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We present a novel approach to constrain accelerating cosmologies with galaxy cluster phase
spaces. With the Fisher matrix formalism we forecast constraints on the cosmological parameters
that describe the cosmological expansion history. We find that our probe has the potential of
providing constraints comparable to, or even stronger than, those from other cosmological probes.
More specifically, with 1000 (100) clusters uniformly distributed in the redshift range 0 ≤ z ≤ 0.8,
after applying a conservative 80% mass scatter prior on each cluster and marginalizing over all other
parameters, we forecast 1σ constraints on the dark energy equation of state w and matter density
parameter ΩM of σw = 0.138(0.431) and σΩM = 0.007(0.025) in a flat universe. Assuming 40%
mass scatter and adding a prior on the Hubble constant we can achieve a constraint on the CPL
parametrization of the dark energy equation of state parameters w0 and wa with 100 clusters in
the same redshift range: σw0 = 0.191 and σwa = 2.712. Dropping the assumption of flatness and
assuming w = −1 we also attain competitive constraints on the matter and dark energy density
parameters: σΩM = 0.101 and σΩΛ = 0.197 for 100 clusters uniformly distributed in the range
0 ≤ z ≤ 0.8 after applying a prior on the Hubble constant. We also discuss various observational
strategies for tightening constraints in both the near and far future.

I. INTRODUCTION

The relation between the dynamics of clustered galax-
ies and the totality of the observable universe has long
been a fruitful site of investigation for physical cosmol-
ogy. One good example is Zwicky’s seminal investiga-
tion of the dark matter, which crystallized through an
analysis of the dynamics of galaxies in the Coma clus-
ter (then referred to as ”clusters of nebulae”) [1]. Three
decades ago, also utilizing the Coma cluster as a cosmo-
logical laboratory, Ref. [2] demonstrated that the uni-
verse’s matter energy density was sub-critical – thereby
pointing to the existence of some other unknown sub-
stance and demonstrating the capacity for the infall re-
gions of galaxy clusters to be mobilized as a powerful
cosmological probe. Just a few years after this, Ref. [3]
used the Coma cluster in conjunction with three other
nearby clusters to argue for the existence of “caustics”
in the redshift-distance space of galaxy clusters. These
“caustics” trace an identifiable edge that would later be
demonstrated to be representative of the radial escape
velocity profile of galaxy clusters [4]. From this point on,
the caustics would be used solely to generate mass pro-
files of galaxy clusters via the so-called caustic technique
[5, 6]. These dynamical cluster masses have been used to
constrain cosmology through the cluster mass function
[7]. However, the capacity of caustic edges themselves to
constrain cosmological parameters has not been pursued
since the work of Ref. [8].

Following Refs. [2, 3, 8] but also deviating significantly
from their approach, Ref. [9] demonstrated the neces-
sity to include a cosmological term to describe the es-
cape velocity profile of galaxy clusters as inferred from
their projected phase spaces. In particular, Ref. [9] pre-
sented an analytic model based on the Poisson equation
that can reproduce the projected escape velocity profiles

of galaxy clusters as measured from their phase spaces.
The analytical escape velocity profile prediction requires
a known mass profile and a known velocity anisotropy
profile β(r). Given these and the cosmological parame-
ters, the analytical escape velocity edge has been shown
to match expectations to high precision and accuracy us-
ing N-body simulations [10].

If both weak lensing mass estimates and a measure-
ment of β can be inferred for a galaxy cluster, we can
turn this around and through analytic theory constrain
cosmology by measuring edges of clusters through their
phase spaces (see Refs. [6, 10–13] for the various meth-
ods utilized to estimate the escape velocity ”edge” from
the phase space of galaxy clusters).

However, while Ref. [9] demonstrated the necessity
to include a cosmological and redshift-evolving term in
the escape velocity profile of clusters, it did not quantify
the precision with which one can constrain cosmological
parameters with this observable. This is the task that
this paper takes on.

Our paper is organized as follows: in Section II we
describe the theoretical observable we work with – the
redshift-evolving and cosmology dependent escape veloc-
ity profile of galaxy clusters. In Section III we detail
how we use the Fisher matrix formalism to quantify how
well this observable can constrain cosmology given cur-
rent and future systematic errors. We present the results
of this analysis in Section IV. In Section V we present
observational strategies that may be utilized to optimize
cosmological constraints. In Section VI we discuss our
observable in relation to other probes and speculate as
to how we may improve constraints in the future through
joint likelihood analyses. We conclude the paper and
provide ways of extending our work in Section VII. The
Appendix details the construction of our Fisher matrix.
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II. THEORETICAL OBSERVABLE

The theoretical observable quantity we work with
throughout this paper is the projected escape velocity
radial profile of galaxy clusters. Observationally, the es-
cape velocity profile of a cluster is inferred from the phase
space (vlos vs r space) of the cluster. More specifically,
the line of sight galaxy velocity (vlos) vs. physical dis-
tance (r) space is constructed by measuring the redshifts
of cluster galaxies (z) of a cluster at a redshift zc and
then converting them to velocities via,

vlos(r) = c
(z − zc)
(1 + zc)

, (1)

where c is the speed of light. The physical distance from
the cluster’s center (r) is inferred from the angular diam-
eter distance (dA) and the measured angular separation
(θ),

r = dA(z)θ =

[
1

1 + z

cH−1
0√

ΩK
sin

(√
ΩK

∫ z

0

dz′

E(z′)

)]
θ.

(2)
H0 is the Hubble constant and the redshift evolving func-
tion E(z) is detailed in Eq. (10) below. Note that sin(x)
(the non-flat closed universe case) becomes x for the flat
universe case. Also detailed below is the parameter ΩK
which quantifies the openness or closedness of the uni-
verse. The escape velocity profile can then be inferred
from this phase space through various techniques (see
Refs. [6, 10–13]).

This phase space inferred escape velocity profile can be
modeled with a function of the mass distribution of a spe-
cific cluster as specified by its gravitational potential (in
our case we use the Einasto profile with three free param-
eters: α, r−2, ρ−2; see Eq. (6) below), and the anisotropy
parameter (β) of that specific cluster (which allows us to
take into account projection effects). As mentioned in
the introduction, the profile is also a function of redshift
z and cosmology (ΩM , h, etc.). The escape velocity radial
profile is therefore given by a function of these cosmology
and cluster parameters combined,

vesc(r, z,ΩM , h, . . . , β, α, r−2, ρ−2). (3)

We note that while we utilize only Einasto density pro-
files in this paper, in principle any parametrized mass
profile can be used in our framework, as long as the
parametrization is a density-potential Poisson pair (see
e.g., Ref. [10]).

While the mass dependence and projection effects have
long been considered in studies of this observable (see for
instance Ref. [11]), only recently has the cosmological de-
pendence of the escape velocity profile been considered.
More specifically, the cosmological dependence of the es-
cape velocity has been studied in relation to both obser-
vational data and simulations of standard general rela-
tivistic cosmology as well as modified theories of gravity

[9, 10, 14]. These investigations found the need to include
a cosmological term in order to reproduce numerical re-
sults as well as observational data.

Qualitatively, it should be unsurprising that the cos-
mological background within which a cosmic structure
is embedded at a given epoch will create the conditions
for its evolution and development. For instance, whether
a gravitationally bound structure today (say, a galaxy
group or galaxy cluster) can become unbound at late
times in an accelerating universe is a function of both
the curvature of space and the mass-energy content of
the background the particular structure is embedded in
[15, 16]. It is therefore clear that the theoretical escape
velocity profile must take into account the cosmological
background.

More specifically, the cosmological dependence in the
escape velocity profile in Refs. [9, 10, 14] comes in
through the ”equivalence radius.” In an accelerating uni-
verse, the radius out to which one has escaped a cluster’s
potential is a function of cosmology. This minimal radius
required to escape, termed the equivalence radius (req),
decreases in an accelerating universe (see Ref. [9] and
references therein). The projected escape velocity profile
is then given by,

vesc(r, z) =

√
1

g(β)

[
− 2
(
Ψ(r)−Ψ(req)

)
− qH2

(
r2 − r2

eq

)]
.

(4)
We note that, as expected, at r = req the escape velocity
is nil. The function of the equivalence radius then is to
normalize the escape velocity at that point. Note that
this equation is derived by integrating the acceleration
equation of the effective potential that takes into account
both the ”negative” acceleration due to the mass of the
cluster and the ”positive” acceleration of the background
at late-times. We therefore obviate the ”negative” accel-
eration due to ram pressure on galaxies given that it is
negligible when compared to averaged gravitational ef-
fects [17]. The ”equivalent radius,” then, is named for the
condition that it sets: it is the point at which the negative
(inward) acceleration due to the pull of the cluster and
the positive (outward) acceleration due to the accelera-
tion of the universe balance each other. For a derivation
of Eq. (4) see Refs. [9, 10]. We note also that the physical
distance r in Eq. (4) is cosmology dependent via Eq. (2).

Lastly, as detailed in Ref. [9], Eq. (4) emerges from the
acceleration equation derived by Ref. [18] in the context
of a flat universe. However, in the cosmological regime
we work with, the acceleration equation for a spatially
flat and non-flat universe converge. See sections 5.3.1,
5.3.2, and 5.3.3 of Ref. [18] and section 2.1 of Ref. [9].

We now consider the two main components of the pro-
jected escape velocity profile function (Eq. (4)): cluster
parameters (projection effects and mass profile informa-
tion) and cosmological parameters.
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A. Cluster parameters

The two components of the cluster parameter set are
the mass profile parameters and the anisotropy parame-
ter β encapsulated by the function g(β).

The anisotropy parameter β is given by β(r) = 1 −
σ2
t /σ

2
r . Where σt is a function of the azimuthal and tan-

gential velocity dispersions and σr is the radial velocity
dispersion. See Section 5.1 of Ref. [9] for details. Note
that while the anisotropy profile of the cluster is actually
a function of radius (β(r)), the observed and simulated
profile is nearly flat within 0.3 - 1 virial radii [12, 19, 20].
Therefore, in what follows we only consider the escape
velocity profile within this radial range so that we can
reduce the anisotropy profile to a single value for a given
cluster. Once β for a given cluster is inferred we can
then use the function g(β) to project our escape velocity
profile (see Refs. [9, 11]). In particular this function is
defined geometrically and given by,

g(β) =
3− 2β

1− β
. (5)

As can be implied from this equation, the effect of g(β)
on the escape velocity profile within the radial range
we consider below is to suppress the profile by a con-
stant value when compared to the 3 dimensional case
(g(β) = 1). Quantitatively, the limits of this function
are set by the limiting cases of the anisotropy parame-
ter β: radial infall (β = 1), circular motion (β = −∞)
and isotropy (β = 0). For the radial range we are con-
sidering, on average, g(β) ∼ 3.3. This entails that, on
average, within the radial range considered below, non-
projected escape velocity profiles are

√
g(β) ∼ 1.8 times

higher than projected profiles. As a rule of thumb, the
more radial the velocity anisotropy of a cluster, the more
suppressed the escape velocity profile will be. For a more
thorough quantitative analysis of these projection effects
see Refs. [9, 12].

The other component of the cluster parameters that
make up our observable is the mass profile of a given
cluster. Information about the mass profile of the cluster
comes through the gravitational potential Ψ(r). Follow-
ing [9, 10] we pick the Einasto representation of the po-
tential given its capacity to trace the mass distribution
of galaxy clusters beyond the virial radius. The gravi-
tational potential Ψ(r), then, is a function of three free
parameters: the shape parameter α, the radius where
the logarithmic slope of the density profile is equal to −2
(r−2) and the density at r−2 (ρ−2). As calculated via the
Poisson equation [21], the potential as inferred from an
Einasto density field is,

Ψ(r) = −GM
r

[
1−

Γ
(
3/α, sα

)
Γ(3/α)

+ s
Γ
(
2/α, sα

)
Γ(3/α)

]
. (6)

Γ(a, x) is the upper incomplete gamma function. We are

also utilizing the unitless scale radius s given by,

s =
r

r−2

(
2

α

)1/α

. (7)

And we re-write the total mass (M) as,

M = 4πρ−2r
3
−2F (α). (8)

In this last equation we have defined the function of α,

F (α) = Γ(3/α)

(
e2

8
α3−α

)1/α

. (9)

Note that in general we follow the definitions and speci-
fications used in Refs. [9, 10]. We treat the mass profiles
and β as observable quantities with uncertainties. In
simulations, β shows no significant evolution as a func-
tion of redshift in the range we are interested in (ie.,
0 ≤ z ≤ 0.8, see Fig. 2 in Ref. [22]) and is inferred inde-
pendently of cosmological assumptions [13, 23–26]. This
is not the case for the weak lensing mass profile-inferred
parameters (namely α, r−2, and ρ−2). We analyze how
systematic errors introduced by uncertainties in cosmo-
logical parameters affect weak lensing mass errors in the
section IIIC below as well as in the Appendix.

B. Cosmological parameters

Having defined the first set of parameters of the
escape velocity profile related to its mass content
(α, r−2, ρ−2) and projection effects (β), let us now focus
on the redshift-evolving and cosmology-dependent terms
in Eq. (4), namely, the Hubble parameter H, the decel-
eration parameter q, and the equivalence radius req. We
describe these terms below.

Given that we work in a regime where the radiation en-
ergy density is negligible (z ≤ 0.8) the Hubble parameter
is given by,

H2 = H2
0E

2(z) = H2
0

[
ΩM (1 + z)3 + Ωk(1 + z)2+

ΩDE exp

{
3

∫ z

0

d ln(1 + x)[1 + w(x)]

}]
, (10)

where ΩM and ΩDE are energy densities in matter and
dark energy relative to critical, w(z) is the time-varying
equation of state of dark energy, and the spatial curvature
density parameter is Ωk ≡ 1 − ΩM − ΩDE . Note that
throughout this paper we work with the scaled Hubble
constant h defined via H0 = 100h.

Once we have the Hubble parameter as a function of
redshift we can derive the corresponding deceleration pa-
rameter, q ≡ −äa/ȧ2, where a is the scale factor, as a
function of redshift via,

q =
(1 + z)

H

dH

dz
− 1. (11)
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FIG. 1. Behavior of the equivalent radius (req) as a function
of redshift (z) for a cluster with mass M200 = 4× 1014M� for
three values of ΩM in a flat ΛCDM universe and h = 0.7. At
the transition redshift for each given cosmology, the radius
shoots up to infinity. Note how req becomes more and more
sensitive to ΩM at higher z.

Lastly, the equivalent radius (req) is the physical dis-
tance at a given cosmic epoch, for a given cosmology,
where the inward pull of gravity balances the outward
pull of cosmic acceleration. It is given by [16],

req =

(
GM

−qH2

)1/3

. (12)

This radius is what sets the normalization of the gravi-
tational potential of our galaxy cluster, Ψ(req) in Eq. (4)
[9, 10]. That is, beyond this equivalence radius, the
effective potential of the cluster described by Eq. (4)
(−2φ = v2

esc(r, z)) is normalized to 0 (See Ref. [9] for
a derivation). Note also that the distance at which this
balance of forces occurs, that is, between cosmic accel-
eration and the cluster’s gravitational pull, is far away
enough from the cluster center that the cluster can be
represented as a point mass. Lastly, this quantity can
be thought of as a proxy for how sensitive vesc(r, z) is
to cosmology. In lieu of taking analytic derivatives of
Eq. (4) one can study the analytic derivatives of req. We
have confirmed this by looking at numerical derivatives of
vesc(r, z) and compared them to the analytic derivatives
of req for the same cosmology, finding good agreement.

In Fig. 1 we show that, for a fixed cluster mass the
equivalence radius is sensitive to both cosmology and
redshift. More specifically, we pick a mass of M200 =
4× 1014M�, where M200 is defined as the mass enclosed
by a sphere with an average density equivalent to 200
times the mean density of the universe. Note that as the
cluster gets closer to the acceleration transition redshift
(q(z) = 0) the equivalence radius shoots up to infinity.
We consider the effects of this behavior on our observable
below.
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FIG. 2. Redshift evolution of the deceleration parameter in
a flat universe with fixed ΩM = 0.3 and h = 0.7. Notice the
divergence of values of q at low redshifts when the equation
of state parameter is varied.

1. vesc(r, z) in an accelerating universe (q < 0)

Within the q < 0 regime, the escape velocity profile is
described by Eq. (4). As shown by Ref. [9], in an acceler-
ating universe the effect on the observable generated by
changing the various cosmological parameters is to mod-
ify both the amplitude and the shape of the escape veloc-
ity profile. For instance, in a flat universe, a larger dark
energy density makes it easier to escape a galaxy cluster,
while a larger dark matter component makes it harder to
escape the cluster. This is illustrated in Fig. 1. Using
the equivalence radius as a proxy to gauge how vesc(r, z)
changes, we see that the equivalence radius blows up at
the given transition redshift for that cosmology (i.e. z
that yields q(z) = 0).

It is important to emphasize that, in the regime where
q(z) < 0, vesc(r, z) is a direct measure of both expansion
and acceleration, since qH2 is a function proportional to
both H(z) and dH(z)/dz. This makes our observable a
powerful probe of cosmology. For example, note the sen-
sitivity of the deceleration parameter to the dark energy
equation of state w as shown in Fig. 2. In particular,
the variation of q(z) with respect to w increases at lower
redshifts. Fig. 3 also demonstrates the sensitivity of the
observable to w by showing the fractional difference be-
tween the escape velocity for a flat ΛCDM universe at
z = 0 and two dark energy models, quintessence-like dark
energy (solid line) [27] and phantom dark energy (dotted
line) [28]. Note the ∼10% level differences between these
models and Λ (dashed line). A quintessence-like dark
energy, then, would increase the escape velocity profile,
whereas a phantom dark energy would decrease the es-
cape velocity (both relative to ΛCDM).
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FIG. 3. Using a single cluster with mass M200 = 4× 1014M�
at z = 0, we show the fractional difference between the es-
cape velocity profile of a flat wCDM universe with dark energy
equation of state w = −1 and two other dark energy models
(quintessence in the solid line and phantom dark energy in
the dotted line). More specifically, ∆vesc(r, z)/vesc(r, z) =
[vesc(w)/vesc(w = −1)] − 1. Quintessence therefore acts sim-
ilarly to increasing the dark matter density. That is, it in-
creases the escape velocity profile relative to the Λ case (see
Fig. 1 of Ref. [9]). On the other hand, the phantom dark
energy suppresses the escape velocity profile relative to the
Λ case. Lastly, we highlight that the fractional difference in-
creases with radius in both cases.

2. vesc(r, z) at the transition redshift (q = 0)

As implied in the previous subsection, as we approach
q = 0 the equivalence radius blows up and Eq. (4) is
reduced to the gravitational potential described by the
Einasto gravitational potential Ψ(r). More explicitly,

lim
q→0

vesc(r, z) =

√
1

g(β)

[
− 2Ψ(r)

]
. (13)

One immediate consequence we derive from this behavior
is that the only cosmological dependence we get beyond
this point is through r (see Eq. (2)).

We now investigate what happens to our observable
beyond the transition redshift or, equivalently, what hap-
pens to our observable with combinations of cosmological
parameters that yield a decelerating universe (i.e. q > 0).

3. vesc(r, z) beyond the transition redshift (q > 0)

In the regime beyond the transition redshift, or when
q > 0, it makes no sense to speak of an equivalence ra-
dius. Recall that the equivalence radius is defined in the
context of a balance of forces. Given that there is no
balance of forces between the mass-induced pull of grav-
ity and the repulsive acceleration as there is in the case
where q < 0, there is no such equivalence radius.

We note that within the virial radius, the theoretical
expectation embodied in Eq. (4) works to high precision
up to z ∼ zt + δz, where zt is the transition redshift and
δz is small. See, for example, Fig. 4 in Ref. [10]. Beyond
the transition redshift, however, the analytic theory of
Eq. (4) is complicated both by cluster assembly dynam-
ics and the theoretical ambiguity of what occurs to the
escape velocity profile in a universe that is approaching
the Einstein-de Sitter case. When q > 0, the internal dy-
namics of a bound system like a galaxy cluster are solely
governed by the Poisson equation with gravity acting to
source to accelerate the member galaxies.

Given this, in the Fisher matrix analysis that follows,
we pick z = 0.8 as the maximum redshift out to which we
can realistically push our probe. Later on in the paper
we discuss the implications of defining a redshift range
for the probe.

Having described both the cluster and cosmological pa-
rameter dependence of our probe, and having considered
the regimes of applicability of our probe, we now quanti-
tatively characterize, through the Fisher matrix formal-
ism, how well our observable may be able to constrain
cosmological parameters.

III. FISHER MATRIX

The Fisher matrix formalism has been vital in predict-
ing how well a given cosmological probe can constrain
any given set of cosmological parameters [29–33].

In this section we briefly go over the Fisher matrix for-
malism. We construct the Fisher matrix for our observ-
able quantity, include parameters describing systematic
errors in these observations, discuss how we apply priors
on cluster and cosmological parameters, and calculate the
marginalized errors on cosmological parameters.

A. Formalism

In general, the Fisher information matrix is a function
of the derivatives of the log likelihood of our observable
with respect to the observable’s parameters (p),

Fij =

〈
− ∂2 lnL
∂pi∂pj

〉
. (14)

Given that the observable quantity is the escape velocity
as a function of redshift and radius we have that the
Fisher matrix elements are sums over clusters (index n)
and radii (indices k and l),

Fij =
∑
nkl

∂vesc(zn, rk)

∂pi
(C−1)kl

∂vesc(zn, rl)

∂pj
, (15)

where C is the covariance of escape velocity measure-
ments at different radii. Here we assume that the escape
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velocity measurements in different clusters are uncorre-
lated, and that the measurement covariance for different
radii in a cluster (matrix C) is independent of redshift.

After adding priors to our cluster parameters the
Fisher information matrix is then given by,

F = Fij + Fprior. (16)

From this F we can then compute the marginalized lower
bound of the uncertainty on any of our N parameters via
the Cramér-Rao inequality, σpi ≥

√
(F−1)ii. The inverse

is calculated via Gaussian elimination. We ensure that
the inversion of the matrices we work with are stable by
calculating the condition number for each F matrix and
ensuring that it is less than ∼ 1012.

As detailed in the previous section, the parameters in
our observable can be split up into two sets: cluster and
cosmological parameters. Consequently, the parameters
that we will be taking the derivatives with respect to (p)
can be represented by the union of the following two sets:

p ∈ pclus ∪ pcosmo. (17)

The parameters describing the clusters 1 to N (i.e.
three parameters for the mass profile plus one more de-
scribing the anisotropy parameter, per cluster) can then
be encapsulated in the following set,

pclus ∈ {β1, α1, r−2,1, ρ−2,1, . . . , βN , αN , r−2,N , ρ−2,N}.
(18)

The cosmological parameter set pcosmo is composed of
the cosmological parameters. We detail the cosmological
models we study, and the corresponding sets of pcosmo,
in the next section.

Considering these sets, we therefore have a Ndim by
Ndim dimensional Fisher matrix F given by:

Ndim = 4×Nclus +Ncosmo (19)

where Nclus is the number of clusters and Ncosmo is the
number of cosmological parameters. We provide a sketch
of the Fisher matrix structure in Fig. 12 and explore its
structure more thoroughly in the Appendix.

B. Fij matrix

In this subsection we focus our attention on the com-
ponents that make up the Fij matrix (Eq. (15)).

1. Fiducial cluster

As with any Fisher matrix analysis, the derivatives of
Eq. (15) are calculated at a given set of fiducial val-
ues. For our fiducial cosmology we pick pcosmo,fid ∈
{ΩM = 0.3,ΩΛ = 0.7, w0 = −1, wa = 0, h = 0.7}.
For our fiducial cluster parameters we pick pclus,fid ∈
{α = 0.1984, ρ−2 = 1.0521 × 1014[M�/Mpc3], r−2 =

0.497[Mpc], β = 0.145}. The β fiducial value is around
what has been estimated for galaxy clusters (see Refs.
[13, 23–26]) and the three Einasto fiducial cluster param-
eters are equivalent to a cluster of mass M200 = 4×1014.
More specifically, we use the mass-concentration relation
in Ref. [34] to map our fiducial mass M200 to the Einasto
parameters at z = 0 by fitting the Navarro-Frenk-White
(NFW) density profile to the Einasto density profile. For
analytical representations of these density profiles see
Ref. [35] and references therein.

Furthermore, to calculate the derivatives of Eq. (15)
we place our fiducial cluster along different redshifts zn
and recalculate its angular size θ with fixed r at that
given redshift via Eq. (2). We discuss this radial range
in the next sub-subsection.

In Fig. 4 we plot some of the derivatives for our fiducial
cluster used in our Fisher matrix analysis. More specifi-
cally, we plot the radial derivatives of vesc(r, z) with re-
spect to various cosmological parameters for 100 clusters
of the same fiducial mass uniformly distributed in the
range 0 ≤ z ≤ 0.8. Fig. 4 is a useful way to study the
sensitivity of our observable to various cosmological pa-
rameters. In particular Fig. 4 tells us that our observable
is more sensitive to certain cosmological parameters at
higher redshifts, such as ΩM , (the red lines, which repre-
sent high redshift clusters are higher than the blue ones,
which represent low redshift clusters), and more sensitive
to other parameters at lower redshift, such as the dark
energy equation of state parameter w. Judging from the
derivatives in Fig. 4, our probe is most sensitive to the
parameter ΩM . Note also that for all parameters, the
sensitivity increases with radius. We emphasize that be-
yond the transition-to-acceleration redshift (zt = 0.671)
in the standard ΛCDM model we no longer gain much
cosmological information as encapsulated by Eq. (13).
Beyond this redshift we still get information cosmologi-
cal information via r which is a function of the angular
diameter distance (Eq. (2)).

2. Radial bins and covariance matrix C−1

Having described the derivatives of Eq. (15) we now
describe the covariance matrix C in that same equation.
Simply put, this matrix embodies the covariance of be-
tween different measurements of our observable at a given
radial bin in a cluster n.

For a perfect three-dimensional observation of the
galaxy velocities, there would be no projection effects and
therefore one would expect a nonzero covariance between
vesc at different radii. This effect is random between dif-
ferent radial bins, and it effectively decouples the mea-
surements in different radial bins, reducing the bins’ co-
variance. More specifically, this scatter arises from the
fact that when observing a galaxy cluster, random galax-
ies along the line of sight may be included in the phase
space. This drastically reduces the covariance between
radial bins. Therefore, it is a good assumption that the
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FIG. 4. Sensitivity of the observable vesc(r, z) to cosmology. The partial derivatives of the escape velocity profile are calculated
numerically at 100 different redshifts (z) with respect to the various cosmological parameters for our fiducial cluster. The
specific redshift of a given profile can be identified through the color bar on the right-hand side of the figure. In all cases,
the information grows (i.e. the observable becomes more sensitive) the farther out we go radially. Some parameters are most
sensitive at higher redshifts (ΩM , ΩΛ and h) while others are more sensitive at lower redshifts (w). Note that beyond the
transition redshift for our fiducial cosmology, the derivatives with respect to all parameters reach a limit, as implied by Section
II B 2.

radial covariance matrix is diagonal. That is, C−1 is re-
duced to σ−2

vesc .
Mathematically, at any given radius, the uncertainty in

vesc(r, z) is given by the combination of the spectroscopic
uncertainty, uncertainty due to the edge measurement,
and any additional intrinsic uncertainties,

σvesc =
√
σ2
spec + σ2

edge + σ2
edge,int. (20)

We choose σspec = 50 kms−1 to match the redshift
accuracy of modern spectroscopic surveys [36]. To cal-
culate the uncertainty on the statistically inferred edge
at a given radial bin we follow Ref. [37] who used sim-
ulations to show that when viewing along a line-of-sight
the edge can be recovered to high statistical precision (∼
5% or less) when 100 or more galaxies are used in the
phase spaces (see their Figure 4 – bottom right). For
our fiducial cluster this corresponds to 50 kms−1 since
the observed edge is typically around 1000 kms−1. We
also allow for an intrinsic scatter between the observed
edge and how accurately it can recover the true under-

lying gravitational potential. Ref. [38] used simulations
to quantify the statistical accuracy and precision of the
cluster mass using the projected edge when the density,
potential, and anisotropy are known exactly. They find
that there is a statistical floor of 25% error in mass, which
translates into a 12.5% error in the edge since mass scales
as the square of the potential. For our fiducial cluster,
this intrinsic error corresponds to ∼ 125 kms−1.

As in Eq. (20), we sum these three components in
quadrature giving σvesc = 143.61 kms−1 for our fiducial
cluster. This is about a 15% total error in the measure-
ment of the projected phase space escape velocity edge.
Lastly, note that if we double the total error budget on
vesc, our constraints on the cosmological parameters in-
crease by about 80%.

We next tackle the question of how many radial bins
we should use for a given cluster in our Fisher matrix
calculations.

Our one requirement here is to be able to resolve the
shape of the velocity edge vs. radius, vesc(r). In all cases,
we assume densely sampled phase spaces (i.e., 100-200
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galaxies within the virial radius). Since more massive
clusters are also larger in size, we can maximize the num-
ber of useful radial bins by choosing the most massive
clusters for our analysis.

At the moment, we can typically rely on reasonably ac-
curate weak lensing mass estimates for the highest mass
systems in the universe. Therefore, for this paper we
will assume an SPT (South Pole Telescope)-like sample
with M200 > 3× 1014M� [39]. More specifically, as men-
tioned elsewhere in the paper, we pick a fiducial mass of
M200 = 4× 1014M�.

Furthermore, as detailed in Section IIA, we can only
work within the radial range of about 0.3 - 1 virial radii
if we assume that the anisotropy profile can be reduced
to a single parameter. Henceforth for our profiles and
constraints we pick a radial range between 0.5 ≤ r ≤ 2.5
Mpc, the outer range corresponding to about r200 (where
the density reaches 200 × the mean value) and the in-
ner range corresponding to about 0.3 × r200 described
above [40]. This radial range, given ∆r ∼ 0.1 Mpc yields
Nbins = 14 radial bins. This is what we use in our calcu-
lations throughout our paper (see Eq. (21) below).

Note that if we change the number of radial bins from
14 to 7 and 21, the constraints on the cosmological pa-
rameters change by ∼ 20%. We can therefore in principle
get better constraints than what is presented in the next
section by increasing the number of radial bins. However,
binning too finely is not desirable given that it can in-
troduce additional statistical noise in the observable and
may not even be possible, given the density of galaxies
in the phase spaces that are observationally viable.

Given all of this, Eq. (15) thereby becomes,

Fij =

Nclus∑
n=1

Nbins∑
k=1

1

σ2
vesc

∂vesc(rk, zn)

∂pi

∂vesc(rk, zn)

∂pj
. (21)

and is therefore a sum over Nclus clusters and Nbins ra-
dial bins. This is the Fij matrix we utilize for all of our
constraints presented in section IV, in conjunction with
the prior matrix which is discussed in the following sub-
section.

C. Prior information

The Fisher information matrix formalism allows us to
add additional independently measured information at-
tained on certain model parameters (both cluster and
cosmological) to our Fisher matrix. This is implemented
via the prior information matrix Fprior in Eq. (16). The
structure of this matrix is given by,

Fprior =


C−1
cosmo 0

C−1
cluster

C−1
cluster

0 . . .

 . (22)

We discuss the elements of this prior information ma-
trix below.

1. Cluster prior information (C−1
cluster)

In our case, the mass parameters (which come from
weak lensing mass estimates) and the anisotropy parame-
ter (which comes from analysis of the phase spaces of the
clusters via the Jeans equations) are known to within
some precision from these independent measurements.
We therefore add a prior information matrix to account
for this external information on the non-cosmological pa-
rameters.

More specifically, the error bars on the weak lensing
mass estimates are chosen to be similar to what is re-
ported in the literature based on recent observations. As
a representative sample, see the metacatalog compiled in
Ref. [34]. We particularly choose an M200 error range
from 20% to 40% which is based on ground-based imag-
ing. For instance, Ref. [42] reports typical statistical er-
rors of ∼ 20% using Surprime-Cam imaging for 50 clus-
ters to a redshift of 0.7. Similarly, Ref. [43] primarily
used Subaru/Suprime-Cam to obtain weak lensing errors
at a level of 20− 30% based on the CLASH sample. Ref.
[44] also reports ∼40% statistical errors for four clusters
using science verification data from the Dark Energy Sur-
vey on the CTIO 4m Blanco DECam imager. This is why,
as our baseline, we use the upper range of 40% statistical
error on the mass. In what follows we also consider 5%
statistical error as a floor that can be potentially achieved
through the technique of stacking galaxy clusters [45, 46].

However, there are also systematic errors that need to
be considered. These can come from a variety of observa-
tional sources including the telescope point-spread func-
tion, the background redshift distribution, the intrinsic
shape variations of the background galaxies, and more.
Ref [42] reports systematic errors that are small com-
pared to the statistical errors (7%) when the telescope
optical system is well characterized.

Few researchers have allowed for cosmology to vary
during the weak lensing mass estimation process. As
we approach higher precision requirements, we will need
to incorporate variations in cosmology when calculating
the cluster masses and it could play an important role
in the overall error budget. Therefore, we estimate how
large the mass errors would grow when allowing cosmol-
ogy to vary during the mass estimation process. We do
this while keeping the nominal statistical error, which
represents the current conservative end of ground-based
results. As explained in the Appendix C, we find that the
total (statistical + cosmological systematic) error, for ex-
ample, increases from 20% to 40%. That is, considering
cosmological systematics in the weak lensing analysis in-
creases the mass error by a factor of 2. Also as detailed
in the Appendix, the cosmological systematics can be un-
dercut by applying a prior on the Hubble parameter h.
We tabulate these results in Table 1.
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Cluster Parameter Uncertainties

WL mass error σα σρ−2 [M�/Mpc3] σr−2 [Mpc] σβ σvesc [kms−1]
5% stat + 5% cosmo sys (”stacked”) 0.0024 5.887 × 1012 0.0314 0.02 90.14
20% stat + 20% cosmo sys (”40% mass scatter”) 0.0096 23.589 × 1012 0.1342 0.5 143.61
40% stat + 40% cosmo sys (”80% mass scatter”) 0.0181 43.904 × 1012 0.2913 0.5 143.61
40% stat (”Riess et al 2016 prior on h”) 0.0096 23.589 × 1012 0.1342 0.5 143.61

TABLE I. Cluster parameter uncertainties that make up the Fprior matrix used in the various cases considered in the Constraint
Forecasts section as well as the error on the edge σvesc that makes up the Fij matrix. Note that in principle there is no covariance
between β and the three other parameters, but we simply change the uncertainty on β for the other cases with reduced weak
lensing mass scatter. Furthermore, as explained in the text, we use the weak lensing (WL) mass percent error on M200 as
shorthand to describe uncertainties in all three Einasto parameters. In the last row we tabulate the uncertainties in the three
Einasto parameters after applying a prior on h from from Ref. [41]. All other cluster parameter uncertainties listed contain
both statistical error as inferred from weak lensing (WL) analyses and systematic error from cosmology as explained in the
”Prior information” section and Appendix C.

Note that when in this paper we speak of some per-
centage of ”mass scatter” we refer to both the statistical
and cosmological systematic error as tabulated in the first
three rows of Table 1. The last row of Table 1 shows the
uncertainties for a case in which the Hubble prior has
been implemented. In that case, the 80% uncertainty on
the mass is reduced to 40% after applying the prior on
h from Ref. [41] (σh = 0.0174). See section C in the
Appendix for details.

Note also that when we speak of mass scatter we refer
to how the statistical uncertainties in all three cluster pa-
rameters change (α, ρ−2 and r−2). More specifically, we
use the more widely reported percent scatter on M200 as
a shorthand to describe the uncertainties in our Einasto
cluster parameters. As with the fiducial mass, we at-
tain these uncertainties by propagating the 1σ errors on
the NFW density profile to the Einasto density profile
parameters by fitting the profiles out to one virial radii.

Also unless otherwise stated, and as shown in Table
1, for the anisotropy parameter we use an uncertainty of
σβ = 0.5 which is also a fairly conservative choice. For
example, see uncertainties on β as derived from a Jeans’
analysis in Ref. [23].

These parameter uncertainty priors come into our prior
matrix only along the diagonal. This is because we are
already considering covariances on the prior information
between cluster and cosmological parameters through the
aforementioned analysis. Note that this does not mean
that we are not considering covariances between param-
eters. We are, these are all encapsulated in the Fisher
matrix Fij . We simply neglect covariance on most prior
information. In this sense, our attempt to grapple with
the covariances in our prior matrix (detailed in Appendix
C) is only an approximation. Note, however, that some
parameter uncertainties in the prior matrix are actually
nil. For instance, a Jeans equation analysis inference
of β is what allows us to decouple the edge uncertainty
σvesc , as well as other cluster parameters from σβ . In
contrast, inferring β from edge measurements as done
by Ref. [9] would introduce a complete covariance be-

tween edge measurements and the anisotropy parameter.
The Jeans equation evades this problem given that it is
a function of the derivative of the potential rather than
the potential itself.

Lastly, the inverse cluster covariance matrices
(C−1

cluster) contain the aforementioned priors on the mass
parameters as well as the prior on the cluster anisotropy
parameter. We add covariance between relevant param-
eters of the cluster prior submatrix. In particular, we
model the covariance between cluster parameters r−2 and
ρ−2. We discuss the structure of the submatrices C−1

cluster
in the Appendix.

2. Cosmological prior information (C−1
cosmo)

In relation to the cosmological prior information ma-
trices, we note that for most cases we are not adding
any cosmological priors so that in Eq. (22), C−1

cosmo is an
Ncosmo by Ncosmo null matrix. Where noted, we add a
diagonal prior on the C−1

cosmo matrix from the 2.4% de-
termination of the Hubble constant from Ref. [41].

IV. CONSTRAINT FORECASTS

We now derive marginalized uncertainties on cosmo-
logical parameter pcosmo, marginalized over the cluster
nuisance parameters pcluster. Note that in some cases we
also marginalize over remaining cosmological parameters
to generate 2-dimensional likelihoods.

We consider three cosmological models. The first two
assume a flat universe (Ωk = 0) and the last case assumes
a non-flat universe (Ωk 6= 0).
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FIG. 5. 68% and 95% confidence constraints for the flat
wCDM case after marginalizing over all other parameters.
We use Nclus = 1000 (100) clusters as shown in red (black)
uniformly distributed in the range 0 ≤ z ≤ 0.8. The priors on
the Einasto parameters assume a uniform 80% weak lensing
mass scatter for all redshifts (see Table 1). The 1σ errors are
σΩM = 0.007(0.025) and σw = 0.138(0.431) for Nclus = 1000
(100).

A. Constant equation of state w

For this case, we consider the following set of cosmo-
logical parameters,

pcosmo ∈ {ΩM , w, h}. (23)

Via Eq. (10) we find the Hubble parameter which yields

H2 = H2
0E(z)2 = H2

0

[
ΩM (1 + z)3 + ΩDE(1 + z)3(1+w)

]
.

(24)
And the deceleration parameter via Eq. (11),

q =
1

2

[
ΩM (z) + (1 + 3w)ΩDE(z)

]
. (25)

Here, ΩM (z) = ΩM (1 + z)3E(z)−2 and ΩDE(z) =
ΩDE(1 + z)3(1+w)E(z)−2. The combination then of
the deceleration parameter and Hubble parameter that
makes up the equivalent radius and our observable is
given by,

qH2 =
H2

0

2

[
ΩM (1+z)3 +(1+3w)(1−ΩM )(1+z)3(1+w)

]
.

(26)
Notice that the quantity E(z) cancels out in this expres-
sion.

The constraints in the ΩM − w plane, after marginal-
izing over h and all other cluster parameters are shown
in Fig. 5. In particular, in black/grey (dark/light red)
we plot the 68% and 95% confidence level constraints

for a set of Nclus = 1000(100) clusters uniformly dis-
tributed in the range 0 ≤ z ≤ 0.8. The marginalized 1σ
errors are σΩM

= 0.007(0.025) and σw = 0.138(0.431)
for Nclus = 1000 (100). This is an extraordinarily tight
constraint considering that it is achieved by the escape
velocity method alone, before adding constraints from
other probes.

B. w0 and wa

In the previous case we considered a constant dark
energy of equation of state (EoS). However, in principle
the dark energy EoS can evolve with redshift. A popular
way to parametrize the redshift evolving dark energy EoS
through the so-called Chevallier-Polarski-Linder (CPL)
parametrization given by, (see Refs. [47, 48])

w(z) = w0 + wa
z

1 + z
. (27)

In this case we consider the following set of cosmolog-
ical parameters,

pcosmo ∈ {ΩM , w0, wa, h}. (28)

Again we derive the Hubble parameter for this case,

H2 = H2
0E(z)2

= H2
0

[
ΩM (1+z)3 +ΩDE(1+z)3(1+w0+wa)e−3wa

z
1+z

]
.

(29)

and the deceleration parameter

q =
1

2

[
ΩM (z) + ΩDE(z)

(
1 + 3w0 +

3waz

1 + z

)]
. (30)

The redshift evolving mass and dark energy densities are
given by, ΩM (z) = ΩM (1 + z)3E(z)−2 and ΩDE(z) =

ΩDE(1 + z)3(1+w0+wa)e−
3waz
1+z E(z)−2.

Again the redshift evolving energy density term E(z)
cancels and we are left with,

qH2 =
H2

0

2

[
ΩM (1 + z)3 + (1− ΩM )(1 + z)3(1+w0+wa)

× exp

{
−3waz

1 + z

}(
1 + 3w0 +

3waz

1 + z

)]
. (31)

We show the resulting 2-dimensional w0 − wa likeli-
hood in Fig. 6 for a uniform set of clusters in the range
0 ≤ z ≤ 0.8, after marginalizing over ΩM , h, and all
other cluster parameters. With Nclus = 1000 clusters
uniformly distributed between 0 ≤ zc ≤ 0.8 with 80%
(40%) weak lensing mass scatter the turquoise (purple)
contours express the following marginalized uncertain-
ties: σw0

= 0.139(0.124) and σwa
= 0.968(0.857).
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FIG. 6. 68% and 95% contours for the dynamic dark energy
case using the CPL parametrization of dark energy marginal-
ized over ΩM and h as well as the other cluster parameters.
More specifically, we use Nclus = 1000 clusters uniformly
distributed between 0 ≤ zc ≤ 0.8 with 80% (40%) weak
lensing mass scatter in the turquoise (purple) contour which
yields: σw0 = 0.139(0.124) and σwa = 0.968(0.857). With
Nclus = 100 uniformly distributed in the same redshift range
as before and with 40% mass scatter but now adding a prior
on the Hubble constant from Ref. [41] we attain, σw0 = 0.191
and σwa = 2.712 (pink contours).

We then reduce the number of clusters to Nclus = 100
and apply a cosmological prior on the Hubble constant
from Ref. [41] (σh = 0.0174) to yield the following
marginalized 1σ errors, σw0

= 0.191 and σwa
= 2.712

(see pink contours in Fig. 6). Note that the pink con-
tour is made using the same redshift range (0 ≤ z ≤ 0.8)
and systematic error (40% weak lensing mass scatter and
σβ = 0.5) as before but with only 100 clusters. Note
that this constraint on w0 is comparable to the constraint
achieved with 1000 clusters of Fig. 5 (red contours).

C. non-flat universe, ΩM and ΩΛ

So far we have only considered flat universes in our
analysis. We now drop this assumption and assume the
possibility of nonzero curvature, while fixing the dark
energy equation of state to w = −1. We then have the
following set of parameters to constrain,

pcosmo ∈ {ΩM ,ΩΛ, h} (32)

For this case the Hubble parameter is given by

H2 = H2
0E(z)2 = H2

0

[
ΩM (1 + z)3 + ΩΛ + Ωk(1 + z)2

]
.

(33)
And the deceleration parameter,

q =
1

2
ΩM (z)− ΩΛ(z). (34)
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FIG. 7. 68% and 95% contours for the non-flat ΛCDM case for
Nclus = 100 uniformly distributed between 0 ≤ z ≤ 0.8 with
80% mass error. Applying a prior on the Hubble constant h
from Ref. [41] (σh = 0.0174) allows us to break the degen-
eracy and thereby significantly improve our constraints. The
marginalized 1σ constraints derived from the green (black)
contours are σΩM = 0.101(0.185)and σΩΛ = 0.197(0.428).

Multiplying these two we have,

qH2 =

[
1

2
ΩM (1 + z)3 − ΩΛ

]
H2

0 . (35)

The constraints in the ΩM −ΩΛ plane, after marginal-
izing over all cluster parameters are shown in Fig. 7.
With just Nclus = 100 uniformly distributed between
0 ≤ z ≤ 0.8 we can achieve the following marginalized un-
certainties σΩM

= 0.101(0.185) and σΩΛ
= 0.197(0.428)

after applying the 2.4% level prior on H0 from Ref. [41]
(compare green to black contours).

V. OBSERVATIONAL STRATEGIES

In order for the escape velocity measurements to yield
competitive cosmological constraints in both the near
term and the far future, several considerations must be
taken into account. In this section we particularly fo-
cus on how future surveys should target specific redshifts
in order to optimize cosmological constraints. We also
explore the extent to which reducing systematic uncer-
tainties in both weak lensing mass estimates and mea-
surements of the anisotropy parameter will yield signifi-
cantly better cosmological constraints when compared to
simply increasing Nclus.

A. Redshift range

We want to investigate how the cosmological con-
straints vary with a change of the limits on this redshift
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FIG. 8. Inverse area of the ΩM - w covariance matrix after marginalizing over all other parameters as a function of maximum
(left panel) and minimum (right panel) redshift used. We assume a uniform redshift distribution of clusters in the range
0 ≤ z ≤ zmax (left panel) and zmin ≤ z ≤ 0.8 (right panel). Each calculation of the inverse area assumes a fixed number of
clusters, Nclus = 100. Note that ΩM − w constraints can be improved by reducing the mass uncertainty from 80% (solid line)
to 40% (dashed line), in which case the contour area decreases by a factor of ∼1.3. The constraint can be further increased by
utilizing stacked weak lensing mass estimates and stacked phase spaces, and this yields a 10% mass scatter and σβ = 0.02 (see
Table 1), decreasing the contour area by a factor of ∼ 7.5 (compare solid to dotted lines). The left panel also illustrates that
using clusters beyond the transition redshift leads to a gradual loss of cosmological information. While a tighter constraint can
be achieved by incorporating higher redshift clusters, the right panel demonstrates that we still need low redshift clusters to
achieve the tightest constraints on w. See Fig. 9. We conclude that as broad as possible redshift range of clusters be used (e.g.
0 ≤ z . 0.8).

distribution. In particular, note that the contours shown
in Figures 5-7 utilize a uniform redshift distribution in
the range 0 ≤ z ≤ 0.8 for the cluster sample. How would
these contours change if we changed the cluster redshift
range used?

To quantify the effect, we calculate how the area of
the 1σ contours in any given 2-dimensional cosmological
parameter space changes as a function of the redshift dis-
tribution chosen. Mathematically, this entails taking the
covariance matrix that contains the marginalized param-
eters we are interested in and calculate how its determi-
nant changes as a function of the maximum and minimum
redshifts for a given distribution. More explicitly, the in-
verse area corresponding to the 2 by 2 covariance matrix
for the marginalized parameters within the 1σ bound is
given by (see Refs. [32, 33]),

A−1(pi, pj) =
1√

|det[Cov(pi, pj)]|
. (36)

For the w0−wa case the inverse area is the Dark Energy
Task Force ”Figure of Merit” (FoM) [33].

The result for the flat wCDM case as a function of red-
shift range used is shown in Fig. 8. It shows the inverse
area for a fixed number of clusters (100 in this case) uni-
formly distributed in the range 0 ≤ z ≤ zmax (left panel)
and zmin ≤ z ≤ 0.8 (right panel).

As the left panel of Fig. 8 implies, we can get the tight-

est constraints on this cosmological parameter subset by
picking 100 clusters uniformly distributed in the range
0 ≤ z ≤ 0.8. The physical reason for this can already be
inferred from Fig. 4 which shows the derivatives of our
observable with respect to the various cosmological pa-
rameters. In that figure we note that while our observable
is sensitive to ΩM at high redshifts, it is simultaneously
more sensitive to w at low redshifts. Moreover, our probe
is relatively more sensitive to ΩM than to w (compare the
absolute maximum of the derivatives). This immediately
implies that the higher redshift clusters will end up con-
tributing more to the joint constraint.

However, we want to emphasize that this does not
mean that we should therefore only pick high redshift
clusters. In Fig. 9 we plot the marginalized uncertainty
for both w (top panel) and ΩM (bottom panel) as a
function of zmin. As we pick higher redshift clusters
the constraint on ΩM improves but the constraint on
w is degraded. This is also shown by the relatively flat
but ultimately decreasing tendency of the right panel in
Fig. 8. As such, we emphasize that we need both high
and low redshift clusters if we are going to attain a tight
constraint on both ΩM and w. This applies to other
constraints as well.

Secondly, note that this particular optimized choice
(ie. picking clusters uniformly distributed in the range
0 ≤ z . 0.8) arises from our fiducial cosmology which
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FIG. 9. Marginalized ΩM and w uncertainties for the flat
wCDM case with 100 clusters distributed in the range zmin ≤
z ≤ 0.8. Note that as the minimum redshift zmin increases
a factor of ∼1.7 improvement in σΩM is attained (see solid
line, bottom panel). The trade-off is a significant loss of in-
formation on the dark energy equation of state parameter w
at high redshift (top panel). These effects combine to make
the inverse area plot as a function zmin relatively flat (see
right-hand side panel in Fig. 8). Note also that a maximum
factor of ∼ 4 improvement in the uncertainty of these param-
eters may be achieved if cluster parameter uncertainties are
reduced (compare solid to dotted lines).

yields zt = 0.671. Ref. [49] for instance, finds a transition
redshift of zt = 0.43±0.07 based on a linear parametriza-
tion of q(z). Therefore, the inferences of the transition
redshift are highly model dependent [50]. What this
means is that, observationally, since the optimization of
our probe is loosely based on the transition redshift, we
recommend that a redshift distribution as broad as pos-
sible be used. In particular, we recommend that clusters
uniformly distributed in the range 0 ≤ z ≤ 0.8 be used.
Picking this redshift range allows us to safely take into
account current uncertainties in the transition redshift.

Lastly, note also that this upper limit (z = 0.8) is also
set by the particular processes of cluster assembly. In
other words, beyond this redshift our analytic model is
unable to take into account the full complexity of cluster-
formation dynamics because clusters are still assembling
at that redshift for acceptable cosmologies (see Fig. 2 in
Ref. [51]).

B. Reducing Systematics and Stacked Clusters

We now study the effects of reducing statistical errors
on the cluster parameters. Clearly, reducing statistical
errors in the weak lensing mass estimates, in the infer-
ence of anisotropy parameter, and in the measurement of
the edge, will improve our cosmological constraints, but
by how much? For this exercise, we consider increased

precision from better measurements on individual clus-
ters, increased cluster sample sizes, and through stack-
ing techniques. We note that stacking is not necessarily
equivalent to averaging over a large sample. For addi-
tional information on stacking, we refer the reader to de-
tailed analyses of stacking weak lensing data and stacking
phase-spaces [46, 52]. To quantify the improvements, we
use Eq. (36) with a fiducial sample of Nclus = 100 and
focus on the ΩM − w case.

Fig. 8 shows how constraints may be improved by de-
creasing the scatter on the mass parameters from 80%
(solid black line) to 40% (dashed black line). The differ-
ence in the inverse area size is a relatively modest factor
of ∼ 1.3. However, simultaneously reducing the uncer-
tainty of the mass parameters to 10% as well as reduc-
ing the uncertainty of the anisotropy parameter σβ and
the uncertainty on the escape velocity edge σvesc yields
an area that is ∼ 7.5 times smaller (compare solid lines
to dotted lines). For the exact values of the uncertain-
ties used in our matrix for this ”stacked” case see Ta-
ble 1. Fig. 9 follows and demonstrates how each specific
marginalized error (on w and ΩM ) varies with zmin as we
change the error on the cluster priors. Looking at Fig. 9,
an improvement of a factor of ∼2-4 on both σM and σw
may be achieved with decreased uncertainties (compare
solid to dotted lines).

Currently, the only way to attain uncertainties in the
mass parameters of the smallest order in Figures 8 and 9
requires a stacking analysis. For example, see cosmolog-
ical constraints derived from a weak lensing analysis in
Ref. [46] as well as stacked phase-space analyses in Ref.
[52]. Similarly, achieving σβ = 0.02 will entail stacking
clusters and/or developing some other approach that has
not yet been fully investigated. Thus, the dotted line
in Fig. 8 represents not 100 clusters, but 100 cluster en-
sembles with high-precision mean masses and mean β’s.
Each ”cluster ensemble” is built from a number of in-
dividual noisy weak lensing cluster profiles and poorly
sampled cluster phase spaces. One thing to consider in
a future stacked phase spaces analysis is that system-
atic uncertainties (e.g,. cluster mis-centering) must be
accounted for at high precision.

From an observational perspective, it is an interest-
ing question whether one should expend resources on
increasing the sample size, or on decreasing the sys-
tematic uncertainties. Given a Planck cosmology, to
z = 0.8 we expect to have over 40,000 clusters with
M200 > 4× 1014M� with respect to 200× the mean den-
sity of the Universe [53]. Thus, it seems reasonable to
expect that 1000 of these clusters will eventually have
both weak-lensing mass estimates and well-sampled ra-
dius/velocity phase spaces. Such an effort would require
photometry and spectroscopy over about 1000 square de-
grees of the sky. As an example, the Dark Energy Spec-
troscopic Instrument–DESI [54]) is targeting over 1000
square degrees of the Dark Energy Survey sky coverage
[55]. Likewise, the Prime Focus Camera will provide sig-
nificant multi-object spectroscopy over more than 1000
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square degrees of imaging taken with the Subaru Hyper
Suprime-Cam [56]. There is also new PI-based instru-
mentation, such as the Michigan-Magellan Fiber System
(M2FS) on the Magellan observatory, which can be used
to specifically and efficiently target clusters with previ-
ously measured weak lensing masses [57]. Thus, it is real-
istic to expect 1000 clusters with densely sampled phase
spaces and redshift errors ∼ 50 kms−1 and weak lensing
mass errors of 40% or less (statistical) in the near future.
The technology to collect the needed spectra either exists
or is being constructed with the aim to achieve redshift
errors on par with existing surveys [36] and the weak lens-
ing mass errors of 40% or less are already being achieved
with current imagers [42, 44]. Therefore, in Figs. 5, 10
and 11 we show the constraints after increasing the fidu-
cial sample size from 100 to 1000 clusters.

Lastly, it should be obvious that a combination of both
more clusters and reduced systematic error would be the
optimal solution which yields the tightest constraints.
Our analysis in this section is premised on the assumption
that both of these options may not be easily available.

VI. DISCUSSION

Other than by reducing statistical errors, increasing
the number of clusters, and stacking, we may in prin-
ciple improve the constraints through a joint likelihood
analysis with other cosmological probes. In this section
we discuss our constraints and their degeneracies in the
context of other probes.

We note that in Fig. 7 an improvement in the fore-
casted constraints can be achieved after applying the
prior on h from. Ref. [41]. Information on the Hubble
parameter breaks numerous degeneracies in our probe.
After all, our technique itself is fundamentally based on
constraining qH2 (see Sec. IV A). However, by including
cosmological dependencies on the radial coordinate (Eq. (
2)) the probe clearly has some power in constraining h on
its own. This is evident in the derivatives shown in Fig.
4. If we drop this dependence and use a fixed (in Mpc)
radial coordinate, ΩΛ, w0, and wa all become entirely
unconstrained.

Besides applying a prior on the Hubble constant, an-
other way we may achieve a tight constraint of the w0−wa
plane is shown in Fig. 10. We show both the 68% and
95% confidence constraints with Nclus = 1000 uniformly
distributed in the redshift range 0 ≤ z ≤ 0.8, after apply-
ing a conservative 80% mass scatter prior (in red, same as
turquoise contours in Fig. 6) as well as both the JLA SNIa
constraints of Ref. [58] (in blue) and the 2015 Planck
TT likelihood constraints of Ref. [59] (in green). A joint
analysis with these probes then seems to have the poten-
tial of yielding similar constraints to what a combination
of JLA data and CMB currently yields.

Now considering the flat wCDM case, in Fig. 11 we
over-plot the JLA constraints (in blue), the 2015 Planck
TT likelihood of Ref. [59] (in green) as well as re-plot the
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FIG. 10. 68% and 95% contours for the dynamic dark energy
case using the CPL parametrization of dark energy marginal-
ized over ΩM and h as well as the other cluster parameters.
The blue contours are reproduced from the latest JLA SNIa
constraints of Ref. [58]. The green contours are reproduced
from the Planck 2015 TT likelihood of Ref. [59]. In red are
constraints derived from a sample of Nclus = 1000 clusters
uniformly distributed in the redshift range 0 ≤ z ≤ 0.8, after
applying a conservative 80% mass scatter prior (same as the
turquoise contours of Fig. 6). In all cases, no prior assump-
tions about the Hubble constant are used.

red contours of Fig. 5. We find that a joint constraint
of these probes alone can yield a joint σw ∼ 0.1 and
σΩM

∼ 0.01 constraint given that they cross through each
other nearly perpendicularly.

We note that the degeneracies in our observable work
out in such a way that our probe can act as a powerful
cross check of systematics in other probes. As an ex-
ample, note how our constraints lie perpendicular to the
JLA SNIa and CMB constraints in Fig. 11. In part, this
is due to the way degeneracies work with our observable.

As shown in Section II, cosmology in our probe comes
in through the quantity qH2 which is both a function of
the Hubble parameter and its derivative, dH(z)/dz. We
emphasize this because our probe in this sense is a true
dynamical probe of the expansion history of the universe,
similar to the redshift drift. Compare for instance, our
constraint degeneracies on the w0 −wa plane to those of
Ref. [60] (in particular, see Fig. 3).

Beyond these comparisons to other probes, we may ask
ourselves if we can justify our observable’s sensitivity to
cosmology on its own basis. As discussed before, the sen-
sitivity of our probe can be directly inferred from both
Fig. 4 and Fig. 3. Recall that on Fig. 3 we plot the frac-
tional difference of the escape velocity profile between the
ΛCDM model (w = −1) and two other dark energy mod-
els. At about the virial radius, the fractional difference
amounts to ∼ 15%. So to a crude first approximation,
we need the error budget in the observational parameters
to drop below this limit in order to place constraints on
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FIG. 11. 68% and 95% contours for the flat wCDM case.
The red contours are derived the same as what is shown in
Fig. 5. The blue contours are reproduced from the latest JLA
SNIa constraints shown in Ref. [58]. The green contours are
reproduced from the Planck 2015 TT likelihood [59]. In all
cases, no prior assumptions about the Hubble constant are
used.

w.

As explained before, and as tabulated in Table 1, three
sources of observational error are involved: the escape
velocity edge error (σvesc), the anisotropy parameter un-
certainty (σβ) and the error in the inferred Einasto pa-
rameters from weak lensing (α, σρ−2 ,σr−2). If we focus
just on the σvesc we notice that this amounts to a ∼ 15%
error on the escape velocity edge. As such, with just one
cluster we are on the verge of being able to detect devi-
ations from the ΛCDM model. Similarly, for our fiducial
cluster, the uncertainty in σβ = 0.5 amounts to a differ-
ence in the escape velocity profile also of ∼ 15% given
that it comes in to our observable through the factor of
1/
√
g(β) (see Eq. (4)). So again, with this systematic

uncertainty we are close to being able to detect devia-
tions from w = −1. Now let us consider the dominant
source of error which comes in through the uncertainty in
the inferred Einasto parameters from weak lensing. For
80% error on the mass, this amounts to an error on the
edge of ∼ 40% given that the velocity goes as the square
root of the mass. With just 8 clusters we can naively de-
crease the weak lensing error to (∼ 15%), assuming that
it scales as 1/

√
Nclus. Of course the above are unrealistic

conditions, which is why instead we conduct a detailed
Fisher Matrix analysis.

Another key factor in this probe is that unlike super-
novae observations, the cluster data map a projected ra-
dial profile which increases the total amount of informa-
tion per object, thereby further beating down the error.
We previously addressed how the binning can affect the
final predictions on the cosmological parameters. The
key point is that with just a few tens of clusters, this
probe becomes sensitive to 15% deviations in the dark

energy equation of state exemplified in Fig. 3. While
these are only forecasts, as a consistency check, we have
compared our Fisher matrix constraints with the analy-
sis of Ref. [9] which utilized Nclus = 20 (0 ≤ z ≤ 0.439).
We find that our Fisher matrix forecasts are consistent
with variations of systematics studied in Ref. [9].

VII. CONCLUSIONS

We have presented a novel galaxy cluster-based probe
of cosmology that has the potential of constraining cos-
mological parameters to high precision. More specifically,
this cosmological probe is based on both the abstract and
concrete need to include a cosmological term in the es-
cape velocity profile of galaxy clusters as inferred from
their phase spaces. This phase space-inferred escape ve-
locity profile is modeled by cluster-specific parameters
(i.e. weak lensing mass profile information and the clus-
ter’s anisotropy parameter) as well as cosmological pa-
rameters. If the first set of parameters can be indepen-
dently inferred, then cosmology can be allowed to vary to
fit the observed escape velocity profiles — thereby con-
straining cosmological models.

To assess this probe’s observational viability we used
the Fisher matrix formalism and carefully considered the
aforementioned systematics by marginalizing over the
free parameters describing the gravitational potential of
each cluster separately. While constraints can be im-
proved if systematic errors in both the weak lensing mass
estimates and inferences of the anisotropy parameter are
reduced, we note that the the gains are similarly im-
proved by increasing the number of clusters Nclus. A
combination of both of these approaches would of course
be optimal. However, we note that even assuming con-
servative errors, competitive cosmological constraints can
still be achieved in the near term.

It is also important to realize, as mentioned above, that
this probe can currently constrain only accelerating cos-
mologies. In particular, the balance of forces argument
with which we derive our theoretical expectation for the
escape velocity profile is not valid in a non-accelerating
universe. More theoretical work needs to be done to be
able to make the theoretical expectation sensitive to cos-
mology at epochs beyond the transition redshift.

Nonetheless, we have shown that this probe is not only
able to yield high precision constraints on cosmologi-
cal parameters independently of other probes but that
it complements other constraints as well. Furthermore,
we emphasize that these constraints can be achieved in
both the near and far future. For instance, Fig. 6 and
Fig. 7 only use 100 clusters with 40-80% weak lensing
mass scatter which can easily be achieved in the near
term; this is also the case with the black contours con-
straints of Fig. 5. Far future constraints (Nclus = 1000)
are forecasted in Fig. 5 (red contours) as well as in the
future joint constraints of Figs. 10-11.

We also note that while throughout this paper we have
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assumed the general relativistic Friedmann equation, our
theoretical expectations can in principle be generalized
by re-working the term qH2 to either reflect modified
theories of gravity or other alternative parametrizations.

This work therefore presents a first step in the study of
a promising new probe of cosmology. The cluster phase
spaces, we demonstrated here, have the power to provide
precision measurements of cosmological parameters in an
accelerating universe, and thus provide sharp tests of the
currently favored theoretical framework.
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Appendix A: Fij matrix structure

In this section we detail the structure of the Fij ma-
trix. A schematic of the matrix and its submatrices is
shown in Fig. 12. As indicated by the figure, there are
three main component submatrices to the Fij matrix: the
”cosmo-cosmo” submatrix (orange), the ”cluster-cosmo”
submatrices (red), and the ”cluster-cluster” submatrices
(green). The zeros indicate that the ”off-diagonal” terms
are nil. We describe the components of these submatrices
in the following three subsections.

1. ”cosmo-cosmo” submatrix

In the top left of the matrix (see Fig. 12) we have an
Ncosmo by Ncosmo submatrix which is composed exclu-
sively of the derivatives of our observable with respect to
cosmological parameters. Let’s consider the flat wCDM
case, pcosmo ∈ {ΩM , w, h}, and take a look at some terms.
For this case, the first term in this submatrix is then,

F00 =
1

σ2
vesc

∑
n,k

∂vesc(zn, rk)

∂ΩM

∂vesc(zn, rk)

∂ΩM
. (A1)

The off-diagonal term in the first column second row is
simply,

F01 =
1

σ2
vesc

∑
n,k

∂vesc(zn, rk)

∂ΩM

∂vesc(zn, rk)

∂w
. (A2)

Therefore, we are adding information on some cosmolog-
ical parameter (or a combination, as in the off diagonal
term) both across n clusters and k radial bins. As we
detail in the next two sections, this is not the case for all
other elements in the Fij matrix.

2. ”cosmo-cluster” submatrices

Now let us take a look at the ”cosmo-cluster” subma-
trices of Fig. 12 (shown in red). Staying in the first row
but now looking at the fourth column, we are now look-
ing at the cross information attained from cosmology and
cluster parameters. In this case, the anisotropy parame-
ter for cluster 1 (β1), the matrix element is,

F03 =
1

σ2
vesc

∑
n,k

∂vesc(zn, rk)

∂ΩM

∂vesc(zn, rk)

∂β1

=
1

σ2
vesc

∑
k

∂vesc(z1, rk)

∂ΩM

∂vesc(z1, rk)

∂β1
+

1

σ2
vesc

∑
k

∂vesc(z2, rk)

∂ΩM ��
�
��

��*0
∂vesc(z2, rk)

∂β1
+ . . . (A3)

Immediately we notice that the second term of the
second sum (i.e. the derivative with respect to β1

for the second cluster z2), is nil. Therefore, un-
like the ”cosmo-cosmo” submatrices, in these subma-
trices we only sum over the kth radial bin of the
cluster corresponding to that column. This is the
case for subsequent columns and rows (by symmetry).
For instance, if Ncosmo = 3 then, F0j , F1j , F2j where
j = {3, 4, 5, . . . , Ndim}. Symmetry yields the same for
Fi0, Fi1, Fi2 where i = {3, 4, 5, . . . , Ndim}. The structure
is the same for the ”cluster-cosmo” submatrices along
the first column, where the submatrices are simply trans-
posed, as evoked by the superscript T in Fig. 12.

3. ”cluster-cluster” submatrices

Lastly, let us now take a look at the ”cluster-cluster”
submatrices of Fig. 12 (green). These submatrices ex-
press simply the covariance between cluster parameters
for a given cluster. Taking a look at the first element of
the first submatrix on the diagonal (the ”cluster 1-cluster
1” submatrix of Fig. 12),

F33 =
1

σ2
vesc

∑
n,k

∂vesc(zn, rk)

∂β1

∂vesc(zn, rk)

∂β1

=
1

σ2
vesc

∑
k

∂vesc(z1, rk)

∂β1

∂vesc(z1, rk)

∂β1
+

1

σ2
vesc

∑
k ��

��
���

���
��:0

∂vesc(z2, rk)

∂β1

∂vesc(z2, rk)

∂β1
+ . . .

(A4)

We see that the second term and on will yield 0 given that
they are the derivatives of clusters zn 6=1 with respect to
β1. This simply demonstrates that there is no cross cor-
relation between clusters, as expected. Therefore, along
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FIG. 12. Structure of the Ndim × Ndim (see Eq. (19)) Fij matrix. The ”cosmo-cosmo” submatrix (orange) has dimensions
Ncosmo × Ncosmo and contains the information solely of the cosmological parameters and their inverse covariances. The
”cosmo-cluster” submatrices (red) lie along the first row and column of the Fij matrix and are composed of the cross-correlated
information between cluster parameters and cosmological parameters. Note that along the first column these submatrices have
dimension Nclus ×Ncosmo, and along the first row, the matrices are transposed and therefore have dimensions Ncosmo ×Nclus.
Lastly, the ”cluster-cluster” submatrices (green) lie along the diagonal and have dimensions Nclus × Nclus. Note that zeros
populate the off-diagonal spaces given that there is no correlation between clusters, so that the derivatives cancel out.

the diagonal of Fij we have 4 × 4 matrices of the various
cluster parameters with respect to a given cluster, from
cluster 1 to cluster Ndim.

Let us take a look now at some of the off diagonal
submatrices, say between cluster 1 and cluster 2. The
first element is,

F73 =
1

σ2
vesc

∑
n,k

∂vesc(zn, rk)

∂β2

∂vesc(zn, rk)

∂β1

=
1

σ2
vesc

∑
k �

�
��

�
��*0

∂vesc(z1, rk)

∂β2

∂vesc(z1, rk)

∂β1
+

1

σ2
vesc

∑
k

∂vesc(z2, rk)

∂β2 ��
��

�
��*0

∂vesc(z2, rk)

∂β1
+ . . .

(A5)

Note that the first term in the sum over the radial bins
of the first cluster (n = 1) is nil, and so is the second term
of the sum over the radial bins of the second cluster (n =
2). By induction, all other terms are also nil. Therefore,
these off diagonal terms are all zero given that there is no
cross correlation between cluster parameters of different
clusters. All of these terms are aptly represented by ”0”’s
in Fig. 12.

Appendix B: Fprior matrix sub-structure

In this section we describe the structure of the prior
matrix found in Eq. (16). In particular, we focus on the
structure of the submatrix elements of the Fprior matrix
in Eq. (22). The covariance submatrices that lie along
the diagonal of Eq. (22) are given by,

Ccluster =


σ2
β 0 0 0
0 σ2

α 0 0
0 0 σ2

r−2
−0.7σρ−2

σr−2

0 0 −0.7σρ−2
σr−2

σ2
ρ−2

 .
(B1)

Note that the only non-zero terms off the diagonal is
the covariance between r−2 and ρ−2. Specific values for
these matrix elements and the code used to produce the
matrices from which we derive the constraints on cos-
mological parameters can be found online at https://
github.com/alejostark/phase_space_cosmo_fisher.

Appendix C: Weak lensing mass prior and
cosmology

We now consider how uncertainties in the cosmological
parameters affect the weak lensing mass uncertainties,
which, recall, are in turn featured in our prior information
matrix Ccluster.

To do this, we carry out a quantitative investigation
utilizing the Cluster-Lensing code of Ref. [61]. We start
out by building a Σ(r) surface density shear profile for
one fiducial cluster withM200 = 4×1014M�. We first cre-
ate this profile assuming fixed, fiducial values of the cos-
mological parameters. We assume the profile has Gaus-
sian errors of such size to ensure that we recover a 20%
statistical error on the cluster mass after performing a
simple χ2 analysis.

We then allow the cosmological parameters to vary,
and conduct a Markov Chain Monte Carlo (MCMC)
analysis with emcee to sample the posterior distribution
and examine the likelihood of the inferred mass M200

[62]. The likelihood model is given by

lnL(Σ|rk, z,Θ) = −1

2

∑
k

(
Σ(rk, z,Θfid)− Σ(rk, z,Θ)

)2

σ2
Σ

.

(C1)
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FIG. 13. Marginalized likelihood of the inferred mass of our
fiducial cluster (M200 = 4 × 1014M�) from the weak lensing
surface density shear profile Σ(r). The total uncertainty in
the inferred mass increases by a factor of ∼ 2 if no prior on the
cosmological parameters is introduced; however, a reasonable
prior on the Hubble parameter h from Ref. [41] recovers most
of the lost information on M200.

Assuming the flat wCDM model, our parameter set

is given by Θ = {ΩM , w, h,M200}. Note that the clus-
ter profile information is reduced to a single parameter,
M200, because the Cluster-Lensing code uses a mass-
concentration relation to create the Σ(r) profile [61]. For
a single mock Σ(r) profile, after marginalizing over all
other parameters we find that the total error in the clus-
ter mass scale increases from 20% to 40%. That is, if
cosmological parameters are allowed to vary, the weak
lensing mass error increases by a factor of two. We con-
firm this using statistical errors of 5% and also 40%.

We show the marginalized posterior likelihood in
Fig. 13. Three different prior likelihoods are shown: a
strong prior, basically fixing cosmology (represented by
the solid black line), a prior only on h (dashed line), and
no prior (dotted line). Note how the 20% systematic
error likelihood is broadened if cosmological parameters
are allowed to vary, but that we can almost totally reduce
the cosmological systematic error simply by applying a
reasonable prior on the Hubble parameter of Ref. [41]
(σh = 0.0174). We tabulate the resulting uncertainties
in the Einasto cluster parameters in Table 1. As stated in
the previous subsection, the code used to produce these
results can be found online. Lastly, we note that since
the bias in the recovered mass (dotted and dashed) is
small, and we do not factor it into our analysis.
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