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We investigate a stress-energy tensor for a CFT at strong coupling inside a small five-dimensional
rotating Myers-Perry black hole with equal angular momenta by using the holographic method. As a
gravitational dual, we perturbatively construct a black droplet solution by applying the “derivative
expansion” method, generalizing the work of Haddad [1], and analytically compute the holographic
stress-energy tensor for our solution. We find that the stress-energy tensor is finite at both the
future and past outer (event) horizons, and that the energy density is negative just outside the
event horizons due to the Hawking effect. Furthermore, we apply the holographic method to the
question of quantum instability of the Cauchy horizon since, by construction, our black droplet
solution also admits a Cauchy horizon inside. We analytically show that the null-null component
of the holographic stress-energy tensor negatively diverges at the Cauchy horizon, suggesting that
a singularity appears there, in favor of strong cosmic censorship.

PACS numbers:

I. INTRODUCTION

One of the outstanding issues in gravity is understanding quantum effects in regions of large spacetime curvature.
Although energy densities in typical classical fields such as electromagnetic fields are always non-negative, there have
been a number of studies that show the appearance of negative energy density when quantum field effects are taken
into account. For instance, it was shown (see, e.g. [4]) that the energy density for an observer falling into a singularity
negatively diverges for some physical vacuum state. On the Cauchy horizon deep inside a charged black hole, the
stress-energy tensor was calculated for a two-dimensional massless scalar field model and the energy density diverges
at the horizon [5]. Calculations of a conformal scalar field in Taub-NUT-type cosmologies show that the stress-energy
tensor negatively diverges on the Cauchy horizon even though the curvature remains small [6]. However, most studies
have been made for free massless scalar field models and little attention has been given to strongly interacting field
models such as CFTs at strong coupling.

The AdS/CFT duality [7] provides a powerful tool to investigate CFTs at strong coupling on a fixed curved
background spacetime. According to the dictionary of the duality, a CFT at strong coupling on a fixed d-dimensional
spacetime is dual to a gravitational theory in d+ 1-dimensional AdS spacetime with a timelike boundary conformal
to the d-dimensional spacetime. Motivated by the investigation of Hawking radiation in a model of a CFT at strong
coupling, two types of black hole solutions were constructed in asymptotically locally AdS spacetimes [8–18]. One
solution is called a “black funnel” in which there is a single connected horizon extending from the conformal boundary
to an asymptotically planar horizon in the bulk, and it is dual to the thermal equilibrium Hartle-Hawking vacuum
state of the boundary theory. The other is called a “black droplet” solution in which the horizon is disconnected from
the planar horizon in the bulk, and it is dual to the Unruh vacuum state. In these models, negative energy density
is observed outside the event horizon due to the Hawking effect. However, these solutions are quite complicated and
their construction has required numerical methods; hence, it is difficult to analyze general properties of the stress-
energy tensor inside the boundary black hole. It is then desirable to have some analytically constructed solutions for
a black funnel/droplet. Recently some attempts along this direction have been made by Haddad [1] 1, who, using
a derivative expansion method, has constructed a five-dimensional static black droplet solution and computed the
holographic stress-energy tensor for the corresponding dual quantum field in the background of a four-dimensional
static black hole background [15] (See also for the lower dimensional case (d ≤ 3) [8, 10, 13]). It is clearly interesting
to generalize the line of research [1, 15] performed for the static vacuum case to more general cases. In particular,
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including rotations would drastically change the causal structure inside the resultant black funnel/droplet motivating
a study of the holographic consequences of strong coupling in quantum fields near the inner (Cauchy) horizon.

In this paper, we construct a rotating black droplet solution by generalizing the work [15]. In general, including
rotation makes the relevant analysis significantly more complicated compared to the static case. For example, if one
attempts to add a rotation to the model of [15] so that the corresponding boundary field lives in a four-dimensional
Kerr black hole–which is already cohomogeneity-two, then one would have to construct a five-dimensional bulk black
droplet by solving a cohomogeneity-three system. In order to avoid this technical difficulty, instead of trying to
add a rotation to a five-dimensional black droplet, we attempt to construct a six-dimensional rotating black droplet
solution dual to a five-dimensional field theory in the background of the rotating Myers-Perry black hole [19] with
equal angular momenta, which is known to be cohomogeneity-one. In this case, the derivative expansion method
enables us to reduce the bulk field equations to a set of ordinary differential equations, thereby making it possible
to compute–analytically and explicitly within our expansion framework–the holographic stress-energy tensor for a
CFT at strong coupling and large N inside the five-dimensional rotating black hole. In addition, since quantum field
theories in odd-dimensions are not well understood, it is of considerable interest to study the behavior of quantum
fields in a five-dimensional spacetime. In fact, motivated from recent interests in five-dimensional conformal field
theory (see e. g., [17] for references), the six-dimensional rotating black droplet solutions dual to the rotating Myers-
Perry black hole spacetime with equal angular momenta on the boundary were numerically constructed and the
holographic stress-energy tensor was derived in region outside the event horizon [16, 17].

Having two rotations, the rotating droplet solution admits not only an outer event horizon but also an inner
(Cauchy) horizon. In this paper, we are primarily concerned with the properties of the holographic stress-energy
tensor inside the outer horizon and in particular, investigating the quantum instability of the Cauchy horizon. We find
that the null-null component of the stress-energy tensor diverges negatively near the Cauchy horizon, in agreement
with the study of free massless scalar fields [5, 6]. Our results suggest that the Cauchy horizon suffers from a
quantum instability in favor of the strong cosmic censorship. As far as we know, this is the first example of applying
the holographic method to study the Cauchy horizon instability due to quantum effects. We also find that negative
energy appears just outside the outer horizon, describing particle creation by the Hawking effect. Nevertheless,
there is no flux at infinity. This suggests that the dual phase corresponds to a transition from black funnels to
black droplets, and that it is reminiscent of soft condensed matter systems representing a transition from a fluid-like
behavior to rigid behavior, just like a “jammed” state [16] (see also [18]).

The paper is organized as follows. In next section, we describe our metric ansatz, derive the equations of motion,
and construct a rotating black droplet solution in six-dimensions by using the derivative expansion method. In
section III, we perform an analytic computation of the holographic stress-energy tensor for a CFT at strong coupling
and large N inside the five-dimensional rotating black hole on the boundary. In section IV, we numerically check
our results analytically obtained in the previous sections. Section V is devoted to summary and discussion.

II. DERIVATIVE EXPANSION METHOD

In this section, we derive the field equations following the derivative expansion method [1] and investigate general
properties of the solution. Our bulk field equations are the 6-dimensional vacuum Einstein equations with negative
cosmological constant,

Rµν = − 5

L2
gµν , (2.1)

where L is the AdS radius. We start with the following metric ansatz:

ds̄2 =

 L2

z2F (z)
− z2

L2

(
rF ′(z)

2F (z)

)2
 dz2 +

z2rα(r, z)F ′(z)

L2F (z)
{
√
F (z) dvdz − drdz}

+
z2

L2

[
−F (z)

f(r, z)

h(r, z)
dv2 + 2

√
F (z)

h(r, z)
dvdr +

r2

4
(dθ2 + sin2 θdφ2)

+ r2h(r, z)
(
dψ +

cos θ

2
dφ−

√
F (z)Ω(r, z)dv

)2]
,

f(r, z) =

(
1−

r2+(z)

r2

)(
1−

κ2r2+(z)

r2

)
, h(r, z) = 1 +

κ2r4+(z)

r4
,

Ω(r, z) =
κ
√

1 + κ2 r3+(z)

h(r, z)r4
, F (z) = 1− µ5

z5
, (2.2)
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where α is an unknown function of r and z determined later. In the limit r+ → 0 and α→ −1, this metric reduces to
the familiar planar Schwarzschild-AdS spacetime with horizon radius µ after performing the coordinate transforma-
tion, v = t + r/

√
F (z). Furthermore, the metric at each z = const. hypersurface represents the cohomogeneity-one

Myers-Perry black hole solution with equal angular momenta [19], where the outer and inner (Cauchy) horizons are
located at r = r+ and r = κr+ (0 ≤ κ < 1), respectively. So, the metric (2.2) represents a rotating black string
embedded in the background planar Schwarzschild-AdS spacetime in which the horizon is extended along z-direction.
The metric (2.2) itself does not satisfy the Eqs. (2.1), and must be corrected order by order in derivatives. To this
end, we write the metric as

ds2 = ds̄2 + ds2(ε),

ds2(ε) =

∞∑
n=1

εnh(n)µν (r)dxµdxν , (2.3)

where ε is the formal derivative expansion parameter defined below and h
(n)
µν (r) is the nth correction of the metric

determined by the Einstein equations (2.1). The derivative expansions are valid only when the horizon radius of the
string is much smaller than the other scales,

r+ � µ ∼ L. (2.4)

This implies that the background metric (2.2) changes very slowly along the z-direction compared with the radial
scale r+. Thus, the contributions of the first and second derivatives with respect to z-direction to the Einstein
Eqs. (2.1) are suppressed by a factor of r+/L and (r+/L)2 (or similarly, r+/µ and (r+/µ)2).

Following Ref. [1], we shall expand the metric functions, F , r+, and α in a series of z − zc around an arbitrary
value zc as

g(r, z) = gc + εg1(z − zc) + ε2g2(z − zc)2 + · · · , (2.5)

where g(r, z) collectively denotes the metric functions such as F , r+, and α, and the expansion coefficients are
gn := ∂nz g(zc)/n!. Note that the expansion coefficients are functions of only r, but Fn and rn, are independent of r.

So, the Einstein Eqs. (2.1) are formally modified to

r2c Rµν = −5ε2
r2c
L2
gµν , (2.6)

where rc = r+(zc). This implies that the effect of the cosmological constant appears at second order in the derivative
expansion (2.5). Note that the derivative expansion parameter ε will be set to unity at the end of our calculations.

A. First order in derivatives

Substituting Eqs. (2.2) and (2.3) into Eqs. (2.6) one finds that the field Eqs. (2.6) are satisfied at first order by

h(1)µν (r) = 0, (2.7)

provided that the following two equations with respect to α(r; zc)

α′ +
α

r
+

(6Fcr1 + F1rc)r
8 + 24κ2r1Fc r

4
c r

4 + κ4r8c (2Fcr1 − F1rc)

4F1rc r3(r4 + κ2r4c )
3/2

= 0,

α′′ +

(
1

r
+

4r3

r4 + κ2r4c

)
α′ −

(
1

r2
− 4r2

r4 + κ2r4c

)
α

+
3F1r

8 + 4κ2r3c (F1 rc − r1Fc) r4 + κ4r7c (4Fcr1 + F1rc)

F1(r4 + κ2r4c )
5/2

= 0 (2.8)

are satisfied. When

r1 =
rcF1

2Fc
(2.9)

is satisfied, the solution α satisfying both two equations (2.8) is given by

α(r; zc) = − r2√
r4 + κ2r4c

+
C

r
, (2.10)

where C is an integration constant. We discard the integration constant C because it can be eliminated by gauge
transformation of v → v + C/

√
F . In this case, κ → 0 limit agrees with the non-rotating four-dimensional black

string case [1].
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B. Second order in derivatives

At second order, O(ε2), we make an ansatz for the non-zero perturbed metric h
(2)
µν as

h(2)µν dx
µdxν = 2γ(r)

(
dψ +

cos θ

2
dφ

)
dv + hvv(r)dv

2 + 2hvr(r)dvdr

+ hzz(r)dz
2 + β(r)

(
dψ +

cos θ

2
dφ

)2

. (2.11)

We derive equations of motion for the metric functions above by substituting Eqs. (2.2), (2.3), and (2.11) into
(2.6) and also using α given by (2.10) with rc replaced by r+. The equation of motion for hzz is decoupled from the
other variables as

− L2F 2
c (r2 − r2c )(r2 − κ2r2c )(r4 + κ2r4c )

3z10c
5r2

h′′zz

− L2F 2
c z

10
c {3r4 − r2c (1 + κ2)r2 − κ2r4c}(r4 + κ2r4c )

3

5r3
h′zz + P(r) = 0, (2.12)

where the source term P is explicitly given by Eq. (A1). The general solution includes two integral constants, one
of which is determined by imposing the regularity on the horizon r = rc. Then, we obtain the following analytic
solution,

hzz = − 5r2

4L2
+

25µ10

4L2F 2
c z

10
c

(
r2 +

κ2r4c − r4√
r4 + κ2r4c

)
+

5

4L2Fc z5c

{
(z5c + 5µ5)r2 − 6µ5

√
r4 + κ2r4c

}
+

15(1 + κ2) r2c µ
5

2L2Fc z5c
ln(r2 − κ2r2c ) + C, (2.13)

where C is the remaining integral constant. Hereafter, we discard this constant becuase it can be eliminated by
making a gauge transformation [1]. We find that we can solve for hvr in terms of the other variables, so we need
only solve three coupled second order differential equations for γ(r), β(r), and hvv.

hvr =

√
Fc (2r2 − r2c (1 + κ2))r3

4(3r4 − κ2 r4c )
√
r4 + κ2r4c

β′ − κ
√

1 + κ2 r3c r
3

(6r4 − 2κ2 r4c )
√
r4 + κ2r4c

γ′

− (3r4 + κ2 r4c )r
3

4
√
Fc (3r4 − κ2 r4c )

√
r4 + κ2r4c

h′vv +

√
Fc r

2{r6c κ2(1 + κ2) + 3r4c κ
2r2 + r2c (1 + κ2)r4 − r6}

2(3r4 − r4c κ2)(r4 + r4c κ
2)3/2

β

+
κ
√

1 + κ2 r3c r
2

(3r4 − κ2 r4c )
√
r4 + κ2r4c

γ − r2hvv

2
√
Fc
√
r4 + κ2r4c

+
F

3/2
c z4c{κ2r4c − 2r2c (1 + κ2)r2 + 3r4}r3

4L4(3r4 − κ2r4c )
√
r4 + κ2r4c

h′zz

+
5r4

8
√
FcL6z6c (3r4 − κ2 r4c )(r4 + κ2r4c )

5/2
×[

8F 2
c z

10
c (r4 + κ2r4c )

2r4 + 5{6r12 + 2κ4r8c r
4 − 2κ6r12c + 3κ4(1 + κ2)r10c r

2

+ 2κ2r4c ((1 + κ2)r2c −
√
r4 + κ2r4c )r

6 − ((1 + κ2)r2c + 6
√
r4 + κ2r4c )r

10

+ 2r2c (5κ
2r2c + 2(1 + κ2)

√
r4 + κ2r4c )r

8}µ10 − 8F 2
c z

10
c (r4 + κ2r4c )

2r4

]
, (2.14)

√
FcL

6r2(r2 − r2c )(r2 − κ2r2c )(3r4 − κ2r4c )(r4 + κ2r4c )
2γ′′

+
√
FcL

6r(r4 + κ2r4c )
2{3r8 − 3(1 + κ2)r2c r

6 + 2κ2r4c r
4 − 7κ2(1 + κ2)r6c r

2 − r8cκ4}γ′

− 4
√
FcL

6(r4 + κ2r4c )
3{3r4 − 3(1 + κ2)r2c r

2 − κ2r4c}γ

+ 2FcL
6κ
√

1 + κ2 r3c r(r
4 + κ2r4c )

2{r4 − 2(1 + κ2)r2c r
2 + κ2r4c}β′

− 8L6κ3
√

1 + κ2 r7c r
3(r4 + κ2r4c )

2h′vv

+ 4FcL
6κ
√

1 + κ2 r3c (r
4 + κ2r4c )

2{r4 + 2(1 + κ2)r2c r
2 + κ2r4c}β

+ 4F 2
c L

2z4cκ
√

1 + κ2 r3c r
3(r4 + κ2r4c )

2{3r4 − 2(1 + κ2)r2c r
2 + κ2r4c}h′zz + S(r) = 0, (2.15)
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− FcL6r(r2 − r2c )(r2 − κ2r2c )(3r4 − κ2r4c )(r4 + κ2r4c )
2β′′

+ FcL
6(r4 + κ2r4c )

2{3r8 − 9(1 + κ2)r2c r
6 + 6κ2r4c r

4 − 5κ2(1 + κ2)r6c r
2 + 3r8cκ

4}β′

+ 12FcL
6r(r4 + κ2r4c )

3{2r2 + (1 + κ2)r2c}β

− 8
√
FcL

6κ
√

1 + κ2 r3c r
2(3r4 + κ2r4c )(r

4 + κ2r4c )
2γ′

− 8L6κ2r4c r
2(3r4 + κ2r4c )(r

4 + κ2r4c )
2h′vv

+ 16
√
FcL

6κ
√

1 + κ2 r3c r(3r
4 + κ2r4c )(r

4 + κ2r4c )
2γ

+ 8F 2
c L

2κ2z4cr
4
c r

2(r4 + κ2r4c )
2{3r4 − 2(1 + κ2)r2c r

2 + κ2r4c}h′zz +R(r) = 0, (2.16)

− L6r2(r2 − r2c )(r2 − κ2r2c )(3r4 − κ2r4c )(r4 + κ2r4c )
2h′′vv

− L6r(r4 + κ2r4c )
2{9r8 − 9(1 + κ2)r2c r

6 − 6κ2r4c r
4 + 7κ2(1 + κ2)r6c r

2 + κ4r8c}h′vv
− 2FcL

6(1 + κ2)r2c r
3(r4 + κ2r4c )

2{(1 + κ2)r2c − 2r2}β′

+ 4
√
FcL

6κ
√

1 + κ2r3c r(r
4 + κ2r4c )

2{3r4 − (1 + κ2)r2c r
2 − κ2r4c}(rγ′ − 2γ)

− 4FcL
6(1 + κ2)r2c (r

4 + κ2r4c )
2{4r4 − (1 + κ2)r2c r

2 − 2κ2r4c}β
+ 2F 2

c L
2(1 + κ2)r2cz

4
c r

3(r4 + κ2r4c )
2{3r4 − 2(1 + κ2)r2c r

2 + κ2r4c}h′zz +Q(r) = 0, (2.17)

where S(r), R(r), and Q(r) are functions of r given by Eqs. (A2), (A3), and (A4) in the Appendix. From the other
constraint equations, we obtain the coefficient r2 as

r2 =
rc(4F2Fc − F 2

1 )

8F 2
c

. (2.18)

Combining Eqs. (2.9) and (2.18), we obtain

r+(z) = r0
√
F (z), (2.19)

up to second order in the derivative expansion, where r0 is the radius of r+ at the AdS boundary, z → ∞. Just as
in the non-rotating five-dimensional black string case [1], the droplet horizon shrinks to zero at the horizon of the
planar Schwarzschild-AdS spacetime, ending on the horizon.

These three equations (2.15), (2.16), and (2.17) have a singular source term ∼ (r − rcκ)−1 arising from hzz in
(2.13). This implies that γ, β, and hvv can be expanded near the inner (Cauchy) horizon as

γ(r) ' ln(r − κ rc){a0 + a1(r − κ rc) + a2(r − κ rc)2 + · · · }+ d0 + d1(r − κ rc) + · · · ,
β(r) ' ln(r − κ rc){b0 + b1(r − κ rc) + b2(r − κ rc)2 + · · · }+ e0 + e1(r − κ rc) + · · · ,
hvv(r) ' ln(r − κ rc){c0 + c1(r − κ rc) + c2(r − κ rc)2 + · · · }+ f0 + f1(r − κ rc) + · · · .

(2.20)

Note that we have assumed that the black droplet solution is non-extremal, i. e. , κ < 1, in the expansion. Substituting
these into Eqs. (2.15), (2.16), and (2.17), we obtain all the coefficients provided that the coefficients c0, d0, e0, f0,
e1, and f1 are given. This implies that six independent mode solutions exist for the second order differential
equations (2.15), (2.16), and (2.17). For the discussions in the next section, it suffices to obtain the relation between
the leading order coefficients a0, b0, and c0. The remaining subleading coefficients are determined by numerics in
Sec. IV.

The leading coefficients a0 and b0 are determined by c0 as

a0 = −rc κ
√

1 + κ2{2L6zc c0 + 15r2c (1 + κ2)µ5Fc}
2L6zc(1− κ2)

√
Fc

,

b0 =
r2c κ

2{2L6zc (1 + 3κ2)c0 + 15r2c (3 + 4κ2 + κ4)µ5Fc}
2L6(1− κ2)zc Fc

. (2.21)

By Eq. (2.14), we also find the asymptotic behavior of hvr near the Cauchy horizon:

hvr '
rc κ

2{2L6zc κ
2c0 + 15(1 + κ2)r2c µ

5Fc}
4L6zc(1− κ2)

√
1 + κ2

√
Fc(r − κrc)

. (2.22)
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C. The non-rotating case

In the non-rotating case (κ = 0), Eqs. (2.15) and (2.16) respectively for γ and β are decoupled from the other
variables and we can set γ = β = 0. Furthermore, we obtain analytic expressions for hvv and hvr from Eqs. (2.13),
(2.17), and (2.14):

hzz =
15r2c µ

5 ln r

L2Fc z5c
,

hvv = C2 −
C1

2r2
− 5µ5Fc r

2
c

L6zc r2
{r2c − (r2 − 2r2c ) ln r},

hvr =
−4C2L

6z6c + 5r2c µ
5(4z5c + µ5)− 20r2c µ

5z5c Fc ln r

8L6z6c
√
Fc

, (2.23)

where C1 and C2 are constants that correspond to a global shift in the temperature as explained in [1], so we must
set it to zero.

III. THE HOLOGRAPHIC STRESS-ENERGY TENSOR

In this section, we calculate the holographic stress-energy tensor using the prescription of [20], up to the second
order in ε. In the six-dimensional bulk theory, the regularized action becomes

S =
1

16πG6

∫
M
dx6
√
−g
(
R+

30

L2

)
+

1

8πG6

∫
∂M

dx5
√
−qK

+
1

8πG6

∫
∂M

dx5
√
−q
[

4

L
+
L

6
R+

L3

18

(
RabRab −

5

16
R2

)
+ · · ·

]
, (3.1)

where R is the Ricci scalar of the induced metric qab = gab−nanb at z = zc associated with the unit normal outward
pointing vector na, and K is the trace of the extrinsic curvature defined below. Note that the first three terms in the
second line are sufficient to cancel the divergences. Furthermore, the last two terms are at O(ε4), since the induced
metric is the vacuum Myers-Perry black hole [19] at zeroth order, i. e. , Rab = R = O(ε2). Thus, the holographic
stress-energy tensor Tab, given by Tab = (2/

√
−q) δS/δqab, becomes

Tab =
L

8πG6

[
1

3
Eab −

ε

L

(
Kab − qabK

)
− 4ε2

L2
qab

]
+O(ε4), (3.2)

where Eab is the Einstein tensor of the induced metric qab, and Kab is the extrinsic curvature defined by

Kab = qa
c∇cnb. (3.3)

If the metric (2.3) is decomposed into

ds2 = (N2 +NaN
a)dz2 + 2Nadx

adz + qabdx
adxb, (3.4)

Kab is rewritten by

Kab =
1

2N
(∂zqab −DaNb −DbNa), (3.5)

where Da is the covariant derivative with respect to the induced metric qab, and the lapse function N and the shift
vector Na are given by

Nv =
5αrµ5

2L2z4c
+O(z−9c ), Nr = −5αrµ5

2L2z4c
+O(z−9c ), the other components = 0,

N =
L

zc
√
Fc

+O(ε2). (3.6)

Note that Na = O(ε), as it includes the derivative with respect to z from Eq. (2.2). Thus, if we expand qab, Kab,
and Eab as

qab = q(0)ab + ε2q(2)ab + · · · ,

Kab = εK
(1)
ab + ε3K

(3)
ab + · · · ,

Eab = ε2E
(2)
ab + · · · , (3.7)
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K
(1)
ab is determined by q(0)ab as

K
(1)
ab =

zc
√
Fc

2L
(∂zq

(0)
ab − D̄aNb − D̄bNa), (3.8)

where D̄a denotes the covariant derivative with respect to q(0)ab. Then, Eq. (3.2) reduces to

Tab =
ε2L

8πG6

[
1

3
E

(2)
ab −

1

L

(
K

(1)
ab − q

(0)
ab K

(1)
)
− 4

L2
q
(0)
ab

]
+O(ε4). (3.9)

This implies that the second order perturbation h
(2)
µν contributes to the stress-energy tensor only through the Einstein

tensor, up to O(ε2).
First, we investigate the stress-energy tensor in the static case (κ = 0). Substitution of Eqs. (2.23) into Eq. (3.9)

yields

Tvv = ε2 · C · 4r6 − 9r2c r
4 + 5r6c

r6
,

Tvr = ε2 · C · −4r4 + 5r2c r
2 + 5r4c

r4
,

Trr = ε2 · C · 5(r2 − r2c )
r2

,

Tψψ =
2

cos θ
Tψφ = ε2 · C · r

4 − 5r4c
r2

,

Tθθ = Tφφ = ε2 · C · r
4 − 5r4c

4r2
,

(3.10)

where C = µ5/16πG6L
3z3c . It is easily checked that the conservation law D̄aT

ab = 0 is satisfied. Near the outer
horizon r = rc, negative energy density appears, i.e., Tvv < 0 (r > rc). This implies that due to the Hawking effect,
pair creation of particles occurs near the horizon, and the negative energy particles are absorbed into the horizon.
Nevertheless, there is no flux at null infinity. This is verified by checking that the (t, r)-component of the stress-energy
tensor in the original coordinate system (t, r) becomes zero at null infinity. This is due to strong coupling effects of
the dual CFT in the boundary theory, just as in the five-dimensional case [15]. It is also immediately checked that
the trace of our stress-energy tensor vanishes, in agreement with the general argument that odd dimensional CFTs
have a vanishing trace anomaly.

Next, we investigate the stress-energy tensor near the inner (Cauchy) horizon in the rotating case. Note that Kab

is regular near the Cauchy horizon r = κrc at O(ε) because q(0)ab and the shift vector Na are regular there. Thus,
the dominant term of Tab in Eq. (3.2) near the Cauchy horizon comes from the Einstein tensor Eab. As shown in
Eqs. (2.20), (2.21) and (2.22), the second order metric hab diverges near the Cauchy horizon. So, the relevant (i.e.,
(r, r)-) component of the Einstein tensor Eab can be expanded as

Err =
ε2

z3c

[
−15r2c (1 + κ2)µ5

4L4(r − rcκ)2
+

C ′

r − κrc
+ · · ·

]
+O(ε4), (3.11)

where C ′ is a constant. As for the other components, the leading term in order O(ε2) behave as 1/(r − κrc), and
therefore are irrelevant to the rest of our arguments.

The most striking feature is that Err in Eq. (3.11) negatively diverges at the Cauchy horizon. This implies that
the null energy condition is strongly violated along the null direction, ∂r near the Cauchy horizon:

Trr ' −
5ε2r2c (1 + κ2)µ5

32πG6L3z3c (r − rcκ)2
→ −∞. (3.12)

Interestingly, this behavior is very similar to the case of massless scalar field in two-dimensions [5, 6]; in both cases,
the stress-energy tensor negatively diverges as (r − κrc)−2.
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FIG. 1: Here we plot the finite pieces of hµν(r) at O(ε2). The curves correspond to β−(r) (dotted), γ−(r) (dashed, black),

h−vv(r) (dot-dashed), and h−vr(r) (thick) for rc = .1, µ = 1, κ = .2, zc = (4µ)1/5. Note that γ− and h−vr nearly overlap, and
β− is much smaller than the other functions.

IV. NUMERICAL RESULTS

When we add rotation to our droplets, we must solve the second order equations numerically. To account for the
logarithmic divergences in β, γ and hvv, as well as the pole in hvr, we make the following ansatz,

β(r) = βL(r) ln(r − κrc) + β1(r)

γ(r) = γL(r) ln(r − κrc) + γ1(r)

hvv(r) = hvvL(r) ln(r − κrc) + hvv1(r)

hvr(r) = hvrL(r) ln(r − κrc) +
r

r − κrc
hvr1(r). (4.1)

In the last equation, the coefficient of hvr1(r) is required to have hvv1(r) vanish as r goes to infinity, matching the
non-rotating case.

We insert these ansatz into (2.14) and find eight equations to solve numerically–four from the coefficients of
ln(r − κrc) involving only βL, γL, hvvL and hvrL and four remaining equations involving these variables as well as
β1, γ1, hvv1, hvr1. It is numerically convenient to also set L = 1 and work in terms of a variable R ≡ 1/r in order to
impose boundary conditions at spatial infinity.

As we did in the analytic case, we can perform a series expansion in powers of R−(κrc)
−1 near the Cauchy horizon

to find appropriate boundary conditions on our new metric functions,

X(R) =

∞∑
i=0

xi(R−
1

κrc
)i (4.2)

where X refers collectively to {βL, γL, hvvL, hvrL, β1, γ1, hvv1, hvr1}. This expansion reflects the fact that the diver-
gences in β, γ, hvv come only from a log term sourced by hzz and there is an extra divergence of (r − κrc)−1 in hvr.
Inserting this expansion into our eight differential equations and solving order by order in (R − 1

κrc
) leads to the

following boundary conditions,

hvrL

(
R =

1

κrc

)
= −

κ
(

15
(
κ2 + 1

) (
2κ6 + 7κ4 + 12κ2 + 3

)
µ5Fcr

2
c + 2κ2

(
5κ4 + 14κ2 + 5

)
zchvvL

(
1
κrc

))
4 (κ2 − 1)

2
(κ2 + 1)

3/2√
Fczc

h′vvL

(
1

κrc

)
= −

κ
(
κ2 + 1

)
rc

(
15
(
κ2 + 1

)
µ5Fcr

2
c + 2zchvvL

(
1
κrc

))
(κ2 − 1) zc

(4.3)
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FIG. 2: Here we plot the components of the holographic stress-energy tensor for the same parameters as figure 1 with θ = π/2

and zc = (108µ)1/5. In the left plot, we show Tvr (dashed), Trr (dot-dashed), and Tvv (thick). In the right, we show Tψr
(dotted), Tψv (dashed), Tψψ (dot-dashed), and Tθθ (thick). For each of these, we have scaled our solution by C−1 defined
below Eq. (3.10). Notably, each of these components is regular at the outer horizon (labelled by the vertical line at r/rc = 1).

as well as the previously derived conditions, Eq. (2.21). Furthermore, the expansion leads to the following constraint
at the horizon,

0 =16κ
(
κ2 − 1

)
r2czc

(
2
(
κ2 + 1

)√
Fcγ1

(
1

κrc

)
+
√
κ2 + 1h′vv1

(
1

κrc

))
+ 5κ2µ5r5c

(
3
(

4κ5 − 8κ3 + 93
√
κ2 + 1κ2 + 33

√
κ2 + 1 + 19

√
κ2 + 1κ6 + 63

√
κ2 + 1κ4 + 4κ

)
Fc

− 20κ
(
κ2 − 1

) (
κ2 − 2

√
κ2 + 1κ− 1

))
− 4

(√
1

κ2
+ 1− κ3

√
κ2 + 1

)

− 8
√
Fcrczc

(
3κ

(√
1

κ2
+ 1− κ3

√
κ2 + 1

)√
Fcβ1

(
1

κrc

)
− 2

(
κ4 − 1

)
γ′1

(
1

κrc

))

Fczcβ
′
1

(
1

κrc

)
+ 2κ2

√
κ2 + 1

(
57κ4 + 48κ2 − 1

)
r3czchvvL

(
1

κrc

)
. (4.4)

We can likewise perform a series expansion at spatial infinity in powers of R (recall R = 0 corresponds to spatial
infinity) to find appropriate boundary conditions. This leads to

βL (0) = γL(0) = 0, hvr1(0) =
−5
(
κ2 + 1

)
µ5 (Fc − 5) r2c − 4zchvv1(0)

8
√
Fczc

,

hvvL(0) =
5
(
κ2 + 1

)
µ5Fcr

2
c

zc
, hvrL(0) = −

5
(
κ2 + 1

)
µ5
√
Fcr

2
c

2zc
,

β1(0) =
25κ2µ10r4c

2Fcz6c
, γ1(0) = −25κ

√
κ2 + 1µ10r3c

2
√
Fcz6c

. (4.5)

Note that these boundary conditions correspond to imposing a single constraint on the free parameters c0, d0, f0, e1
and f1 in Eq. (2.20). Finally, there are a few boundary conditions which me must impose by hand. These are
analogous to the constants C1 and C2 in Eq. (2.23). To smoothly match onto the non-rotating case, we choose
β1( 1

κrc
) = γ1( 1

κrc
) = 0 and hvv1(0) = 0. This choice is equivalent to imposing d0 = e0 = f0 = 0.

These boundary conditions are not sufficient to ensure smooth solutions because the point R = 31/4/(rc
√
κ) is a

(regular) singular point of our differential equations. To accommodate this singularity, we used two numerical regions,

0 ≤ R ≤ 31/4

rc
√
κ

and 31/4

rc
√
κ
< R < 1

κrc
(this is only necessary for κ <

√
3). We impose continuity of our functions

and match the first derivatives of our functions at this point. Regularity of the differential equation, or similarly
smoothness of hvrL and hvr1 at our singular point, amounts to two constraints. In total, we start with four free
constants, β1( 1

κrc
), γ1( 1

κrc
), hvvL( 1

κrc
), and hvv1(0) and fix three by hand to smoothly match onto the non-rotating

solution. The final constant is fixed by consistency of the two constraints coming from the smoothness of hvr1, hvrL.
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FIG. 3: (Left) Here we plot E(r) near the outer horizon for κ = .1, .2, .3, .4, .5, .6, .7, .8, .9 with rc = .1, µ = 1, zc =

(108µ)1/5. The color of the curves gets lighter as κ increases. As before, we have scaled the energy density by C−1 and set
θ = π/2. The upper left of the figure corresponds to the near horizon region. The curves are discontinuous because there is a
region set by κ outside the event horizon (Eq. 4.7), where the stress-energy tensor is not diagonalizable. (Right) Here we plot

the rotation Ω̃(r) for the same values of κ. At the outer horizon, the rotation matches the value Ω(rc, zc) showing that t is
the generator for the outer horizon. As before, discontinuities arise because the stress-energy tensor is not diagonalizable.

To find these numerical solutions, we use the Newton-Raphson method with pseudospectral collocation over a
Chebyshev grid in the two numerical domains. In figure 1, we have plotted our solutions for rc = .1, µ = 1, κ =
.2, zc = (4µ)1/5 (reexpressed in terms of the original radial coordinate r). Importantly, we have included only the
finite pieces of the solutions, subtracting off the divergent pieces. For example, using the notation of (2.20),

β−(r) ≡ β(r)− b0 ln(r − κrc), γ− ≡ γ−(r)− a0 ln(r − κrc), h−vv(r) = hvv(r)− c0 ln(r − κrc) (4.6)

and similarly for h−vr(r).
We have also plotted the non-vanishing components of the stress-energy tensor for this solution in figure 2. We

have only included the part of the stress-energy tensor near r = rc because the behavior of the stress-energy tensor
near the Cauchy horizon can be derived from (2.21) as was done for Trr in (3.12). To verify that we obtained the
correct holographic stress-energy tensor, we varied zc between (104µ)1/5 and (108µ)1/5 and checked that C−1(Tab)
did not change.

As pointed out for the non-rotating case, an interesting quantity is the energy density near the outer horizon. The
local energy density may be found by diagonalizing the stress-energy tensor (T ab), as done in [17]. The stress-energy
tensor in our spacetime is diagonalizable near the horizon and far from the horizon, but there is an intermediate
region

rc

√
1− κ+ κ2 + (1− κ)

√
1 + κ2 < r < rc

√
1 + κ+ κ2 + (1 + κ)

√
1 + κ2 (4.7)

where the stress-energy tensor diagonalization breaks down. This is likely a result of our expansion, as in a fully
non-perturbative solution like [17], no such region was seen, though it is notable that our solution contains a finite
temperature, rather than extremal, bulk horizon. Following [17], In the region where this decomposition is well-
defined, we may write

T abt
b = −E(r)ta (4.8)

where ta is the (unique) normalized timelike eigenvector and E(r) can be interpreted as the energy density observed
by the timelike observer with velocity ta. At leading order in r and zc,

t =
1

zc

[(
1− 2

(1 + κ2)r2c
r2

± κ2r4c
r4

)
∂

∂v
− κ
√

1 + κ2r3c
r4

∂

∂ψ

]
+O

(
1

r5
,
µ5

z5c

)
. (4.9)

The plus sign in this equation corresponds to the near horizon region, while the minus sign corresponds to the region
far from the horizon.

The energy density obtained from the decomposition is plotted in figure 3 for different values of κ. Just as in
the non-rotating case, the region of negative energy density extends all the way from the horizon to spatial infinity.
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FIG. 4: The energy density seen by an observer with the tangent vector in Eq. (4.13). Here, we choose κ =

.02, .05, .1, .15, .2, .25, .3, .35, .4, .45, .5, .55 and rc = .1, µ = 1, zc = 10µ1/5. The color of the curves gets lighter
as κ increases. For all κ, the energy density is negative near the outer horizon.

Interestingly, at spatial infinity, the energy density approaches a constant,

E∞ ≡ lim
r→∞

E(r) = ε2 · 4C

z2c
+O(r−2). (4.10)

This should not be surprising because far from the boundary black hole, the CFT should be in a thermal state,
with an energy density corresponding to the temperature of the bulk black hole. In fact, this value matches the
energy density for a CFT dual to a 6 dimensional planar-AdS Schwarzschild black brane. Furthermore, this value
is independent of κ as it should be, since our boundary black holes are asymptotically flat and a similar result was
seen for κ = 0 in [15]. In figure 3, we have subtracted this asymptotic value from the energy density to emphasize
that a local observer near the black hole measures an energy density less than the thermal energy density because of
quantum effects in the curved background spacetime.

Interestingly, our energy density approaches E∞ as r−2, rather than the r−7 decay observed in [17]. This less
steep fall-off could be a consequence of our derivative expansion method. However, it is also notable that our droplet
solution ends on a finite temperature black brane horizon, whereas in [17], the bulk horizon was extremal (the Poincaré
horizon) and the black droplet was disconnected. Similar fall-off discrepancies were seen in numerical constructions
of five dimensional static droplets, where the energy density decayed as r−5 with an extremal bulk horizon [22], but
as r−1 for a finite temperature bulk horizon [21]. Importantly, as in the analytic case, for an observer with tangent
vector ta, for all choices of κ, the energy density diverges negatively as (r − κrc)−2 near the Cauchy horizon.

We also can use the stress-energy tensor eigenvalue decomposition to define rotation of the dual plasma. Again,
following [17]), we write the timelike eigenvector of the stress-energy tensor as

T =
∂

∂v
+ Ω̃(r, z)

∂

∂ψ
(4.11)

and define Ω̃ to be the rotation. At the outer horizon, this becomes (at zeroth order in ε)

T+ =
∂

∂v
+
√
F (zc)Ω(rc, zc)

∂

∂ψ
(4.12)

which, on the conformal boundary, matches the future generator of the horizon at r = rc. Note that the rotation
decays as r−4, rather than the r−2 fall-off seen in [17]. The faster fall-off could again be a consequence of our
perturbative expansion, though more likely a result of the droplet ending on a finite temperature bulk horizon.

To better understand the energy density in regions of the spacetime where T ab is not diagonalizable, we instead
define a new vector, timelike everywhere outside the outer horizon,

K =
∂

∂v
+
√
F (z)Ω(r, z)

∂

∂ψ
(4.13)
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FIG. 5: The left plot displays the diagonal components of the holographic stress-energy tensor, T aa, for rc = .1, k = .2, µ =
1, zc = (108µ)1/5. The curves correspond to T θθ = Tφφ (dotted), T vv (dashed), T rr (dot-dashed), Tψψ (thick). Again, the
vertical grey line indicates the outer event horizon. The right plot displays the sum of these components. Notably, the trace
of the stress-energy tensor vanishes as O

(
(µ/zc)

10
)
.

which also approaches T+ at the outer horizon and goes to (∂/∂v) near spatial infinity. An observer with this tangent
vector would see the energy density plotted in figure 4, which is regular everywhere and still has the important feature
of being negative near the event horizon. Furthermore, the localization of negative energy density near the event
horizon is reminiscent of [18] and illuminates the “jammed” nature of the dual CFT. Here too, because K → ∂/∂v
near spatial infinity, the energy density also approaches E∞, indicative of the CFT in a thermal phase. This tangent
vector, however, becomes spacelike inside the outer event horizon, and so is not useful to illustrate strong cosmic
censorship. In this region, ta is well-defined and diverges on the Cauchy horizon.

We emphasize that while the stress-energy tensor diverges on the Cauchy horizon, it is finite at r = rc so that
it is regular on the past and future event horizons (shown in figure 2). Finally, one can check that the trace of
stress-energy tensor vanishes at leading order, as expected for a CFT in odd spacetime dimensions, just as in the
non-rotating case. In figure 5, we have plotted the diagonal components of the holographic stress-energy tensor,
C−1(T aa) (no sum) as well as the trace. From this figure, it is clear that the sum vanishes as we approach the
conformal boundary, (i.e. zc → ∞). One can also check explicitly from the definition of the stress-energy tensor
(3.9) and the equations of motion for hµν (2.14–2.17), that the trace vanishes as O

(
(µ/zc)

10
)
, exactly following the

non-rotating case.
To summarize our numerical results, for generic rotation parameter, κ, of our boundary black hole, the CFT plasma

exhibits the following features. The stress-energy tensor is traceless to leading order in µ/zc and regular on the outer
event horizon. For a timelike observer, there is a region near the event horizon which has negative energy density.
As a timelike observer approaches spatial infinity, the energy density seen by such an observer approaches that of the
thermal CFT dual to a six dimensional planar AdS-Schwarzschild black brane. Depending on the observer’s velocity,
the energy density may remain less than this asymptotic value for all of space, as for the observer with tangent vector
ta, or there may be a region with positive energy density, as in the observer with tangent vector K. In all cases, this
negative energy density diverges on the Cauchy horizon, as shown in Eq. (3.12), in favor of strong cosmic censorship.

V. CONCLUSION AND DISCUSSIONS

In this paper we have analytically constructed a rotating black droplet solution embedded in the planar
Schwarzschild-AdS black brane spacetime by applying the generalized derivative expansion method, which was origi-
nally developed for the static case [1]. Our method is valid when the horizon size of the black droplet is much smaller
than the horizon size of the planar Schwarzschild-AdS black brane (and the curvature radius of the background AdS
space). In this case, the derivative of the metric along the bulk radial direction, z, is much smaller than the one along
the droplet radial direction, r (parallel to the planar horizon). Then, order by order in the derivative expansion, we
have been able to solve the Einstein equations. The horizon radius of the thin black droplet solution gradually shrinks
toward the planar horizon and caps off smoothly just at the horizon. Since the temperature of the black droplet
solution is much higher than the temperature of the background planar horizon, the dual boundary state can be in-
terpreted as the Unruh state [15]. For our black droplet solution, we have–analytically and holographically–computed
the null-null components of the stress-energy tensor for a strongly coupled CFT in the boundary five-dimensional
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rotating Myers-Perry black hole spacetime. First, we have found that the negative energy appears just outside the
event horizon, which can be interpreted as a consequence of the particle production by the Hawking effect. We show,
however, there is no energy flux at infinity, as in the static case studied in [15], and therefore our boundary CFT can
be viewed as a jammed state. We have also studied the behavior of the holographic stress-energy tensor near the
inner Cauchy horizon. The null-null component of the stress-energy tensor corresponds to the energy density seen
by an observer whose world line is transverse to the Cauchy horizon. We have found that the null-null component
negatively diverges at the Cauchy horizon, suggesting that due to quantum effects, the Cauchy horizon would become
singular, in favor of strong cosmic censorship.

Although we have not analyzed the classical instability of our droplet solution in the present paper, we expect our
solution to show a classical instability or divergence of curvature scalars inside the event horizon. In fact, it was shown
in [23] that in general, adding stationary but spatially inhomogeneous linear perturbations makes inhomogeneous
black branes unstable, rendering the Kretschmann scalar with respect to the perturbed geometry divergent on the
Cauchy horizon. Viewing our black droplet solution as a type of an inhomogeneous black string in the bulk and
applying the general argument of [23], our droplet solution should also exhibit the divergence of curvature scalars
at the Cauchy horizon even inside the bulk z < zc. In the spirit of the bulk-boundary duality, our result of the
quantum divergence of the stress-energy tensor at the Cauchy horizon in the boundary geometry may be viewed as
a holographic realization of the classical divergence of curvatures at the Cauchy horizon in the bulk geometry.

Acknowledgments
This work was supported in part by JSPS KAKENHI Grant Number 15K05092(AI), 26400280, 17K05451 (KM) as
well as by NSF grant PHY-1504541 (EM).

Appendix A: Expressions for P(r), S(r), R(r), and Q(r)

We provide the explicite expressions for P(r), S(r), R(r), and Q(r), appeared in (2.14), (2.15), (2.16), and (2.17).

P(r) = −2F 2
c z

10
c (r4 + κ2r4c )

3r2 − 5

[
−2r14 + r12(r2c (1 + κ2) + 2

√
r4 + κ2r4c )

+ 3κ4r8c r
4(r2c (1 + κ2) + 2

√
r4 + κ2r4c ) + κ6r12c (r2c (1 + κ2) + 3

√
r4 + κ2r4c )

+ κ2r4c r
8(3r2c (1 + κ2) + 5

√
r4 + κ2r4c )− r2c r10(6r2cκ

2 + (1 + κ2)
√
r4 + κ2r4c )

− r6c r6κ2(6r2cκ
2 + (1 + κ2)

√
r4 + κ2r4c )− 2r10c κ4r2(r2cκ

2 + 3(1 + κ2)
√
r4 + κ2r4c )

]
µ10

+ 2Fc z
5
c (r4 + κ2r4c )

[
−6r8

√
r4 + κ2r4c µ

5 − 9r4κ2r4c
√
r4 + κ2r4c µ

5 − 3r8c κ
4
√
r4 + κ2r4c µ

5

+ r10(z5c + 5µ5) + r2r6c κ
2
{

6(1 + κ2)
√
r4 + κ2r4c µ

5 + r2c κ
2(z5c + 5µ5)

}
+ r6r2c

{
3(1 + κ2)

√
r4 + κ2r4c µ

5 + 2r2c κ
2(z5c + 5µ5)

}]
, (A1)

S(r) =
10κ
√

1 + κ2r3c r
2

z6c

[
2F 2

c z
10
c r

2(r4 + κ2r4c )
3 + 5

{
−3r14 + 2(1 + κ2)r2c r

12 + 2κ4(1 + κ2)r10c r4

− κ6
√
r4 + κ2r4c r

12
c + κ2r4c (4(1 + κ2)r2c + 5

√
r4 + κ2r4c )r

8 + r2c (−5r2cκ
2 + (1 + κ2)

√
r4 + κ2r4c )r

10

+ r10c κ4(r2cκ
2 + 2(1 + κ2)

√
r4 + κ2r4c )r

2 − r6c κ2(r2cκ
2 + 5(1 + κ2)

√
r4 + κ2r4c )r

6
}
µ10

+ 2Fcz
5
c

{
6
√
r4 + κ2r4c µ

5r12 + 7r4cκ
2
√
r4 + κ2r4c µ

5r8 − r12c κ6
√
r4 + κ2r4c µ

5 − (z5c + 5µ5)r14

+ r10c κ
4(2(1 + κ2)

√
r4 + κ2r4c µ

5 − r2cκ2(z5c − 3µ5))r2

+ r6cκ
2(−5(1 + κ2)

√
r4 + κ2r4c µ

5 − r2cκ2(3z5c − µ5))r6

− r2c (3(1 + κ2)
√
r4 + κ2r4c µ

5 + r2cκ
2(3z5c + 7µ5))r10

}]
, (A2)
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R(r) =
10κ2r4c r

z6c

[
2F 2

c z
10
c r2(r4 + κ2r4c )

2(5r4 + κ2r4c ) + 5
{

4r10c κ4(1 + κ2)r4 − κ6r12c
√
r4 + κ2r4c

+ 5r2c (1 + κ2)
√
r4 + κ2r4c r

10 − 5r6cκ
2(1 + κ2)

√
r4 + κ2r4c r

6 + 2r10c κ
4(1 + κ2)

√
r4 + κ2r4c r

2

+ (4r2c (1 + κ2)− 6
√
r4 + κ2r4c )r

12 + κ2r4c (8r
2
c (1 + κ2) + 3

√
r4 + κ2r4c )r

8
}
µ10

− 2Fcz
5
c

{
−6
√
r4 + κ2r4c µ

5r12 − 7r4cκ
2
√
r4 + κ2r4c µ

5 r8 + r12c κ
6
√
r4 + κ2r4c µ

5 + (5z5c + µ5)r14

+ κ2r6c{5(1 + κ2)
√
r4 + κ2r4c µ

5 + r2cκ
2(7z5c − 5µ5)}r6

+ κ4r10c {−2(1 + κ2)
√
r4 + κ2r4c µ

5 + r2cκ
2(z5c − 3µ5)}r2

+ r2c{3(1 + κ2)
√
r4 + κ2r4c µ

5 + r2cκ
2(11z5c − µ5)}r10

}]
, (A3)

Q(r) =
5µ5r2

z6c

[
6(2z5c + 3µ5)r16 − 2κ6(1 + κ2)r14c (2z5c + 3µ5)

√
r4 + κ2r4c

− r8c κ2(1 + κ2)
{

10(1 + κ2)(2z5c + 3µ5)
√
r4 + κ2r4c + r2c κ

2(8z5c + 7µ5)
}
r6

− 3
{

2(2z5c + 3µ5)
√
r4 + κ2r4c + r2c (1 + κ2)(8z5c + 7µ5)

}
r14

+ κ4r12c

{
(4 + 9κ2 + 4κ4)(2z5c + 3µ5)

√
r4 + κ2r4c + r2c κ

2(1 + κ2)(8z5c + 7µ5)
}
r2

− r4c
{

5r2c κ
2(1 + κ2)(8z5c + 7µ5) +

√
r4 + κ2r4c {2z5c (6 + 19κ2 + 6κ4) + (−2 + 17κ2 − 2κ4)µ5}

}
r10

+ 5r2c

{
3(1 + κ2)(2z5c + µ5)

√
r4 + κ2r4c + 2r2c (2z

5
cκ

2 + (1 + 5κ2 + κ4)µ5)
}
r12

− 2r10c κ
4
{

(1 + κ2)(2z5c + 3µ5)
√
r4 + κ2r4c + r2c (2z

5
cκ

2 − (5 + 7κ2 + 5κ4)µ5)
}
r4

+ r6cκ
2
{

(1 + κ2)(38z5c + 47µ5)
√
r4 + κ2r4c + 2r2c (2z

5
cκ

2 + (10 + 23κ2 + 10κ4)µ5)
}
r8

]
. (A4)
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