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We consider the propagation of electromagnetic (EM) waves in the gravitational field of the Sun
within the first post-Newtonian approximation of the general theory of relativity. We solve Maxwell’s
equations for the EM field propagating on the background of a static mass monopole and find an
exact closed form solution for the Debye potentials, which, in turn, yield a solution to the problem
of diffraction of EM waves in the gravitational field of the Sun. The solution is given in terms of
the confluent hypergeometric function and, as such, it is valid for all distances and angles. Using
this solution, we develop a wave-theoretical description of the solar gravitational lens (SGL) and
derive expressions for the EM field and energy flux in the immediate vicinity of the focal line of the
SGL. Aiming at the potential practical applications of the SGL, we study its optical properties and
discuss its suitability for direct high-resolution imaging of a distant exoplanet.
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I. INTRODUCTION

According to Einstein’s general theory of relativity [1, 2], gravitation induces refractive properties on spacetime [3],
with massive objects acting as lenses by bending photon trajectories [4] and amplifying brightness of faint sources.
Experimental confirmation of the general relativistic gravitational bending of light nearly a century ago [5, 6] un-
ambiguously established that celestial bodies act as gravitational lenses, deflecting light from distant sources. The
properties of gravitational lenses, including light amplification and the appearance of ring-like images (Einstein rings),
are well established [7, 8] and have a rich literature [9–17]. Compact, opaque and spherical bodies acting as gravita-
tional lenses could be used as diffractive telescopes to form images of distant objects at extreme resolution [18].
Unlike an optical lens, a gravitational lens is astigmatic, with the bending angle inversely proportional to the impact

parameter of a light ray with respect to the lens. Therefore, such a lens has no single focal point but a focal line.
Although all the bodies in the solar system may act as gravitational lenses [4], only the Sun is massive and compact
enough for the focus of its gravitational deflection to be within the range of a realistic deep space mission. Its focal
line begins at ∼547.8 astronomical units (AU). A probe positioned beyond this distance from the Sun could use the
solar gravitational lens (SGL) to magnify light from distant objects on the opposite side of the Sun [16, 19].
In recent years, the unique properties of the SGL garnered increasing attention. On the one hand, the discovery of

numerous exoplanets by the Kepler telescope, including those that may be Earth-like [20], created interest in methods
to image these distant worlds. On the other hand, the success of the Voyager-1 spacecraft, operating at a distance
of nearly 140 AU from the Sun, demonstrates the feasibility of long-duration deep-space missions to the outer solar
system, including regions where images are formed by the SGL. The idea of using the SGL for direct megapixel
high-resolution imaging of an object of extreme interest, such as a habitable exoplanet, was only recently suggested
[21]. It was extensively discussed within the context of a recent study at the Keck Institute for Space Studies [22].
In the past, only the amplification properties of the SGL under a set of idealized physical conditions were explored,
considering only the gain of a combined receiver consisting of a large parabolic radio antenna, at the focus of which
there was a single pixel detector situated on the focal line of the SGL [16, 19, 23]. The SGL’s imaging properties,
where the image occupies many pixels in the immediate vicinity of the focal line, are still not fully explored (except
perhaps for some introductory considerations on geometric raytracing [24, 25]), especially in a deep-space mission
context. In addition, the SGL’s potential for high-resolution spectroscopy should also be considered.
The reason for the large amplification of the SGL is the fact that, as a typical gravitational lens, the SGL forms

a folded caustic [26, 27] in its focal area. As the wavelength of light is much smaller than the Schwarzschild radius
of the Sun, the wavefront in the focal region of the SGL is dominated by the caustic and singularities typical for
geometric optics. In reality, the geometric singularities are softened and decorated on fine scales by wave effects
[28, 29]. Despite leading to divergent results, geometric optics may be used to predict the focal line, and make
qualitative arguments about the magnification and the size of the image. However, designing a telescope entails
addressing practical questions concerning the magnification, resolution, field of view (FOV), and the plate scale of
the imaging system. These parameters are usually estimated by a wave optics approach and are needed to assess the
imaging potential of the SGL. Recently, we reported on a method [30] of providing a wave-theoretical description of
the SGL, demonstrating that with its light amplification power of ∼ 1011 (for λ = 1 µm) and angular resolution of
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. 10−10 arcsec, the SGL may be used for direct megapixel imaging of an exoplanet. In this paper we provide details
of this derivation.
This paper is structured as follows: In Section II, we consider propagation of electromagnetic waves in the Einstein’s

general theory of relativity (GR). We establish a set of equations that guide the evolution of EM wave in the presence
of a static gravitational monopole. We solve these equations in the post-Newtonian approximation of the GR. In
Section III we find exact solutions for the Debye potentials for the EM waves traversing the field of a static gravitational
monopole. We derive the components of the entire EM field and determine the components of the relevant Poynting
vector. Our results yield a wave-optical description of a monopole gravitational lens and are valid for any distances and
angles, including those in the immediate vicinity of the focal line. In Section IV we provide preliminary considerations
for imaging with the Solar Gravitational Telescope (SGT) and its potential application for direct multi-pixel imaging
and spectroscopy of an exoplanet. In Section V we discuss our results and the potential of using the SGL for remote
investigations of faint distant objects. In an attempt to streamline the discussion, we placed some important but
technically lengthy derivations into Appendices. Appendix A contains a summary of results concerning the (3 + 1)
decomposition of a general Riemannian metric and relevant useful relations. Appendix B is devoted to a description of
light propagation in a weak, static gravitational field. We solve the geodesic equation and model the phase evolution
in the context of geometric optics. We also discuss spherical waves in the post-Newtonian gravity. In Appendix C
we present useful properties of the confluent hypergeometric functions. Appendix D discusses Coulomb functions.
Appendix E introduces Debye potentials as a means to represent the electromagnetic field. Finally, Appendix F
discusses the Wentzel–Kramers–Brillouin (WKB) approximation.

II. ELECTROMAGNETIC WAVES IN A STATIC GRAVITATIONAL FIELD

To describe the optical properties of the solar gravitational lens (SGL), we use a static harmonic metric1 in the first
post-Newtonian approximation of the general theory of relativity. The line element for this metric may be given, in
spherical coordinates (r, θ, φ), as [3, 32]:

ds2 = u−2c2dt2 − u2
(

dr2 + r2(dθ2 + sin2 θdφ2)
)

, (1)

where, to the accuracy sufficient to describe light propagation in the solar system, the quantity u can be given in
terms of the Newtonian potential U as

u = 1 + c−2U +O(c−4), where U(x) = G

∫

ρ(x′)d3x′

|x− x′| . (2)

The metric (1)–(2) allows us to consider the largest effects of the gravitational field of the Sun on propagation of
light, those due to the static distribution of matter inside the Sun. One may also want to consider including solar
rotation, but its effect, although measurable, is much less than those of the solar monopole and quadrupole [33].
Thus, the solar spin is not present in the metric above. Nevertheless, if needed, one can always consider the effect of
the solar rotation on the properties of the SGL using the same methods that are developed in this paper. Also, the
gravitational field of the Sun is weak: its potential is GM/c2r . 2× 10−6 everywhere in the solar system. This allows
us to carry out calculations to the first post-Newtonian order, while dropping higher-order terms.
The generally covariant form of Maxwell’s equations for the electromagnetic (EM) field is well known:

∂lFik + ∂iFkl + ∂kFli = 0,
1√−g∂k

(√−gF ik
)

= −4π

c
ji, (3)

where Fik is the antisymmetric Maxwell tensor of the EM field [31], gmn is a Riemann metric tensor with g = det gmn
its determinant, and ∂k are coordinate derivatives.

1 The notational conventions used in this paper are same as in [31, 32]: Latin indices (i, j, k, ...) are spacetime indices that run from 0 to
3. Greek indices α, β, ... are spatial indices that run from 1 to 3. In case of repeated indices in products, the Einstein summation rule
applies: e.g., ambm =

∑
3

m=0
ambm. Bold letters denote spatial (three-dimensional) vectors: e.g., a = (a1, a2, a3),b = (b1, b2, b3). The

dot (·) and cross (×) are used to indicate the Euclidean inner product and cross product of spatial vectors; following the convention
of [3], these are enclosed in round and square brackets, respectively. Latin indices are raised and lowered using the metric gmn. The
Minkowski (flat) spacetime metric is given by γmn = diag(1,−1,−1,−1), so that γµνaµbν = −(a · b). We use powers of the inverse of
the speed of light, c−1, and the gravitational constant, G as bookkeeping devices for order terms: in the low-velocity (v ≪ c), weak-field
(rg/r = 2GM/rc2 ≪ 1) approximation, a quantity of O(c−2) ≃ O(G), for instance, has a magnitude comparable to v2/c2 or GM/c2r.
The notation O(ak , bℓ) is used to indicate that the preceding expression is free of terms containing powers of a greater than or equal to
k, and powers of b greater than or equal to ℓ. Other notations are explained in the paper.
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Note that in this paper we study the propagation of the EM waves on the background of the Sun without accounting
for the corona. That is to say, we do not consider contributions of the solar plasma to light propagation. The refractive
properties of the solar corona are such that for high-frequency EM waves such as visible light, one may neglect the
refractive effects of the solar plasma [34]. This may not be the case for any noise contribution to an image due to the
brightness of the corona. These issues will be addressed elsewhere. Here we consider only a purely gravitational case,
accounting only for the shadow due to a spherical Sun, but ignoring the corona.

A. Maxwell’s equations in three-dimensional form

To study the problem of gravitational lensing, we need to present equations (3) in a three-dimensional form. To
this effect, we consider a (3 + 1) decomposition of a generic metric gmn (e.g., using methods discussed in §84 of [31]).
We introduce quantities describing physical vectors of the EM field, namely the 3-vectors E,D and anti-symmetric
3-tensors Bαβ and Hαβ : Eα = F0α, D

α = −√
g00F

0α, Bαβ = Fαβ , H
αβ =

√
g00F

αβ (see the Problem in §90 of [31]).
These quantities are not independent. In the case of a static metric, such as that given by (1), for which g0α = 0 and
∂0gmn = 0, they are related by the following identities:

D =
1√
g00

E = uE, B =
1√
g00

H = uH. (4)

Given the definitions above, Eqs. (3) can be written in the following three-dimensional form:

curlκE = − 1√
κ
∂0

(√
κB
)

, divκB = 0, (5)

curlκH =
1√
κ
∂0

(√
κD

)

+
4π

c
j, divκD = 4πρ, (6)

where the differential operators curlκF and divκF, for the static metric (1), are taken with respect to the three-
dimensional metric tensor καβ = −gαβ (see (A1)–(A2) and (A9)–(A10) in Appendix A for details).
We consider the propagation of an EM wave in the vacuum where no sources or currents exist, i.e., jk = (ρ, j) = 0.

For the metric (1), using the definitions (4) together with (A2) and (A9)–(A10), we obtain the following form for
Maxwell’s equations (5)–(6):

curlD = −u2∂B
c∂t

+O(G2), div
(

u2 D
)

= O(G2), (7)

curlB = u2
∂D

c∂t
+O(G2), div

(

u2 B
)

= O(G2), (8)

where the differential operators curlF and divF are now with respect to the usual 3-space Euclidean flat metric.
Using the standard identities of vector calculus involving the ∇ operator [35, 36] and a bit of algebra, one can verify

that D and B obey the following wave equations:

∆D − u4
∂2 D

c2∂t2
− [curlD×∇ lnu2] +∇

(

D ·∇ ln u2
)

= O(G2), (9)

∆B − u4
∂2B

c2∂t2
− [curlB×∇ lnu2] +∇

(

B ·∇ lnu2
)

= O(G2). (10)

All the properties of a propagating EM wave in the presence of a weak and static post-Newtonian gravitational field
are encoded in (9)–(10). Note that the last two terms in (9) and (10) are important for establishing the directional
and polarization properties of EM field represented by the vectors D and B.2 As we show in this paper, omitting
these terms (e.g., as in [40]) may lead to the loss of important information about the propagation direction and the
amplitude of the EM field. These equations can be used to study propagation of EM waves in the presence of a weak
and static gravitational field. In particular, in the case of solving the problem of diffraction of the EM waves, they
can be used to describe both incident and scattered waves. This is the knowledge that helps us study the properties
of the EM field in the image plane when dealing with the imaging properties of the SGL.

2 Eqs. (9) and (10) are rather well known. In fact, they are similar to (5)–(6) in Chapter 1.2 of [37], written for an EM wave propagating in
a refractive medium. A form of Maxwell’s equations, similar to (9)–(10), appears any time when one deals with EM waves propagating
in a medium with a variable index of refraction, such as in the case of optical waveguides [38, 39]. This form emphasizes the fact that
a weak gravitational field also induces effective refractive properties on spacetime [3]. These properties may be investigated using the
tools of classical optics [31, 37].
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B. Solving Maxwell’s equations

We look for a solution to the wave equations (9)–(10) for the fields D and B in the following generic form:

D = ψde−iωt and B = ψbe−iωt, (11)

where ψ(r) is a scalar function representing the intensity of a monochromatic EM wave along the path of its propa-
gation, d(r) and b(r) are unit vectors specifying the direction of the wave’s propagation and its polarization, and ω
is the frequency of the wave. Although (11) gives the two fields as complex quantities, the actual physical fields D

and B are given by the real part of these expressions. Then, for example, the wave equation (9) can be presented in
terms of equations for the new quantities ψ and d as

{

∆ψ + k2u4ψ
}

d + 2(∇ψ ·∇)d− d(∇ψ ·∇ lnu2) + 2∇ψ (d ·∇ lnu2) +

+ ψ
{

∆d− 2
[

[∇× d]×∇ lnu2
]

+ (∇ lnu2 ·∇)d+ (d ·∇)∇ lnu2
}

= O(G2), (12)

where k = ω/c is the wave number, as usual. As we intend to work with optical frequencies, equation (12) may be
simplified. For high-frequency propagation, the representation of D given in (11) implies [41] that

∣

∣

∣

|∇2d|
|d|

∣

∣

∣

1/2

,
|∇d|
|d| , and

1

r
≪ |∇ lnψ|, (13)

which means that Ld ≫ Lψ and r ≫ Lψ, where Ld and Lψ represent the typical length scales over which the changes
in d and ψ, respectively, are significant [41] (same applies to b). In other words, we can see that d (and b) vary
slowly, but ψ varies rapidly when k → ∞, resulting in the following relationships:

|∇D| ∼ |kD|, |∇2 D| ∼ |k2D|. (14)

Thus, in the case of high-frequency EM wave propagation, the following two equations hold simultaneously3:

∆ψ + k2u4ψ = O(G2), (15)

(∇ψ ·∇)d = −(d ·∇ lnu2)∇ψ + 1
2 (∇ψ ·∇ lnu2)d+O(G2). (16)

Below, we focus our discussion on the largest contribution to the gravitational deflection of light, namely that
produced by the field of a gravitational monopole. In this case, the Newtonian potential in (2) is given as U(r) =
rg/2r+O(r−3, c−4), where rg = 2GM/c2 is the Schwarzschild radius of the source4. Therefore, the quantity u in (1)
and its logarithmic gradient ∇ lnu2 have the form

u(r) = 1 +
rg
2r

+O(r−3, c−4) and ∇ lnu2 = −rg
r3

r+O(r−3, c−4). (17)

As a result, the system of equations (15)–(16) takes the form

∆ψ + k2(1 +
2rg
r

)ψ = O(r2g), (18)

(∇ψ ·∇)d =
rg
r3

{

(d · r)∇ψ − 1
2 (∇ψ · r)d

}

+O(r2g). (19)

Experiments in the presence of weak gravitational fields, such as those present in our own solar system [4], are
often described using geodesic equations. These equations determine the direction of light propagation and related
relativistic frequency shifts [43, 44]. However, geodesic equations provide no information about gravitationally induced
changes in the intensity of light. In the solar system, such changes are quite small and very difficult to detect. This
is precisely the focus of our interest when we consider the solar gravitational telescope scenario.

3 Note that representations similar to (15)–(16) occur when raytracing methods are used to describe the propagation of high-frequency
EM waves in optical waveguides [39]. The numerical tools developed in that area may be quite useful to model imaging with the SGL.

4 If needed, our approach, in conjunction with the tools developed in [42, 43], may be used to account for the contributions from higher
order gravitational multipole moments. For details, see Appendices B1 and B 2.
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To investigate the intensity changes that result from the gravitational amplification of light, we need to develop a
wave-theoretical treatment of light propagation in gravity. Eqs. (18)–(19) could be used for this purpose. These are
derived from the wave equations (9)–(10) and provide a complete description of an EM wave propagating in a weak
and static gravitational field (which, according to Fock [3], acts as a variable index of refraction). Specifically, (18)
determines the change in the intensity of the EM field, while (19) describes the changes in the direction of propagation
of the EM wave and its polarization.
We can solve Eqs. (18)–(19) iteratively to first order in G. This can be done along the path of wave propagation,

which is established by relying on the geodesic equation (see Appendix B).

C. Solving the wave equations

z

x

r

θ

FIG. 1: Heliocentric spherical polar coordinate system (r, θ) (φ sup-
pressed) as well as the z and x coordinates used to describe the
diffraction of light by the gravitational monopole.

FIG. 2: The phase of (20) describing the propagation of a wavefront
(from left to right) diffracted by a point source gravitational lens.
Drawn in arbitrary units for qualitative description; actual values
cannot be plotted due to their differing orders of magnitude.

To find the formal solution for the EM field,
we begin with (18). This equation is well known:
it is nearly identical to the time-independent
Schrödinger equation that describes the scattering
problem in a Coulomb potential in nuclear physics5.
We take a spherical coordinate system (r, θ, φ) and
also use Cartesian coordinates such that the x and
z axes, r and angle θ are given as in Fig. 1.
We consider the propagation of a monochromatic

EM wave along the z-axis coming from a source at
infinity. As is known from textbooks on quantum
mechanics (e.g., [45, 51–54]), (18) has a solution
that is regular at the origin, which can be given as

ψ(r) = ψ0e
ikz

1F1

(

ikrg, 1, ik(r − z)
)

, (20)

where z is the projection of r onto the optical axis
(i.e., a coordinate along that axis; see Fig. 1), ψ0

is an integration constant and 1F1 is the confluent
hypergeometric function [55] (also known as Kum-
mer’s function of the first kind, M [α, β, w]; see Ap-
pendix C for more details and useful relations).
The solution (20), also shown in Fig. 2, describes

a wave coming from a large distance along the z axis
(for the relevant geometry, see Fig. 1) and general-
izes the incoming plane wave solution ψ0(r) = eikz ,
which is familiar from studying wave propagation
in Euclidean spacetime. In fact, Eq. (20) reduces to
eikz when rg → 0. Thus, one may use the solution
(20) to describe the incident “plane wave” that is
sourced at infinity, in the presence of a gravitational
monopole with a 1/r potential. All the important
contributions to ψ0(r) from gravitation are contained in the function 1F1[α, β, w].
Given the asymptotic properties of 1F1[α, β, w] from (C22) (see details of derivation in Appendix C2), we obtain

the asymptotic form of Eq. (20) as

ψ(r) = ψ0
e−

π
2 krg

Γ(1− ikrg)

{

eik
(

z−rg ln k(r−z)
)

+
rg
r − z

Γ(1− ikrg)

Γ(1 + ikrg)
eik
(

r+rg ln k(r−z)
)

+O
( ikr2g
r − z

)}

. (21)

5 A choice of constants rg = −γ/k makes (18) identical to the time-independent Schrödinger equation describing the scattering problem
in a Coulomb potential [45], where γ = Z1Z2e2/~v with Z1e, Z2e are the charges of the two particles and v is their relative velocity.
The first analytical solution to (18) was given by Mott in 1928 [46]. A more elegant form was found a few months later by Gordon
[47], using the ansatz ψ(r) = eikzf(r − z). The complex-valued function f describes the perturbation of the incoming plane wave and
transforms (18) into a solvable differential equation for f [45]. The same equation appears in other problems of modern physics: for
instance, in problems describing photothermal single-particle Rutherford scattering microscopy that involves the scattering of waves by
a 1/r refractive index profile formed by the presence of a point-like heat source in a homogeneous medium (e.g., [48–50]).
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This approximation is valid for large values of the argument k(r− z) ≫ 1 and for angles θ satisfying θ &
√

2rg/r (see
Fig. 3). This region is relatively far from the optical axis; light refraction here is well described by geometric optics.
This solution offers a good starting point for the development of the wave-theoretical treatment of the SGL.
Typically, one normalizes the solution at large distances from the deflecting center by requiring that the function

ψ behaves as limk(r−z)→∞ ψψ∗ = 1 (a.k.a. Gamow normalization [45, 53]), which results in ψ0 = e
π
2 krgΓ(1− ikrg).

However, in our case, we require that at larger distances from the deflector the intensity of the EM field, ψ, is to be
equal to that at the source, namely limk(r−z)→∞ ψψ∗ = E2

0 (in the vacuum E0 = H0). This results in the following
choice for the constant ψ0:

ψ0 = E0 e
π
2 krgΓ(1− ikrg). (22)

As a result, at large distances from the deflector, the incident wave (ψinc(r), given by the first term in (21)) and the
scattered wave (ψs(r), given by the second term in (21)) take the following asymptotic forms:

ψinc(r) = E0e
ik
(

z−rg ln k(r−z)
)

{

1 +O
( ikr2g
r − z

)}

, (23)

ψs(r) = E0
rg
r − z

Γ(1− ikrg)

Γ(1 + ikrg)
eik
(

r+rg ln k(r−z)
)

{

1 +O
( ikr2g
r − z

)}

. (24)

The solution provided in the form of Eqs. (23)–(24) is well known from the Coulomb scattering problem in nuclear
physics. What is its meaning in general relativity? Eqs. (23)–(24) do not exhibit the familiar geodesic behavior that is
characteristic of rays of light. Nonetheless, with some algebra (see Appendix B2, Eq. (B33)), we can show that (23) is
consistent with a solution for the phase of an EM wave propagating in the background of a weak and static gravitational
field. For a wave moving from a remote source along the z-axis, (k · r) = z, where k is the unperturbed unit vector of
the photon’s trajectory (see Sec. B 1 for details). Therefore, from (B33) and (B14), for a wave moving along a geodesic,
we obtain, for the change of phase along the path, δϕ = k

(

(k · (r− r0)) + rg ln(r + (k · r))/(r0 + (k · r0)) +O(r2g)
)

=

k
(

z− z0 − rg ln(r − z)/(r0 − z0) +O(r2g)
)

. Thus, the time-independent part of the phase of the incident wave has the

form ϕ(r) = k
(

z − rg ln k(r − z) +O(r2g)
)

, given by (23), which is consistent with a geodesic solution.
To understand the meaning of Eq. (24), we rewrite it using z = r cos θ as follows:

ψs(r) = E0f(θ)
1

r
eik
(

r+rg ln 2kr
)

+O(r2g), where f(θ) =
rg

2 sin2 θ2

Γ(1− ikrg)

Γ(1 + ikrg)
eikrg ln sin2 θ

2 , (25)

with f(θ) being the scattering amplitude familiar from nuclear scattering.
One can see that the phase in the first expression in (25) is consistent with the phase of a radial geodesic or that

of an outgoing spherical wave (see discussions in Appendix B4, Eq. (B55)). From (25), for the change of phase along
a radial geodesic, we have δϕ = k0

(

r − r0 + rg ln r/r0 + O(r2g)
)

, which indicates that the time-independent part of

the phase of a scattered wave is that of a spherical wave given by (B55) as ϕ(r) = k(r + rg ln 2kr + O(r2g)
)

and is
consistent with the phase of a radial geodesic (B34). The quantity f(θ) in (25) is the scattering amplitude that was
first derived by Rutherford for the electron scattering problem in nuclear physics [56] and has been confirmed in many
experiments. This amplitude modifies the outgoing spherical wave (B55) (discussed in Appendix B4).
Therefore, the two solutions to the time-independent wave equation (18) are both consistent with the familiar

geodesic solutions in a weak and static gravitational field (as discussed in Secs. B 1 and B 2). The phase of the
incident wave is consistent with the geodesic solution (B33), while the scattered wave is consistent with a spherical
wave solution (B55) or, equivalently, with radial geodesics (B34). With this knowledge we may already identify these
features in (20). Solution to this equation is given in Fig. 2, which clearly shows the presence of both of these waves,
namely the Coulomb-modified incident wave and the outgoing spherical wave modified by the scattering amplitude.
To interpret the approximate solutions (23)–(24), it helps to study the schematic geometry shown in Fig. 1. Light

from a distant source reaches the point of observation (black dot on the right-hand side) via two paths. When the
point of observation is a significant distance away from the focal line, these two paths are qualitatively different.
Perturbations to the path on the same side of the focal line as the point of observation (the “top” ray of light in

Fig. 1) are dominated by deflection. Neighboring rays in a tight family of rays diverge (“spread out”) minimally.
Therefore, this path is well approximated by Eq. (23), which describes a plane wave slightly perturbed by deflection.
This wave is shown in the top left panel of Fig. 3. We call this part of the solution the (perturbed) “incident” wave.
In contrast, perturbations to the path on the side of the focal line opposite to the point of observation (the “bottom”

ray of light in Fig. 1) are dominated by scattering. These rays reach the point of observation because they have a
small impact parameter and a large angle of deflection. As a result, even neighboring rays, with only slightly different
impact parameters, will suffer noticeably different deflections. The resulting wavefront is dominated by this divergent
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(“spreading out”) behavior, and thus it is well approximated as a spherical wave emanating from the gravitational
lens itself; that is to say, Eq. (24), which is depicted in the top right panel of Fig. 3. We refer to this part of the
solution as the “scattered” wave.

FIG. 3: Clockwise from top left: The approximation given
by (23); by (24); the combined contribution of (23) and
(24); finally, the difference between (20), which was shown
in Fig. 2, and (23). The phase becomes divergent along
the optical axis. Units are arbitrary.

The combination of the deflected plane (incident) wave and
the perturbed spherical (scattered) wave, shown in the bot-
tom right panel of Fig. 3, offers a good approximation of the
propagating wavefront everywhere except for the vicinity of
the focal line. The bottom left panel of Fig. 3 compares this
approximation to the original form of (20) (see Fig. 2). The
conical region on the right-hand side of this figure is where
the geometric optics approximation fails [34]. It is inconve-
nient, since the total solution for the wave function (20) gives
the correct asymptotic expression for any angle. Technically,
this is because there are no known approximations of the con-
fluent hypergeometric function 1F1 that are simultaneously
valid both for large distances and also for small angles [40].
For a monopole lens, the very fact that any two rays inter-

sect at the focal line means that these rays essentially have
identical impact parameters. In this case, an observer will see
a thin annulus around the lens representing the Einstein ring
formed by the amplified intensity of the incident light coming
from the direction of the source. At any given point outside
the focal line, the rays will have different impact parameters.
An observer will see two images of unequal brightness of a
distant point source, one on each side of the lens. Far enough
from the focal line, one ray will suffer minimal deflection due
to its large impact parameter. Meanwhile, the other ray will
not only be deflected but also dispersed as neighboring rays
diverge. The approximation given by (23) describes the ray
with minimal deflection, i.e., a slightly perturbed version of
the incident wave. A weaker contribution dominated by the factor rg/(r − z) is given by (24), which approximates
these diverging rays with a small impact parameter (passing close to the lens) as a perturbed spherical wave originating
from the lens.
At a sufficient distance from the focal line, the impact parameter needed for one of the rays to reach these points

will be smaller than the physical radius of the Sun. Therefore, these incident rays will be blocked by the Sun and no
scattered rays will be produced. In these cases, an observer will see only one image described by (23).

D. Amplitude evolution of the incident wave

Given the solution (23) for the incident wave, we can now proceed with solving (19). This helps us determine the
polarization changes of the EM wave. First, by defining ϕ to be the phase of the incident wave ψi in (23) and using
the usual definition for the wave number, Km = dxm/dλ = gmn∂nϕ or Km = ∂mϕ, we have

∇ψ = iψ∇ϕ+O(r2g) = iψK0
κ+O(r2g), (26)

where κ is the unit vector along the direction of the wave vector, such that Kα = K0κα. Note that to O(r2g),

κ = K/|K| has the form κ = k+ κG +O(r2g), with k being the unperturbed part and κG being the post-Newtonian
term, with both of them given explicitly by (B2).
It is convenient to introduce a parameter ℓ, which is defined along the path of photon’s trajectory as ℓ = (k · r) =

(k · r0) + c(t− t0) (see (B12) and discussion in Appendix B 1.) Given K0 = dx0/dλ, we have dℓ = K0dλ, and, thus:

(∇ϕ∇)d = K0(κ ·∇)d = (
dr

dλ
·∇)d =

dd

dλ
=
dx0

dλ

dd

dx0
= K0 dd

dx0
= K0 dd

dℓ
. (27)

Substituting (26) and (27) in (19), we obtain the following equation that can be used to study the post-Newtonian
evolution of d:

dd

dℓ
=

rg
r3

{

(d · r)k− 1
2 (k · r)d

}

+O(r2g). (28)
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Given the two linearly independent unit 3-vectors n = r/r and κ, we can define a triplet of unit vectors, κ,
π = [κ×n]/|[κ× n]|, and ǫ = [π ×κ], forming a local right-handed orthonormal basis: (κ ·π) = (κ · ǫ) = (π · ǫ) = 0
(see discussion in Appendix B3). Then, we can write [36] the vector r in this basis as

r = (r · k)k+ [k× [r× k]] + rG +O(r2g) = kℓ+ b0 + rG +O(r2g), (29)

where rG ∼ O(rg) is the post-Newtonian part of r (derived in (B21)) and we used (B11) to write (r · k) = ℓ and
b0 = [k× [r× k]] +O(rg), is the impact parameter (B13). Similarly, we can write d as

d = (d · k)k+ [k× [d× k]] + dG +O(r2g) = d||0 k+ d⊥0 + dG +O(r2g), (30)

where d||0 = (d · k) +O(rg) and d⊥0 = [k × [d× k]] +O(rg) are the components of d in the directions parallel and
orthogonal to k, correspondingly, and dG is the post-Newtonian part of vector d. Next, we have:

(d · r) = d||0ℓ+ (d⊥0 · b0) +O(rg). (31)

As a result, equation (28) takes the form:

ddG

dℓ
=

rg
(b20 + ℓ2)3/2

{(

1
2d||0ℓ+ (d⊥0 · b0)

)

k− 1
2ℓd⊥0

}

+O(r2g). (32)

Taking into account that d||0 and d⊥0 are constant, we integrate (32) with respect to ℓ from −∞ to ℓ and obtain

a solution for the components of d = d0 + dG +O(r2g) in the local basis. The B field will evolve in a similar manner.
As a result, the solutions for d and b are both real and have the following form:

d =
{

d||0
(

1− rg
2r

)

+
(

d⊥0 · b0

)rg
b20

(

1 +
(r · k)
r

)}

k+ d⊥0

(

1 +
rg
2r

)

+O(r2g), (33)

b =
{

b||0
(

1− rg
2r

)

+
(

b⊥0 · b0

)rg
b20

(

1 +
(r · k)
r

)}

k+ b⊥0

(

1 +
rg
2r

)

+O(r2g). (34)

We introduce a right-handed Cartesian coordinate system (x, y, z) with corresponding unit vectors (ex, ey, ez) and
with the origin at the center of mass of the Sun. We take the z-axis to be directed along the unperturbed direction
of the light ray, i.e., along the vector k, while the x and y axes will be directed along the unperturbed directions set
by the vectors ǫ and π, correspondingly. In Appendix B 3 we show that in this coordinate system the vectors κ,π, ǫ
take the following form (see (B46)–(B48)):

ǫ = ex +
rg
r − z

x

r
ez +O(r2g), π = ey +

rg
r − z

y

r
ez +O(r2g), κ = ez −

rg
r − z

1

r

(

x ex + y ey
)

+O(r2g). (35)

Also, in this coordinate system, d||0 = dz0 and d⊥0 = (dx0, dy0, 0), b0 = [k × [r × k]] + O(rg) = (x, y, 0) + O(rg),
and, thus, (d⊥0 · b0) = dx0x + dy0y + O(rg). Similarly, we have (b⊥0 · b0) = bx0x + by0y + O(rg). We choose the
components of the incident wave so that it represents a transverse electric and transverse magnetic (TEM) wave,
namely we require: dz0 = dy0 = bz0 = bx0 = 0. Based on (33)–(34), the directional vectors of this EM field evolve as

dinc = dx0
(

1 +
rg
2r

)

{

ex +
rg
b20
x
(

1 +
(k · r)
r

)

ez

}

+O(r2g), (36)

binc = by0
(

1 +
rg
2r

)

{

ey +
rg
b20
y
(

1 +
(k · r)
r

)

ez

}

+O(r2g). (37)

As a result, substituting (36)–(37) and (23) into (11), accounting for the fact that ℓ = (k · r) = z and using (B14)
in the second term in (36) and (37), and also taking the amplitudes of the unit vectors of the EM field at the source
to be dx0 = by0 = 1, we present the EM field of the incident wave as

Dinc(t, r) = E0

(

1 +
rg
2r

)

{

ex +
rg
r − z

x

r
ez

}

eik(z−rg lnk(r−z))−iωt +O(r2g), (38)

Binc(t, r) = E0

(

1 +
rg
2r

)

{

ey +
rg
r − z

y

r
ez

}

eik(z−rg ln k(r−z))−iωt +O(r2g), (39)

which, with the help of (35), indicates that Dinc ∝ ǫ and Binc ∝ π. As the local base vectors ǫ,π and κ are forming
a triplet of orthonormal vectors, the three vectors Dinc, Binc and κ that characterize the incident wave (38)–(39) are
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also orthogonal to each other, namely from (35) one can verify that (Dinc ·Binc) = (Dinc ·κ) = (Binc ·κ) = 0+O(r2g).
So, as expected, the components orthogonal to the wave vector do not change as a photon moves along its trajectory,
which, in the case of Dinc, (38), is in the plane spanned by ex and ez. Thus, the gravitational field of a static
monopole does not change the polarization of an EM wave. At the same time, the component along the wave vector
is mixed with the orthogonal component and rotates by a small angle δθ = (rg/b0)(1 + (r · k)/r) as it moves along
the trajectory with the entire EM wave being perpendicular to the wave vector (similar results were reported in [41]).
Similar behavior is evident from (39) for Binc in the plane formed by vectors ey and ez.
To proceed with the solution of the scattering problem, we need to transform (38) and (39) from Cartesian into

spherical coordinates. The curvilinear coordinates appropriate to represent the problem are the spherical polar
coordinates (r, θ, φ) defined as usual by the relationships (x, y, z) = r(sin θ cosφ, sin θ sinφ, cos θ). Transforming (38)
and (39) from the Cartesian system (x, y, z) to this new system of spherical coordinates according to the usual rules
of such coordinate transformations [35], we obtain the incident wave, Dinc and Binc, in the following form:

Dinc(t, r) = E0

{

u−1 cosφ sin θ
(

1 +
rg

r(1 − cos θ)

)

, u−1 cosφ
(

cos θ − rg
r

)

, −u sinφ
}

ψi(r)e
−iωt +O(r2g), (40)

Binc(t, r) = E0

{

u−1 sinφ sin θ
(

1 +
rg

r(1 − cos θ)

)

, u−1 sinφ
(

cos θ − rg
r

)

, u cosφ
}

ψi(r)e
−iωt +O(r2g), (41)

where u is given by (17) and ψi(r) = eik
(

r cos θ−rg ln kr(1−cos θ)
)

is the incident wave (23). As we can see, the phase and
the directional vector of the incident wave are both Coulomb-modified. This reflects on the fact that the long-range
1/r field due to the gravitational monopole changes the incident wave even at large distances from the deflector.

E. Amplitude evolution of the scattered wave

We now consider the evolution of the amplitude of the scattered wave. Similarly to the incident wave, we may solve
(19) for the scattered wave given the solution (24). This helps us determine the polarization changes of the scattered
EM wave. First, we recognize the fact that the amplitude in (24) is a slowly varying function of distance while the
phase varies rapidly. Thus, we may consider only the phase in finding solution for (19). Following the approach
demonstrated in Sec. II D, we may present (19) for radial geodesics, i.e., k = n, as

dd

dℓ
=

rg
r2

{

(d · n)n− 1
2d
}

+O(r2g), (42)

where the parameter ℓ now is ℓ = r = r0 + c(t − t0). Similarly to the discussion of the propagation of the incident
wave amplitude, we present d as

d = (d · n)n+ [n× [d× n]] + dG +O(r2g) = d||0 n+ d⊥0 + dG +O(r2g), (43)

where, in this case, d||0 = (d · n) +O(rg) and d⊥0 = [n× [d× n]] +O(rg) are the components of d in the directions
parallel and orthogonal to n, correspondingly, and dG is the post-Newtonian part of vector d. Then, taking into
account that dℓ = cdt and, thus, d(d||0n)/dℓ = dd⊥0/dℓ = 0, we can present equation (42) in the following form:

ddG

dℓ
=

rg
2ℓ2

{

d||0 n− d⊥0

}

+O(r2g). (44)

Taking into account that d||0 and d⊥0 are constant, we integrate (44) with respect to ℓ from −∞ to ℓ and obtain a

solution for the components of d = d0 + dG +O(r2g) in the local basis along the radial path. The B field will evolve
in a similar manner. As a result, the solutions for d and b of the scattered wave have the following form:

d = d||0
(

1− rg
2r

)

n+ d⊥0

(

1 +
rg
2r

)

+O(r2g), b = b||0
(

1− rg
2r

)

n+ b⊥0

(

1 +
rg
2r

)

+O(r2g), (45)

where we remember that for radial motion ℓ = r. We again choose the TEM wave, thus, d||0 = b||0 = 0 and write the
solution (45) in the following form:

ds = d⊥0

(

1 +
rg
2r

)(

0, cosφ,− sinφ
)

+O(r2g), bs = b⊥0

(

1 +
rg
2r

)(

0, sinφ, cosφ
)

+O(r2g). (46)

As a result, using the entire solution (25) and normalizing d⊥0 = b⊥0 = 1, the components of the scattered wave,
Ds and Bs, in the spherical coordinate system may be given in the following form:

Ds(t, r) = E0

(

1 +
rg
2r

)(

0, cosφ,− sinφ
)

f(θ)
1

r
eik(r+rg ln 2kr)−iωt +O(r2g), (47)
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Bs(t, r) = E0

(

1 +
rg
2r

)(

0, sinφ, cosφ
)

f(θ)
1

r
eik(r+rg ln 2kr)−iωt +O(r2g). (48)

As expected, the scattered EM wave is proportional to the scattering amplitude f(θ) and multiplies the outgoing
spherical wave as given by (25). Eqs. (47)–(48) may be presented in the form showing their explicit dependence on
all the parameters involved:

Ds(t, r) = E0

(

1 +
rg
2r

)(

0, cosφ,− sinφ
) rg

2r sin2 θ2
eikrg ln sin2 θ

2+2iσ0eik(r+rg ln 2kr)−iωt +O(r2g), (49)

Bs(t, r) = E0

(

1 +
rg
2r

)(

0, sinφ, cosφ
) rg

2r sin2 θ2
eikrg ln sin2 θ

2+2iσ0eik(r+rg ln 2kr)−iωt +O(r2g), (50)

where σ0 is the quantity known in nuclear physics as the Coulomb phase shift σ0 = arg Γ(1− ikrg). It is defined via
the ratio of two gamma function terms in (25): Γ(1 − ikrg)/Γ(1 + ikrg) = e2iσ0 .
These expressions complete our description of the scattering problem in the geometric optics. In the next section,

we use these results to derive the Poynting vector that characterizes energy transmission in this situation.

F. Poynting vector in the geometric optics approximation

We may now compute the components of the Poynting vector in geometric approximation using the solutions for
the incident and scattered waves. The components of the Poynting vector are computed as ususal [31, 57]:

S =
c

4π

1√
g00

[E×H] =
c

4πu
[(ReD)× (ReB)], (51)

where D = Dinc+Ds and B = Binc+Bs are the total solutions for the EM field that includes incident and scattered
waves. Thus, for (51) we have:

S = Sinc + Ss + S×, (52)

where Sinc = (c/4πu)[Re(Dinc)×Re(Binc)] is the Poynting vector due to the incident wave, Ss = (c/4πu)[Re(Ds)×
Re(Bs)], is that due to the scattered wave, with S× = (c/4πu)

(

[Re(Dinc) × Re(Bs)] + [Re(Ds) × Re(Binc)]
)

being
the interferometric or mixed term. Using the expressions for the incident and scattered fields given by (40)–(41) and
(49)–(50), correspondingly, we may compute all the terms on the right hand side of (52). Then, after averaging (52)
over time, we get the needed expressions. Thus, for the Poynting vector of the incident wave with (40)–(41) we have

S̄inc =
c

8π
uE2

0 κ+O(r2g). (53)

As expected, the incident wave propagates along the wave vector κ, which is given by (35). Using expressions
(49)–(50), we compute the Poynting vector for the scattered EM wave as

S̄s =
c

8π
uE2

0

( rg

2r sin2 θ2

)2

n+O(r3g). (54)

Note that this term is below our approximation threshold of O(r2g) and thus it may be omitted. However, it provides
information on the largest contribution from the scattered term alone. Note that if, for a particular value of r, the
angle θ decreases to the point where the ratio rg/2r sin

2 θ
2 becomes 1, the term (54) is of the same size as (53). If θ

continues to decrease, the interferometric term in (52) also becomes significant. We derive this term next.
Before we derive an expression for S×, it is instructive to represent σ0 in (49)–(50) in terms of its functional

dependence. For this, we need to evaluate the ratio of two gamma functions in (24). To do that, we will use Stirling’s
formula that approximates the gamma function for large values of its argument |α| → ∞ (e.g., [55]):

Γ(α) =

√

2π

α

(α

e

)α
(

1 +O(α−1)
)

. (55)

As a result, we have

e2iσ0 =
Γ(1 − ikrg)

Γ(1 + ikrg)
= e−2ikrg ln(krg/e)−i

π
2

(

1 +O((krg)
−1)
)

. (56)
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Therefore, to a sufficient accuracy, for large values of the argument |α| = krg (i.e., when considering the propagation
of high frequency EM waves), the quantity σ0 may given as 2σ0 = −2krg ln(krg/e)− π

2 . This allows us to compute
the interference term and present it in the following form:

S̄× =
c

8πu
E2

0

rg

2r sin2 θ2
sin
(

2kr sin2 θ2 − 2krg ln
rge

−1

2r sin2 θ2

){

îr
(

1 + cos θ
)

− îθ sin θ
(

1 +
rg

2r sin2 θ2

)

}

+O(r2g), (57)

where the second term in the argument of sin() comes both from σ0 and from the argument of the exponent in the
expression (25) for the scattering amplitude, f(θ). One can see that pretty much for every value of r and θ the
Poynting vector of the incident wave S̄inc (53) dominates the interference term S̄× (57). However, when θ becomes
smaller, the interference term starts to grow. If, for a particular r, the ratio rg/2r sin

2 θ
2 approaches 1, the magnitude

of S̄× becomes comparable to that of S̄inc, reaching the value of S̄× = (c/4πu2)E2
0 sin 3krg

{

îr − îθ
√

2rg/r
}

+O(r2g).
If θ continues to decrease, i.e., when θ → 0, the terms representing the scattered (54) and interferometric (57) terms
continue to grow, and ultimately diverge on the optical axis, where θ = 0. This is precisely the area where geometric
optics breaks down, necessitating a wave-theoretical treatment. We develop that treatment in Section III.

G. Boundary conditions in the geometric optics approximation

Lastly, we note that to develop a solution to a diffraction problem, we need to introduce a set of boundary conditions.
These conditions are necessary to select specific values for the arbitrary integration constants that are appropriate
for a particular problem under consideration. Considering the case of diffraction of the EM wave by the gravitational
field of a large star (i.e., an idealized spherical sun with no luminosity and no corona), we need to consider only two
of such conditions: (i) the asymptotic boundary conditions and (ii) the physical boundary conditions (as was done,
for instance, in [58, 59]).
As far as the asymptotic boundary condition is concerned, we already introduced such a condition when we selected

the value for the constant ψ0 in (20) in the form of (22). This choice was made to satisfy the condition that at large
distances from the deflector the incident wave must resemble the Coulomb-modified plane wave with a unit magnitude
(i.e., Gamow conditions), but scaled to match the field intensity at the source, namely limk(r−z)→∞ ψψ∗ = E2

0 . This
condition led to the solutions for both incident and scattered waves, given by (40)–(41) and (49)–(50), correspondingly.
However, the solutions for the EM waves that we established describe scattering on an object that is characterized

only by its Schwarzschild radius, rg. This may be sufficient for the problems describing scattering of massless scalar
waves by black holes (e.g., [56, 60–62]), but is not enough to describe scattering by the Sun, whose physical size is
much larger than its Schwarzschild radius, i.e., R⊙ ≫ rg. Therefore, following [59] we introduce another requirement
that our solution must to satisfy: the fully absorbing boundary condition. This condition requires that for rays with
impact parameter less than the solar radius, i.e., b0 ≤ R⊙, no wave propagates behind the Sun and no diffracted wave
exist. In the geometric optics approximation this condition introduces the shadow behind the Sun, determines its
shape, and moves the interference region to heliocentric distances beyond z0 = 547.8 AU (i.e., the point where two
gravitationally deflected rays of light that are just grazing the Sun on its opposite sides will intersect.)
Both of these boundary conditions are useful and will take an explicit analytical form in the case of the wave optics

treatment of the scattering of an EM wave by the gravitational field of a large star that we discuss next.

III. ELECTROMAGNETIC WAVE IN THE FIELD OF A STATIC MONOPOLE

In the previous section, we obtained all the tools that are required to investigate the EM field in the interference
zone of the SGL. Our next goal is to find a solution to the EM field in that region. In this section, we accomplish this
objective using the approach developed for classical diffraction theory, by finding the set of equations that determine
the EM field via Debye potentials and then matching these equations with the incident wave.

A. Representing the field in terms of Debye potentials

It is known [37, 63, 64] that Maxwell’s equations can be represented in terms of the electric Debye potential eΠ and
the magnetic Debye potential mΠ. This also applies to the case of an EM wave propagating in the static gravitational
field of a Schwarzschild black hole or a large star [58, 59, 65]. In Appendix E we demonstrate how such a representation
may be done for the EM wave propagating in the vacuum in the background of a weak and static gravitational field,
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represented by the metric (1)–(2), which is a good approximation for the gravitational field in the solar system. The
complete solution for the EM field may be given as (see (E28)–(E33) for details):

D̂r =
1

u

{ ∂2

∂r2

[r eΠ

u

]

+
(

k2u4 − u
( 1

u

)′′
)[r eΠ

u

]}

, B̂r =
1

u

{ ∂2

∂r2

[rmΠ

u

]

+
(

k2u4 − u
( 1

u

)′′
)[rmΠ

u

]}

, (58)

D̂θ =
1

u2r

∂2
(

r eΠ
)

∂r∂θ
+

ik

r sin θ

∂
(

rmΠ
)

∂φ
, B̂θ = − ik

r sin θ

∂
(

r eΠ
)

∂φ
+

1

u2r

∂2
(

rmΠ
)

∂r∂θ
, (59)

D̂φ =
1

u2r sin θ

∂2
(

r eΠ
)

∂r∂φ
− ik

r

∂
(

rmΠ
)

∂θ
, B̂φ =

ik

r

∂
(

r eΠ
)

∂θ
+

1

u2r sin θ

∂2
(

rmΠ
)

∂r∂φ
. (60)

This solution can be derived from the two potentials eΠ and mΠ, which both have to satisfy the same differential
equation (E23), which is just the wave equation (see (E26)):

(

∆+ k2
(

1 +
2rg
r

)

)[Π

u

]

= O(r2g), (61)

where Π can be either eΠ or mΠ. Typically [37], in spherical polar coordinates (see Fig. 1 for details), the solution of
this equation is represented using an expansion, with terms in the form

Π(r) =
u

r
R(r)Θ(θ)Φ(φ), (62)

and with coefficients that are determined by boundary conditions. Direct substitution into (E22) reveals that the
functions R,Θ and Φ must satisfy the following ordinary differential equations:

d2R

dr2
+
(

k2(1 +
2rg
r

)− α

r2

)

R = O(r2g , r
−3), (63)

1

sin θ

d

dθ

(

sin θ
dΘ

dθ

)

+
(

α− β

sin2 θ

)

Θ = O(r2g , r
−3), (64)

d2Φ

dφ2
+ βΦ = O(r2g , r

−3). (65)

The solution to (65) is given as usual [37]:

Φm(φ) = e±imφ → Φm(φ) = am cos(mφ) + bm sin(mφ), (66)

with β = m2, with m being an integer number and am and bm are integration constants.
Equation (64) is well known for spherical harmonics. Single-valued solutions to this equation exist when α = l(l+1)

with (l > |m|, integer). With this condition, the solution to (64) becomes

Θlm(θ) = P
(m)
l (cos θ). (67)

Now we focus on the equation for the radial function (63), which may be rewritten as

d2Rℓ
dr2

+
(

k2(1 +
2rg
r

)− ℓ(ℓ+ 1)

r2

)

Rℓ = O(r2g , r
−3). (68)

This second-order differential equation has two well-known solutions that are linearly independent: the regular function
Fℓ(krg , kr) and the irregular function Gℓ(krg , kr). A regular function is so named because it is zero at r = 0. Any
solution to (63) may be chosen as linear combination of these two functions [45, 66]:

Rℓ(r) = cℓFℓ(krg, kr) + dℓGℓ(krg, kr), (69)

where Fℓ and Gℓ are the Coulomb functions (discussed in Appendix D) and cℓ and dℓ are arbitrary constants.
According to (62), a particular integral Πi is obtained by multiplying together the functions given by (66), (67)

and (69); we then obtain a general solution to (E22). Collecting results for Φ(φ), Θ(θ) and R(r), given by (66), (67),
and (69), to the order of O(r2g), the Debye potential has the form

Π =
u

r

∞
∑

l=0

l
∑

m=−l

[

cℓFℓ(krg, kr) + dℓGℓ(krg, kr)
]

[

P
(m)
l (cos θ)

][

am cos(mφ) + bm sin(mφ)
]

, (70)
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where cl, dl, am, bm are arbitrary and yet unknown constants.
We must now determine these constants in such a way as to satisfy the boundary conditions. For this to be possible,

one must be able to express the potentials eΠ(i) and mΠ(i) of the incident wave in a series of the from (70).
To proceed with the solution of the scattering problem, we consider the incident wave given by (40)–(41). Its

properties should give us the partial wave amplitudes cℓ and dℓ in (70). To do this may not be straightforward,
because these fields are singular at θ = 0 and cannot be written in terms of Legendre polynomials P 1

n(cos θ) at all.
To determine eΠ or mΠ, we use Eqs. (40)–(41) that describe the incoming wave and substitute them into (E28)–

(E33). For example, for Dr Eq. (40) yields

D̂inc
r = −E0

cosφ

iukr

∂ψi(r)

∂θ
e−iωt, (71)

where ψi(r) is the incident scalar wave (23). Together with (58) (or the first part of (E28)), after omitting the e−iωt

factor, we obtain

−E0
cosφ

iukr

∂ψi(r)

∂θ
=

1

u

{ ∂2

∂r2

[r eΠ

u

]

+
(

k2u4 − u
(1

u

)′′
)[r eΠ

u

]}

. (72)

Our first problem, therefore, is to find an electromagnetic field, which for r → ∞, θ ∼ π has the same asymptotic
behavior as the incident field given in (40), but which is regular everywhere, for all values of θ and r. Instead of using
only a partial asymptotic solution representing the incident wave, ψi(r), this field can be constructed using the full
solution given by (20) and (22), for which (23) represents one of its asymptotic limits when r → ∞:

ψ(r) = ψ0e
ikz

1F1

(

ikrg, 1, ik(r − z)
)

, where ψ0 = E0e
π
2 krgΓ(1 − ikrg). (73)

We may extend this to find the solution for the EM field in all regions by taking, instead of ψi(r), the entire solution
for ψ from (73). Eq. (72) indicates that

−cosφ

ikr

∂ψ

∂θ
=

∂2

∂r2

[r eΠ

u

]

+
(

k2u4 − u
( 1

u

)′′
)[r eΠ

u

]

(74)

is a suitable definition of the wanted regular field [58, 59]. The exact solution for Dr based on (73) should differ from
the incident wave (40) only for outgoing waves, the amplitudes of the incoming waves should be equal.
The function ψ on the left-hand side of this equation may be expressed in the form of a differentiable series of

Legendre polynomials [37, 45]:

ψ(r) =
1

kr

∞
∑

ℓ=0

iℓ(2ℓ+ 1)eiσℓFℓ(krg, kr)Pl(cos θ), (75)

where Fℓ is the Coulomb function discussed in Appendix D. This representation is analogous to the following
representation of a plane wave ψ0(r) = eikz , given as

ψ0(r) =

∞
∑

ℓ=0

iℓ(2ℓ+ 1)jℓ(kr)Pl(cos θ), (76)

where jℓ(kr) is the spherical Bessel function given by (D22). Note, when rg → 0, one may see from (D20) that
function ψ0(r) is the limit of ψ(r).
Using (76) and the identities

∂

∂θ
Pl(cos θ) = −P (1)

l (cos θ), P
(1)
0 (cos θ) = 0, (77)

we can write the left-hand side of (74) as

−cosφ

ikr

∂ψ

∂θ
=

cosφ

ik2r2

∞
∑

ℓ=1

iℓ(2ℓ+ 1)eiσℓFℓ(krg, kr)P
(1)
l (cos θ). (78)

This expression allows us to present a trial solution for eΠ as a series of a form similar to (78), to order O(r2g):

eΠ =
1

r

u

k2

∞
∑

l=1

µlFℓ(krg, kr)P
(1)
l (cos θ) cosφ. (79)
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Considering the asymptotic expansion of (79), we can substitute (78) and (79) into (74). Remembering that Fℓ
satisfies (68) and comparing coefficients, we obtain the relation

µl = E0 i
ℓ−1 2ℓ+ 1

ℓ(ℓ+ 1)
eiσℓ . (80)

The calculations for the magnetic potential, mΠ, are similar. In fact, in the vacuum, the solutions for the electric
and magnetic potentials of the incident wave, eΠ and mΠ, may be given in terms of a single potential Π(r, θ) as

( eΠ
mΠ

)

=

(

cosφ

sinφ

)

Π(r, θ), where rΠ(r, θ) = E0
u

k2

∞
∑

ℓ=1

iℓ−1 2ℓ+ 1

ℓ(ℓ+ 1)
eiσℓFℓ(krg, kr)P

(1)
ℓ (cos θ) +O(r2g). (81)

Therefore, by matching the general form for the Debye potentials (70) to the incident EM wave (75), we see that
Maxwell’s equations (58)–(60) can only be satisfied by selecting cℓ = 1 and dℓ = 0, and also by choosing m = 1, with
a1 = 0 for the magnetic potential, and b1 = 0 for the electric potential. Thus, we have expressed both Debye potentials
of the incident wave, eΠ and mΠ, in the form of the series (70) by determining all the unknown constants. As a result,
(81) represents an exact vacuum solution via Debye potentials for the EM field scattered by a gravitational monopole.
In the background of the metric (1), with u from (17), the general solution of Maxwell’s equations (7)–(8) that

corresponds to a monochromatic wave with the symmetry of a plane wave can be given in terms of a function Π, given
by (81). Using this result in Eqs. (58)–(60) with the help of (E28) we see that, in order to obtain the components of
the EM field in a vacuum, we need to construct the following expressions [59]:

α(r, θ) = − 1

u2r2
∂

∂θ

[ 1

sin θ

∂

∂θ

[

sin θ (rΠ)
]

]

, (82)

β(r, θ) =
1

u2r

∂
(

rΠ
)

∂r∂θ
+
ik
(

rΠ
)

r sin θ
, (83)

γ(r, θ) = − 1

u2r sin θ

∂
(

rΠ
)

∂r
− ik

r

∂
(

rΠ
)

∂θ
, (84)

and insert them into
(

D̂r

B̂r

)

=

(

cosφ

sinφ

)

e−iωtα(r, θ),

(

D̂θ

B̂θ

)

=

(

cosφ

sinφ

)

e−iωtβ(r, θ),

(

D̂φ

B̂φ

)

=

(

sinφ

− cosφ

)

e−iωtγ(r, θ). (85)

This completes the solution for the EM field in a vacuum in the background of a spherically symmetric, static
gravitational field represented by its Schwarzschild radius. However, the Sun has a physical boundary with a radius
that is much larger than rg . To account for this fact, we need to apply the fully absorbing boundary condition, as
discussed in Sec. IIG.

B. Boundary conditions

As we discussed in Sec. IIG, the physical size of the Sun necessitates a proper treatment. Usually, this is done by
selecting a form of the Debye potential for each of the regions in question, imposing the relevant boundary conditions,
and matching the potentials on the boundary. We will follow a similar approach. First we note that, in order to match
the potentials (81) to those of the incident and scattered waves, the latter must be expressed in a similar series form
but with arbitrary coefficients. Only the function Fℓ(krg, kr) may be used in the expression for the potential, since
Gℓ(krg, kr) is divergent at the origin. On the other hand, the scattered wave must vanish at infinity and the Hankel
functions, H+

ℓ (krg, kr) (see Appendix D2 for a discussion of the Hankel and Coulomb functions, their relationships
and their relevant properties), will impart precisely this property. This function is suitable as a representation of the
scattered wave. For large values of the argument (kr), it behaves as eik(r+rg ln 2kr) and the Debye potential will satisfy
Π ∝ eik(r+rg ln 2kr)/r for large r. Thus, for distances r ≫ rg, the diffracted wave is spherical, with its center at the
origin r = 0. Accordingly, it will be used in the expression for the diffracted wave:

rΠ(s) = E0
u

k2

∞
∑

ℓ=1

iℓ−1 2ℓ+ 1

ℓ(ℓ+ 1)
eiσℓaℓH

+
ℓ (krg , kr)P

(1)
l (cos θ) +O(r2g). (86)

To select the arbitrary coefficients aℓ we will use the fully absorbing boundary condition discussed in Sec. IIG. For
this, we first consider the effective potential in Eq. (68) for the radial function Rℓ. We notice that a transition from
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small-(kr) power law behavior to large-(kr) oscillatory behavior occurs outside the classical turning point, which is
the point is where the effective potential in (68) vanishes, namely 1 + 2rg/r − ℓ(ℓ + 1)/(kr)2 = O(r2g). Solving this
quadratic equation, we determine the turning point

rt = −rg ±
√

r2g + ℓ(ℓ+ 1)/k2. (87)

As r is positive, then with purely Newtonian (or, in nuclear scattering, Coulomb) and centrifugal potentials (68) there
is only one turning point corresponding to the + sign in (87). Classically, the turning point is at the distance of
closest approach or at the impact parameter. These quantities are related in the same manner as the classical impact
parameter b0 is related to the quantum mechanical partial wave ℓ [52, 66]:

k b0 =
√

ℓ(ℓ+ 1) ≈ ℓ+ 1
2 . (88)

To set the boundary conditions, we realize that rays with impact parameter b0 ≤ R⊙ are absorbed by the Sun.
Thus, the fully absorbing boundary condition signifies that all the radiation intercepted by the body of the Sun is
fully absorbed by it and no reflection or coherent reemission occurs. All intercepted radiation will be transformed
into some other forms of energy, notably heat. Thus, we require that no scattered waves exist with impact parameter
b0 ≪ R⊙ or, equivalently, for ℓ ≤ kR⊙ It means that we need to subtract the scattered wave (86) from the incident
wave for ℓ ≤ kR⊙. In other words, to derive the solution for the Debye potential Π(I) in the region outside the Sun
(denoted by Latin superscript I), we set aℓ = −1 in the expression for the scattering potential Π(s) given by (86) and
add to the expression for Πinc from (81). This results in

rΠ(I)(r, θ) = E0
u

k2

∞
∑

ℓ=1

iℓ−1 2ℓ+ 1

ℓ(ℓ+ 1)
eiσℓFℓ(krg, kr)P

(1)
ℓ (cos θ)−

−E0
u

k2

kR⊙
∑

ℓ=1

iℓ−1 2ℓ+ 1

ℓ(ℓ+ 1)
eiσℓH+

ℓ (krg, kr)P
(1)
l (cos θ) +O(r2g). (89)

This is the second asymptotic boundary condition which is set on the “future infinity” light cone and deals with the
fact that the physical boundary of the Sun is much larger than its Schwarzschild radius, R⊙ ≫ rg. This is in addition
to the earlier condition that was established in “past infinity”, to fix the value for ψ0 in (73).
We have thus obtained the Debye potential representing the total solution for the problem of diffraction of EM

waves by a large spherical star. Solution (89) describes the EM field outside the Sun, which is our primary interest,
and which we discuss next.

C. Exact solution for the Debye potentials

We observe that, in addition to the solution for the Debye potential in the form of the infinite series of partial
waves (81), in a vacuum there exists an exact analytical solution for this quantity. To demonstrate this, we use the
wave equation (E23) written in the spherical coordinate system and present the expression for Dr via derivatives with
respect to θ, as it was originally obtained in (E21) and shown in (E28), ultimately leading to (82). Then, from the
two expressions for Dr given by (85) and also by (74) with the exp(−ωt) term reinstated, we obtain

D̂r = −e−iωt cosφ
u2r2

∂

∂θ

[ 1

sin θ

∂

∂θ

[

sin θ (rΠ)
]

]

= −e−iωt cosφ
iukr

∂ψ

∂θ
. (90)

As a result, (90) yields the following equation to determine the Debye potential Π:

∂

∂θ

[ 1

sin θ

∂

∂θ

[

sin θΠ
]

]

= − iu
k

∂ψ

∂θ
+O(r2g). (91)

We may now integrate this equation with respect to θ to obtain

∂

∂θ

[

sin θΠ
]

= − iu
k

sin θ
[

ψ(r, θ) + c(r)
]

+O(r2g), (92)

where c(r) is the integrating constant. Integrating again from π to θ, we have

Π(r) = − iu
k

1

sin θ

∫ θ

π

[

ψ(r, θ′) + c(r)
]

sin θ′dθ′ +O(r2g). (93)
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shadow region of interferenceregion of
geometric optics

focal line

FIG. 4: Three different regions of space associated with a monopole gravitational lens: the shadow, the region of geometric
optics, and the region of interference.

Using (73) for ψ and relying on the properties of the hypergeometric function from Appendix C, especially (C4), we
can evaluate the integral:

Π(r) = −ψ0
iu

k

1− cos θ

sin θ
eikz

(

1F1[1 + ikrg, 2, ikr(1− cos θ)]− 1F1[1 + ikrg, 2, 2ikr]
)

+

+
iu

k

1 + cos θ

sin θ

(

c(r) + ψ0 e
−ikr

1F1[1 + ikrg, 2, 2ikr]
)

+O(r2g). (94)

By taking the integration constant to be

c(r) = −ψ0 e
−ikr

1F1[1 + ikrg, 2, 2ikr] +O(r2g), (95)

we obtain the following expression for the Debye potential:

Π(r) = −ψ0
iu

k

1− cos θ

sin θ
eikz

(

1F1[1 + ikrg, 2, ikr(1− cos θ)]− 1F1[1 + ikrg, 2, 2ikr]
)

+O(r2g), (96)

which gives us the Debye potential of the incident wave in terms of the Coulomb wave function ψ, i.e., essentially in
terms of the confluent hypergeometric function [58, 59]. This solution is always finite and is valid for any angle θ.
As a result, the solution (96) for the Debye potential allows us to replace the first term in (89) and rewrite it as

Π(I)(r, θ) = −ψ0
iu

k

1− cos θ

sin θ
eikz

(

1F1[1 + ikrg, 2, ikr(1− cos θ)]− 1F1[1 + ikrg, 2, 2ikr]
)

−

−E0
u

k2
1

r

kR⊙
∑

ℓ=1

iℓ−1 2ℓ+ 1

ℓ(ℓ+ 1)
eiσℓH+

ℓ (krg, kr)P
(1)
l (cos θ) +O(r2g). (97)

This is our main result. It contains all the information about the EM field around the Sun in all the regions of
interest for the diffraction problem (see Fig. 4). We will evaluate the terms in this expression for each of these regions.

D. Solution to the diffraction problem and different regions

To understand the solution (97) that we obtained, we need more information on the second term in this expression.
Considering the region outside the Sun, r ≫ rg, we may replace H+

ℓ (krg, kr) with its asymptotic expansion (D16).
Extending it to distances closer to the turning point, as derived in Appendix F and shown in (F17), we obtain

δ(Π(I)) = −E0
u

k2
1

r
eik(r+rg ln 2kr)

kR⊙
∑

ℓ=1

iℓ−1 2ℓ+ 1

ℓ(ℓ+ 1)
ei
(

2σℓ−
πℓ
2 + ℓ(ℓ+1)

2kr

)

P
(1)
l (cos θ) +O(r2g). (98)

Next, we use the asymptotic representation for P
(1)
l (cos θ) from [35]:

P
(1)
ℓ (cos θ) =

−ℓ√
2πℓ sin θ

(

ei(ℓ+
1
2 )θ+i

π
4 + e−i(ℓ+

1
2 )θ−i

π
4

)

+O(ℓ−
3
2 ) for 0 < θ < π. (99)
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At this point, we may replace the sum in (98) with an integral:

δ(Π(I)) = E0
u

k2
1

r
eik(r+rg ln 2kr)

∫ kR⊙

1

2ℓ+ 1

ℓ(ℓ+ 1)

(−i)ℓdℓ√
2πℓ sin θ

ei
(

2σℓ+
ℓ(ℓ+1)
2kr

)

(

ei(ℓ+
1
2 )θ+i

π
4 + e−i(ℓ+

1
2 )θ−i

π
4

)

+O(r2g), (100)

and evaluate this integral by the method of stationary phase. Note that the lower bound in this integral should be
of the size of the Einstein radius of the lens. However, taking into account the physical dimensions of the Sun, such
a detail is insignificant. Expression (100) shows that the ℓ-dependent part of the phase has the structure:

ϕ±(ℓ) = ±
(

(ℓ+ 1
2 )θ +

π
4

)

+ 2σℓ +
ℓ(ℓ+1)
2kr +O(r2g). (101)

Therefore, the points of stationary phase where dϕ±/dℓ = 0 are given by the following equation:

±θ = 2 arctan
krg
ℓ

− 2ℓ+ 1

2kr
+O(r2g), (102)

with σℓ taken from expression (D10) where we formally replaced the sum with an integral, namely
∑ℓ

j=1 →
∫ ℓ
dj.

If we take ℓ from the semi-classical approximation presented by (88), then for small angles θ, equation (102) yields
± sin θ = 2rg/b0 − b0/r +O(r2g). As a result, we see that the points of stationary phase satisfy the equation

1

r
= ± sin θ

b0
+

2rg
b20

+O(r2g). (103)

The potential δ(Π(I)) from (100) contributes only if the points of stationary phase are within the interval 0 ≤ θ ≤ π
and 1 ≤ ℓ ≤ kR⊙. As the largest impact parameter in (103) is set by the upper integration limit in (100), or bmax0 = R⊙,
we see that this equation gives us the boundary of those regions influenced by δ(Π(I)). This equation allows for a simple
geometric and physical interpretation. We remember that the classical scattering orbit in a Newtonian potential is a
hyperbola, described in polar coordinates (ρ, θ, φ), starting at θ = π, by [59, 66]:

1

ρ(θ)
=

sin θ

b0
+

rg
2b20

(1 + cos θ)2, (104)

FIG. 5: Folded caustic formed by the SGL (not to
scale). Left: rays (thin straight lines) enveloping a
cusped caustic and wavefronts, i.e., contours of travel
time. Right: travel time contours as on the left, but
showing only for first arrival at a particular point.

which, based on the analysis in Appendix B1, describes the
geodesic path of the photon in the gravitational field of a
monopole. From this, we see that the boundary in question
coincides with the rays that are just grazing the Sun in the
forward direction, 0 ≤ θ ≤ π

2 . Furthermore, for distances

z ≤ z0 = R2
⊙/2rg (derived from (103) with θ = 0), one needs to

take the plus sign in (103) and for distances beyond that point,
z ≥ z0, the minus sign should be taken.
As a result, we established the boundary that separates three

regions of interest (see Fig. 4 for details), namely: i) For
impact parameters b0 ≤ R⊙, the boundary conditions estab-
lish the shadow behind the Sun where no light from the source
may appear; ii) Impact parameters larger that the solar radius,
b0 > R⊙, correspond to regions of geometric optics where only
one ray from a point source could pass through each point. The
solution for the EM field in this region is given by the incident
and scattered waves (40)–(41) and (49)–(50), correspondingly.
However, as we discussed in Sec. II F, the scattered wave is neg-
ligibly small everywhere in this region and offers practically no
contribution; iii) For distances beyond z0 = R2

⊙/(2rg), as we ap-
proach the optical axis, θ → 0, we enter the interference region
where, in the immediate vicinity of the optical axis, the beam of extreme intensity is present. Proper description of
the EM field in this region requires a wave-theoretical treatment, which we develop next.

E. The electromagnetic field in the region of interference

We now consider the region of interference, i.e., the region in the immediate vicinity of the optical axis, θ ≈ 0, and
at distances beyond z ≥ z0 = R2

⊙/(2rg), so that the argument in (96) is small, namely kr(1 − cos θ) ≪ 1. We realize
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that in this region the second term in (89) produces no contribution and the EM field can be derived in its entirety
from (96) [59]. In addition, it can be shown by direct computation that the second term enclosed in round brackets in
(96) can be neglected. The EM field and the Poynting vector due to it are orders of magnitude (factor of (krg)

−1/2)
smaller than those originating from the first term. The second term is important only near the axis θ = π where it
serves to avoid a singularity. Thus the task that remains is the derivation of the Poynting vector of the field given by

Π = −ψ0
iu

k

1− cos θ

sin θ
eikzF [2] +O(r2g), (105)

where, for convenience, and again following the logic of [59], we introduced the notation

F [1] = 1F1[ikrg, 1, ikr(1− cos θ)], F [2] = 1F1[1 + ikrg, 2, ikr(1− cos θ)]. (106)

As we remember, F [1] was first seen in (20) as a part of the solution of the time-independent Schrödinger equation for
the scalar intensity of the EM wave, ψ. From (105) we see that F [2] determines the properties of the Debye potential
that corresponds to that solution.
In Appendices C 2 and C3 we discuss the properties of these two functions and their behavior at small angles θ

and also at large distances. Using the asymptotic behavior of F [2] at large values of argument k(r − z) ≫ 1 and ψ0

from (73) and expressing z = r cos θ, we compute the asymptotic behavior of the Debye potential Π from (105) as

Π(r, θ) = E0
u

k2r sin θ

{

eik
(

r cos θ−rg ln kr(1−cos θ)
)

− Γ(1− ikrg)

Γ(1 + ikrg)
eik
(

r+rg lnkr(1−cos θ)
)

+O
( ikr2g
r − z

)}

. (107)

We can verify that the first term in (107) is the Debye potential corresponding to the incident wave, while the second
term corresponds to the scattered wave. In fact, by substituting (107) into (82)–(85), after some algebra, we can see
that the solution given by (107) yields results that are identical to the expressions for the incident and scattered
fields given by (40)–(41) and (49)–(50), obtained earlier using different approach. Therefore, the exact solution for
the Debye potential (105) may be used for any region describing the EM field.
Using the solution for the Debye potential Π given by (105), we may now compute all the quantities in (82)–(84):

α(r, θ) =
1

u
ψ0e

ikr cos θ sin θ
{

F [1]− ikrgF [2]
}

+O(r2g), (108)

β(r, θ) =
1

u
ψ0e

ikr cos θ
{

F [1]
(

cos θ − i

kr

(1− cos θ

sin2 θ
− rg

2r

)

)

+

+F [2]
1− cos θ

sin2 θ

(

1− cos θ +
rg
r

+ ikrg sin
2 θ − i

kr

rg
2r

cos θ
)}

+O(r2g), (109)

γ(r, θ) = −uψ0e
ikr cos θ

{

F [1]
(

1− i

kr

1− cos θ

sin2 θ

1

u2

)

+ F [2]
1− cos θ

sin2 θ

(

1− cos θ − rg
r

+
i

kr

rg
2r

)}

+O(r2g). (110)

By taking the asymptotic behavior of F [1] and F [2] from (C22) and (C26), correspondingly, together with ψ0 from
(73), substituting these into (108)–(110), and using the results in (85), we can verify that at large distances our
solution gives the correct expression for each component of the incident (40)–(41) and scattered (49)–(50) EM waves.
We can use the quantities (108)–(110) to compute the resultant EM field.
The solution (108)–(110) is valid for any angle and distance from the lens. However, for practical purposes, we are

interested only in the small region on the optical axis just after the point where grazing rays intersect (see Fig. 4). We
established earlier that, in the post-Newtonian approximation, the trajectories of light rays are governed by geodesic
equations. These equations tell us that the focal line along which rays of light grazing the Sun intersect begins at
z0 = 547.8 AU. As was discussed in [59], beyond that point, the solar gravitational monopole forms a folded caustic
(Fig. 5) that is characterized by a very high density of the EM field along the focal line, or optical axis. In the
immediate vicinity of the optical axis ρ ≪ rg, the caustic is in the shape of a pencil-sharp beam. This region of the

caustic, characterized by 0 . θ ≪
√

2rg/r, is where we direct our attention next.

F. Transformation to cylindrical coordinates

As argued in [59], for practical purposes it is convenient to introduce a cylindrical coordinate system (ρ, φ, z) instead
of the spherical coordinates (r, θ, φ). In the far field, r ≫ rg, this can be done by defining R = ur = r+ rg/2+O(r2g)
and introducing the coordinate transformations ρ = R sin θ, z = R cos θ, which, from (1), yield the line element:

ds2 = u−2c2dt2 −
(

dρ2 + ρ2dφ2 + u2dz2
)

+O(r2g). (111)
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As a result, taking into account (85) and using the rules of vector transformations between curvilinear coordinates
given by (A7), for the metric (111) we have the following components of the EM field in cylindrical coordinates:

(

D̂ρ

B̂ρ

)

=

(

cosφ

sinφ

)

e−iωta(r, θ),

(

D̂z

B̂z

)

=

(

cosφ

sinφ

)

e−iωtb(r, θ),

(

D̂φ

B̂φ

)

=

(

sinφ

− cosφ

)

e−iωtγ(r, θ), (112)

where

a(r, θ) = u−1 sin θ α(r, θ) + cos θ β(r, θ), (113)

b(r, θ) = cos θ α(r, θ) − u sin θ β(r, θ). (114)

Using (108)–(110) for α and β, for a high-frequency EM wave (i.e., neglecting O((kr)−1) terms), we obtain

a(r, θ) =
1

u
ψ0e

ikz
{

F [1]
(

1− rg
2r

sin2 θ
)

+

+F [2]
(1− cos θ

sin2 θ
cos θ

(

1− cos θ +
rg
r

)

− ikrg
(

1− cos θ − rg
2r

sin2 θ
)

)}

+O(r2g), (115)

b(r, θ) = − 1

u
ψ0e

ikz sin θ
{

F [1]
rg
2r

cos θ + F [2]
(1− cos θ

sin2 θ
u
(

1− cos θ +
rg
r

)

+ ikrg
(

1 +
rg
2r

(1 − cos θ)
)

)}

+O(r2g),(116)

γ(r, θ) = −uψ0e
ikz
{

F [1] + F [2]
1− cos θ

sin2 θ

(

1− cos θ − rg
r

)}

+O(r2g). (117)

We will use these results to study the properties of the EM field characterizing the diffraction of light by the SGL.

G. The electromagnetic field in the image plane

The components of the EM field in the cylindrical coordinate system (ρ, φ, z) are given by (112)–(114) with ampli-
tudes given by (115)–(117). We note that at large distances from the Sun, we may neglect the terms ∼ rg/r leading,
in particular, to D ≃ E+O(rg/r) and B ≃ H+O(rg/r). Together with (115)–(117) and neglecting O((kr)−1) and
O(rg/r) terms (i.e., keeping only the largest terms), the physical components of the electric field take the form

Êρ = cosφψ0

{

F [1] + F [2]
((1 − cos θ)2

sin2 θ
cos θ − ikrg

(

1− cos θ
)

)}

ei(kz−ωt) +O(r2g), (118)

Êφ = − sinφψ0

{

F [1] + F [2]
(1− cos θ)2

sin2 θ

}

ei(kz−ωt) +O(r2g), (119)

Êz = − cosφψ0 sin θ
{

F [2]
((1− cos θ)2

sin2 θ
+ ikrg

)}

ei(kz−ωt) +O(r2g). (120)

Similar expressions may be derived for the magnetic field H. Furthermore, in the immediate vicinity of the optical
axis, ρ . rg, we may use approximations for the functions F [1] and F [2] given by (C41)–(C42). For all practical
applications, we may neglect terms containing θ2, not only because in the immediate vicinity of the optical axis ρ . rg
and, thus, θ is very small; furthermore, the Bessel functions at those distances ρ are also small. We are then left with
the following solution for the EM field in the image plane:

(

Êρ

Ĥρ

)

=

(

Ĥφ

−Êφ

)

=ψ0J0
(

2
√
x
)

(

cosφ

sinφ

)

ei(kz−ωt),

(

Êz

Ĥz

)

=− ψ0
ikrgθ√
x
J1
(

2
√
x
)

(

cosφ

sinφ

)

ei(kz−ωt), (121)

with x = k2rrg(1− cos θ). Expressing x in terms of cylindrical coordinates of (111) yields

2
√
x = 2π

ρ

λ

√

2rg
z

+O(r2g , ρ
3). (122)

Using this result and θ = ρ/z +O(ρ2/z2), we can express the ratio in the second term of (121) as:

ikrgθ√
x

= i

√

2rg
z

+O(r2g , ρ
2). (123)
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These results allow us to present (121) in the form showing explicit dependence on all variables involved:
(

Êρ

Ĥρ

)

=

(

Ĥφ

−Êφ

)

=ψ0J0

(

2π
ρ

λ

√

2rg
z

)

(

cosφ

sinφ

)

ei(kz−ωt),

(

Êz

Ĥz

)

=− iψ0

√

2rg
z
J1

(

2π
ρ

λ

√

2rg
z

)

(

cosφ

sinφ

)

ei(kz−ωt). (124)

Clearly, at the focal region of the SGL, when z ≥ z0 = R2
⊙/2rg = 547.8 AU, the factor in front of the z-components

of the EM field, Êz and Ĥz, is negligibly small. Thus, both of these components may be neglected, leaving only
transverse components of the EM field on the image plane.
Solution (124) offers a good approximation for the EM field within a pencil-sharp beam in the very narrow vicinity

of the optical axis, ρ . rg; it is also quite accurate even for larger distances ρ ∼ 102 rg . It shows that the EM field is
distributed narrowly in the immediate region of the optical axis and falls off sharply as one moves away from it.

H. The Poynting vector in cylindrical coordinates

To consider the imaging properties of the SGL, we need to know the energy flux at the image plane, which is given
by the Poynting vector. Components of the Poynting vector [31, 57] are given by (52). To compute S in the cylindrical
coordinate system, we use (112)–(114) and (115)–(117), and express the components of the Poynting vector as

S =
c

4πu

{

Re(e−iωtγ)Re(e−iωtb); 0; −Re(e−iωtγ)Re(e−iωta)
}

. (125)

Averaging (125) over time and considering only high-frequency EM waves (i.e., neglecting O((kr)−1) terms), we get

S̄ρ =
c

8πu
ψ2
0 sin θ

{

F [1]F ∗[1]
rg
2r

cos θ + F [2]F ∗[2]
(1− cos θ

sin2 θ

)2

u
(

1− cos θ
)2

+

+ 1
2

(

F [1]F ∗[2] + F ∗[1]F [2]
)1− cos θ

sin2 θ

(

1− cos θ +
rg
2r

sin2 θ
)

−

− 1
2 i
(

F [1]F ∗[2]− F ∗[1]F [2]
)

krg +O(r2g , (kr)
−1)
}

, (126)

S̄φ = O(r2g , (kr)
−1), (127)

S̄z =
c

8πu
ψ2
0

{

F [1]F ∗[1]
(

1− rg
2r

sin2 θ
)

+ F [2]F ∗[2]
(1− cos θ

sin2 θ

)2
(

1− cos θ
)2

cos θ +

+ 1
2

(

F [1]F ∗[2] + F ∗[1]F [2]
)

(

1− rg
2r

(1− cos θ)
)(

1− cos θ
)

+

+ 1
2 i
(

F [1]F ∗[2]− F ∗[1]F [2]
)

krg(1 − cos θ) +O(r2g , (kr)
−1)
}

, (128)

where the asterisk (∗) denotes the complex conjugate. All properties of the diffraction field are encoded in these
formulae (126)–(128). As noted in [59], extracting these properties is challenging because of the number of parameters
that must be considered: the heliocentric distance z, the distance ρ = zθ from the axis θ = 0 in the image plane, the
frequency of the wave ω and the telescope aperture.
Equations (C43)–(C44) allow us to present (126)–(128) up to the terms of ∝ θ2:

S̄ρ =
c

8πu
ψ2
0 sin θ

{

J2
0 (2

√
x)
rg
2r

+O(r2g , (kr)
−1, θ2)

}

, (129)

S̄φ = O(r2g , (kr)
−1), (130)

S̄z =
c

8πu
ψ2
0

{

J2
0 (2

√
x)
(

1− rg
2r
θ2
)

+
1√
x
J0(2

√
x)J1(2

√
x)

1

2
θ2 +O(r2g , (kr)

−1, θ4)
}

. (131)

Using again the result (122) and θ = ρ/z +O(ρ2/z2), we can express the ratio in the second term of (131) as

1

2
√
x
θ2 =

1

2π

λρ
√

2rgz3
+O(r2g , ρ

3). (132)

When a practical SGL is considered, this ratio is negligible. Therefore, the second term in (131) may be omitted.
Next, we consider the constant ψ0 given by (73), for which the following is valid: ψ2

0 = E2
0 e

πkrgΓ(1−ikrg)Γ(1+ikrg).
Using the properties of the gamma function [55], we have Γ(1 − ikrg)Γ(1 + ikrg) = πkrg/sinhπkrg, which for ψ2

0

results in the following expression:

ψ2
0 = E2

0 2πkrg/(1− e−2πkrg ). (133)
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FIG. 6: Left: amplification and the corresponding Airy pattern of the SGL plotted for two wavelengths at the heliocentric
distance of z = 600 AU: the solid line represents λ = 1.0 µm, the dotted line is for λ = 2.0 µm. Right: a three-dimensional
representation of the Airy pattern in the image plane of the SGL for λ = 1.0 µm with the peak corresponding to direction
along the optical axis.

Given the fact that in the focal region of the SGL, the ratio rg/r ≪ 1 is very small, the terms in (129)–(131) that
include this ratio may also be omitted. As a result, using (122) for the argument of the Bessel function, we can present
the components of the Poynting vector (129)–(131) in the following most relevant form:

S̄z =
c

8π
E2

0

4π2

1− e−4π2rg/λ

rg
λ
J2
0

(

2π
ρ

λ

√

2rg
z

)

, (134)

with S̄ρ = S̄φ = 0 for any practical purposes. Note that in the case when rg → 0, the Poynting vector reduces to its
Euclidean spacetime vacuum value, namely S̄ → S̄0 = (0, 0, (c/8π)E2

0), which may de deduced from (53) by taking
rg = 0. Note that in the limit λ/rg → 0, (134) corresponds to the geometric optics approximation which yields a
divergent intensity of light on the caustic.
Result (134) completes our derivation of the wave-theoretical description of light propagation in the background of

a gravitational monopole. The result that we obtained extends previous derivations that are valid only on the optical
axis (e.g., [16]) to the neighborhood of the focal line and establishes the structure of the EM field in this region. As
such, it presents a useful wave-theoretical treatment of focusing light by a spherically symmetric mass, which is of
relevance not only for the SGL discussed here but also for microlensing by objects other than the Sun.

IV. TOWARDS A SOLAR GRAVITATIONAL TELESCOPE

We now have all the tools necessary to establish the optical properties of the SGL in the region of interference, i.e.,
at heliocentric distances z ≥ z0 = R2

⊙/2rg = 547.8 AU on the optical axis. First, given the knowledge of the Poynting
vector in the image plane (134), we may define the monochromatic light amplification of the lens, µ, as the ratio of
the magnitude of the time-averaged Poynting vector of the lensed EM wave to that of the wave propagating in empty
spacetime µ = S̄/|S̄0|, with |S̄0| = (c/8π)E2

0 . The value of this quantity is then given by

µz =
4π2

1− e−4π2rg/λ

rg
λ
J2
0

(

2π
ρ

λ

√

2rg
z

)

. (135)

As evident from (134), we see that the largest amplification of the SGL occurs along the z axis. The other components
of the Poynting vector are negligible.
We now consider the light amplification of the SGL in the focal region. Fig. 6 shows the resulting Airy pattern (i.e.,

the point spread function or PSF) of the SGL from (135). Due to the presence of the Bessel function of the zeroth
order, J2

0 (2
√
x), the PSF falls off more slowly than traditional PSFs, which are proportional to J2

1 (2
√
x)/x2, as seen in

Fig. 7. Thus, a non-negligible fraction of the total energy received at the image plane of the SGL is present in the side
lobes of its PSF. This indicates that for image processing purposes, one may have to develop special deconvolution
techniques beyond those that are presently available (e.g., [24, 25]), which are used in modern microlensing surveys.
Most of these techniques rely on raytracing analysis and typically are based on geometric optics approximation.
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FIG. 7: Comparison of PSFs normalized to 1: the solid
line represents the PSF of the SGL, ∝ J2

0 (2
√
x); the

dotted line is for the traditional PSF, ∝ J2

1 (2
√
x)/x2.

Note that the first zero of the PSF of the SGL much
closer in, but it falls-out slower than the traditional PSF.

Furthermore, the light amplification µ weakly depends on
the distance from the Sun. For practical purposes, it is easier
to show this property by plotting the gain of the SGL, g, which
is related to light amplification as g(λ, z) = 10 log10 µ(λ, z).
Fig. 8 plots gain of the SGL at two heliocentric distances z =
600 AU and 1, 000 AU for two wavelengths λ = 1.0 µm and
2.0 µm.
We may express the argument of the Bessel function in (135)

in terms of the quantities of interest, namely the heliocentric
distance along the optical axis z, the distance in the image
plane ρ (as measured from the optical axis), and the impact
parameter b0. With the help of (122) we have:

2
√
x = 2π

ρ

λ

√

2rg
z

→ 2
√
x = 2πα0

ρ

λ

√

z0
z

= 2πα0
ρ

λ

R⊙

b0
, (136)

where α0 = 2rg/R⊙ = 8.490× 10−6 rad = 1.751′′ is the angle of deflection by the SGL for the light rays just grazing
the Sun. Given numerical values of various quantities involved, we obtain

2
√
x = 53.34

(1 µm

λ

)( ρ

1 m

)

√

z0
z
, (137)

or, equivalently,

2
√
x = 53.34

(1 µm

λ

)( ρ

1 m

)R⊙

b0
. (138)

This result clearly shows the dependence of the SGL’s light amplification on the observing wavelength, λ, the
distance along the focal line, z, and the distance from the focal line in the image plane, ρ. The value of maximum
amplification of the SGL, µ0 = 4π2rg/λ, is independent of z. For optical wavelengths, this amounts to µ0 ∼ 1.2×1011,
giving the SGL its enormous light amplification. For small deviations from the optical axis, the light amplification
(135) drops sharply, as seen in Fig. 6, but the overall envelope decreases more slowly than that of a traditional PSF
(Fig. 7).
The ability of a lens to resolve detail is ultimately limited by diffraction. Light coming from a point source diffracts

through the lens aperture, forming a diffraction pattern in the image plane known as an Airy pattern (see Fig. 6).
The angular radius of the central bright lobe, called the Airy disk, is measured from the center to the first null.
Therefore, we define the resolution of the SGL using the location where J0(2

√
x) = 0, which is satisfied for the value

of the argument of 2
√
x ≈ 2.40483. We can then solve (136) for θSGL = ρ/z:

θSGL ≃ 0.766
λ

D⊙

√

z0
z
, or, equivalently, θSGL = 0.766

λ

D⊙

R⊙

b0
, (139)

where D⊙ = 2R⊙ is the solar diameter. For the wavelength λ = 1 µm, the resolution of the SGL at z0 = 547.8 AU is

θ0 ≈ 5.50× 10−16 rad = 0.11 nas. The resolution increases with z as θ0
√

z0/z as

θSGL ≃ 0.11
( λ

1 µm

)

√

z0
z

nas, or, equivalently, θSGL ≃ 0.11
( λ

1 µm

)R⊙

b0
nas. (140)

For an exoplanet situated at the distance zp from the Sun, the angular resolution (139) translates into translates
into resolvable surface features of δρSGL = θSGLzp, which is improves with heliocentric distance as

δρSGL ≃ 510
( zp
30 pc

)( λ

1 µm

)

√

z0
z

m, or, equivalently, δρSGL ≃ 510
( zp
30 pc

)( λ

1 µm

)R⊙

b0
m. (141)

Depending on the impact parameter, the deflection angle of the SGL is given as α = 2rg/b0 = α0(R⊙/b0). Rays
with impact parameter b0 will intersect the optical axis at the distance of z = b0/α = 547.8 (b0/R⊙)

2 AU. In the
pencil-sharp region along the focal line the amplification (135) of the SGL stays nearly constant well beyond 2,500

AU, while its angular resolution (140) increases by a factor of ∼ 1/
√
5 in the same range of heliocentric distances.
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FIG. 8: Gain of the solar gravitational lens as seen in the image plane as a function of the optical distance z and observational
wavelength λ. On both plots, the solid line represents gain for z = 600 AU, the dotted line is that for z = 1, 000 AU.

Across the image plane, the amplification oscillates quite rapidly. For small deviations from the optical axis, θ ≈ ρ/z.
Using this relation in (140), we see that the first zero occurs quite close to the optical axis:

ρSGL0 ≃ 4.5
( λ

1 µm

)

√

z

z0
cm, or, equivalently, ρSGL0 ≃ 4.5

( λ

1 µm

) b0
R⊙

cm. (142)

(Note in (142) the inverse ratio of z vs. z0 and b0 vs R⊙.) Eq. (142) favors larger wavelengths and larger heliocentric
distances or, similarly, impact parameters.
Thus, we have established the basic optical properties of the solar gravitational lens. By achromatically focusing

light from a distant source [17, 34], the SGL provides a major brightness amplification and extreme angular resolution.
Specifically, from (135) for λ = 1 µm, we get a light amplification of the SGL of µ ≃ 1.2 × 1011, corresponding to a
brightness increase by δmag = 2.5 lnµ = 27.67 stellar magnitudes in case of perfect alignment. Furthermore, (140)
gives us the angular resolution of the SGL of θSGL ≃ 1.1× 10−10 arc seconds.
We note that if the diameter of the telescope d0 is larger than the diffraction limit of the SGL (i.e., larger than the

diameter of the first zero of the Airy pattern), it would average the light amplification over the full aperture. Such
an averaging will result in the reduction of the total light amplification. To estimate the impact of the large aperture
on light amplification, we average the result (135) over the aperture of the telescope:

µ̄z =
4

πd20

∫

d0
2

0

∫ 2π

0

µ(ρ)ρd0ρd0φ =
4π2

1− e−4π2rg/λ

rg
λ

{

J2
0

(

π
d0
λ

√

2rg
z

)

+ J2
1

(

π
d0
λ

√

2rg
z

)}

. (143)

For an aperture of d0 = 1 m at z = 600 AU, this results in the reduction in light amplification by a factor of 0.025,
leading to the effective light amplification of µ̄z = 2.87 × 109 (i.e., 23.65 mag), which is still quite significant. The
effect of the large aperture is captured in Fig. 9, where we plot the behavior of each of the two terms in curly braces
in (143) and also their sum. Although each term oscillates and reaches zero, their sum never becomes zero.
As seen from a telescope at the SGL, light from a distant target fills an annulus at the edge of the Sun, forming the

Einstein ring. At a distance z on the focal line, an observer looking back at the Sun will see the Einstein ring with an
angular size that is given by αER = 2b0/z = 4rg/b0. Using this equation, we determine the angular size of the ring as

αER ≃ 3.50′′
√

z0
z
, or, equivalently, αER ≃ 3.50′′

R⊙

b0
. (144)

A telescope with aperture d0, placed at the heliocentric distance z on the optical axis, receives light from a family of
rays with different impact parameters with respect to the Sun, ranging from b0 to b0 + δb0. Using (144), these rays
are deflected by different amounts given as α1 = (b0+

1
2d0)/z = α0R⊙/(b0+

1
2d0), for one edge of the aperture, where

α0 = 2rg/R⊙, and α2 = (b0 + δb0 − 1
2d0)/z = α0R⊙/(b0 + δb0 − 1

2d0), for the other edge. Taking the ratio of α2/α1,
we can determine the relation between δb0 and the telescope diameter, d0, which, to first order, is given as δb0 = d0.
As a result, the area of the Einstein ring that is seen by the telescope with aperture d0, to first order, is given by

AER = π((b0 + δb0)
2 − b20) ≃ 2πb0d0. For different impact parameters the area behaves as

AER ≃ 4.37× 109
( d0
1 m

) b0
R⊙

m2. (145)
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Therefore, the magnifying power of a 1 m telescope placed at heliocentric distance z on the focal line of the SGL is
equivalent to a telescope with diameter of D = 2

√
2b0d0 = 74.5 (b0/R⊙)

1
2 km or, in terms of the heliocentric distances,

it is given as D = 74.5 (z/z0)
1
4 km, which is a weak function of the observer’s position on the focal line.
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FIG. 9: Effect of a large aperture: The solid line shows
the J2

0 term from (143), the dashed line is the J2

1 term,
and the dot-dashed line is their sum.

To image an exoplanet, observing this annulus with thick-
ness of δb0 = d0 is, of course, the primary objective. A
diffraction-limited 1 m telescope would have a resolution of
δθ = λ/d0 = 0.21′′ at λ = 1 µm. The thickness of the Ein-
stein ring from the heliocentric distance of z = 600 AU is
d0/z = 2.30 nas. Thus, although the thickness of the Einstein
ring is unresolved by the telescope at the SGL, the ring itself is
well-resolved and can be used for imaging purposes. In fact,
the entire circumference of the ring at the same distance of
z = 600 AU has the length of LER = 2πb0/z = 10.05′′ (b0/R⊙),
and it is resolved with LER/δθ ∼ 48.7 (b0/R⊙) resolution ele-
ments. Thus, the ring could be used to provide information
on a particular surface area on the target exoplanet. By sam-
pling various parts of the ring, we will be able to collect data
relevant to that particular surface area on the exoplanet.
Considering the plate scale: an Earth-sized exoplanet at

zep = 30 pc away from the Sun, when imaged from the
focal region of the SGL at heliocentric distance of z ∼600 AU, has the the image size of 2R⊕z/zep ∼
1, 238 m (z/600AU)(30 pc/zep). A single telescope would have to traverse this area in the immediate vicinity of the
focal line to scan the image of the exoplanet. Such a scaling law suggests that to image this object with ∼ 103 × 103

pixels, the telescope would need to move in the image plane from pixel to pixel, each of which has the size of ∼ 1.2 m.
Each surface element resolved on the surface of the exoplanet would form its own Einstein ring around the Sun.
However, because of the properties of the PSF of the SGL (which has prominent side lobes, as seen Fig. 7), the total
flux within each Einstein ring corresponding to a particular surface element would also have contributions (in the form
of Einstein arcs) from adjacent surface elements. Therefore, to form a reliable image of an exoplanet’s topography,
multiple such images must be deconvoluted. This can be accomplished as the properties of the Sun and, thus, of the
SGL are well understood.
Considering a realistic mission to the SGL to image a preselected target, one would have to consider the effects of

the proper motion of the host star with respects to the Sun, as well as orbital dynamics of the target exoplanet and
its diurnal rotation. Even this factors are accounted for by a trajectory design and raster scan in the image plane,
the exoplanet may also change as it is being scanned, due to changes in illumination, seasonal changes, cloud cover,
the presence of one or more natural satellites and other factors; therefore, image deconvolution must also take place
in the temporal dimension, possibly aided with reasonable models of periodic changes in appearance.
This interesting problem set must be addressed before exoplanet imaging using the SGL can become reality.

Nonetheless, the potential benefits of a solar gravitational telescope (SGT) are well considered in comparison
with the parameters of a comparable diffraction-limited optical telescope. Given the very small angular diameter
(∼ 1.4× 10−11 rad) of an Earth-like planet at 30 pc, obtaining a single-pixel image would require a diffraction-limited
telescope with an aperture of ∼74.5 km. To match the magnifying power of the SGL and obtain an image at a
resolution of a thousand linear pixels, a telescope aperture of 4 × 105 km (∼ 16R⊕) would be needed. Building an
optical imaging interferometer with such a set of baselines is not feasible. At the same time, a mission to the SGL
offers access to unique conditions needed for direct imaging of an exoplanet. Perhaps, it is the time we start taking
the SGL seriously.

V. DISCUSSION AND CONCLUSIONS

In this paper, we considered the propagation of EM waves in the gravitational field of the Sun, which is represented
by the Schwarzschild monopole taken within the first post-Newtonian approximation of the general theory of relativity.
We have developed a wave-theoretical treatment for light diffraction in the field of a static gravitational mass monopole
and considered the case of a monochromatic EM wave coming from a point source at a large distance from the
monopole. We obtained a solution for the EM field everywhere around the lens and especially in the immediate
vicinity of its focal line, where the geometric optics leads to diverging results. As anticipated, because of wave effects
in the focal region, our wave-optical treatment is immune to singularities, allowing us to describe the optics of the
SGL and understand its image formation properties. As such, in contrast to models based purely on geometric optics,
our approach allows us to consider practical questions related to the design of a SGT, in part by permitting the use
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of traditional tools of telescope design. The results that we obtained allow us to compute the PSF, resolution and
FOV, as well as the evolution of these quantities at various heliocentric distances along the focal line. These will help
improve our understanding of the unique properties of the SGL for imaging and spectroscopic investigations.
Our presentation is streamlined, taking full advantage of the weak-field gravity in the solar system. We also benefit

from the tools and techniques borrowed from nuclear physics, specifically from the physics of scattering in a Coulomb
field. Our approach can be extended to include higher-order solar gravity multipoles, if needed. We find that the
formalism for Coulomb scattering from the nuclear physics literature is directly applicable. However, whereas nuclear
particle physics studies focus on the scattering of scalar particles, we were able to develop the formalism required to
describe the scattering of a vector EM field in the post-Newtonian approximation of the solar gravitational field.
Our results represent the first step towards developing a comprehensive theory of image formation by the SGL and

the tools needed for mission design, data collection and processing, and ultimate image deconvolution [14, 15, 26, 27].
Several effects of gravitational and dynamical areas will require further analysis. In particular: i) distinguishing
the bright solar disk from the annulus of an Einstein ring, and the constraints it places on the performance of the
SGT; ii) effects due to the solar corona and solar plasma on light propagation; iii) effects due to solar oblateness and
solar rotation on the spatial and temporal properties of the caustic formed by the SGL; iv) effects of reflex motion of
the Sun with respect to the solar system’s barycentric coordinate reference system due to the presence of the giant
gaseous planets in the solar system; v) effects of proper motion of the exoplanet’s parent star, orbital motion of the
planet around the barycenter of its planetary system, diurnal rotation of the planet, orientation of its axis of rotation,
precision and nutation; vi) temporal changes in the targeted planet’s appearance due to changing illumination, varying
cloud cover, changes in atmospheric chemistry, varying surface features (ice cover, vegetation), varying illumination
by its host star, and eclipses due to any satellites. Some of these aspects will be addressed in the upcoming study of
a mission to the SGL that is to be conducted at JPL [67]. The results of this study will be available elsewhere.
Concluding, we emphasize that our present understanding of the properties of the SGL and its value for imaging

and spectroscopy is about at the same level as we knew gravitational waves back in the 1970s. At that time, the
physics of gravitational waves was already well understood, but the technology needed for their detection was a long
way in the future. That “future” for the research in gravitational wave came at the centennial of general relativity
with the results of the first direct detection of the gravitational waves reported by the LIGO team [68]. It is our hope
and desire that by the theory’s sesquicentennial, we will be in possession of a fully developed set of technologies as well
as the spacecraft, instruments, and data analysis tools required to collect data and present us with high-resolution
imaging and spectroscopy of habitable exoplanets, relying on the physics of the solar gravitational lens.
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Appendix A: Three-dimensional metric and (3 + 1) decomposition

We summarize basic rules for vector transformations and differential operators in curvilinear coordinates, for con-
venience and also to introduce the notations used throughout the present paper.
Following [31] (see §84), we consider a generic interval and its 3 + 1 decomposition:

ds2 = gmndx
mdxn =

(√
g00dx0 +

g0α√
g00

dxα
)2

− καβdx
αdxβ , (A1)

where the three-dimensional metric καβ is given as:

καβ = −gαβ +
g0αg0β
g00

, κ = detκαβ . (A2)

If gmn is diagonal, so is καβ . In the following, we assume a diagonal metric. We consider the standard basis [35]
with unit basis vectors i1(x

1, x2, x3), i2(x
1, x2, x3), i3(x

1, x2, x3) respectively directed along the coordinates x1, x2, x3.
When καβ is diagonal, these basis vectors form an orthonormal basis (iα · iβ = δαβ).

Components of a vector F in this basis are defined by F̂α = (F · iα) (no summation), such that

F = F̂1i1 + F̂2i2 + F̂3i3. (A3)

We now form the covariant basis as

eα =
√
καα iα (no summation), (A4)

and the corresponding contravariant basis as

e1(x1, x2, x3) =
e2 × e3

[e1e2e3]
, e2(x1, x2, x3) =

e3 × e1

[e1e2e3]
, e3(x1, x2, x3) =

e1 × e2

[e1e2e3]
, (A5)

where [abc] = (a · [b× c]) represents the vector triple product.
We obtain the covariant components of a vector F as Fα = (F·eα) and the contravariant components as Fα = F·eα.

Consequently,

F̂α =
√
κααF

α = ± 1√
καα

Fα. (A6)

The expressions to transform Fα from coordinates ξm with Lamé coefficients hm to ξ′n with Lamé coefficients h′n
are given as (see Chapter 1.3 in [51]):

F ′
α =

∑

β

γαβFβ , where
hβ
h′α

∂ξβ
∂ξ′α

= γαβ =
h′α
hβ

∂ξ′α
∂ξβ

, (A7)

where for an orthonormal coordinate systems endowed with the diagonal 3-metric καβ (A2), we have hα =
√
καα.
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The differential operators gradκψ = ∇κψ, divκF = (∇κ · F), curlκF = [∇κ × F], and ∆κψ = (∇κ · ∇κ)ψ in
orthonormal coordinate systems endowed with the diagonal 3-metric καβ, Eq. (A2), are given as [31, 35, 51]:

gradκψ =
i1√
κ11

∂ψ

∂x1
+

i2√
κ22

∂ψ

∂x2
+

i3√
κ33

∂ψ

∂x3
. (A8)

divκF =
1√
κ

[ ∂

∂x1

(

√
κ√
κ11

F̂1

)

+
∂

∂x2

(

√
κ√
κ22

F̂2

)

+
∂

∂x3

(

√
κ√
κ33

F̂3

)]

. (A9)

curlκF =
1√
κ

[√
κ11 i1

( ∂

∂x2
(√
κ33F̂3

)

− ∂

∂x3
(√
κ22F̂2

)

)

+
√
κ22 i2

( ∂

∂x3
(√
κ11F̂1

)

− ∂

∂x1
(√
κ33F̂3

)

)

+

+
√
κ33 i3

( ∂

∂x1
(√
κ22F̂2

)

− ∂

∂x2
(√
κ11F̂1

)

)]

, (A10)

∆κψ =
1√
κ

[ ∂

∂x1

(

√
κ

κ11

∂ψ

∂x1

)

+
∂

∂x2

(

√
κ

κ22

∂ψ

∂x2

)

+
∂

∂x3

(

√
κ

κ33

∂ψ

∂x3

)]

. (A11)

Appendix B: Light propagation in weak and static gravity

1. Geodesics in weak and static gravity

To investigate the propagation of light in the vicinity of the Sun, we consider the metric (1). We represent the
trajectory of a photon as

xα(t) = xα0 + kαc(t− t0) + xαG (t) +O(G2), (B1)

where kα is the unit vector in the unperturbed direction of photon’s propagation and xαG (t) is the post-Newtonian
term. We define the four-dimensional wave vector in a curved space-time as usual:

Km =
dxm

dλ
=
dx0

dλ
(1,

dxα

dx0
) = K0(1, κα), (B2)

where λ is the parameter along the ray’s path and κα = dxα/dx0 is the unit vector in that direction, i.e., κǫκ
ǫ = −1

(don’t confuse κα with the three-dimensional metric καβ in A2). From (B1) we see that the unit vector κα may be
represented as κα = kα + kαG (t) + O(G2), where kαG (t) = dxαG /dx

0 is the post-Newtonian perturbation. The wave
vector obeys the geodesic equation: dKm/dλ+ ΓmklK

mK l = 0, which yields

dK0

dλ
− 2K0Kǫ∂ǫU = O(G2), (B3)

dKα

dλ
+ 2KαKǫ∂ǫU +

(

(K0)2 −KǫK
ǫ
)

∂αU = O(G2). (B4)

Equation (B3) is an integral of motion due to energy conservation. Indeed, we can present it as

dK0

dλ
− 2K0Kǫ∂ǫU =

d

dλ

(

g00
dx0

dλ

)

+O(G2) = O(G2). (B5)

Therefore, in the static field energy is conserved, and we have the following integral of motion:

g00
dx0

dλ
= const +O(G2) ⇒ x0 = ct = k0λ+ x0G(λ) +O(G2), (B6)

where x0G(λ) is the post-Newtonian correction. We recall that the wave vector Km is a null vector, which, to first
order in G and with K0 = k0 +O(G) yields KmK

m = 0 = (k0)2
(

1 + γǫβk
ǫkβ +O(G)

)

. Then, Eq. (B4) becomes

dKα

dλ
+ 2(k0)2(kαkǫ − γαǫkµk

µ)∂ǫU = O(G2). (B7)

We can now represent (B7) in terms of derivatives with respect to time x0. First we have

dKα

dλ
= (K0)2

d2xα

dx02
+
dK0

dλ

dxα

dx0
. (B8)
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Substituting (B8) into (B7) and using (B3), we have

d2xα

dx02
+ 2(kαkǫ − γαǫkµk

µ)∂ǫU = −dK
0

dλ

dxα

dx0
1

(k0)2
+O(G2) = −2kαkǫ∂ǫU +O(G2). (B9)

Remember that for light ds2 = 0. Then, from the fact that it moves along the light cones, the following expression is
valid gmn(dx

m/dx0)(dxn/dx0) = 0 = 1 + kǫk
ǫ +O(G), which for (B9) yields

d2xα

dx02
= −2

(

γαǫ + 2kαkǫ
)

∂ǫU +O(G2). (B10)

We begin by examining the Newtonian part of (B1) and representing it as

xα(t) = xα0 + kαc(t− t0) +O(G) = xα0 − kα(k · x0) + kα
(

(k · x0) + c(t− t0)
)

+O(G) =

= [k× [x0 × k]]α + kα
(

(k · x0) + c(t− t0)
)

+O(G). (B11)

Following [42, 69], we define bα0 ≡ b0 = [[k×x0]×k]+O(G) to be the impact parameter of the unperturbed trajectory
of the light ray. The vector b0 is directed from the origin of the coordinate system toward the point of the closest
approach of the unperturbed path of light ray to that origin. We also introduce the parameter ℓ = ℓ(t) as follows:

ℓ = (k · x) = (k · x0) + c(t− t0). (B12)

These quantities allow us to rewrite (B11) as

xα(ℓ) = bα0 + kαℓ +O(G), r(ℓ) =
√

b20 + ℓ2 +O(G). (B13)

The following relations hold:

r + ℓ =
b20
r − ℓ

+O(G), r0 + ℓ0 =
b20

r0 − ℓ0
+O(G), and

r + ℓ

r0 + ℓ0
=
r0 − ℓ0
r − ℓ

+O(G). (B14)

They are useful for presenting the results of integration of the light ray equations in different forms. Clearly, when
the coordinate system oriented along the initial direction of the ray’s path, then ℓ = (k · x) = z.
Below, we focus our discussion on the largest contribution to the gravitational deflection of light that due to the

field produced by a monopole. In this case, the Newtonian potential has may be given by U(r) = rg/2r+O(r−3, c−4),
where rg = 2GM/c2 is the Schwarzschild radius of the source. Therefore, the quantity u in (1) has the form

u = 1 +
rg
2r

+O(r−3, c−4). (B15)

If needed, one can account for the contribution of the higher-order multipoles using the tools developed in [42, 43].
Limiting our discussion to the monopole given by (B15), we have ∂αU = −(rg/2r

2)∂αr + O(G2, r−4). We recall
that ∂αr = ∂α

√−xǫxǫ = −xα/r. Then, ∂αU = (rg/2r
3)xα +O(G2, r−4). In this case, Eq. (B10) takes the form:

d2xα

dx02
= −rg

(

γαǫ + 2kαkǫ
)xǫ

r3
+O(G2) = −rg

bα0 − kαℓ

(b20 + ℓ2)3/2
+O(G2). (B16)

Making the substitution d/dx0 = d/dℓ, we have the following equation:

d2xα

dℓ2
= −rg

bα0 − kαℓ

(b20 + ℓ2)3/2
+O(G2). (B17)

We integrate (B17) from −∞ to ℓ to get the following result:

dxα

dℓ
= kα − rg

∫ ℓ

−∞

bα0 − kαℓ′

(b20 + ℓ′2)3/2
dℓ′ +O(G2) = kα − rg

( kα
√

b20 + ℓ2
+
bα0
b20

( ℓ
√

b20 + ℓ2
+ 1
)

)

+O(G2), (B18)

or, equivalently, with the help of (B12)–(B13) we have the following expression for the wave vector κα from (B2):

κα =
dxα

dℓ
= kα

(

1− rg
r

)

− rg
b20
bα0
(

1 +
(k · x)
r

)

+O(G2). (B19)
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We may now integrate (B18) from ℓ0 to ℓ to obtain

xα(ℓ) = bα0 + kαℓ− rg

∫ ℓ

ℓ0

( kα
√

b20 + ℓ′2
+
bα0
b20

( ℓ′
√

b20 + ℓ′2
+ 1
)

)

dℓ′ +O(G2), (B20)

which results in

xα(ℓ) = bα0 + kαℓ− rg

(

kα ln
ℓ +

√

b20 + ℓ2

ℓ0 +
√

b20 + ℓ20
+
bα0
b20

(

√

b20 + ℓ2 + ℓ−
√

b20 + ℓ20 − ℓ0
)

)

+O(G2), (B21)

or, equivalently, substituting ℓ and r from (B12)–(B13), we have

xα(t) = xα0 + kαc(t− t0)− rg

(

kα ln
r + (k · x)
r0 + (k · x0)

+
bα0
b20

(

r + (k · x)− r0 − (k · x0)
)

)

+O(G2). (B22)

Therefore, the trajectory of a photon in a static weak gravitational field is described by (B21), while the direction
of its wave vector κα = dxα/dx0 is given by (B19). For a radial light ray given by kα = xα0 /r0 = nα0 and b0 = 0, then
Eqs. (B19) and (B22) become

dxα

dℓ
= nα0

(

1− rg
r

)

+O(G2), (B23)

xα(t) = xα0 + nα0 c(t− t0)− rgn
α
0 ln

r

r0
+O(G2). (B24)

The solutions given by Eqs. (B22) and (B24) describe the motion of a photon along a geodesic in the post-
Newtonian approximation in the static spacetime of a monopole. While Eq. (B22) describes the motion along an
arbitrary geodesic, Eq. (B24) deals only with radial propagation of light.

2. Geometric optics approximation for the wave propagation in the vicinity of a massive body

In geometric optics, the phase ϕ is a scalar function, a solution to the eikonal equation [3, 31, 42, 70]:

gmn∂mϕ∂nϕ = 0. (B25)

Given the wave vector Km = ∂mϕ, and its tangent Km = dxm/dλ = gmn∂nϕ where λ is an affine parameter, we note
that (B25) states that Km is null (gmnK

mKn = 0), thus

dKm

dλ
=

1

2
∂mgklK

kK l. (B26)

Eq. (B25) can be solved by assuming an unperturbed solution that is a plane wave:

ϕ(t,x) = ϕ0 +

∫

kmdx
m + ϕG(t,x) +O(G2), (B27)

where ϕ0 is an integration constant and, to Newtonian order, km = (k0, kα) = k0(1,k), where k0 = ω/c, is a constant
null vector of the unperturbed photon trajectroy, γmnk

mkn = O(G); ϕG is the post-Newtonian perturbation of the
eikonal. The wave vector Km(t,x) then also admits a series expansion in the form

Km(t,x) =
dxm

dλ
= gmn∂nϕ = km + kmG (t,x) +O(G2), (B28)

where kmG (t,x) = γmn∂nϕG(t,x) is the first order perturbation of the wave vector. Substituting (B27) into (B25) and
defining hmn = gmn − γmn with gmn, we obtain an ordinary differential equation to for ϕG:

dϕG

dλ
= −1

2
hmnkmkn = −2k20

c2
U +O(G2), (B29)

where dϕG/dλ = Km∂
mϕ. Similarly to (B1), to Newtonian order, we represent the light ray’s trajectory as

{xm} =
(

x0 = ct, x(t) = x0 + kc(t− t0)
)

+O(G), (B30)
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and substituting a monopole potential characterized by the Schwarzschild radius rg for U , we obtain

dϕG

dλ
= − k20rg

|x0 + kc(t− t0)|
. (B31)

Representation (B30) allows us to express the Newtonian part of the wave vector Km, as given by (B28), as
Km = dxm/dλ = k0

(

1,k
)

+O(G), where k0 is immediately derived as k0 = cdt/dλ+O(G) and |k| = 1. Keeping in
mind that km is constant, we establish an important relationship:

dλ =
cdt

k0
+O(G) =

cdt

k0
+O(G), (B32)

which we use to integrate (B31). As a result, in the body’s proper reference frame [32, 44], we then obtain

ϕ(t,x) = ϕ0 + k0

(

c(t− t0)− k · (x− x0)− rg ln
[ r + (k · x)
r0 + (k · x0)

])

+O(G2), (B33)

which, for a radial light ray characterized by kα = xα0 /r0 = nα0 (similarly to (B24)), yields

ϕ(t,x) = ϕ0 + k0

(

c(t− t0)− (r − r0)− rg ln
r

r0

)

+O(G2). (B34)

It is worth pointing out that the results obtained here for the phase of an EM wave (B33) and (B34) are equivalent
to those obtained in the preceding section obtained for the geodesic trajectory of a photon (B22) and (B24).

3. Local basis vectors

In Section II D we introduced the local basis vectors κ = K/|K|,π = [κ × n]/|[κ × n]| and ǫ = [π × κ]. These
vectors are very convenient to develop the results in this paper. In this appendix, we express these vectors in various
coordinates with accuracy to the order of O(r2g). We do that by using an expression for the trajectory of the photon
(B22) and its phase ϕ, (B33) or, similarly, (23). We recognize from (23) that for a wave coming from −∞ along the
z-axis, the time-independent part of the phase with (k · r) = z has the form:

ϕ = k0
(

z − rg ln k0(r − z) +O(r2g)
)

. (B35)

From the definition for the wave vector, Kα = ∂αϕ, and with the help of (B14), we have

Kα = ∂αϕ = k0

(

kα
(

1 +
rg
r

)

− rg
b20

(

1 +
(k · r)
r

)

bα +O(G2)
)

. (B36)

The covariant wave vector Kα is given as:

Kα =
dxα

dλ
=
dx0

dλ

dxα

dx0
= K0dx

α

dx0
. (B37)

From (B19), we have

dxα

dx0
=
dxα

dℓ
= kα

(

1− rg
r

)

− rg
b20

(

1 +
(k · r)
r

)

bα +O(G2). (B38)

Also, defining K0 = k0 = ω0/c (see [31]) in a static field, we have

K0 = g0iKi = g00K0 + g0ǫKǫ = g00K0 = u2k0 = (1 +
rg
r
)k0. (B39)

Therefore, collecting all the terms we have the following expression for Kα:

Kα = K0 dx
α

dx0
= k0

(

kα − rg
b20

(

1 +
(k · r)
r

)

bα +O(G2).
)

(B40)

We can verify that the following relations hold:

Kα = gαǫKǫ = gαǫ∂ǫϕ = u−2γαǫ∂ǫϕ. (B41)
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Next, we use expression (B22) for the position vector of a photon on its trajectory, written as

r(t) = b0 + ℓk− rg

(

k ln
r + (k · r)
r0 + (k · r0)

+
b0

b20

(

r + (k · r)− r0 − (k · r0)
)

)

+O(G2), (B42)

where ℓ and r are given by (B12) and (B13), correspondingly. Expressions (B40) and (B42) allow us to compute all
local vectors for a ray moving in the plane formed by k and r vectors:

κ(t) = K/|K| = k− rg
r − z

1

r
b0 +O(r2g), (B43)

π(t) = [κ× r]/|[κ× r]| = [k× b0]/|[k× b0]|+O(r2g), (B44)

ǫ(t) = [π × κ] =
b0

b0
+

rg
r − z

b0
r
k+O(r2g). (B45)

In the Cartesian coordinate system (x, y, z) used to develop (36)–(37), remembering that the impact parameter has
the form b0 = [k× [r× k]] +O(rg) = (x, y, 0) +O(rg), we present (B43)–(B45) in the following convenient form:

κ(t) = K/|K| = ez −
rg
r − z

1

r

(

x ex + y ey
)

+O(r2g), (B46)

π(t) = [κ× ex]/|[κ× ex]| = ey +
rg
r − z

y

r
ez +O(r2g), (B47)

ǫ(t) = [π × κ] = ex +
rg
r − z

x

r
ez +O(r2g). (B48)

The local basis vectors (B46)–(B48) represent the right-handed set of orthonormal unit vectors, that is the following
relationships exist [ǫ×π] = κ+O(r2g), [π×κ] = ǫ+O(r2g), [κ×ǫ] = π+O(r2g), thus, (ǫ·π) = (ǫ·κ) = (π·κ) = 0+O(r2g).

One can also verify that ǫ2 = π
2 = κ

2 = 1 +O(r2g).

4. Spherical waves in the weak and static gravity

We know from quantum mechanics that spherical waves are important for the scattering problem. To study spherical
waves in a weak and static gravitational field, we need to find solutions to the EM field by solving (18), namely:

∆ψ + k2
(

1 +
2rg
r

)

ψ = O(r2g , r
−3). (B49)

We seek a spherically symmetric solution with the following properties:

∂ψ

∂θ
=
∂ψ

∂φ
= 0, or, in other words, ψ = ψ(r). (B50)

In this case the d’Alembertian ∆ψ reduces to

∆ψ =
1

r2
∂

∂r

(

r2
∂ψ

∂r

)

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂ψ

∂θ

)

+
1

r2 sin2 θ

∂2ψ

∂φ2
⇒ ∆ψ =

1

r2
∂

∂r

(

r2
∂ψ

∂r

)

. (B51)

Therefore, (B49) takes the form

∂2ψ

∂r2
+

2

r

∂ψ

∂r
+ k2

(

1 +
2rg
r

)

ψ = O(r2g , r
−3). (B52)

A formal solution to (B52) may be given in the terms of confluent hypergeometric function [55]:

ψ(r) = Ae±ikr1F1[1∓ ikrg, 2,∓2ikr] +O(r2g , r
−2), (B53)

where 1F1 is the confluent hypergeometric function of the first kind (C2) and A is arbitrary constant.
Following the same approach that was demonstrated in Sec. II C, we studied the asymptotic behavior of the solution

(B53). It turned out that such a solution may be given as follows:

ψ1(r) = ±A

ik

e−
π
2 krg

Γ(1 ± ikrg)

1

r
e±ik(r+rg ln 2kr) +O(r2g , r

−2). (B54)
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By choosing the constant A = ±ike π
2 krgΓ(1± ikrg), we may present the solution for a spherical wave in the weak

and static gravity in the following form:

ψ(r) =
c1
r
eik
(

r+rg ln 2kr
)

+
c2
r
e−ik

(

r+rg ln 2kr
)

+O(r2g , r
−2), (B55)

representing both incoming and outgoing radial waves, with c1, c2 being arbitrary constants. Note that the spherical
wave solution (B55) that we obtained is consistent with the solution for the phase of a radially propagating beam of
light (i.e., radial geodesic) given by (B34). Equation (B55) establishes the functional dependence of the logarithmic
term, which is important for the discussions of the scattering problem in Sec. II C.

Appendix C: The confluent hypergeometric function

1. Mathematical properties of the confluent hypergeometric function

We present some of the properties of the confluent hypergeometric function, denoted here as F [α|β|w], which are
useful to derive our results. As defined (e.g., [55]), F [α|β|w] is the regular solution of

w
d2F

dw2
+ (β − w)

dF

dw
− αF = 0. (C1)

It is given by [55]:

1F1[α, β, w] = 1 +
α

β

w

1!
+
α(α + 1)

β(β + 1)

w2

2!
+
α(α + 1)(α+ 2)

β(β + 1)(β + 2)

w3

3!
+ ... =

∞
∑

n=0

Γ(n+ α)Γ(β)

Γ(α)Γ(n+ β)

wn

n!
. (C2)

The function 1F1 satisfies the following identities:

F [α|β|w] = ewF [β − α|β|−w], (C3)

d

dw
F [α|β|w] =

α

β
F [α+ 1|β + 1|w] = α

β

{

F [α+ 1|β|w]− F [α|β|w]
}

=

=
(α

β
− 1
)

F [α|β + 1|w] + F [α|β|w] = β − 1

w

{

F [α|β|w] − F [α|β − 1|w]
}

. (C4)

Specifically,

d

dw
F [α, β, w] ≡ F ′[α, β, w] =

α

β
F [α+ 1, β + 1, w], (C5)

In Sec. III C we introduced two useful functions (106):

F [1] = 1F1[ikrg, 1, ikr(1− cos θ)], F [2] = 1F1[1 + ikrg, 2, ikr(1− cos θ)]. (C6)

Equation (C5) leads to the following useful relation between F [1] and F [2]:

1F1[1 + ikrg, 2, ikr(1− cos θ)] =
1

ikrg
1F1

′[ikrg, 1, ikr(1− cos θ)] or F [2] =
1

ikrg
F ′[1]. (C7)

We will use this property when evaluating various contributions to the EM field on the image plane and the relevant
Poynting vector, discussed in Secs. III G and III H, correspondingly.

2. Asymptotic behavior of F [1] and F [2] at large values of argument

The asymptotic form of 1F1 for large |w|, fixed α, β can be obtained by writing [54, 55]:

1F1[α, β, w] = W1[α, β, w] + W2[α, β, w], (C8)
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where the functions W1 and W2 have the following asymptotic behavior [40, 45]:

lim
|w|→∞

W1[α, β, w] =
Γ(β)

Γ(β − α)
(−w)−αG[α, α− β + 1,−w], − π < arg(−w) < π, (C9)

lim
|w|→∞

W2[α, β, w] =
Γ(β)

Γ(α)
ewwα−βG[1− α, β − α,w], − π < arg(w) < π, (C10)

with the function G given [52] in the form

G[α, β, w] =
Γ(1− β)

2πi

∫

C1

(

1 +
t

z

)−α

tβ−1et dt, (C11)

where the integration path C1 goes from minus infinity around the origin (t = 0) counterclockwise and back to minus
infinity. Integrating by parts, we obtain the asymptotic series

G[α, β, w] =

∞
∑

n=0

Γ(n+ α)Γ(n+ β)

Γ(α)Γ(β)

w−n

n!
=

= 1 +
αβ

1!w
+
α(α+ 1)β(β + 1)

2!w2
+
α(α+ 1)(α+ 2)β(β + 1)(β + 2)

3!w3
+ ... (C12)

This is an asymptotic expansion. For arbitrary values of α, β and w, successive terms may eventually grow in size
beyond limit. However, it is true that there exist functions |ϑn(α, β, w)| < 1 such that

G[α, β, w] =
n−1
∑

k=0

Γ(k + α)Γ(k + β)

Γ(α)Γ(β)

w−k

k!
+ ϑn(α, β, w)

Γ(n + α)Γ(n+ β)

Γ(α)Γ(β)

w−n

n!
, (C13)

i.e., when the series is truncated after (n− 1) terms, the error is no greater than the n-th term [71, 72].
Given the asymptotic properties of 1F1[α, β, w] from (C8), we take the solution to equation (18) which is given by

(20) as ψ(r) = ψ0e
ikz

1F1

(

ikrg, 1, ik(r − z)
)

and split it in the form of ψ(r) = ψinc(r) + ψs(r), where ψ(r)inc is the
incoming and ψs(r) is the scattered waves, correspondingly, which are given as

ψinc(r) = ψ0e
ikz

W1

(

ikrg, 1, ik(r − z)
)

, (C14)

ψs(r) = ψ0e
ikz

W2

(

ikrg, 1, ik(r − z)
)

. (C15)

Using the asymptotic forms (C9) and (C10), for large values of the argument k(r− z) → ∞, function W1 and W2 have
the following asymptotic behavior:

lim
k(r−z)→∞

W1

(

ikrg, 1, ik(r − z)
)

=
e−

π
2 krg

Γ(1− ikrg)
e−ikrg lnk(r−z)

G[ikrg, ikrg,−ik(r − z)], (C16)

lim
k(r−z)→∞

W2

(

ikrg, 1, ik(r − z)
)

=
e−

π
2 krg

Γ(ikrg)

1

ik(r − z)
eik
(

r−z+rg ln k(r−z)
)

G[1− ikrg, 1− ikrg, ik(r − z)]. (C17)

From the asymptotic expansion of G given by (C12), we find that

G[ikrg, ikrg,−ik(r − z)] = 1 +
k2r2g

ik(r − z)
+ ... = 1 +O

( ikr2g
r − z

)

, (C18)

G[1− ikrg, 1− ikrg, ik(r − z)] = 1 +
(1− ikrg)

2

ik(r − z)
+ ... = 1− 2rg

r − z
+O

( ikr2g
r − z

)

, (C19)

where, in (C19), we used the fact that for the large values of the argument k(r − z) → ∞ and for the high-frequency
EM waves krg ≫ 1. This allows us to write

ψinc(r) = ψ0
e−

π
2 krg

Γ(1− ikrg)
eik
(

z−rg lnk(r−z)
)

{

1 +O
( ikr2g
r − z

)}

, (C20)

ψs(r) = ψ0
e−

π
2 krg

Γ(1 + ikrg)

rg
r − z

eik
(

r+rg lnk(r−z)
)

{

1 +O
( ikr2g
r − z

)}

, (C21)
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where in (C21) we neglected the term O(r2g/(r−z)2), as being beyond the first post-Newtonian approximation taken in
(1)–(2). Also, examining the order terms in these approximations, we note that although their absolute magnitudes
are large, they are small compared to the logarithmic term krg ln k(r − z) present in the series expansion of the
preceding exponential. That is to say that the order term contributes to the Shapiro delay (which is present in the
phase of (C20) in the form of δdshap = −rg ln k(r − z) + O(r2g)) at the second post-Newtonian order, namely it is of

the order of O(r2g/(r − z)), which is beyond the first post-Newtonian approximation accepted in this paper.

Collecting the terms, we may now present the asymptotic behavior F [1] = F [ikrg, 1, ik(r − z)
]

at large values of
the argument k(r − z) → ∞, which, to post-Newtonian order, is given as below:

F [1] =
e−

π
2 krg

Γ(1− ikrg)

{

e−ikrg ln k(r−z) +
rg
r − z

Γ(1− ikrg)

Γ(1 + ikrg)
eik
(

r−z+rg ln k(r−z)
)

+O
( ikr2g
r − z

)}

. (C22)

The approximations given by (C20)–(C21) and by the resulting expression (C22) are good so long as rg/(r − z) . 1,
which, together with z = r cos θ, yields a constraint

θ &

√

2rg
r
. (C23)

Similarly, we study the behavior of the function F [2] = F [1 + ikrg, 2, ik(r − z)]. First, we present F [2] = W3 + W4,
where for large values of k(r − z), functions W3 and W4 have the following asymptotic behavior:

lim
k(r−z)→∞

W3

(

1 + ikrg, 2, ik(r − z)
)

=
ie−

π
2 krg

Γ(1 − ikrg)

1

k(r − z)
e−ikrg ln k(r−z)

G[1 + ikrg, ikrg,−ik(r − z)] =

=
ie−

π
2 krg

Γ(1 − ikrg)

1

k(r − z)
e−ikrg ln k(r−z)

{

1 +O
( ikr2g
r − z

)}

, (C24)

lim
k(r−z)→∞

W4

(

1 + ikrg, 2, ik(r − z)
)

= − ie−
π
2 krg

Γ(1 + ikrg)

1

k(r − z)
eik
(

r−z+rg ln k(r−z)
)

G[−ikrg, 1− ikrg, ik(r − z)] =

= − ie−
π
2 krg

Γ(1 + ikrg)

1

k(r − z)
eik
(

r−z+rg ln k(r−z)
)

{

1 +O
( ikr2g
r − z

)}

. (C25)

As a result, the asymptotic behavior of F [2] = F [1 + ikrg, 2, ik(r − z)
]

at large values of the argument |w| =
k(r − z) → ∞ and angles θ outside the immediate vicinity of the optical axis, i.e., satisfying (C23), is given as

F [2] =
e−

π
2 krg

Γ(1− ikrg)

i

k(r − z)

{

e−ikrg ln k(r−z) − Γ(1 − ikrg)

Γ(1 + ikrg)
eik
(

r−z+rg lnk(r−z)
)

+O
( ikr2g
r − z

)}

. (C26)

3. Asymptotic behavior of F [1] and F [2] at small angles

To understand the properties of the SGL near the optical axis, we need to the investigate the behavior of the
solution at small angles. Based on the properties of the hypergeometric function (C2), here we consider the behavior
of F [1] and F [2] from (C6) when θ is small. Using α = ikrg and w = ikr(1− cos θ), we define

x = −αw = k2rgr(1 − cos θ) ≥ 0. (C27)

We next rearrange (C2) as

F [1] =

∞
∑

n=0

Γ(n+ α)Γ(1)

Γ(α)Γ(n+ 1)
· w

n

n!
=

∞
∑

n=0

Γ(n+ α)wn

Γ(α)(n!)2
= 1 +

∞
∑

n=1

[(

n−1
∏

k=0

(α+ k)

)

wn

(n!)2

]

=

= 1 + αw + α(α+ 1)
w2

(2!)2
+ α(α+ 1)(α+ 2)

w3

(3!)2
+ α(α+ 1)(α+ 2)(α+ 3)

w4

(4!)2
+ ... =

=

∞
∑

n=0

(α)n
wn

(n!)2
=

∞
∑

n=0

n
∑

k=0

(−1)n−ks(n, k)αk
wn

(n!)2
, (C28)
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where ()n denotes Pochhammer’s symbol6 with ()0 = 1, and s(n, k) is the Stirling number of the first kind [55];
s(0, 0) = 1. Reversing the order of summation yields

F [1] =

∞
∑

k=0

∞
∑

n=k

(−1)n−ks(n, k)αk
wn

(n!)2
=

∞
∑

n=0

vn(−1)n
∞
∑

k=0

s(n+ k, k)
(αw)k

[(n+ k)!]2
=

∞
∑

n=0

wnAn, (C29)

with An = (−1)n
∞
∑

k=0

s(n + k, k)
(αw)k

[(n+ k)!]2
. The Stirling number of the first kind can be evaluated [55] in terms of

the Stirling number of the second kind, which, in turn, also has a closed form sum:

s(n+ k, k) =

n
∑

m=0

(−1)m
(

n+ k − 1 +m
n+m

)(

2n+ k
n−m

)

1

(n+m)!

m
∑

l=0

(−1)m−l

(

m
l

)

ln+m.

This can be evaluated for specific values of n:

s(k, k) = 1, s(2 + k, k) =
1

24
k(k + 1)(k + 2)(3k + 5),

s(1 + k, k) = −1

2
k(k + 1), s(3 + k, k) = − 1

48
k(k + 1)(k + 2)2(k + 3)2. (C30)

We also note that the Bessel functions are given by Jn(2
√
x) = (

√
x)n

∞
∑

k=0

(−x)k
k!(n+ k)!

. Given x = −αw, we have

An = (−1)n
∞
∑

k=0

s(n+ k, k)
(−x)k

[(n+ k)!]2
, therefore

A0 =

∞
∑

k=0

(−x)k
(k!)2

= J0(2
√
x), (C31)

A1 =
1

2

∞
∑

k=1

k(k + 1)
(−x)k

[(1 + k)!]2
=

1

2

∞
∑

k=0

(−x)k+1

k!(k + 2)!
=

1

2
J2(2

√
x), (C32)

A2 =
1

24

∞
∑

k=1

k(k + 1)(k + 2)(3k + 5)
(−x)k

[(2 + k)!]2
=

1

8
J4(2

√
x)− 1

3
√
x
J3(2

√
x), (C33)

A3 =
1

48

∞
∑

k=1

k(k + 1)(k + 2)2(k + 3)2
(−x)k

[(3 + k)!]2
= − 1

48
J2(2

√
x). (C34)

Substituting (C31)–(C34) into (C29), we obtain a very useful expression for the confluent hypergeometric function
F [1] = 1F1[α, 1, w] in terms of Bessel functions:

F [1] = J0(2
√
x)− w

2
J2(2

√
x) + w2

{1

8
J4(2

√
x)− 1

3
√
x
J3(2

√
x)
}

− w3

48
J2(2

√
x) +

+

∞
∑

n=4

(−w)n
∞
∑

k=0

s(n+ k, k)
(−x)k

[(n+ k)!]2
. (C35)

This result is also consistent with (13.3.8) in [55]. Using the properties of the Bessel functions [55], namely that

Jp+1(z) =
2p

z
Jp(z)− Jp−1(z), (C36)

we can present J4(2
√
x) in (C35) as J4(2

√
x) = (3/

√
x)J3(2

√
x)−J2(2

√
x), which allows us to write (C35) in a slightly

different form as

F [1] = J0(2
√
x)− w

2
J2(2

√
x) + w2

{ 1

24

1√
x
J3(2

√
x)− 1

8
J2(2

√
x)
}

− w3

48
J2(2

√
x) +

6 http://mathworld.wolfram.com/PochhammerSymbol.html
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+

∞
∑

n=4

(−w)n
∞
∑

k=0

s(n+ k, k)
(−x)k

[(n+ k)!]2
. (C37)

Following the same approach, we may obtain a relation for the function F [2]:

F [2] =
1√
x
J1(2

√
x)
(

1 +
w

2
+
w2

8
+
w3

48

)

+
w2

12x

(

1 +
w

2

)

J2(2
√
x) +

+
∞
∑

n=4

(−w)n
∞
∑

k=0

s(n+ k, k)
(−x)k

(n+ k − 1)!(n+ k)!
. (C38)

In a small angle approximation we use θ = ρ/z + O((ρ/z)2) and noting that r ∼ z + O(rg), we present w as
|w| = kr(1 − cos θ) ≈ πρ2/zλ+O(rg). Thus, in the immediate vicinity of the optical axis |w| < 1. As a result, the
functions F [1] and F [2] may be presented as

F [1] = J0(2
√
x) + J2(2

√
x)
(

1− ew/2
)

+
w2

24

1√
x
J3(2

√
x) +O(w4), (C39)

F [2] =
( 1√

x
J1(2

√
x) +

w2

12x
J2(2

√
x)
)

ew/2 +O(w4). (C40)

When |w| is small enough such that terms containing w2 may also be omitted, we can keep only the leading terms
in these expressions:

F [1] = J0(2
√
x)− 1

2wJ2(2
√
x) +O(w2), (C41)

F [2] =
1√
x
J1(2

√
x) +O(w). (C42)

Based on these expressions, we may compute the following combinations:

F [1]F [1]∗ = J2
0 (2

√
x) +O(w2), 1

2

(

F [1]F [2]∗ + F [1]∗F [2]
)

=
1√
x
J0(2

√
x)J1(2

√
x) +O(w2), (C43)

F [2]F [2]∗ =
1

x
J2
1 (2

√
x) +O(w2), 1

2

(

F [1]F [2]∗ − F [1]∗F [2]
)

= O(w), (C44)

where A∗ denotes a complex conjugate of A and x is given by (C27).

Appendix D: Properties of Coulomb functions

1. Differential equation

In spherical coordinates, the problem of scattering of an EM wave on a gravitational monopole for each value of
partial momentum ℓ leads to the following radial equation (we follow very closely the discussion in [45]):

d2R

dr2
+
(

k2(1 +
2rg
r

)− ℓ(ℓ+ 1)

r2

)

R = O(r2g , r
−3), (D1)

Partial solutions to this equation may be obtained in terms of spherical Coulomb functions. These are the functions
of ρ = kr. They depend on the wavenumber, k, distance to the deflector, r, and its Schwarzschild radius rg. There
exists a regular solution (∼ rℓ+1) at the coordinate origin, Fℓ(krg, kr) and irregular solutions Gℓ(krg, kr) together
with H+

ℓ (krg, kr), H
−
ℓ (krg, kr) that are singular (∼ 1/rℓ) at the coordinate origin.

With a substitution

z = −2iρ, yℓ = eiρρℓ+1vℓ, (D2)

equation (D1) may be presented in the form of the Laplace equation:

[

z
d2

dz2
+ (β − z)

d

dz
− α

]

vℓ = 0, (D3)

where α = ℓ + 1 − ikrg, β = 2ℓ + 2 are complex constant coefficients. The solution to (D3) is the confluent
hypergeometric function 1F1 given in (C2). Equation (D3) has a regular solution 1F1[ℓ+ 1− ikrg, 2ℓ+ 2, z] and two
irregular solutionss W1[ℓ+1− ikrg, 2ℓ+2, z] and W2[ℓ+1− ikrg, 2ℓ+2, z]. Based on these functions we can construct
the solutions that we discuss below.
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2. Relationships between the Coulomb functions and their asymptotic properties

Given 1F1[ℓ+ 1− ikrg, 2ℓ+ 2, z] and W1,2[ℓ+ 1− ikrg, 2ℓ+ 2, z], we introduce the following functions (see [45]):

Fℓ(krg, kr) = cℓe
ikr(kr)ℓ+1

1F1[ℓ+ 1− ikrg, 2ℓ+ 2,−2ikr] =

= cℓe
−ikr(kr)ℓ+1

1F1[ℓ+ 1 + ikrg, 2ℓ+ 2, 2ikr], (D4)

H
(±)
ℓ (krg, kr) = ±2icℓe

±ikr(kr)ℓ+1
W1[ℓ+ 1∓ ikrg, 2ℓ+ 2,∓2ikr] =

= ±2icℓe
∓ikr(kr)ℓ+1

W2[ℓ+ 1± ikrg, 2ℓ+ 2,±2ikr], (D5)

Gℓ(krg, kr) = 1
2

(

H
(+)
ℓ +H

(−)
ℓ

)

. (D6)

Alternatively, we can define a different, but equivalent, set of solutions (A11) with Fℓ(krg, kr) given by (D4), but also

defining Gℓ(krg, kr) and the Coulomb–Hankel functions H
(±)
ℓ (krg, kr) as

H
(±)
ℓ (krg, kr) = Gℓ(krg, kr) ± iFℓ(krg, kr) =

= e±i
(

kr+krg ln 2kr− ℓπ
2 +σℓ

)

(∓2ikr)ℓ+1∓ikrgU(ℓ+ 1∓ ikrg, 2ℓ+ 2,±2ikr), (D7)

where U(α, β, z) is the corresponding irregular confluent hypergeometric function defined in [55].
The quantities cℓ and σℓ (i.e., Coulomb phase shift) are the following functions of rg:

cℓ = 2ℓe
π
2 krg

|Γ(ℓ+ 1− ikrg)|
(2ℓ+ 1)!

, σℓ = arg Γ(ℓ+ 1− ikrg). (D8)

For ℓ = 0, (D8) takes the form

c0 =
( 2πkrg
1− e−2πkrg

)
1
2

, σ0 = argΓ(1− ikrg), (D9)

or, for ℓ 6= 0, (D8) takes the form

cℓ =
c0

(2ℓ+ 1)!!

ℓ
∏

j=1

(

1 +
k2r2g
j2

)
)

1
2

, σℓ = σ0 −
ℓ
∑

j=1

arctan
krg
j
. (D10)

Both Fℓ and Gℓ are real-valued functions:

H
(−)
ℓ = H

(+)∗
ℓ , (D11)

Fℓ =
1

2i

(

H
(+)
ℓ −H

(−)
ℓ

)

, (D12)

H
(±)
ℓ =

(

Gℓ ± iFℓ

)

. (D13)

The asymptotic behavior of the Coulomb functions outside the turning point defined by (87), when r → ∞ and

r ≫ rt = −rg +
√

r2g + ℓ(ℓ+ 1)/k2, is well known and given as

lim
kr→∞

Fℓ(krg, kr) ∼ sin(kr + krg ln 2kr −
πℓ

2
+ σℓ), (D14)

lim
kr→∞

Gℓ(krg, kr) ∼ cos(kr + krg ln 2kr −
πℓ

2
+ σℓ), (D15)

lim
kr→∞

H
(+)
ℓ (krg, kr) ∼ exp

[

i(kr + krg ln 2kr −
πℓ

2
+ σℓ)

]

(diverging spherical wave), (D16)

lim
kr→∞

H
(−)
ℓ (krg, kr) ∼ exp

[

− i(kr + krg ln 2kr −
πℓ

2
+ σℓ)

]

(converging spherical wave). (D17)

Their behavior near the origin of the coordinate system, when r → 0, is

lim
kr→0

Fℓ(krg , kr) ∼ cℓ(kr)
ℓ+1
[

1− krg
ℓ+ 1

kr + ...
]

, (D18)
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lim
kr→0

Gℓ(krg , kr) ∼ 1

(2ℓ+ 1)cℓ
(kr)−ℓ

[

1 +O
]

, O =







O(krgkr ln kr) for ℓ = 0,

O(
krg
ℓ
kr) for ℓ 6= 0.

(D19)

In the case when rg = 0, then up to a factor of kr one obtains spherical Bessel functions jℓ, nℓ, h
(±)
ℓ :

Fℓ(0, kr) = kr jℓ(kr), Gℓ(0, kr) = kr nℓ(kr), (D20)

H
(+)
ℓ (0, kr) = kr h

(+)
ℓ (kr), H

(−)
ℓ (0, kr) = kr h

(−)
ℓ (kr), (D21)

where jℓ, nℓ, h
(±)
ℓ are

jℓ(kr) =
( π

2kr

)
1
2

Jℓ+ 1
2
(kr), nℓ(kr) = (−1)ℓ

( π

2kr

)
1
2

J−ℓ− 1
2
(kr), h

(±)
ℓ (kr) = nℓ(kr) ± ijℓ(kr). (D22)

Appendix E: Representation of the field in terms of Debye potentials

To represent the EM field equations in terms of Debye potentials, we start with (7)–(8). Assuming, as usual (we
follow closely the discussion presented in [37], adapted for the gravitational lens), the time dependence of the field in
the form exp(−iωt) where k = ω/c, the time-independent parts of the electric and magnetic vectors satisfy Maxwell’s
equations: Eq. (7)–(8) in their time-free form:

curlD = ik u2 B+O(G2), (E1)

curlB = −ik u2 D+O(G2). (E2)

In spherical coordinates (Fig. 1), the field equations (E1)–(E2) with the help of (A9)-(A10) to order O(G2) become

−ik u2D̂r =
1

r2 sin θ

( ∂

∂θ
(r sin θB̂φ)−

∂

∂φ
(rB̂θ)

)

, (E3)

−ik u2D̂θ =
1

r sin θ

(∂B̂r
∂φ

− ∂

∂r
(r sin θB̂φ

)

, (E4)

−ik u2D̂φ =
1

r

( ∂

∂r
(rB̂θ)−

∂B̂r
∂θ

)

, (E5)

ik u2B̂r =
1

r2 sin θ

( ∂

∂θ
(r sin θD̂φ)−

∂

∂φ
(rD̂θ)

)

, (E6)

ik u2B̂θ =
1

r sin θ

(∂D̂r

∂φ
− ∂

∂r
(r sin θD̂φ)

)

, (E7)

ik u2B̂φ =
1

r

( ∂

∂r
(rD̂θ)−

∂D̂r

∂θ

)

. (E8)

Our goal is to find a general solution to these equations in the form of a superposition of two linearly independent
solutions

(

eD, eB
)

and
(

mD,mB
)

that satisfy the following relationships:

eD̂r = D̂r,
eB̂r = 0, (E9)

mD̂r = 0, mB̂r = B̂r. (E10)

With B̂r =
eB̂r = 0, (E4) and (E5) become

ik u2 eD̂θ =
1

r

∂

∂r

(

r eB̂φ
)

, (E11)

ik u2 eD̂φ = −1

r

∂

∂r

(

r eB̂θ
)

. (E12)

Substituting these relationships into (E7) and (E8) we obtain

∂

∂r

[ 1

u2
∂

∂r

(

r eB̂θ
)

]

+ k2u2(r eB̂θ) = − ik

sin θ

∂ eD̂r

∂φ
, (E13)
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∂

∂r

[ 1

u2
∂

∂r

(

r eB̂φ
)

]

+ k2u2(r eB̂φ) = ik
∂ eD̂r

∂θ
. (E14)

From div(u2eB) = 0 given by Eq. (8) and using our assumption that eB̂r = 0 we have

∂

∂θ

(

sin θ eB̂θ
)

+
∂ eB̂φ
∂φ

= 0, (E15)

which ensures that (E6) is also satisfied, since it becomes, after the substitution from (E11), (E12),

1

r2 sin θ

( ∂

∂θ

(

r sin θ eD̂φ

)

− ∂

∂φ

(

r eD̂θ

)

)

= − 1

ik u2r2 sin θ

∂

∂r

[

r
( ∂

∂θ

(

sin θ eB̂θ
)

+
∂eB̂φ
∂φ

)]

= 0, (E16)

which is satisfied because of (E15). The complementary case with mD̂r = 0 is treated identically, in accord with (E10).
When the radial magnetic field vanishes, the solution is called the electric wave (or transverse magnetic wave);

correspondingly, when the radial electric field vanishes, the solution iscalled the magnetic wave (or transverse electric
wave). These can both be derived from the corresponding Debye scalar potentials eΠ and mΠ.

Given eB̂r = 0, eD̂φ and eD̂θ in (E6) can be represented as a scalar field’s gradient:

eD̂φ =
1

r sin θ

∂U

∂φ
, eD̂θ =

1

r

∂U

∂θ
. (E17)

Using

U =
1

u2
∂

∂r

(

r eΠ
)

(E18)

in (E17), we obtain

eD̂θ =
1

u2r

∂2
(

r eΠ
)

∂r∂θ
, eD̂φ =

1

u2r sin θ

∂2
(

r eΠ
)

∂r∂φ
. (E19)

It can be seen that (E11) and (E12) are satisfied by

eB̂φ =
ik

r

∂
(

r eΠ
)

∂θ
, eB̂θ = − ik

r sin θ

∂
(

r eΠ
)

∂φ
. (E20)

If we substitute both of (E20) into (E3) we obtain

eD̂r = − 1

u2r2 sin θ

[ ∂

∂θ

(

sin θ
∂(r eΠ)

∂θ

)

+
1

sin θ

∂2(r eΠ)

∂φ2

]

. (E21)

Substituting expressions (E20) into (E13)–(E14) yields
−ik
sin θ

∂

∂φ

{ ∂

∂r

[ 1

u2
∂

∂r

(

r eΠ
)

]

+ k2u2(r eΠ) − eD̂r

}

= 0 and

ik
∂

∂θ

{ ∂

∂r

[ 1

u2
∂

∂r

(

r eΠ
)

]

+ k2u2(reΠ) − eD̂r

}

= 0, i.e., the derivative of the same expression with respect to both φ

and θ vanishes. This is clearly satisfied if we set the expression itself to 0. Dividing by u2 and using (E21) leads to

1

u2
∂

∂r

[ 1

u2
∂(r eΠ)

∂r

]

+
1

u4r2 sin θ

∂

∂θ

(

sin θ
∂(r eΠ)

∂θ

)

+
1

u4r2 sin2 θ

∂2(r eΠ)

∂φ2
+ k2(r eΠ) = 0. (E22)

Defining u′ = ∂u/∂r, this equation may be rewritten as

1

r2
∂

∂r

(

r2
∂

∂r

[ eΠ

u

])

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂

∂θ

[ eΠ

u

])

+
1

r2 sin2 θ

∂2

∂φ2

[ eΠ

u

]

+
(

k2u4 +
u′′

u
− 2u′2

u2

)[ eΠ

u

]

= 0, (E23)

which is the wave equation for the quantity eΠ/u:

(

∆+ k2u4 − u
( 1

u

)′′
)[ eΠ

u

]

= 0. (E24)
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We are concerned only with the field produced by the gravitational monopole, thus the quantity u has the from
u(r) = 1 + rg/2r +O(r−3, c−4), as given by (B15). With this, we can rewrite (E24) as

(

∆+ k2
(

1 +
2rg
r

)

+
rg
r3

)[ eΠ

u

]

= O(r2g). (E25)

Eq. (E25) is similar to the Schrödinger equation of quantum mechanics, used to describe scattering on the Coulomb
potential. However, this equation has an extra potential of rg/r

3. It is known [45] (and also shown in Appendix F)
that the presence of potentials of ∝ 1/r3 in (E25) does not alter the asymptotic behavior of the solutions. Ref. [56],
discusses justification for neglecting the r−3 term in (E25), which reduces this equation to the time-independent
Schrödinger equation that describes scattering in a Coulomb potential:

(

∆+ k2
(

1 +
2rg
r

)

)[ eΠ

u

]

= O(r2g , r
−3). (E26)

In the case of the SGL, we will always be at the distances which are much larger than the Sun’s Schwarzschild radius,
thus, we may neglect the term rg/r

3 in (E25). We will use (E26) for the purposes of establishing the properties of
the EM wave diffraction by the solar gravitational lens. An identical equation may be obtained for mΠ.
By means of (E22), equation (E21) may be written as

eD̂r =
∂

∂r

[ 1

u2
∂(r eΠ)

∂r

]

+ k2u2(r eΠ). (E27)

It can be verified by substituting (E19)–(E22) and (E27) into (E3)–(E8) that we have obtained a solution of our set
of equations. In a similar way we may consider the magnetic wave. We find that this wave can be derived from a
potential mΠ which satisfies the same differential equation (E22) as eΠ.
The complete solution of the EM field equations is obtained by adding the two fields (as discussed in [37, 63, 73]),

namely D = eD+ mD; and B = eB+ mB; this gives

D̂r =
1

u

{ ∂2

∂r2

[r eΠ

u

]

+
(

k2u4 − u
(1

u

)′′
)[r eΠ

u

]}

= − 1

u2r2 sin θ

[ ∂

∂θ

(

sin θ
∂(r eΠ)

∂θ

)

+
1

sin θ

∂2(r eΠ)

∂φ2

]

, (E28)

D̂θ =
1

u2r

∂2
(

r eΠ
)

∂r∂θ
+

ik

r sin θ

∂
(

rmΠ
)

∂φ
, (E29)

D̂φ =
1

u2r sin θ

∂2
(

r eΠ
)

∂r∂φ
− ik

r

∂
(

rmΠ
)

∂θ
, (E30)

B̂r =
1

u

{ ∂2

∂r2

[rmΠ

u

]

+
(

k2u4 − u
( 1

u

)′′
)[rmΠ

u

]}

= − 1

u2r2 sin θ

[ ∂

∂θ

(

sin θ
∂(rmΠ)

∂θ

)

+
1

sin θ

∂2(rmΠ)

∂φ2

]

, (E31)

B̂θ = − ik

r sin θ

∂
(

r eΠ
)

∂φ
+

1

u2r

∂2
(

rmΠ
)

∂r∂θ
, (E32)

B̂φ =
ik

r

∂
(

r eΠ
)

∂θ
+

1

u2r sin θ

∂2
(

rmΠ
)

∂r∂φ
. (E33)

Both potentials eΠ and mΠ are solutions of the differential equation (E24), which, in the case of the weak gravity
characteristic for the SGL, is given by (E26).

Appendix F: Solution for the radial equation in the WKB approximation

We consider Eq. (E25) for the Debye potentials. Using the representation given by (62) and remembering α =
ℓ(ℓ+ 1), we obtain the following equation for the radial function R:

d2R

dr2
+
(

k2(1 +
2rg
r

)− α

r2
+
rg
r3

)

R = O(r2g). (F1)

Following an approach similar to that presented in [59], we explore an approximate solution to (F1) using the
methods of stationary phase (i.e., the Wentzel–Kramers–Brillouin, or WKB approximation). As we are interested
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in the case when k is rather large (for optical wavelengths k = 2π/λ = 6.28 · 106m−1), we will be looking for an
asymptotic solution as k → ∞. In fact, we will be looking for a solution in the form of

R = eikS(ρ)
[

a0(ρ) + k−1a1(ρ) + ...+ k−nan(ρ) + ...
]

. (F2)

Technically, however, it is more convenient to search for a solution to (F1) in an exponential form:

R = exp
[

∫ r

r0

i
(

kα−1(t) + α0(t) + k−1α1(t) + ...+ k−nαn(t) + ...
)

dt
]

. (F3)

Defining R′ = dR/dr, with a help of a substitution of R′/R = w, for the function w we obtain the following equation:

w′ + w2 + k2(1 +
2rg
r

)− α

r2
+
rg
r3

= O(r2g). (F4)

Using this substitution we have

w = i
(

kα−1(ρ) + α0(ρ) + k−1α1(ρ) + ...+ k−nαn(ρ) + ...
)

. (F5)

Substituting (F5) into (F4) we obtain

k2
[

1 +
2rg
r

− α2
−1(ρ)

]

+ k
[

iα′
−1(ρ)− 2α−1(ρ)α0(ρ)

]

+

+ iα′
0(ρ)− α2

0(ρ)− 2α−1(ρ)α1(ρ)−
α

r2
+
rg
r3

= O(r2g , k
−1). (F6)

Now, if we equate the terms with respect to the same powers of k, we get

α2
−1(ρ) = 1 +

2rg
r
, iα′

−1(ρ)− 2α−1(ρ)α0(ρ) = 0, iα′
0(ρ)− α2

0(ρ)− 2α−1(ρ)α1(ρ)−
α

r2
+
rg
r3

= 0. (F7)

These equations may be solved as

α−1(ρ) = ±(1 +
rg
r
), α0(ρ) = −i rg

2r2
, α1(ρ) = ∓ α

2r2
(1− rg

r
), ... (F8)

Using this approach we can identify α1(ρ), α2(ρ), ... Substituting (F8) into (F3), we have

S−1(r) =

∫ r

r0

α−1(r̃)dr̃ = ±
∫ r

r0

(1 +
rg
r̃
)dr̃ = ±(r + rg ln 2kr)

∣

∣

r

r0
, (F9)

S0(r) =

∫ r

r0

α0(r̃)dr̃ = − irg
2

∫ r

r0

dr̃

r̃2
=
irg
2r

∣

∣

r

r0
, (F10)

S1(r) =

∫ r

r0

α1(r̃)dr̃ = ∓α
2

∫ r

r0

(1− rg
r̃
)
dr̃

r̃2
= ± α

2r

(

1− rg
2r

)∣

∣

r

r0
. (F11)

As a result, we obtain two approximate solutions for the partial radial function Rℓ:

Rℓ(r) = cℓe
i
(

kS−1(r)+S0(r)+k
−1S1(r)

)

+ dℓe
−i
(

kS−1(r)+S0(r)+k
−1S1(r)

)

= (F12)

= u−1
{

cℓe
i
(

k(r+rg ln 2kr)+ ℓ(ℓ+1)
2kr

(1−
rg
2r )
)

+ dℓe
−i
(

k(r+rg ln 2kr)+ ℓ(ℓ+1)
2kr

(1−
rg
2r )
)

+O(r2g , k
−2)
}

, (F13)

where cℓ and dℓ account for all the constants relevant to the point r0 in (F9)–(F11).
We note that (F1) is similar to the radial solution of the Schrödinger equation of quantum mechanics, which is used

to describe scattering in a Coulomb potential. However, this equation has an extra potential in the form of rg/r
3. It

is known [45] that the presence in (F1) of potentials of ∼ 1/r3 does not alter the asymptotic behavior of the solutions.
One can verify that neglecting rg/r

3 in (F1) leads to the following form of the radial function Rℓ:

uRℓ(r) = cℓe
i
(

k(r+rg ln 2kr)+ 1
k
[ ℓ(ℓ+1)

2r (1−
rg
2r )+

rg

4r2
]
)

+ dℓe
−i
(

k(r+rg ln 2kr)+ 1
k
[ ℓ(ℓ+1)

2r (1−
rg
2r )+

rg

4r2
]
)

+O(r2g , k
−2). (F14)

We see that the omission of the rg/r
3 term in (F1) leads to appearence of an “uncompensated” term rg/4kr

2 =
(1/8π)(rgλ/r

2) in the exponent of (F14). This term is extremely small; it decays fast as r increases, and, thus, it
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may be neglected in the solution for the radial function for any practical purpose. A similar point was made in [56],
suggesting that one can neglect the r−3 terms in (F1) and reduce the problem to the case of the Schrödinger equation
describing scattering in a Coulomb potential.
As a result, to describe the scattering of a plane EM wave by a gravitational monopole, we neglect the term rg/r

3

in (F1) and approximate it such that it becomes

d2Rℓ
dr2

+
(

k2(1 +
2rg
r

)− ℓ(ℓ+ 1)

r2

)

Rℓ = O(r2g , r
−3). (F15)

Finally, we may further improve the asymptotic expression for Rℓ from (F13) by accounting for the Coulomb phase
shifts as given in (D14)–(D17). This can be done by simply redefining the constants cℓ and dℓ as

cℓ → cℓe
i(σℓ−

πℓ
2 ), dℓ → dℓe

−i(σℓ−
πℓ
2 ). (F16)

This leads to the following expression for the radial function Rℓ:

uRℓ(r) = cℓe
i
(

k(r+rg ln 2kr)+ ℓ(ℓ+1)
2kr

+σℓ−
πℓ
2

)

+ dℓe
−i
(

k(r+rg ln 2kr)+ ℓ(ℓ+1)
2kr

+σℓ−
πℓ
2

)

+O(r2g , k
−2), (F17)

where the term rg/2r in the phase was neglected. As the asymptotic behavior of the Coulomb functions (D14)–(D17)
was obtained for very larger distances from the turning point (87), or for r ≫ rt, the solution (F17) improves them
by extending the argument of the Coulomb functions to shorter distances, closer to the turning point. (Similar result
was obtained in [74] using different approach developed to study image formation in gravitational lensing [75].)


