented using a higher-order numerical stencil. This was deemed
to be necessary to keep the truncation error at sufficiently low
levels. The temporal and the radial direction related operations
are second-order and such a mixed approach yields sufficiently
good results.

3 In recent work [21] we have developed a fifth-order WENO
finite-difference scheme with third-order Shu-Osher explicit time-
stepping. This new approach yields the same results.

pected second-order accuracy [19].
It is worth commenting on the fact that numerical com-

putations are rather challenging in the context of study-
ing the late-time tails. As remarked before, these com-
putations must be long duration because the observed
field initially exhibits an exponentially decaying oscil-
latory behavior, i.e. quasi-normal ringing. Only much
later, once the exponential decay has made these modes
subdominant, does the field transition over to a power-
law tail. Moreover, there are often intermediate tails [22],
that do not necessarily have the true late-time asymp-
totic rates that we are interested in here. These inter-
mediate tails decay faster than the asymptotic rate, but
may have dominant amplitudes for a period of time. We
must evolve longer than these intermediate tails last in
order to obtain the tail solution with the true asymptotic
decay rate.

In addition, each of the field’s spherical harmonic mul-
tipoles Y`m has its own decay rate (that is proportional
to `). Thus, at late times we obtain numerical data in
which different multipoles may have widely ranging am-
plitudes (typically 20 – 30 orders of magnitude apart!). It
is thus important for the numerical solution to have high
grid density in order to reduce the truncation errors to
very low levels. In addition, due to the very large range
of amplitudes involved, these computations also require
high-precision floating-point numerics that allow us to re-
duce round-off error that can otherwise easily overwhelm
the fast decaying multipoles. In particular, we satisfy
this requirement by using octal-precision numerics (256-
bit or ∼60 decimal digits). This keeps the round-off error
in our computations at acceptably low levels.

Finally, to complete these long duration, high-accuracy
and high-precision computations in a reasonable time-
frame we make extensive use GPGPU-based parallel
computing. For additional details on implementation of
such intensive computations on a parallel GPU architec-
ture, we refer the reader to our earlier work on the sub-
ject [23].

III. NUMERICAL RESULTS

In this section, we present the results generated from
the numerical solution of the scalar Teukolsky equation
in compactified, ingoing Kerr coordinates. As outlined in
the previous sections, our approach allows us to evolve
data through the horizon and we are thus able to study
the late-time behavior of physical fields in both the black
hole exterior and interior regions. Our emphasis in this
work is the late-time, power-law tails behavior of differ-
ent spherical harmonic multipoles Y`m of a scalar field in
both Schwarzschild and Kerr black hole spacetimes. In
addition, we restrict ourselves to the axisymmetric case
only in this work.

The computational domain is set up as follows: For the
Kerr cases, the inner boundary with a Neumann bound-
ary condition is located at the inner horizon, while the
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outer boundary is located at null infinity with the same
condition. The type of boundary condition does not im-
pact our results. As a concrete example, for a/M = 0.8,
the inner boundary is located at ρ = 0.392M while the
outer one is at ρ = S = 19.6M . This range of the
compactifying coordinate ρ, implies that the range of
Boyer-Lindquist r coordinate stretches from 0.4M to in-
finity. A Penrose diagram that depicts the entire com-
putational domain is shown in Fig. 2. Similarly, for the
extremal a/M = 1.0 case, the inner boundary is located
at ρ = 0.95M while the outer one is at ρ = S = 19.0M .
In the Schwarzschild cases, we place the inner bound-
ary at ρ = 0.05M while the outer boundary is at ρ =
S = 20.05M (these locations are fairly arbitrary). We
typically use grid sizes of 8000(ρ)× 64(θ).

Throughout this work, we choose the initial data for
the scalar field to be a Gaussian distribution localized at
ρ = 8.0M . The angular distribution is an axisymmetric
spherical harmonic of multipole `. We include results for
both compact (a truncated4 Gaussian with width 0.1M)
and non-compact (a wide Gaussian of width 2.0M) ini-
tial data. For the Kerr case, a/M = 0.8 except for the
extremal case, wherein a/M = 1.0, of course.

A. Scalar Fields in Schwarzschild Black Hole
Spacetime

We begin with the results for the non-rotating
Schwarzschild black hole spacetime case. We present our
power-law tails data for the exterior spacetime (horizon,
timelike and null infinity) first, followed by the same in
the interior region for a number of different multipoles `.
We show results for both types of initial data, i.e. with
and without compact support.

1. Exterior Spacetime

The expected outcome for the exterior spacetime case
is the well-established power-law tail τ−2`−3 [3] which
is valid at the horizon and timelike infinity, while the
expression changes to τ−`−2 at null infinity [3]. In these
expressions, ` is the multipole of the scalar field under
consideration, and recall that at the horizon location τ
is essentially the null coordinate v.

The data depicted in Table I shows that our ap-
proach reproduces these well-established tails and there-
fore, serves as an excellent check on our methodology. It
is worth noting that we tested our implementation for all
multipoles up to ` = 10 with excellent agreement with
the power-law tail expression [3]. This was found to be

4 The truncation is performed using a simple window function of
width 10.0M centered at ρ = 8.0M .

the case for both types of initial data (compact and non-
compact).

`\ρ Horizon ρ = 3.0 Infinity I +

2 -7 -7 -4

3 -9 -9 -5

4 -11 -11 -6

5 -13 -13 -7

6 -15 -15 -8

8 -19 -19 -10

TABLE I: Asymptotic late-time scalar field tails in exterior
Schwarzschild space-time for several multipoles. The power-
laws agree precisely with the expected law [3]. The actual
numerical values obtained from our computations agree with
the values in this table within one-percent.

2. Interior Spacetime

Here we report on some new results in the case of the
interior region of the Schwarzschild spacetime. As cau-
tioned before, it is not meaningful to sample the field
at a fixed ρ location, because that implies that the de-
tector is on a spacelike worldline. However, nonetheless,
if we proceed with that type of data sampling anyhow,
it is interesting that the field exhibits late-time power-
law decays in the τ coordinate, that generically satisfy
the usual law [3]. This can be seen in Figure 3 for a
number of different ` multipoles. For the high-` cases it
is clear that high-precision numerics are necessary, since
the field’s amplitude falls very rapidly due to the fast
decay rate.

For a more physically meaningful detector, we re-
marked before that a timelike worldline dictates that the
detector must continuously fall towards ρ = 0, i.e. the
radial coordinate must decrease in value monotonically.
To understand what type of signal such a detector would
record, we plot the snapshots of the field as a function of
ρ at different values of τ .

The case of non-compact initial data, is shown in Fig-
ures 4, 5 5. At early times, we observe many dynami-
cal features as the field evolves through the quasi-normal
ringing stage and finally “settles” to more quiescent tail
state. In the late-stage tails regime, the field appears to
maintain its ρ profile and simply fall in amplitude deter-
mined by the usual power-law [3]. However, we observe
a number of interesting features in the interior region
of the spacetime. In particular, there are ρ “locations”
where the field switches sign (this does not happen in the

5 Animations based on the dynamics of the field’s radial profile
may be found at this URL: https://www.youtube.com/channel/
UCVNLqTQx1O2sbwc-4wsE_Gw
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exterior region). And, in fact, the number of these zero-
crossings or “nodes” increases proportionately with the
multipole ` value. This suggests that a physical detec-
tor would observe a finite number of oscillatory cycles in
the field after crossing into the black hole interior before
the detector hits the central black hole singularity. The
higher the value of `, the larger the number of cycles the
detector would record.
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FIG. 3: Late-time scalar field tails for different multipoles `
at ρ = 1 for the case of Schwarzschild black hole interior. The
power-laws agree with the expression τ−2`−3.
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FIG. 4: Late-time scalar field radial ρ profile for multipole
` = 2 for a Schwarzschild black hole. Note that even at late-
stages, the field exhibits oscillatory behavior but only in the
black hole interior region.

The exact same features also appear in the case of the
compact initial data. For that reason, we only document
results from one multipole alone, i.e. ` = 4 in Figure 6.
The field behaves similar to the non-compact case and
the same number and type of zero-crossings are observed
in the interior region.

0 5 10 15 20

–30

–20

–10

0

rho

lo
g 

| r
✕P
si

 | 

tau = 0
tau = 50
tau = 100
tau = 200
tau = 500
tau = 1000
tau = 2000

FIG. 5: Late-time scalar field radial ρ profile for multipole ` =
4 for a Schwarzschild black hole. Note that even at late-stages
the field exhibits oscillatory behavior but only in the black
hole interior region. The number of cycles is proportional to
`.
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FIG. 6: Late-time scalar field radial ρ profile for multipole ` =
4 for a Schwarzschild black hole. The initial field has compact
support. At late-stages the field exhibits oscillatory behavior
but only in the black hole interior region. The number of
cycles is proportional to `.

At a mathematical level, it is not difficult to uncover
the detailed explanation for these oscillations in the in-
terior. Here we derive analytic solutions for the location
of these late-time nodes found within the Schwarzschild
black hole horizon. We begin with the Teukolsky equa-
tion for the scalar field Ψ (Eqn. 4) and consider the
Schwarzschild case by setting a = 0.

Next, we assume separability [24] of the angular, radial
and temporal functions such that Ψ = Y`m(θ, ϕ̃)R(r)T (t̃)
where the Y`m functions are the well-known spherical
harmonics. Thus, the radial and temporal part of the
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separated differential equation take the form

`(`+ 1) = − 1

T

(
(r2 + 2Mr)

∂2T

∂t̃2
− 2M

∂T

∂t̃

)
+

1

R

(
(r2 − 2Mr)

∂2R

∂r2
+ 2(r −M)

∂R

∂r

)
+

1

RT
4Mr

∂T

∂t̃

∂R

∂r̃
. (7)

The last term in the equation above prevents clear sep-
arability between the radial and temporal dependences.
However, motivated by our numerical results, if we let
the behavior of the temporal component to be a power
law decay, i.e. T (t̃) ≈ t̃−n, then in the limit of t̃ → ∞
the above equation reduces to

(r2 − 2Mr)
∂2R

∂r2
+ 2(r −M)

∂R

∂r̃
= `(`+ 1)R(r). (8)

This differential equation takes the form of the well doc-
umented Sturm–Liouville problem, with the well-known
solutions

R(r) = C1P`(r/M − 1) + C2Q`(r/M − 1) (9)

where P and Q are the Legendre polynomials of the first
and second kind respectively. For the solution above to
exhibit the correct behavior at the horizon, we must set
C2 = 0 and therefore

R(r) ∝ P`(r/M − 1) (10)

We note that this solution was also obtained by Ori in
Ref. [25]. The roots of R(r) above are in excellent agree-
ment with the location of the nodes we present in Figs. 4,
5 and 6. Thus, we see that the oscillations as observed by
an infalling physical detector come from the oscillations
in the Legendre polynomials that describe the state of
the scalar field on the interior.

B. Scalar Fields in Kerr Black Hole Spacetime

In this subsection we present our results for the ro-
tating Kerr black hole case. Once again we present our
power-law tails data for the exterior spacetime (horizon,
timelike and null infinity) first, followed by the same in
the interior region for a number of different multipoles.

1. Exterior Spacetime

Interestingly, only recently has an understanding of the
nature of the late-time power-law tails in Kerr spacetime
been fully uncovered [22, 26]. The late-time decay rate
expressions for the scalar field case are given by τn where

n =

{
−(`′ + `+ 3) for `′ = 0, 1

−(`′ + `+ 1) otherwise
(11)

on the horizon and timelike infinity, and

nI +

=

{
−`′ for ` ≤ `′ − 2

−(`+ 2) for ` ≥ `′
(12)

at null infinity. Here `′ refers to the initial field multipole
and ` is the projected multipole of the full late-time field
under consideration. In the Schwarzschild case, these are
always the same, i.e. `′ = `. However, since Kerr space-
time is not spherically symmetric, a pure `′ multipole
does not stay pure as it is evolved, i.e. other ` multipoles
are “excited”. In general, even-valued `′ modes only ex-
cite even `, while the odd-valued ones excite only the odd
multipoles. This is because Kerr spacetime still retains
a reflection symmetry about the equatorial plane.

The above expressions were obtained by carefully
studying the “inter-mode coupling” effects that are
present in Kerr space-time due to frame-dragging [26].
Note that these expressions above are only for the ax-
isymmetric multipoles. In our work, we only study the
full field throughout, which implies we study the late-
time dominant multipole ` = 0 for the even `′ case and
` = 1 for the odd case. At late times, clearly these will
dominant all other multipoles (they exhibit the slowest
decay) and therefore, dominate in the full field. Thus, the

above expressions simplify to τ−`
′−1 for even `′ > 0 and

τ−`
′−2 for odd `′ > 1 at the horizon and timelike infinity.

At null infinity they reduce to τ−`
′

for `′ > 1. In this
section, we verify these expressions using our numerical
data.

Once again, Table II shows that our approach works
correctly and the equations 11, 12 are verified. We tested
our implementation for all multipoles up to `′ = 8 with
excellent agreement. This is the case for both types of
initial data.

`′\ρ Horizon ρ = 3.0 Infinity I +

2 -3 -3 -2

4 -5 -5 -4

6 -7 -7 -6

8 -9 -9 -8

TABLE II: Asymptotic late-time scalar field tails in exterior
Kerr space-time for several multipoles. The power-laws agree
with equations 11, 12. The actual numerical values obtained
from our computations agree with the values in this table
within one-percent.

2. Interior Spacetime

Our new results in the context of the interior region of
the Kerr spacetime are similar to the Schwarzschild case.
If we proceed with sampling the field data at a fixed ρ it
exhibits late-time power-law decays in the τ coordinate,
that generically satisfy the equivalent of the well-known
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tails law [3] for Kerr, equation 11. This can be seen in
Figures 7, 8 for a number of different `′ multipoles.

For a more physically meaningful detector, one that
must continuously fall towards ρ = 0 once again we ob-
serve a finite number of oscillatory cycles due to the for-
mation of zero-crossing nodes in the interior region. This
can be seen in Figures 9, 10 that depict the multipole
data as a function of ρ for several moments in τ . How-
ever, we do not see as many oscillatory cycles as observed
in the Schwarzschild case. This is simply because of the
dominance of the excited low-` modes at late times that
occurs in Kerr spacetime, but not in Schwarzschild. In
fact, we observe precisely one zero-crossing in the odd-`′

case and none at all in the even-`′ case. This is in line
with expectations, of course, since ` = 1 is the lowest odd
multipole that is excited, while ` = 0 is the lowest one
for the even case. We observe the exact same features in
the case with compactly supported initial data.

Finally, we also computed the late-stage, power-law
tails of a scalar field of different initial multipoles at the
Cauchy (inner) horizon of the black hole. Recall that at
the horizon locations, the variable τ is essentially the null
variable v. Therefore, these results may be compared
with Ori’s well-known work in a similar context [27].
They are in excellent agreement.

2 2 2 3 4
–30

–20

–10

0

log tau

lo
g 

| P
si

 | L' = 0
L' = 2
L' = 4
L' = 6
L' = 0 (high res)
L' = 2 (high res)
L' = 4 (high res)
L' = 6 (high res)

FIG. 7: Late-time scalar field tails for different multipoles `′

at ρ = 1 of a Kerr black hole interior. The power-laws agree
with the equation 11. Data is presented from computations
using two different grid sizes (8000(ρ)×32(θ)×1665972(t̃) and
16000(ρ) × 64(θ) × 3331944(t̃)), to demonstrate convergence
of the numerical results.

C. Scalar Fields in Extremal Kerr Black Hole
Spacetime

Recently [13, 14] it has been shown that massless
scalar fields in extremal black hole spacetimes exhibit
an “asymptotic” instability at the horizon. This arises in
the form of an unbounded growth of (sufficiently) high-

500 1000 1500 2000
–6

–5

–4

–3

–2

L' = 4

L' = 2

L' = 0

tau

LP
I

FIG. 8: The local power index (LPI), defined as n = τΨ̇/Ψ,
for different multipoles `′ at ρ = 1 of a Kerr black hole interior.
The late-time index values agree with the equation 11.
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FIG. 9: Late-time scalar field radial ρ profile for multipole
`′ = 1 for a Kerr black hole. Note that even at late-stages the
field exhibits oscillatory behavior but only in the black hole
interior region.

order transverse derivatives of the field. Heuristically,
the origin of this instability is in the fact that the power-
law tail’s decay rate at the horizon is slower than at a
“nearby” location on the exterior. This only occurs in
the case of an extremal hole (note that our results in
the previous section on non-extremal Kerr consistently
yielded the exact same tail on the horizon as the timelike
infinity case). The different decay rate at the horizon re-
sults in an unbounded growth in high-enough transverse
derivatives. More precisely this instability can be seen
as arising from a singular branch-point in the frequency-
domain Green function [14]. Our numerical results in the
context of extremal Kerr black holes are able to show
strong indications of the development of such an insta-
bility.



9

0 5 10 15 20

–20

–15

–10

–5

0

rho

lo
g 

| r
✕P
si

 | 

tau = 0
tau = 50
tau = 100
tau = 200
tau = 500
tau = 1000
tau = 2000

FIG. 10: Late-time scalar field radial ρ profile for multipole
`′ = 4 for a Kerr black hole. There are no oscillations at late
times because of the dominance of the ` = 0 multipole.

In Figure 11 we show the late-time tails for the ex-
tremal Kerr case for a sample multipole with compact
initial data – it is clear that the horizon decay rates are
slower (they actually match the null infinity rates!) than
the timelike infinity cases for the same multipole.

1.0 1.5 2.0 2.5 3.0

–16

–12

–8

–4

0

log ( tau  )

lo
g 

( 
| P

si
 | 

)

horizon

rho = 3.0

null infinity

FIG. 11: Late-time scalar field tails for `′ = 4 at different
locations (horizon, ρ = 3.0 and null infinity) for an extremal
Kerr black hole. The horizon decay rate is slower than the
ρ = 3.0 case, and matches the rate at null infinity.

Moreover, if we study the radial (ρ) profile of the
field as it evolves in time, it clearly appears to show
the formation of an asymptotic “discontinuity” at the
horizon. In Figure 12 we can see that the gradient of
the field as it evolves becomes steeper at the horizon, a
strong indication of the transverse derivatives becoming
unbounded, consistent with the expectations based on
recent work [14]. A detailed study on this topic will be

presented elsewhere [28].
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–16

–14
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FIG. 12: Late-time scalar field radial ρ profile for multipole
`′ = 3 for an extremal Kerr black hole. Note that the field’s
gradient exhibits unbounded growth at the horizon.

IV. SUMMARY AND CONCLUSIONS

In this work, we performed a detailed study of the
late-time tail behavior of scalar fields in black hole ex-
terior and interior spacetimes. Both Schwarzschild and
Kerr black holes were considered in this work. We nu-
merically solved the scalar Teukolsky equation in com-
pactified ingoing Kerr coordinates, and performed very
long duration computations to obtain the true late-time
asymptotic power-law decay behavior. We compared our
numerical results with well known results in the research
literature in the black hole exterior region (horizon, time-
like and null infinity). The new results in this work per-
tain to the late-time behavior of scalar fields in the black
hole interior. We found that an infalling detector would
record a finite number of oscillatory cycles in the field
before it hits the black hole singularity. The number of
these observed cycles depends on the multipole index ` of
the field and also whether the black hole is Schwarzschild
or Kerr. We also found an indication of the formation of
an asymptotic instability at the horizon of an extremal
Kerr black hole.

In future work, we would like to perform similar inves-
tigations of other matter fields, including the electromag-
netic and gravitational cases. We also plan to explore the
behavior of non-axisymmetric fields in a similar context.
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[18] A. Zenginoǧlu, Class. Quant. Grav. 25, 145002 (2008);
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