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We explore the sensitivity of weak lensing observables to the expansion history of the Universe and
to the growth of cosmic structures, as well as the relative contribution of both effects to constraining
cosmological parameters. We utilize ray-tracing dark-matter-only N-body simulations and validate
our technique by comparing our results for the convergence power spectrum with analytic results
from past studies. We then extend our analysis to non-Gaussian observables which cannot be
easily treated analytically. We study the convergence (equilateral) bispectrum and two topological
observables, lensing peaks and Minkowski functionals, focusing on their sensitivity to the matter
density Ωm and the dark energy equation of state w. We find that a cancelation between the
geometry and growth effects is a common feature for all observables, and exists at the map level.
It weakens the overall sensitivity by up to a factor of 3 and 1.5 for w and Ωm, respectively, with
the bispectrum worst affected. However, combining geometry and growth information alleviates the
degeneracy between Ωm and w from either effect alone. As a result, the magnitude of marginalized
errors remain similar to those obtained from growth-only effects, but with the correlation between
the two parameters switching sign. These results shed light on the origin of cosmology-sensitivity
of non-Gaussian statistics, and should be useful in optimizing combinations of observables.
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I. INTRODUCTION

A cosmological model with a nearly scale-invariant pri-
mordial fluctuation spectrum, cold dark matter (CDM)
and dark energy (DE) matches well a wide range of ob-
servations, from the Universe’s expansion measured by
standard candles [1, 2] and standard rulers [3], to its pri-
mordial chemical composition [4, 5], structure formation
and the properties of the Cosmic Microwave Background
(CMB) [6]. While non-baryonic DM and DE make up
most of the present-day energy density of the Universe
[7], the nature of either dark component remains unclear.

Cosmic shear is the weak gravitational lensing of back-
ground sources by large scale structure [8, 9]. It probes
the matter density field through the gravitational poten-
tial fluctuations, and is also sensitive to the expansion
history of the Universe through the distances between
the observer, lensed source and lensing structures. While
lensing is usually characterized by a measurement of the
shear through the shapes of background galaxies, con-
vergence (magnification) statistics can be inferred from
these measurements, and are considered here for ease of
computation. The polyspectra of the convergence field
are equal to the E-modes of the shear field.

Ongoing and upcoming surveys, such as the Dark En-
ergy Survey (DES [10]), the Large Synoptic Survey Tele-
scope (LSST [11]), the Euclid mission [12] and the Wide
Field Infrared Survey Telescope (WFIRST [13]), include
weak lensing in their scientific program as part of their
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effort to test the concordance model with unprecedented
precision and shed light on the nature of DM and DE.
To realize this potential, we need observables that extract
all the cosmological information from the data, as well as
models capable of predicting them with high accuracy.

Second-order statistics do not fully capture non-
Gaussianities in the lensing signal from non-linear grav-
itational collapse on small scales. Numerous alterna-
tive observables have been proposed to extract this ex-
tra information, from higher-order correlation functions
[14, 15] and moments [16] to topological features like local
maxima (peaks) [17] and Minkowski functionals [18].

In this work, our goal is to clarify the sensitivity of
such observables to the expansion history of the Uni-
verse (“geometry”) and to the evolution of primordial
inhomogeneities into cosmic structures (“growth”). The
analogous question has been addressed for the conver-
gence (κ) power spectrum [19]. The geometry vs. growth
decomposition of the power spectrum has improved our
understanding of constraints on DE from weak lensing
[20], provided an alternative cosmological probe indepen-
dent of the growth of structures [21, 22], has been used
to strongly constrain deviations from general relativity
[23] and has allowed a consistency test of the standard
cosmological model [24].

Our work extends previous studies to observables be-
yond the power spectrum. In particular, we analyze
the equilateral bispectrum and two simple but promis-
ing topological observables: lensing peaks and Minkowski
functionals. We restrict our analysis to two parame-
ters that can influence lensing observables significantly
through both geometry and growth: the total mat-
ter density (Ωm) and the DE equation of state as
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TABLE I. Parameters of the eight models explored around the
fiducial model (Ωm = 0.26, w = −1.0). All models are spa-
tially flat with ΩΛ = 1−Ωm and consider a constant equation
of state parameter w for DE.

Ωm w Ωm w

0.20 -1.0 0.26 -0.5

0.23 -1.0 0.26 -0.8

0.29 -1.0 0.26 -1.2

0.32 -1.0 0.26 -1.5

parametrized with a constant ratio of its pressure to its
energy density (w). Future work should include a full
cosmological parameter set. We disentangle the two con-
tributions by measuring observables over a collection of
mock κ maps built from ray-tracing N-body simulations.

The paper is organized as follows. In § II, we describe
the suite of simulations we used and our method to sep-
arate the effects of geometry and growth on the observ-
ables. In § III, we show the sensitivity of each observable
to both Ωm and w, discussing the separate contributions
from geometry and growth, and in § IV we show how
they impact parameter inference. We then discuss our
results in § V and summarize our conclusions in § VI.

II. DISENTANGLING GEOMETRY FROM
GROWTH IN SIMULATIONS

We measured lensing observables on mock κ maps gen-
erated for 9 flat ΛCDM cosmologies. We considered only
DE models with a constant ratio of pressure to energy
density (w). Apart from w, we also varied Ωm, with a
fiducial model corresponding to {Ωm, w} = {0.26,−1.0}
and the remaining 8 cosmologies each differing from it in
just one parameter (see Table I). For all models, we fixed
the amplitude of perturbations at σ8=0.8, the Hubble
constant to h = 0.72, the spectral index to ns=0.96 and
the effective number of relativistic degrees of freedom to
Neff = 3.04.

A. Simulating weak lensing maps

A set of mock convergence maps was generated by ray-
tracing through the outputs of dark matter-only N-body
simulations, following the multiple lens plane algorithm
implemented in Lenstools. We used full ray-tracing to
avoid any potential bias in the convergence descriptors
under study. While it has been shown that the Born
approximation is accurate for the galaxy lensing power
spectrum [25] and bispectrum [26], it can introduce sig-
nificant biases for higher-order moments [27] and its ef-
fects on topological descriptors are yet unclear. We give
a brief outline of our simulation pipeline here, and refer
readers for a detailed description in [28].
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FIG. 1. Comparison between the power spectra measured
for selected models, as labeled, over noiseless, un-smoothed
κ maps (thick lines) and analytic predictions using a fitting
formula [31] for the matter power spectrum (thin lines). Per-
cent differences between measured and predicted power spectra
are depicted in the lower panel. Shaded areas represent ±1
standard deviations around the average, scaled to a 1000 deg2

survey, and in the lower panel only the standard deviation for
the fiducial model is plotted for reference.

The observer’s past light cone is discretized in a set of
lens planes separated by a constant comoving distance of
80h−1Mpc. For each cosmology, we evolved the matter
density field in a single box of side 240h−1Mpc, which
can cover a field of view of 3.5× 3.5 deg2 up to a redshift
z ≈ 3. The N-body simulations were run using Gadget2
[29] with the same initial conditions. Each box contains
5123 particles, yielding a mass resolution of ≈ 1010M�.
All simulation volumes were randomly shifted and ro-
tated to generate 1024 different κ maps for each cosmol-
ogy. This is justified by previous work [30], which has
shown that a single N-body simulation can be recycled
to generate as many as ≈ 104 statistically independent
realizations of the projected 2D convergence field.

Bundles of 1024×1024 uniformly distributed rays were
traced back to the lensed galaxies’ redshift and the con-
vergence was reconstructed from the accumulated deflec-
tion of the rays by the discrete lens planes. For simplicity,
we assumed all source galaxies are uniformly distributed
at a single redshifts, chosen to be either zs = 1 or zs = 2.

We included the effect of galaxy shape noise assuming
it is uncorrelated with the lensing signal and its probabil-
ity distribution function (PDF) is a Gaussian with zero
mean. The variance of the shape noise depends on the
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r.m.s. intrinsic ellipticity noise (σε), the source galaxy
surface density (ngal) and the pixel size (θp), as [32]

σ2
p =

σ2
ε

2ngalθp
. (1)

For this work we considered an intrinsic ellipticity noise
of σε = 0.4 and a galaxy density of ngal = 25 arcmin−1,
similar to the expectation for LSST but conservative
compared to the galaxy densities expected in deeper sur-
veys, such as Euclid and WFIRST. We generated a single
set of 1024 noise-only maps and added them to the noise-
less κ maps ray-traced from the N-body simulations. We
smoothed the noiseless κ and shape noise maps with the
same 2D Gaussian kernel,

W (θ) =
1

2πθ2
S

exp

[
− θ2

2θ2
S

]
, (2)

with θ the angular distance to each pixel, and a char-
acteristic width θS = 1 arcmin. In this analysis we did
not combine different smoothing scales. The smoothing
suppresses power on small scales corresponding to spher-
ical multipoles on the sky ` ' 12000, which corresponds
to the scale at which we are still not limited by the fi-
nite resolution of our simulations (see Fig.1). We do not
show results beyond l = 10000, and the topological fea-
tures, measured on the smoothed maps, do not contain
information from smaller scales.

B. Isolating the effect of geometry vs. growth

Galaxy shape distortions by gravitational lensing re-
sult from the convolution of the lens properties and the

distances between source galaxies, lenses and the ob-
server. Both effects depend on cosmology; the former
through the evolution of mass inhomogeneities, and the
latter through the expansion history of the Universe. To
account for these effects separately in our simulations,
we evolved the matter density field according to a cos-
mological model, but during the ray-tracing, we allowed
distances to correspond to a different cosmology.

In our implementation of the multi-plane algorithm,
lens planes are located at the same comoving distances
from the observer for all models and we disentangled
growth and geometry by modifying the lens planes’ prop-
erties.

The lensing potential for a lens at a comoving distance
of χi, given a set of cosmological parameters p, is deter-
mined by its mass surface density,

Σi (x, y;p) =
3H2

0 ∆

2c2
χi

a(χi,p)
δΩm(x, y; z(χi,p);p),(3)

where (x, y) are angular positions on the lens plane, ∆ is
the plane’s thickness (80h−1Mpc), χ the comoving dis-
tance, a the scale factor and δΩm the product of the
density contrast and the matter density parameter. The
sensitivity of an observable to cosmology refers to the
change in that observable for a set of parameters p rela-
tive to the same observable for a fiducial model p0.

The effect of geometry can be estimated by evolving
the perturbations according to p0 and evaluating them at
redshift z(χi,p), keeping the geometrical prefactor χ/a
equal to the value that corresponds to the cosmological
model p. Conversely, the effect of the growth of struc-
tures can be captured by keeping the geometrical prefac-
tor equal to its value in the fiducial model and evaluating
the density perturbations at z(χi,p0) after evolving them
according to p.

ΣGeometryi (x, y;p;p0) =
3H2

0 ∆

2c2
χi

a(χi,p)
δΩm(x, y; z(χi,p);p0) (4)

ΣGrowthi (x, y;p;p0) =
3H2

0 ∆

2c2
χi

a(χi,p0)
δΩm(x, y; z(χi,p0);p) (5)

This approach does not require running separate N-
body simulations to generate growth-only and geometry-
only convergence maps, but it involves saving additional
Gadget2 snapshots, since fixed comoving distances cor-
respond to different scale factors for different cosmolo-
gies. For each model p, additional snapshots at red-
shifts z(χi,p0) are needed. For the fiducial cosmology,
we saved additional snapshots at redshifts zk(χi,pk) for
each pk model considered.

III. SENSITIVITY TO Ωm AND w

The percentage deviation of an observable relative to
its value in the fiducial model measures its sensitivity to
changes in cosmology. For galaxy lensing, we are inter-
ested in observables measured over κ maps that include
shape noise. We focus on the behavior of four observ-
ables: the power spectrum, which has already been stud-
ied analytically and will serve as a test of our simulation-
based approach, the equilateral bispectrum, which should
be zero for a Gaussian random field, and two topological
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features that have been used to probe non-Gaussianities:
lensing peaks and Minkowski functionals. We measured
the sensitivities from the full ray-traced N-body simula-
tions, as well as from simulations that only capture the
changes due to either the expansion history or to the
structure growth in a given cosmology.

A. Power spectrum

The convergence power spectrum is the Fourier trans-
form of the 2-point correlation function of κ(x, y) and is
one of the most popular weak lensing observables. For a
flat cosmology, with lensed sources at a fixed redshift, and
using the Limber and flat-sky approximations, the power
spectrum can be expressed as a line-of-sight integral of
the matter power spectrum, weighted by a geometrical
kernel [33]

Pk(l) =
9

4

(
H0

c

)4

Ω2
m

∫ χs

0

dχ

a2(χ)

(
1− χ

χs

)2

Pδ

(
l

χ
;χ

)
(6)

Where χ is the comoving distance and χs the comoving
distance to the lensed galaxies. Geometry affects the
power spectrum through χ and the scale factor a. Growth
enters the above expression through the matter power
spectrum, Pδ (including non-linear effects), and the Ω2

m

outside of the integral. For our analytic calculations,
we used the Nicaea implementation of the convergence
power spectrum with the prescription from [31] for the
matter power spectrum.

We determined the percentage deviation of the power
spectrum relative to the fiducial cosmology over 1024
noiseless, un-smoothed κ maps for each non-fiducial cos-
mology, and compared the results with analytic predic-
tions. These results, shown in the upper panels of Fig. 2,
match the analytic predictions within the statistical un-
certainties, and are also in good agreement with the find-
ings of [19]. The sensitivity is only weakly dependent on
the multipole.

The sensitivity to Ωm is dominated by growth, with
a ≈ 25% change that is what would be expected from
the ≈ 12% change in Ωm (Ω2

m outside the integral in
Eq. 6). Geometry acts in the opposite direction, reduc-
ing the overall sensitivity by ≈ 20%. The sensitivity
to w is dominated by geometry. While we expected its
sensitivity to be smaller than that to Ωm due to the in-
tegrating effect, the partial cancellation between growth
and geometry is even more severe. It reduces the sen-
sitivity further (≈ 50%) to a level of ≈ 5% for a 20%
change in the parameter. The smaller sensitivity should
propagate into tighter constrains on Ωm than on w from
weak lensing data.

The origin of the partial cancelation is explained in
detail in [19], but we reproduce the argument here for
convenience. Making w more negative, from the fiducial
w = −1.0 to -1.2, yields a higher DE density in the past.
The comoving distance to the source galaxies’ redshift

becomes larger, and so does the cumulative effect of small
deflections experienced by light rays. As a result, the
effect due to geometry is an increase of the lensing signal.
Since we fix the amplitude of the perturbations at the
present time (σ8) in our simulations, a higher DE density
in the past means there are fewer structures to deflect
the light rays in the past, and the growth contribution to
the lensing signal is smaller compared to a model with
constant dark matter density.

Galaxy shape noise introduces a scale-dependence to
the relative sensitivity, as clearly seen in the lower pan-
els of Fig.2. At small scales, white noise dominates the
power spectrum and suppresses its sensitivity to cosmo-
logical parameters. Galaxy shape noise then limits the
information that can be extracted from the convergence
power spectrum at small scales.

B. Equilateral bispectrum

The natural extension to the two-point correlation
function is the three-point correlation function, or its
Fourier transform, the bispectrum. A non-zero bispec-
trum is a clear non-Gaussian signal and has been detected
in shear data [34, 35]. The analog of Eq. (6) links the con-
vergence bispectrum to the bispectrum of the underlying
matter density field through a Limber integration [33]

Bk (l1, l2, l3) =
27

8

(
H0

c

)6

Ω3
m

∫ χs

0

dχ

(χa(χ))
3

(
1− χ

χs

)3

δD(l1 + l2 + l3)Bδ

(
l1
χ
,
l2
χ
,
l3
χ

;χ

) (7)

Where δD is a Dirac delta. When the lengths of the
triangle defined by the three points on which the correla-
tion function are measured are the same, the result is the
equilateral bispectrum (Blll). In an exercise analogous
to the one done for the power spectrum, we measured
Blll for our mock noiseless convergence maps and show
their relative sensitivity to the cosmological parameters
in Fig. 3.

While noisier, the parameter-sensitivity has a behavior
very similar to the case of the power spectrum, in terms
of its weak dependence on the angular scale `, order of
magnitude, and split between geometry and growth. The
most noticeable difference is that the cancelation between
both effects is almost perfect for w, resulting in a statistic
that is almost insensitive to that parameter. The results
for the lensed galaxies at zs = 2 are similar, and show
the same cancelation for w. The addition of shape noise
results in an even noisier measurement (see §IV) with
error bars 3-4 times larger than the ones displayed in
Fig. 3 for the noiseless case. There is no average sensitiv-
ity suppression at small scales, because the shape noise
is Gaussian.
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FIG. 2. (color online)Sensitivity of the power spectrum to Ωm and w for noiseless (upper panels) and noisy (lower panels)
convergence. Estimates including only geometry effects are shown in red, those including only growth effects in blue, and those
including both effects in black. In the upper panels, analytic predictions are displayed with thin lines, for comparison. Source
galaxies are at zs = 1.0 in all cases. Shaded areas represent a ±1 standard deviation around the measured averages scaled to a
survey sky coverage of 1000 deg2 and only selected models are displayed for clarity.

C. Lensing peaks

Peaks, defined as local maxima on smoothed κ maps,
probe high-density regions, where non-Gaussianities of
the convergence should be enhanced. Also, they are

computationally inexpensive to measure, making them
an attractive observable to combine with others for cos-
mological inference. Indeed, their distribution as a func-
tion of their height, or peak function, has been forecast
to improve constraints obtained using only second-order
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FIG. 3. (color online)Sensitivity of the equilateral bispectrum of the noiseless convergence field to Ωm and w. Both panels show
the percentage deviation in each model from the fiducial bispectrum. For clarity, only two models are depicted per panel, with
the source galaxies at zs = 1. As in Fig. 2, black lines show the net sensitivity, red lines the sensitivity due only to differences in
geometry and blue lines the sensitivity due only to differences in growth. Shaded areas represent ±1 standard deviation around
the measured averages, scaled to a 1000 deg2 survey.

statistics by a factor of 2 − 3 [36, 37]. Similar improve-
ments have now been found in recent lensing survey data
[38–40].

We extracted peak catalogues from our mock conver-
gence maps and computed the percentage deviation of
the peak height function relative to the fiducial model.
The results for the noisy case are shown in Fig.4. We
again observe some similarities between the sensitivity of
the peak height functions and that of the power spec-
trum. The Ωm-sensitivity is dominated by growth, while
geometry dominates the sensitivity to w. There is also
a partial cancelation between the two effects, and the
cancelation is stronger for w, yielding a reduced net sen-
sitivity compared to Ωm, by a factor of ≈ 2.

For high peaks, the sign of the parameter-sensitivity
is the same as for the power spectrum, but the sign re-
verses for low peaks, whose abundance is anti-correlated
with those of high peaks. High peaks are ≈ 2 − 3 times
more sensitive than low peaks, but there are fewer of
them to help discern between models (see §V). Shape
noise modifies the peak function, by introducing new
peaks, eliminating some, and spreading the height of
those that survive from the noiseless maps. As a result,
it reduces the sensitivity by a factor of ≈ 2, especially
for the noise-dominated low peaks, and moves the turn-
over point, where the parameter-sensitivity changes sign,
from S/N ≈ 1 for noiseless κ to S/N ≈ 2.5 (S/N is the
height of the peaks expressed in units of σnoise).

For noisy κ and lensed galaxies at zs = 2, the turn-over
point moves to even higher κ, from S/N ≈ 2.5 to ≈ 3,
and the relative sensitivity of low peaks increases by a
factor of ≈ 2, while the sensitivity of high peaks remains
the same.

D. Minkowski functionals

Minkowski functionals (MFs) on 2D fields are topo-
logical measures on iso-contours [41]. They capture sta-
tistical information of all orders and have been shown
to constrain cosmology, improving errors computed ex-
clusively from the power spectrum, in theoretical studies
[42] and also when applied to observations [43, 44].

The three MFs on a 2D map measure the area (V0),
boundary length (V1) and the Euler characteristic (V2) of
the set of points where the value of the function exceeds
a pre-specified threshold (κth):

V0(κth) =
1

A

∫

Σ(κth)

da, (8)

V1(κth) =
1

4A

∫

∂Σ(κth)

dl, (9)

V2(κth) =
1

2πA

∫

∂Σ(κth)

κdl, (10)

where A is the total area of the map, Σ(κth) is the set
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FIG. 4. (color online)Sensitivity of peak counts to Ωm and w on noisy convergence maps. Both panels show the percentage
difference between the peak counts in a given cosmology and in the fiducial model. Peak height is expressed in units of κ and
in units of σnoise, S/N . For clarity, only two models are depicted per panel, with source galaxies at zs = 1. The color scheme
is the same as in Figs. 2 and 3. Shaded areas represent ±1 standard deviation around the measured averages, scaled to a 1000
deg2 survey.

of points on the convergence map for which κ ≥ κth, and
∂Σ(κth) denotes a line integral along the curve where κ =
κth. We refer the reader to [42] for a detailed description
of our measurement procedure, and reproduce in Fig. 5
the percentage difference between the MFs for a given
cosmology and the fiducial model, as a function of the
threshold.

The sensitivity of all three functionals at high thresh-
old levels is similar to that of peak counts. This is ex-
pected, since at high κth values, the set of points κ ≥ κth

increasingly coincides with the set of lensing peaks. At
lower thresholds, the sensitivity of the MF is weaker, but
different for each functional, suggesting that combining
them should yield tighter parameter constraints.

IV. IMPACT ON PARAMETER INFERENCE

Parameter constraints are not just determined by the
sensitivity of observables, but also by their (co)variances.
To assess the impact of geometry and growth on infer-
ence, we estimated the confidence levels on the parame-
ters (Ωm, w) in two ways. First, we quantified how dif-
ferent each model is from the fiducial, using the ∆χ2,

∆χ2 =
∑

i,j

(
µi − µfidi

)
C−1
ij

(
µj − µfidj

)
, (11)

where µi is the average of an observable over the set
of convergence maps for a cosmology (for instance, the

binned power spectrum), µfidi the average for the fiducial

cosmology and C−1
ij the precision matrix. For each ob-

servable we used 20 bins, either spaced logarithmically in
` or linearly in κ. We did not try to optimize the num-
ber of bins or their thresholds, since our purpose was
to understand the effect of geometry and growth on the
parameter uncertainties, not obtain accurate or optimal
estimates for a specific survey.

We computed the precision matrix in the fiducial
model, to be consistent with our calculated Fisher ma-
trices (see below), and we corrected for its bias following
[45]. The bias correction is very small, ≈ 2%, because the
number of realizations used to estimate the covariance
matrix (Nr = 1024) is large compared to the dimension-
ality of the data vector (Nb = 20). We scaled the results
by the same factor as the error bars in the figures, so that
their magnitude corresponds to what would be expected
for a 1000 deg2 survey, even though in the non-Gaussian
regime errors may scale logarithmically rather than as
the square root of the field of view [46].

The ∆χ2 values are listed in Table II, and are overall
consistent with the conclusions from the sensitivity plots
in § III. The significance at which models with different
w’s can be distinguished is lower than for Ωm, due to
projection effects and the worse cancelation between ge-
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FIG. 5. (color online)Percentage difference of the three MFs measured on noisy κ maps, compared to the value in the fiducial
model, when changing Ωm and w. Left/center/right panels show the results for V0/V1/V2, for noisy κ and source galaxies at
zs = 1. The color scheme, labeled in the legends, is the same as in Figs. 2-4. Shaded areas represent ±1 standard deviation
around the measured averages, scaled to a 1000 deg2 survey.

ometry and growth. Geometry has stronger constraining
power in w and growth does in Ωm, and in general the
net significance is closer to that of growth than that of
geometry. The observable with the lowest ∆χ2 is the
equilateral bispectrum, especially for w, for which the
cancelation between geometry and growth is particularly
severe.

Even though it can strictly be used only for Gaussian-
distributed data, we computed the Fisher matrix [47] for
all the observables in this study, with the expectation
that it provides a second-order approximation to the true
parameter likelihood near its maximum:

Fαβ =
1

2
Tr
[
C−1C,αC

−1C,β + C−1Mαβ

]
,

Mαβ = µ,αµ
T
,β + µ,βµ

T
,α.

(12)

Here Fαβ is one element of the Fisher matrix, Tr stands
for the trace of the matrix within brackets, the covariance
is evaluated at the fiducial model and a comma denotes
them partial derivative X,α ≡ ∂

∂αX. The marginalized

error on a parameter is given by
√

(F−1)αα, and is re-

ported in Table III. We have found the finite-difference
derivatives of the covariance to be sensitive to the nu-
meric scheme used to estimate them, especially for the
bispectrum. In the case of the power spectrum and peak
counts, it has been shown that this does not significantly
change the parameter constraints [48, 49]. For these rea-
sons, we have not included the cosmology-dependence of
the covariance in our Fisher matrix calculations. The
derivatives of the average observables were estimated us-
ing 5-point finite differences with Lagrangian polynomi-
als.

We show the 68% confidence level contours in Fig.6.
The figures show that marginalized errors on w are larger
than those for Ωm by a factor of ≈ 15, and that geometry
has less constraining power than growth. The confidence
regions decrease when the sources are farther away, al-
though the marginalized errors do not always do. This
is due to changes in the degeneracies (i.e. the axes and
tilt angles of the error ellipses). For example, the 68%
contour from Minkowski functionals for geometry-only
becomes more elongated and its tilt is increased towards
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TABLE II. ∆χ2 for different cosmological models computed for the power spectrum and three non-Gaussian observables (equi-
lateral bispectrum, peak counts and Minkowski functionals) over noisy κ maps with source galaxies at either z = 1 or z = 2.

Dependence on Ωm Dependence on w

0.200 0.230 0.290 0.320 -0.500 -0.800 -1.200 -1.500

z = 1 z = 2 z = 1 z = 2 z = 1 z = 2 z = 1 z = 2 z = 1 z = 2 z = 1 z = 2 z = 1 z = 2 z = 1 z = 2

Power spectrum

Total 541 1550 148 421 174 444 718 1770 71 288 18 45 22 18 109 109

Geometry-only 92 670 18 142 14 101 48 375 525 2442 92 379 102 271 532 1569

Growth-only 839 3033 242 861 305 1110 1371 5083 528 3050 45 252 23 132 96 557

Equilateral bispectrum

Total 14 38 3 13 8 8 25 41 4 5 2 3 3 4 3 5

Geometry-only 5 9 2 5 2 4 2 10 14 47 4 12 7 8 19 40

Growth-only 18 56 6 16 12 20 40 113 39 181 4 13 3 8 9 28

Peak counts

Total 772 1120 190 266 199 232 768 825 211 399 39 48 38 26 164 93

Geometry-only 99 336 26 76 23 70 65 223 776 1934 127 253 110 178 603 837

Growth-only 1213 2431 317 588 361 542 1445 2071 321 931 40 114 20 83 117 373

Minkowski functional V0

Total 915 1153 231 272 212 265 859 976 413 828 64 90 52 56 268 194

Geometry-only 111 455 28 107 30 81 86 281 931 2305 150 282 126 229 711 1071

Growth-only 1464 2684 386 650 404 651 1663 2634 385 1189 38 121 26 75 116 337

Minkowski functional V1

Total 984 1506 245 339 229 353 901 1229 321 516 52 53 41 33 205 112

Geometry-only 118 422 27 117 29 73 88 271 996 2595 161 285 130 214 696 1075

Growth-only 1564 3313 400 799 423 753 1691 3043 635 2068 61 199 34 119 158 543

Minkowski functional V2

Total 1016 1862 255 438 253 446 997 1647 313 486 56 51 39 34 203 109

Geometry-only 128 602 30 141 31 101 95 375 1030 3206 173 392 145 292 764 1412

Growth-only 1613 4068 420 1000 460 997 1910 4031 736 2832 68 280 39 157 164 712

the w axis, yielding a larger marginalized error on w for
zs = 2 than for zs = 1.

For all observables, errors on Ωm and w are positively
correlated, when either geometry or growth is consid-
ered in isolation. For example, the geometry effect of
a higher matter density is smaller comoving distances,
which can also be achieved with a less negative value for
w. The effect on growth of a lower DE density in the past
would be a smaller suppression of gravitational collapse
and a stronger gravitational field for the collapsing per-
turbations. The correspondingly stronger lensing signal
is similar to what would be achieved with higher matter
density. For the net effect, the change of the dominant
effect for Ωm and w reverses the degeneracy direction,
yielding anti-correlated errors on the parameters.

V. DISCUSSION

The agreement between the sensitivity to Ωm and w of
the power spectra measured on the mock κ maps and the
analytic prediction, as well as the relative contribution of

geometry and growth, validates our approach based on
modified simulations.

The cancelation between geometry and growth, which
further suppresses the sensitivity of WL to cosmologi-
cal parameters, highlights why it is important to com-
bine different redshift bins (tomography) to constrain
DE with better precision (e.g. [50]). The suppression of
the power spectrum sensitivity at small scales by galaxy
shape noise highlights the importance of including other
observables when analyzing weak lensing data, even if
non-Gaussianities were small.

The sensitivity of the equilateral bispectrum follows
a similar pattern to that of the power spectrum, but
their measurement is considerably noisier, which trans-
lates into a less significant ∆χ2 for a given model. The
addition of shape noise does not affect the mean sensi-
tivity on small scales more than large scales, which is
reasonable given the Gaussian noise model used (it does
contribute to the statistical error).

We measured also the folded bispectrum, and the re-
sults are in line with those from the equilateral shape.
We expect the same for all other configurations of the
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TABLE III. Marginalized errors on Ωm and w, orientation of the Fisher ellipse (measured as the angle between its major axis
and the w axis), and figure-of-merit (FOM; defined as π/A, with A the area of the error ellipse). The errors correspond to a
68% confidence level, scaled to a 1000 deg2 survey. All calculations were done on noisy κ maps with source galaxies at either
z = 1 or z = 2.

∆Ωm ∆w θ

×103 ×103 [deg] FOM

z = 1 z = 2 z = 1 z = 2 z = 1 z = 2 z = 1 z = 2

Power spectrum

Total 14.2 4.9 269.2 127.1 -2.9 -2.0 1034 3609

Geometry-only 40.7 34.4 106.6 138.3 20.3 13.9 802 1714

Growth-only 15.2 11.6 298.8 181.5 2.9 3.6 1211 3776

Equilateral bispectrum

Total 22.3 17.0 347.2 258.4 -0.6 1.2 131 241

Geometry-only 49.4 38.2 161.1 152.9 5.9 10.2 132 239

Growth-only 34.7 34.6 396.7 326.5 4.3 5.7 142 272

Peak counts

Total 8.9 7.3 135.9 135.9 -3.5 -2.8 2247 2538

Geometry-only 32.9 32.9 98.3 128.5 17.9 14.2 1087 1447

Growth-only 9.4 9.8 219.2 158.3 2.4 3.5 1844 3287

Minkowski functional V0

Total 7.6 5.1 99.8 66.4 -4.0 -3.6 3259 5387

Geometry-only 29.4 36.5 89.3 146.6 17.6 13.9 1311 1425

Growth-only 4.8 4.5 115.2 79.3 2.1 3.0 3780 7018

Minkowski functional V1

Total 6.1 3.2 91.0 63.9 -3.3 -1.8 3697 6355

Geometry-only 38.0 36.6 111.6 152.5 18.4 13.4 1042 1384

Growth-only 5.1 5.6 104.1 84.1 2.5 3.6 4277 7229

Minkowski functional V2

Total 6.5 3.1 101.2 69.9 -3.3 -1.8 3436 6579

Geometry-only 36.7 40.4 106.5 159.0 18.7 14.2 1130 1489

Growth-only 5.5 6.8 109.8 99.2 2.6 3.8 4181 6962

bispectrum, for the percentage change of the power spec-
trum and bispectrum does not depend on the multipole,
and the cancelation between geometry and growth is a
feature present at map level (see below).

The sensitivity of lensing peaks also has qualitative
similarities to that of the power spectrum, but it is highly
dependent on the height of the peaks. In order to assess
how much of their sensitivity is a direct result of differ-
ences in the power spectrum, we computed it from Gaus-
sian random fields (GRFs) built with the same power
spectra as the κ maps generated through ray-tracing.
The result of this exercise is shown in Fig. 7. We have
found that the sensitivity of low peaks is reduced by a fac-
tor of ≈ 2, and the sensitivity of the high peaks increases
(although there are fewer high peaks in the GRFs). Over-
all, the Ωm-sensitivity of the counts cannot be fully ex-
plained by the power spectrum.

To better understand the origin of the dependence of
the peak counts’ sensitivity to peak height, we look at
the 3D dark matter halo counts. It is natural to compare

these quantities, since high peaks have long been known
to be strongly correlated with individual high-mass DM
halos hosting galaxy clusters [51–53]. The average num-
ber of halos of a given mass to a fixed redshift per solid
angle can be expressed as an integral of the product of the
volume element (geometry) and the halo mass function
(growth).

dn

dlnMdΩ
(M) =

∫ zs

0

dz
dV

dzdΩ
(z)

dn

dlnM
(z,M) (13)

We have computed the contribution from each effect as a
function of halo mass, and displayed the results in Fig. 8.
The sensitivity for halo masses above ≈ 1012h−1M�
tracks that of high peaks, but this is not the case for
low peaks / lower mass halos. This is in agreement with
previous studies that showed a link between high peaks
and single high-mass halos, while finding that lower peaks
are associated instead with constellations of 4-8 low-mass
halos at a range of redshifts [54]; a similar peak-halo cor-
relation has been seen in recent CFHTLens data [55].
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FIG. 6. (color online)68% Fisher error ellipses in the (Ωm, w) plane inferred from the power spectrum (Pl), equilateral bispectrum
(Blll), lensing peaks and Minkowski functionals (MFs). Upper/lower panels show the contours for source galaxies at zs = 1/zs =
2. Each observable was characterized by a data vector of length 20, and the ellipses were computed neglecting the cosmology-
dependence of the covariance matrix. All contours are scaled to a 1000 deg2 survey.

High peaks then seem to measure, like halos, measure a
combination of growth and the volume element.

The sensitivity of the low peak counts does not track
that of halo counts; but these peaks are important for
cosmology. When normalized by the standard deviation
for the fiducial model, the difference in peak counts from
the fiducial model has a maximum in the low significance
region (see Fig. 9). Low peaks have also been found to
contribute to cosmological parameter constraints more
than high peaks, which is in agreement with previous
studies [49, 54], including an analysis of peak counts in
the the CFHTLenS data [38].

The sensitivity of the Minkowski functionals, as well
as its decomposition into geometry and growth effects,
qualitatively traces that of lensing peaks, especially at
high κ levels.

Finally, the fact that we observe a partial cancelation
between geometry and growth, especially when changing
w, in all the statistics and topological descriptors ana-
lyzed, suggests that this property is present already at
the map level. In order to investigate whether this is
the case, we have examined the difference-maps between
each model and the fiducial, including either the geom-
etry or growth effect alone. These maps are shown in
Fig. 10 for the model with w = −1.2. The modified an-
gular positions of structures in the maps built including
each effect, due to different ray deflections, prevent us
from directly demonstrating a cancelation of the lensing

signal by adding these maps together. Nevertheless, the
geometric and growth-induced distortions in the two pan-
els of Fig. 10 clearly show the same structures at roughly
the same locations, but with the sign of their ∆κ val-
ues reversed. We conclude that the geometry vs growth
cancelation indeed is a property at the map level and
we therefore expect it to affect any observable, including
those not analyzed here.

VI. CONCLUSIONS

We have validated the use of N-body simulations and
ray-tracing to separately study the effect of geometry
and growth on weak lensing observables. This allows us
to extend past analyses to non-Gaussian statistics and
topological features that do not admit a simple analytic
treatment.

Our analysis confirms that the sensitivity of non-
Gaussian observables to cosmology shares some charac-
teristics with that of the power spectrum. They suffer a
partial cancellation between geometry and growth on top
of the loss of sensitivity due to integrating (projection)
effects. This cancellation is more severe for w, reduc-
ing even further the sensitivity of WL to that parameter
compared to Ωm.

Galaxy shape noise dominates the power spectrum at
high multipoles, reinforcing the case to use alternative
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FIG. 7. (color online)Sensitivity of lensing peak counts to Ωm,
derived from a set of Gaussian random fields with the same
power spectra as that measured on noisy convergence maps
from large-scale structure. Shaded areas represent 1 standard
deviation errors in a 1000 deg2 survey. Compare with the left
panel of Fig.4

observables to analyze weak lensing data on small scales.
The bispectrum has higher statistical noise, but shape
noise does not suppress its average sensitivity at high
multipoles as it does for the power spectrum. The lensing
peaks’ sensitivity is highly dependent on the peak height,
with high peaks tracking the behavior of dark matter
halo counts, but low peaks having an important influence
on parameter constraints. The sensitivity of Minkowski
functionals is similar to that of peak counts, which is
not surprising at high κ levels. The similarities between
statistics, such as the cancelation of geometry and growth
effects, arises from the fact that this property is present
at map level.

The partial cancelation, together with projection ef-
fects, yields weak constrains for w, and underscores the
need to combine information from different redshifts to
tighten constrains on DE. Marginalized errors on Ωm and
w are similar to those calculated from growth-only ef-
fects. This suggests that combining WL data with probes
that strongly constrain the expansion history through ge-
ometry, such as BAO measurements, may be especially
beneficial to tighten constraints.
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