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We analyze the secular evolution of hierarchical triple systems in the post-Newtonian approxima-
tion to general relativity. We expand the Newtonian three-body equations of motion in powers of
the ratio a/A, where a and A are the semimajor axis of the inner binary’s orbit and of the orbit
of the third body relative to the center of mass of the inner binary, respectively. The leading order
“quadrupole” terms, of order (a/A)3 relative to the 1/a2 acceleration within the inner binary, are
responsible for the well-known Kozai-Lidov oscillations of orbital inclination and eccentricity. The
octupole terms, of order (a/A)4 have been shown to allow the inner orbit to “flip” from prograde
relative to the outer orbit to retrograde and back, and to permit excursions to very large eccentric-
ities. We carry the expansion of the equations of motion to hexadecapole order, corresponding to
contributions of order (a/A)5. We also include the leading orbital effects of post-Newtonian the-
ory, namely the pericenter precessions of the inner and outer orbits. Using the Lagrange planetary
equations for the orbit elements of both binaries, we average over orbital timescales, obtain the
equations for the secular evolution of the elements through hexadecapole order, and employ them
to analyze cases of astrophysical interest. We find that, for the most part, the orbital flips found at
octupole order are robust against both relativistic and hexadecapole perturbations. We show that,
for equal-mass inner binaries, where the octupole terms vanish, the hexadecapole contributions can
alone generate orbital flips and excursions to very large eccentricities.

PACS numbers:

I. INTRODUCTION AND SUMMARY

The hierarchical three-body problem, in which a close
binary system is in orbit with a distant third body, is as
old as Newton’s gravity, but continues to yield surprises.
The first surprise came when Newton himself failed to
account for the advance of the lunar perigee caused by
the perturbing effect of the distant Sun (although a cor-
rect calculation does exist in his unpublished papers).
Clairaut published a correct solution in 1749. Another
notable surprise was LeVerrier’s failure in 1859 to ac-
count for the advance of Mercury’s perihelion by includ-
ing perturbations of the Sun-Mercury binary system due
to the distant planets. The solution to this surprise was
famously provided by Einstein.

A contemporary surprise was the discovery in the
1960s of the Kozai-Lidov mechanism, in which, over long
timescales, there is an interchange between the eccentric-
ity of the two-body inner orbit and its inclination relative
to the plane of the third body. This remarkable effect was
discovered independently by Lidov [1], who was study-
ing orbits of artifical satellites, and Kozai [2] who was
studying asteroid orbits. For many years, interest in the
Kozai-Lidov effect was largely confined to solar-system
research, until the discoveries of unusual exoplanet and
multiple star systems brought the phenomenon into the
astrophysical realm. Because the mechanism could gen-
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erate orbits with high eccentricity, it even became of in-
terest for general relativistic astrophysics because of the
possible enhancement of relativistic effects such as the
pericenter advance and the emission of gravitational ra-
diation.

The Kozai-Lidov mechanism is obtained by expanding
the perturbing acceleration in the inner binary’s motion
caused by the third body in powers of ε ≡ a/A, the ra-
tio of the two semimajor axes, and keeping the leading
term, which is proportional to ε3 (conventionally called
the “quadrupole order” term). A similar expansion is
performed on the acceleration of the third body. The
equations of motion are averaged over time to suppress
periodic effects and to reveal the long-timescale, secu-
lar changes in the orbits. One immediate consequence
is that the two semimajor axes, a and A do not experi-
ence secular changes. In the limit where one of the inner
bodies is much less massive than the other, the compo-
nent of the angular momentum of the inner orbit that is
perpendicular to the plane of the outer orbit turns out
to be constant. Since this component is proportional to
cos z

√
1− e2, where z is the inclination angle between

the normals to the two orbital planes and e is the eccen-
tricity of the inner orbit, we see that, as z decreases, e
increases, and vice versa. The variables e and z oscillate
between well-defined maxima and minima, depending on
the initial conditions. In addition, if z is initially less
than 90o, so that the inner orbit is prograde relative to
the outer orbit, the orbit stays prograde. If the inner
orbit is initially retrograde (z > 90o), it stays retrograde.
The inner orbit cannot “flip” relative to the outer orbit.
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The next surprise came in 2011. It was known by then
that in about 25 percent of exoplanet systems with “hot
Jupiters”, that is Jovian-mass planets close to the host
star, the planet was in a retrograde orbit relative to the
spin of the star. If, as in the solar system, the star and
the other planets rotated in the same direction, how did
these Jupiters end up in retrograde orbits? Naoz et al. [3]
pointed out that, if one included the terms in the perturb-
ing acceleration at the next order in ε, namely ε4, (called
“octupole order” terms) then orbital flips could occur.
In addition, unlike the modest variations in eccentric-
ity allowed by the Kozai-Lidov mechanism, excursions to
eccentricities very close to unity could occur. (These be-
haviors had actually been noticed almost a decade earlier
[4–6], but at the time there was no obvious astrophysi-
cal application.) As a result a “run of the mill” Jupiter,
perturbed by a more distant planet, could be flipped to a
retrograde orbit and also brought very close to the star,
where tidal and other dissipative processes could circular-
ize the orbit, thus producing a retrograde “hot Jupiter”.

In follow-up papers, Naoz and collaborators [7, 8] stud-
ied other situations in which orbital flips could occur.
Naoz et al. [9] studied the effects of post-Newtonian gen-
eral relativistic (GR) corrections, including gravitational
radiation reaction, on the generation of orbital flips and
extreme eccentricities, while Liu et al. [10] studied the
impact of short-range forces induced by tidal, rotational
and GR effects on these extreme phenomena. Lithwick
and Naoz [11] and Katz et al. [12] studied the case where
one of the inner bodies is a “test” particle. Naoz [13] pro-
vides a thorough review of these effects in hierarchical
triple systems and discusses their astrophysical implica-
tions.

Given the complexity of the hierarchical three-body
problem, it is natural to ask, are there more surprises?
To that end, we have gone to the next order in the ex-
pansion of the perturbing acceleration, to order ε5, called
“hexadecapole order”. Other authors have addressed this
level of approximation in a range of contexts, mainly us-
ing the canonical approach of Delaunay variables. Laskar
and Boué [14] obtained the disturbing function in the
Hamiltonian formally to all orders and explicitly to very
high orders in ε; they did not derive the explicit equations
of motion at hexadecapole order. Hamers derived the
secular equations through hexadecapole order (unpub-
lished), and Hamers and Portegies Zwart [15] expanded
the Hamiltonian for an N -body system in a sequence of
hierarchical orbits to hexadecapole and dotriocontupole
(ε6) orders. Antognini [16] derived (though did not dis-
play) the secular equations through hexadecapole order
in both the Delaunay approach and in a method using ec-
centricity and angular momentum vectors, and made the
code publicly available. Carvalho et al. [17] derived the
contributions to the disturbing function at hexadecapole
and dotriocontupole orders, but under the assumption
that the orbital plane of the third body is fixed.

We use the approach of “osculating orbit elements”
whereby each of the orbits is characterized by its semi-

major axis and eccentricity, its inclination and angle of
ascending node relative to a reference coordinate system,
and its angle of pericenter measured from the ascend-
ing node. The equations of motion for the two orbits
can then be rewritten as the “Lagrange planetary” equa-
tions for the orbit elements, which take the generic form
dY α/dt = Qα(Xβ , Zγ , t), where Xβ and Zγ denote or-
bit elements of the inner and outer binary, respectively,
and Y α denotes an orbit element of either binary. We
then carry out the conventional average over an orbit of
both the inner binary and the outer binary, arriving at
equations for the secular changes in the orbit elements.
To quadrupole and octupole orders, our equations for the
secular evolution of the elements agree completely with
those derived using the Delaunay variables approach, and
presented in Sec. 2.2 of Ford et al. [5], or in Appendix A
and B of Naoz et al. [7].

We incorporate the effects of general relativity (GR) by
adding to the secular equations the relativistic pericenter
advances of both the inner and outer orbits at the first
post-Newtonian order (we do not include additional GR
terms studied in [9]). We then apply these hexadecapole-
order equations including GR to a number of case stud-
ies presented in the literature, particularly those where
orbital flips and large eccentricity excursions occur at oc-
tupole order [7, 8, 11]. We also explore the special case
where the masses comprising the inner binary are equal.
In this case the octupole terms vanish identically. Nev-
ertheless, we find a “sweet spot” in the space of orbits
where the hexadecapole terms alone can generate orbital
flips and large eccentricity excursions.

The remainder of this paper presents details. In Sec.
II we present the detailed derivation of the secular La-
grange planetary equations through hexadecapole order.
In Sec. III we present five case studies analyzed using
these higher-order equations. Section IV considers the
equal-mass case. Section V presents concluding remarks.
In an Appendix, we present a dictionary for converting
between the language of osculating orbit elements and
the Delaunay variables approach used in [5, 7]. Here-
after, we refer to the two papers by Naoz et al. [3, 7]
collectively as NFLRT.

II. SECULAR EVOLUTION OF
HIERARCHICAL TRIPLE SYSTEMS

A. Equations of motion and conserved quantities

We begin with the Newtonian equations of motion for
a three-body system,

aa = −Gmbxab
r3ab

− Gmcxac
r3ac

, (2.1)

where a = (1, 2, 3), b 6= c 6= a, G is Newton’s constant,
xab ≡ xa − xb, and rab ≡ |xab|. Bodies 1 and 2 will be
taken to be the “inner” binary, with body 3 taken to be
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the “outer” perturbing body. We define the centers of
mass of the system and of the inner binary to be

Xc ≡
1

M
(m1x1 +m2x2 +m3x3) ,

xc ≡
1

m
(m1x1 +m2x2) , (2.2)

where M ≡ m1 + m2 + m3 and m ≡ m1 + m2. A “hi-
erarchical” triple system is one in which the orbital sep-
aration of the inner binary is small compared to that
of the outer binary, so we expand the equations of mo-
tion in powers of that small ratio. This can be carried
out by writing xa3 = xac + xc3, where a = (1, 2), with
|xac| � |xc3|, and using the Taylor expansion

xja3
r3a3

=
xjc3
r3c3
−
∞∑
`=1

1

`!
xLac∂

jL
c

(
1

rc3

)
, (2.3)

where the superscript L is a multi-index, with the in-
terpretation zL ≡ zi1zi2 . . . zi` ; similarly, ∂jLc is a multi-
partial derivative with respect to xc, and a contraction
over the ` repeated indices is assumed. We now define
x ≡ x1 − x2, r ≡ |x|, n ≡ x/r, X ≡ x3c, R ≡ |X|,
N ≡ X/R; note that X is chosen to point from the
inner binary to the third body. We also define the di-
mensionless mass coefficients αi ≡ mi/m, (i = 1, 2),
with α1 + α2 = 1. We define the dimensionless mass
difference and dimensionless reduced mass

∆ ≡ α2 − α1 ,

η ≡ α1α2 , (2.4)

and choose body 1 to be less than or equal in mass to
body 2, so that ∆ =

√
1− 4η ≥ 0; recall that η ranges

between zero and 1/4. We note that x1c = α2x and
x2c = −α1x. With this convention, in the limit m1 → 0,
η → 0, ∆ → 1, and the relative orbit x and the actual
orbit x1c of body 1 coincide. We also recall that ∂jLc rc3 =
(2`+1)!!N 〈jL〉/R`+2, where the superscript 〈. . . 〉 denotes
a symmetric tracefree product (for a review see [18]).

We can then express the equation of motion of the
inner binary and of the third body relative to the inner
center of mass in the general form

aj = −Gmn
j

r2
+
Gm3

R2

∞∑
`=1

(2`+ 1)!!

`!

( r
R

)`
× nLN 〈jL〉

[
α`2 − (−α1)`

]
,

Aj = −GMN j

R2
− ηGMr

R3

∞∑
`=1

(2`+ 3)!!

(`+ 1)!

( r
R

)`
× nL+1N 〈j(L+1)〉 [α`2 − (−α1)`

]
, (2.5)

where a ≡ d2x/dt2 and A ≡ d2X/dt2. Note that the
perturbing terms in the equation for Aj depend on the
inner binary’s reduced mass parameter η; this is to be
expected, since in the limit in which body 1 is a test body,

η → 0, and the third body moves on an unperturbed
Keplerian orbit around the massive body 2.

The equations admit conserved total energy and angu-
lar momentum, given by

E =
1

2

∑
a

mav
2
a −

1

2

∑
a,b

Gmamb

rab

=
1

2

(
mηv2 +Mη3V

2
)
− Gm2η

r
− GM2η3

R

− η η3
GM2r

R2

∞∑
`=1

(2`+ 1)!!

(`+ 1)!

( r
R

)`
× nL+1N 〈L+1〉 [α`2 − (−α1)`

]
,

J =
∑
a

maxa × va

= mη (x× v) +Mη3 (X × V ) , (2.6)

where η3 ≡ mm3/M
2, and we have chosen the coordi-

nates so that Xc = 0.

Beginning with ` = 1, the terms in the expansions over
` are conventionally denoted quadrupole, octupole, hex-
adecapole, dotriocontupole, etc. We expand the equa-
tions through hexadecapole order, leading to the final
forms

aj = −Gmn
j

r2
+
Gm3r

R3

(
3N jNn − nj

)
+

3

2

Gm3r
2

R4
∆
(
5N jN2

n − 2njNn −N j
)

+
1

2

Gm3r
3

R5
(1− 3η)

(
35N jN3

n − 15njN2
n

−15N jNn + 3nj
)
,

Aj = −GMN j

R2
− 3

2

GMr2

R4
η
(
5N jN2

n − 2njNn −N j
)

− 1

2

GMr3

R5
η∆
(
35N jN3

n − 15njN2
n

−15N jNn + 3nj
)

− 5

8

GMr4

R6
η(1− 3η)

(
63N jN4

n − 28njN3
n

−42N jN2
n + 12njNn + 3N j

)
, (2.7)

where Nn ≡ N · n. The octupole perturbations depend
on the dimensionless mass difference ∆, while the hex-
adecapole perturbations depend on the factor (1 − 3η).
To hexadecapole order, the energy is given by

E =
1

2

(
mηv2 +Mη3V

2
)
− Gm2η

r
− GM2η3

R

− 1

2

GM2ηη3r
2

R3

[
(3N2

n − 1) + ∆
( r
R

)
Nn
(
5N2

n − 3
)

+
1

4
(1− 3η)

( r
R

)2
(35N4

n − 30N2
n + 3)

]
. (2.8)
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FIG. 1: Orientation of inner and outer orbits. (Color figures
in online version.)

B. Osculating orbit elements and the Lagrange
planetary equations

We define the osculating orbit elements of the inner
and outer orbits in the standard manner: for the inner
orbit, we have the orbit elements p, e, ω, Ω and ι, with
the definitions

r ≡ p/(1 + e cos f) ,

x ≡ rn ,

n ≡ [cos Ω cos(ω + f)− cos ι sin Ω sin(ω + f)] eX

+ [sin Ω cos(ω + f) + cos ι cos Ω sin(ω + f)] eY

+ sin ι sin(ω + f)eZ ,

λ ≡ dn/df , ĥ = n× λ ,
h ≡ x× v ≡

√
Gmp ĥ , (2.9)

where (eX , eY , eZ) define a reference basis, to be speci-
fied below. From the given definitions, it is evident that
v = ṙn+ (h/r)λ and ṙ = (he/p) sin f .

For the outer orbit, we have the elements P , E, ω3,
Ω3, and ι3, with the definitions

R ≡ P/(1 + E cosF ) ,

X ≡ RN ,

N ≡ [cos Ω3 cos(ω3 + F )

− cos ι3 sin Ω3 sin(ω3 + F )] eX

+ [sin Ω3 cos(ω3 + F )

+ cos ι3 cos Ω3 sin(ω3 + F )] eY

+ sin ι3 sin(ω3 + F )eZ ,

Λ ≡ dN/dF , Ĥ = N ×Λ ,

H ≡ X × V ≡
√
GMP ĥ . (2.10)

In a similar manner, V = ṘN + (H/R)Λ and Ṙ =
(HE/P ) sinF . The semimajor axes of the two orbits
are defined by a ≡ p/(1− e2) and A ≡ P/(1− E2).

The total angular momentum is strictly conserved if
the system is isolated and we ignore gravitational radia-
tion reaction, therefore it is natural to choose the Z-axis

to lie along J , i.e., eZ = J/J (see Fig. 1). In general,

J = Jb [sin ι (sin ΩeX − cos ΩeY ) + cos ιeZ ]

+ J3 [sin ι3 (sin Ω3eX − cos Ω3eY ) + cos ι3eZ ] ,
(2.11)

where Jb = mη
√
Gmp and J3 = Mη3

√
GMP . Thus, to

align J with the Z-axis, we must impose Jb sin ι sin Ω =
−J3 sin ι3 sin Ω3 and Jb sin ι cos Ω = −J3 sin ι3 cos Ω3;
this implies that tan Ω = tan Ω3 and sgn(sin Ω) =
−sgn(sin Ω3). Together, these imply that

Ω3 = Ω + π . (2.12)

Another way of stating this result is that the components
of the angular momenta of the two orbits in the X −
Y plane must be equal and opposite, and thus that the
orbital planes must intersect the X − Y plane along a
common line, and the lines of ascending nodes must be
parallel and in opposite directions. We then have that
Jb sin ι = J3 sin ι3. Defining

β ≡ Jb
J3

=
sin ι3
sin ι

,

z = ι+ ι3 , (2.13)

it is straightforward to obtain the relations

cot ι =
β + cos z

sin z
, cot ι3 =

β−1 + cos z

sin z
. (2.14)

It will turn out that only the relative inclination z be-
tween the two orbits is dynamically relevant; given an
evolution for z and β, the individual orbital inclinations
can be recovered algebraically from Eqs. (2.14).

From Eqs. (2.7), we define the perturbing accelerations
δa ≡ a+Gmn/r2 and δA ≡ A+GMN/R2. Then, for
the inner binary, we define the radial R, cross-track S
and out-of-plane W components of the perturbing accel-
eration δa, defined respectively by R ≡ n ·δa, S ≡ λ ·δa
and W ≡ ĥ · δa, and we write down the “Lagrange plan-
etary equations” for the evolution of the orbit elements,

dp

dt
= 2

√
p3

Gm

S
1 + e cos f

,

de

dt
=

√
p

Gm

[
sin f R+

2 cos f + e+ e cos2 f

1 + e cos f
S
]
,

d$

dt
=

1

e

√
p

Gm

[
− cos f R+

2 + e cos f

1 + e cos f
sin fS

]
,

dι

dt
=

√
p

Gm

cos(ω + f)

1 + e cos f
W ,

sin ι
dΩ

dt
=

√
p

Gm

sin(ω + f)

1 + e cos f
W . (2.15)

The auxiliary variable $ is defined such that the change
in pericenter angle is given by ω̇ = $̇ − Ω̇ cos ι.

For the outer binary, the analogous components of the
perturbing acceleration δA, are defined by R3 ≡N · δA,
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S3 ≡ Λ · δA and W3 ≡ Ĥ · δA. The planetary equations
for the outer binary take the form of Eqs. (2.15), with
suitable replacements of all the relevant variables, p→ P ,
e → E, m → M , f → F , and so on, and with ω̇3 =
$̇3 − Ω̇3 cos ι3.

Combining these equations and inserting the perturb-
ing accelerations, it is straightforward to verify directly
that

d

dt
(Ω− Ω3) = 0 ,

d

dt

(
mη
√
Gmp sin ι−Mη3

√
GMP sin ι3

)
= 0 ,

d

dt

(
mη
√
Gmp cos ι+Mη3

√
GMP cos ι3

)
= 0 , (2.16)

reflecting the conservation of the three components of the
total angular momentum.

C. Secular evolution of the orbit elements

We now use first-order perturbation theory to obtain
the secular evolutions of the orbital elements. This is
done by substituting constant values of the orbit elements
into the right-hand sides of the planetary equations, and
averaging over an orbit of both the inner and outer bina-
ries. This is justified by the fact that the leading order
perturbation is at ε3 and we are going out to order ε5.
Were we including terms of dotriocontupole order (ε6) in
the equations of motion, for example, it would have been
necessary to invoke second-order perturbation theory for
the quadrupole terms, in which the full (secular plus peri-
odic) solutions at quadrupole order are substituted back
into the Lagrange planetary equations and the orbital
average carried out again.

Each planetary equation can be written in the generic
form

dY α

dt
= Qα(Xβ , Zγ , t) = Aα(Xβ , f)Bα(Zγ , F ) (2.17)

where the Xβ and Zβ are orbit elements associated with
the inner and outer binaries, respectively, and where the
last step recognizes that every term on the right-hand
side can be factorized into a product of terms depending
only on one or the other orbital elements and on either
f or F . Then the average of dY α/dt is approximated as
product of averages of Aα and Bα, in other words〈

dY α

dt

〉
= 〈Aα〉 〈Bα〉

=
1

Pinner

∫ Pinner

0

Aαdt
1

Pouter

∫ Pouter

0

Bαdt ,

(2.18)

where the two orbital periods are given by Pinner =
2π
√
a3/Gm and Pouter = 2π

√
A3/GM , with the as-

sumption that Pinner � Pouter. In integrating over an
orbit of the inner binary, it is useful to convert the an-
gular variable from the true anomaly f , to the eccentric
anomaly u, using the relations

sin f =

√
1− e2 sinu

1− e cosu
, cos f =

cosu− e
1− e cosu

(2.19)

along with r = a(1 − e cosu) and dt =
√
a3/Gm(1 −

e cosu)du. For the outer binary, we use the fact that dt =√
P 3/GM(1 + E cosF )−2dF . Thus the orbit averages

may be written

〈
dY α

dt

〉
=

(1− E2)3/2

(2π)2

∫ 2π

0

Aα(1− e cosu)du

×
∫ 2π

0

Bα

(1 + E cosF )2
dF . (2.20)

After carrying out the orbital averages, we convert
from time t to a dimensionless time scaled by the inner
orbital period, namely

τ ≡ t

Pinner
=

t

2π

(
Gm

a3

)1/2

. (2.21)

With this scaling, the entire secular dynamics depends
on the three dimensionless parameters:

α ≡ m3

m
, η ≡ m1m2

m2
, ε ≡ a

A
. (2.22)

In terms of these parameters, the quantity β = Jb/J3 is
given by

β = η
(1 + α)1/2

α
ε1/2

(
1− e2

1− E2

)1/2

. (2.23)

Through hexadecapole order, we recover the well-
known result that p, e, P , and E evolve in such a way
that the semimajor axes a and A are constant, in other
words

da

dτ
=
dA

dτ
= 0 . (2.24)

The secular evolution of the remaining orbit elements is
given as follows:
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Quadrupole order

de

dτ
=

15π

2
αε3

e(1− e2)1/2

(1− E2)3/2
sin2 z sinω cosω ,

dι

dτ
= −15π

2
αε3

e2

(1− e2)1/2(1− E2)3/2
sin z cos z sinω cosω ,

dΩ

dτ
= −3π

2
αε3

1

(1− e2)1/2(1− E2)3/2
sin z cos z

sin ι

(
1 + 4e2 − 5e2 cos2 ω

)
,

d$

dτ
=

3π

2
αε3

(1− e2)1/2

(1− E2)3/2
[
1− sin2 z

(
4− 5 cos2 ω

)]
,

dE

dτ
= 0 ,

dι3
dτ

= −15π

2
η(1 + α)1/2ε7/2

e2

(1− E2)2
sin z sinω cosω ,

d$3

dτ
=

3π

4
η(1 + α)1/2ε7/2

1

(1− E2)2
[
2 + 3e2 − 3 sin2 z

(
1 + 4e2 − 5e2 cos2 ω

)]
. (2.25)

At quadrupole order, we recover many of the features of the well-known Kozai-Lidov behavior in hierarchical triple
systems, such as the oscillation of e and ι as the pericenter angle ω advances. When η = 0, the outer orbit is a
Keplerian ellipse with constant elements, and the quantity [a(1− e2)]1/2 cos z is constant under the secular evolution
of e and ι; this is proportional to the component of the inner orbit’s angular momentum orthogonal to the plane of
the third body. For general η, there is a fixed point of the orbit elements of the inner orbit (ė = ι̇ = ω̇), when ω = π/2
or 3π/2, and when e and z satisfy the constraint

5 cos2 z − 3(1− e2) + β cos z(1 + 4e2) = 0 . (2.26)

For the outer orbit, the fixed point implies ι̇3 = Ė = 0, but ω̇3 6= 0, in general.

Octupole order

de

dτ
= −15π

256
αε4∆

E(1− e2)1/2

(1− E2)5/2

(
(4 + 3e2)

[
(1 + cos z)(1 + 10 cos z − 15 cos2 z) sin(ω − ω3)

+(1− cos z)(1− 10 cos z − 15 cos2 z) sin(ω + ω3)
]

− 105e2 sin2 z [(1 + cos z) sin(3ω − ω3) + (1− cos z) sin(3ω + ω3)]

)
,

dι

dτ
= −15π

256
αε4∆

Ee

(1− e2)1/2(1− E2)5/2
sin z

(
(4 + 3e2)

[
(1 + 10 cos z − 15 cos2 z) sin(ω − ω3)

−(1− 10 cos z − 15 cos2 z) sin(ω + ω3)
]

− 35e2 [(1 + cos z)(1− 3 cos z) sin(3ω − ω3)− (1− cos z)(1 + 3 cos z) sin(3ω + ω3)]

)
,

dΩ

dτ
=

15π

256
αε4∆

Ee

(1− e2)1/2(1− E2)5/2
sin z

sin ι

(
(4 + 3e2)

[
(11− 10 cos z − 45 cos2 z) cos(ω − ω3)

−(11 + 10 cos z − 45 cos2 z) cos(ω + ω3)
]

− 35e2 [(1 + cos z)(1− 3 cos z) cos(3ω − ω3)− (1− cos z)(1 + 3 cos z) cos(3ω + ω3)]

)
,

d$

dτ
= −15π

256
αε4∆

E(1− e2)1/2

e(1− E2)5/2

(
(4 + 9e2)

[
(1 + cos z)(1 + 10 cos z − 15 cos2 z) cos(ω − ω3)

+(1− cos z)(1− 10 cos z − 15 cos2 z) cos(ω + ω3)
]

− 105e2 sin2 z [(1 + cos z) cos(3ω − ω3) + (1− cos z) cos(3ω + ω3)]

)
,

dE

dτ
=

15π

256
η(1 + α)1/2ε9/2∆

e

(1− E2)2

(
(4 + 3e2)

[
(1 + cos z)(1 + 10 cos z − 15 cos2 z) sin(ω − ω3)
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−(1− cos z)(1− 10 cos z − 15 cos2 z) sin(ω + ω3)
]

− 35e2 sin2 z [(1 + cos z) sin(3ω − ω3)− (1− cos z) sin(3ω + ω3)]

)
,

dι3
dτ

=
15π

256
η(1 + α)1/2ε9/2∆

Ee

(1− E2)3
sin z

(
(4 + 3e2)

[
(1 + 10 cos z − 15 cos2 z) sin(ω − ω3)

+(1− 10 cos z − 15 cos2 z) sin(ω + ω3)
]

− 35e2 [(1 + cos z)(3− cos z) sin(3ω − ω3) + (1− cos z)(3 + cos z) sin(3ω + ω3)]

)
,

d$3

dτ
= −15π

256
η(1 + α)1/2ε9/2∆

e(1 + 4E2)

E(1− E2)3

(
(4 + 3e2)

[
(1 + cos z)(1 + 10 cos z − 15 cos2 z) cos(ω − ω3)

+(1− cos z)(1− 10 cos z − 15 cos2 z) cos(ω + ω3)
]

− 35e2 sin2 z [(1 + cos z) cos(3ω − ω3) + (1− cos z) cos(3ω + ω3)]

)
. (2.27)

It is straightforward to verify that these results are completely equivalent to those of Ford et al. [5] and NFLRT
[7]. In Appendix A we provide a dictionary that translates between our osculating orbits language and the Delaunay
variables language used in [5, 7].

Hexadecapole order

de

dτ
= −315π

1024
αε5(1− 3η)

e(1− e2)1/2

(1− E2)7/2

×
(

(2 + 3E2) sin2 z
[
(4 + 2e2)(1− 7 cos2 z) sin 2ω − 21e2 sin2 z sin 4ω

]
− E2

{
(4 + 2e2)

[
(1 + cos z)2(1− 7 cos z + 7 cos2 z) sin(2ω − 2ω3)

+(1− cos z)2(1 + 7 cos z + 7 cos2 z) sin(2ω + 2ω3)
]

+ 21e2 sin2 z
[
(1 + cos z)2 sin(4ω − 2ω3) + (1− cos z)2 sin(4ω + 2ω3)

]})
,

dι

dτ
=

45π

2048
αε5(1− 3η)

sin z

(1− e2)1/2(1− E2)7/2

×
(

14e2(2 + 3E2) cos z
[
(4 + 2e2)(1− 7 cos2 z) sin 2ω − 21e2 sin2 z sin 4ω

]
+ 2E2(1− 7 cos2 z)(8 + 40e2 + 15e4) sin 2ω3

+ 7E2e2
{

4(2 + e2)
[
(1 + cos z)(1− 7 cos z + 7 cos2 z) sin(2ω − 2ω3)

−(1− cos z)(1 + 7 cos z + 7 cos2 z) sin(2ω + 2ω3)
]

+ 21e2
[
(1− 2 cos z)(1 + cos z)2 sin(4ω − 2ω3)− (1 + 2 cos z)(1− cos z)2 sin(4ω + 2ω3)

]})
,

dΩ

dτ
=

45π

2048
αε5(1− 3η)

1

(1− e2)1/2(1− E2)7/2
sin z

sin ι

×
(

2(2 + 3E2) cos z
[
(8 + 40e2 + 15e4)(3− 7 cos2 z)− 28e2(2 + e2)(4− 7 cos2 z) cos 2ω − 147e2 sin2 z cos 4ω

]
− 4E2 cos z(4− 7 cos2 z)(8 + 40e2 + 15e4) cos 2ω3

+ 7E2e2
{

2(2 + e2)
[
(1 + cos z)(5 + 7 cos z − 28 cos2 z) cos(2ω − 2ω3)

−(1− cos z)(5− 7 cos z − 28 cos2 z) cos(2ω + 2ω3)
]

+ 21e2
[
(1− 2 cos z)(1 + cos z)2 cos(4ω − 2ω3)− (1 + 2 cos z)(1− cos z)2 cos(4ω + 2ω3)

]})
,
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d$

dτ
=

45π

1024
αε5(1− 3η)

(1− e2)1/2

(1− E2)7/2

×
(

(2 + 3E2)
[
(4 + 3e2)(3− 30 cos2 z + 35 cos4 z)− 28(1 + e2) sin2 z(1− 7 cos2 z) cos 2ω + 147e2 sin4 z cos 4ω

]
− 10E2(4 + 3e2) sin2 z(1− 7 cos2 z) cos 2ω3

+ 7E2

{
4(1 + e2)

[
(1 + cos z)2(1− 7 cos z + 7 cos2 z) cos(2ω − 2ω3)

+(1− cos z)2(1 + 7 cos z + 7 cos2 z) cos(2ω + 2ω3)
]

+ 21e2 sin2 z
[
(1 + cos z)2 cos(4ω − 2ω3) + (1− cos z)2 cos(2ω + 2ω3)

]})
,

dE

dτ
= − 45π

2048
η(1− 3η)(1 + α)1/2ε11/2

E

(1− E2)3

×
(

2(8 + 40e2 + 15e4) sin2 z(1− 7 cos2 z) sin 2ω3

+ 28e2(2 + e2)
[
(1 + cos z)2(1− 7 cos z + 7 cos2 z) sin(2ω − 2ω3)

−(1− cos z)2(1 + 7 cos z + 7 cos2 z) sin(2ω + 2ω3)
]

+ 147e4 sin2 z
[
(1 + cos z)2 sin(2ω − 2ω3)− (1− cos z)2 sin(2ω + 2ω3)

])
,

dι3
dτ

=
45π

2048
η(1− 3η)(1 + α)1/2ε11/2

sin z

(1− E2)4

×
(

14e2(2 + 3E2)
[
(4 + 2e2)(1− 7 cos2 z) sin 2ω − 21e2 sin2 z sin 4ω

]
+ 2E2(8 + 40e2 + 15e4) cos z(1− 7 cos2 z) sin 2ω3

− 7E2e2
{

4(2 + e2)
[
(1 + cos z)(1− 7 cos z + 7 cos2 z) sin(2ω − 2ω3)

+(1− cos z)(1 + 7 cos z + 7 cos2 z) sin(2ω + 2ω3)
]

+ 21e2
[
(2− cos z)(1 + cos z)2 sin(4ω − 2ω3) + (2 + cos z)(1− cos z)2 sin(4ω + 2ω3)

]})
,

d$3

dτ
=

45π

4096
η(1− 3η)(1 + α)1/2ε11/2

1

(1− E2)4

×
(

(4 + 3E2)
[
(8 + 40e2 + 15e4)(3− 30 cos2 z + 35 cos4 z)

−140e2(2 + e2) sin2 z(1− 7 cos2 z) cos 2ω + 735e4 sin4 z cos 4ω
]

+ (2 + 5E2)

{
2(8 + 40e2 + 15e4) sin2 z(1− 7 cos2 z) cos 2ω3

− 28e2(1 + e2)
[
(1 + cos z)2(1− 7 cos z + 7 cos2 z) cos(2ω − 2ω3)

+(1− cos z)2(1 + 7 cos z + 7 cos2 z) cos(2ω + 2ω3)
]

− 147e4 sin2 z
[
(1 + cos z)2 cos(4ω − 2ω3) + (1− cos z)2 cos(2ω + 2ω3)

]})
. (2.28)

At all three orders, these equations satisfy the three constraints (2.16) related to the conservation of total angular
momentum.

Substituting the definitions (2.9) and (2.10) into the expression (2.8) for the conserved energy and averaging over
time, we obtain the expression

E = −Gm
2η

2a
− GM2η3

2A
+

GM2η η3a
2

8A3(1− E2)3/2

×
[
1 + 9e2 − 3(1 + 4e2) cos2 z − 15e2 cos2 ω sin2 z
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+
15

64

a

A

eE

(1− E2)
∆

{
(4 + 3e2)

[
(1 + cos z)(1 + 10 cos z − 15 cos2 z) cos(ω − ω3)

+(1− cos z)(1− 10 cos z − 15 cos2 z) cos(ω + ω3)
]

− 35e2 sin2 z [(1 + cos z) cos(3ω − ω3) + (1− cos z) cos(3ω + ω3)]

}
− 9

1024

( a
A

)2 1− 3η

(1− E2)2

{
(2 + 3E2)

[
(8 + 40e2 + 15e4)(3− 30 cos2 z + 35 cos4 z)

−140e2(2 + e2) sin2 z(1− 7 cos2 z) cos 2ω + 735e4 sin4 z cos 4ω
]

− E2

(
10(8 + 40e2 + 15e4) sin2 z(1− 7 cos2 z) cos 2ω3

− 140e2(2 + e2)
[
(1 + cos z)2(1− 7 cos z + 7 cos2 z) cos(2ω − 2ω3)

+(1− cos z)2(1 + 7 cos z + 7 cos2 z) cos(2ω + 2ω3)
]

− 735e4 sin2 z
[
(1 + cos z)2 cos(4ω − 2ω3) + (1− cos z)2 cos(2ω + 2ω3)

])}]
. (2.29)

The quadrupole and octupole contributions agree with
the corresponding contributions to the “energy function”
F , displayed in Eqs. (8) - (11) of [11]; in that calculation,
η was chosen to vanish, the constant pericenter of the
outer orbit was chosen to lie along the X-axis, and thus
ω3 = π − Ω.

III. CASE STUDIES OF THE EFFECTS OF
HEXADECAPOLE CONTRIBUTIONS

We now turn to the numerical analysis of the secu-
lar evolution of the orbital elements for cases of astro-
physical interest. The two semimajor axes a and A are
constants of the motion. The precession of the nodal
angle dΩ/dτ is of no internal dynamical interest; it rep-
resents an irrelevant rotation of the entire system about
the conserved total angular momentum vector. None of
the evolution equations depends on Ω. The equation for
dΩ/dτ is useful only for constructing the equations of evo-

lution for ω and ω3 using the relations ω̇ = $̇ − Ω̇ cos ι
and ω̇3 = $̇3 − Ω̇ cos ι3. The individual inclinations ι
and ι3 can be directly linked to the relative inclination
angle z via Eq. (2.14), and only z appears in the equa-
tions. Thus the dynamical system reduces to five evolu-
tion equations for the five variables e, E, z, ω and ω3,
depending only on the three dimensionless parameters
α = m3/m, η = m1m2/m

2 and ε = a/A. The only place
where the actual mass or distance scale enters is in the
conversion from the dimensionless time τ to real time t
via the scaling t = Pinnerτ = 2πτ(a3/Gm)1/2.

The foregoing remarks apply only in Newtonian grav-
ity. In the real world, general relativity should be
included, and indeed it is well known that the sim-
plest quadrupole-order Kozai-Lidov oscillations can be
strongly suppressed if the rate of relativistic advance of
the pericenter of the inner binary is large enough [19].
Including the leading contribution of general relativity

forces us to introduce an additional dimensionless pa-
rameter δ to the problem, given by

δ ≡ Gm

c2a
= 9.8736× 10−9

(
m

M�

)(a.u.

a

)
, (3.1)

where c is the speed of light. The dominant effect is to
add to the pericenter advances of the two orbits the terms

d$

dτ
= 6π

δ

1− e2
,

d$3

dτ
= 6π

δ(1 + α)ε

1− E2
. (3.2)

Additional relativistic effects, such as those studied in
[9], will be the subject of future work.

With three fundamental parameters (four if we include
general relativity) and 5 dynamical variables, a complete
exploration of the full parameter space is beyond the
scope of this paper. Instead we will analyze the effects of
the hexadecapole contribution on a selection of case stud-
ies that have appeared in the literature. Most of these
have been presented by Naoz and collaborators [3, 7],
who first pointed out examples where orbital flips and ex-
cursions to very large eccentricities induced by octupole-
order terms were astrophysically interesting. We will find
that, in almost all cases, the hexadecapole and GR con-
tributions make only small quantitative differences, but
do not impact the orbital-flip or large-eccentricity phe-
nomena.

Table I lists the specific parameters and initial condi-
tions for the cases studied in this section.

A. Hot Jupiters

In their seminal discussion of the possibility of hot
Jupiters in retrograde orbits, NFLRT considered an in-
ner binary of a Jupiter orbiting a solar-mass star with
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TABLE I: Physical parameters and initial conditions for selected case studies

System m1 m2 m3 a (a.u.) A(a.u.) e E z ω ω3

Hot Jupiters MJ M� 40MJ 6 100 0.001 0.6 65 45 0

Coplanar Flips MJ M� 0.03M� 4 50 0.8 0.6 5 0 0

Asteroid-Jupiter 0 M� MJ 2 5 0.2 0.05 65 0 0

Triple star 0.25M� M� 0.6M� 60 800 0.01 0.6 98 0 0

CH Cygni 0.5M� 3.51M� 0.909M� 0.05 0.21 0.32 0.6 72 145 0

a = 6 a.u., perturbed by a brown-dwarf star with a
mass of 40MJ and A = 100 a.u. In this case, with
M� = 1047MJ , the parameters (including the GR pa-
rameter) take the values

α = 0.0382 ε = 0.06 , η = 9.53× 10−4 ,

∆ = 0.998 , δ = 1.63× 10−9 . (3.3)

The initial conditions chosen by NFLRT were

e = 0.001 , E = 0.6 , z = 65o , ω = 45o , ω3 = 0o . (3.4)

We evolve the secular planetary equations for 1.7×106 or-
bits of the inner binary (corresponding to about 2.5×107

years) for four cases, octupole order, with and without
GR precessions and hexadecapole order, with and with-
out GR precessions. The four cases yield very similar
results and so we show only two of the cases. Figure 2
shows the inclination angle z and log(1−e) against time.
Plotted in blue is the Newtonian evolution at octupole
order, matching very well the results of [3, 7]. Initially
the system undergoes Kozai-Lidov type oscillations in z
but with the maximum value of z rising steadily; when z

reaches 90o, the orbit become retrograde and the oscilla-
tions “flip”. Later the orbit flips back to prograde, and
so on. Plotted in red is the full evolution including hex-
adecapole terms and the GR pericenter precessions. The
pattern of flips and the excursions to large eccentricity
are essentially the same as in the octupole case; only the
timescale has been shortened slightly, in agreement with
the N -body integrations carried out by Naoz et al. and
shown in their Fig. 3 [7]. In this case, the hexadecapole
and relativistic terms do not change the behavior to any
significant degree.

We remark that Carvalho et al. [17] found that hex-
adecapole contributions, derived assuming a fixed third-
body orbit, appeared to produce somewhat anomalous
flip behavior (their Fig. 8), only to be restored to be-
havior consistent with direct numerical integrations by
the dotriocontupole terms, derived under the same as-
sumption (their Fig. 9). In our approach, both orbits are
perturbed consistently, and the hexadecapole order re-
sults are fully compatible with the N -body integrations
of [7].

B. Orbital flips from nearly coplanar orbits

Li et al. [8] discovered the possibility of generating or-
bital flips and large eccentricities from initially nearly
coplanar orbits using the octupole-order equations. The
inner system was again a Jupiter-Sun binary with a = 4
a.u., perturbed by a brown dwarf, with m3 = 0.03M�
and A = 50 a.u. The parameters then have the values

α = 0.030 ε = 0.08 , η = 9.53× 10−4 ,

∆ = 0.998 , δ = 1.63× 10−9 , (3.5)

and the initial conditions are

e = 0.8 , E = 0.6 , z = 5o , ω = 0o , ω3 = 0o . (3.6)

We evolve the equations for 2.5×105 inner orbits (2×106

years), for three cases: octupole and hexadecapole or-
ders without GR precessions, and hexadecapole order
with GR precessions. The results are shown in Fig. 3.
At octupole order without GR (upper panel, plotted in

black), the system oscillates about small values of z for
a while, then migrates quickly to a retrograde orbit, os-
cillates about the new values for a while, then migrates
back. During the transition the eccentricity reaches ex-
treme values close to unity (lower panel). Including the
hexadecapole terms shortens the timescale slightly (plot-
ted in blue), but otherwise preserves the basic behavior.
These curves are in excellent agreement with results ob-
tained by G. Li and by A. Hamers (private communica-
tion) using both N -body codes and orbit element codes
to the same multipolar order. However, including the GR
precessions with the hexadecapole terms causes the first
flip to abort (plotted in red); subsequent flips are then
out of phase with those where GR is not included. It is
evident that the transition from prograde to retrograde
orbits is very sensitive to the phases of the two pericen-
ter angles, ω and ω3 as the inclination angle z approaches
90o. The cumulative precessions in these angles induced
by general relativity can turn a transition to retrograde
into a bounce back to prograde, and vice versa.
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FIG. 2: Orbital flips and eccentricity excursions in a Jupiter-
Sun system perturbed by a distant brown dwarf. Blue: oc-
tupole order, without GR (equivalent to Fig. 3 of [7]). Red:
hexadecapole order with GR. Parameters and initial orbit el-
ements are listed in Table I. (Color figures in online version.)
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FIG. 3: Orbital flips and eccentricity excursions in a nearly
co-planar Jupiter system. Black: octupole order. Blue: hex-
adecapole order. Red: hexadecapole order with GR. Param-
eters and initial orbit elements are listed in Table I. (Color
figures in online version.)

We now vary the semimajor axis a of the inner orbit
in order to assess the effects of GR. Holding the other
parameters and initial conditions fixed, we obtain the
curves shown in Fig. 4. Here the time scales as τ(a/4)3,
where a is in astronomical units; this timescale is chosen
so that similar numbers of Kozai cycles can appear on
one plot. For a = 5 (blue), the pattern of flips is very
similar to that obtained without GR, shown in blue in
Fig. 3. For a = 4 (red), the curve is the same as that
shown in red in Fig. 3. For a = 3 (green) the migration
to large inclinations is suppressed by the more rapid GR
precessions, although migrations to large eccentricities
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FIG. 4: Effects of GR on orbital flips and eccentricity excur-
sions in a nearly co-planar Jupiter system. Blue: a = 5 a.u.
Red: a = 4 a.u. (same as in Fig. 3). Green: a = 3 a.u. Black:
a = 2 a.u. Other parameters and initial orbit elements are
listed in Table I. (Color figures in online version.)
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FIG. 5: Effects of initial pericenter angle on orbital flips in a
nearly co-planar Jupiter system for a = 4 a.u. Red: ω3 = 0o

(same as in Fig. 3). Blue: ω3 = 45o. Green: ω3 = 90o. Black:
ω3 = 180o. Other parameters and initial orbit elements are
listed in Table I. (Color figures in online version.)

still occur. Finally, for a = 2, (black) the GR precessions
permit only small Kozai-like oscillations about the initial
values of z and e.

For the nominal value a = 4 a.u., we also show the
sensitivity of orbital flips to the pericenter angles. Fig-
ure 5 shows evolutions for four initial pericenter angles
of body 3: 0o (red, same as in Fig. 3), 45o (blue), 90o

(green) and 180o (black). Notice that the initial values
ω = 0o, ω3 = 0o correspond to orbits with the initial
pericenters pointing in opposite directions (Fig. 1), while
the values ω = 0o, ω3 = 180o correspond to initial orbits
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FIG. 6: Evolution of inclination and eccentricity in an
asteroid-Jupiter system. Blue: octupole order. Red: hex-
adecapole order. GR precessions are included. (Color figures
in online version.)

with the pericenters pointing in the same direction. This
dependence is in agreement with results from N -body
integrations by G. Li (private communication).

C. An asteroid Jupiter system

NFLRT showed that octupole perturbations could in-
duce orbital flips in a Sun-asteroid-Jupiter system. In
this case, a = 2 a.u. and A = 5 a.u., and the parameters
are

α = 9.55× 10−4 ε = 0.4 , η = 0 ,

∆ = 1 , δ = 4.92× 10−9 . (3.7)

The initial conditions are

e = 0.2 , E = 0.05 , z = 65o , ω = 0o , ω3 = 0o . (3.8)

We evolve the planetary equations for 106 orbital peri-
ods, corresponding to about 2.8 million years, with and
without hexadecapole terms. We include the GR preces-
sions, but they turn out to have negligible effect in this
example. Figure 6 shows the resulting evolutions of z
and e. Including the hexadecapole terms stretches the
timescale somewhat, in agreement with the full N -body
numerical evolutions carried out by NFLRT (see Fig. 8 of
NFLRT). As in the previous example, the initial choice
ω3 = 180o leads to no orbital flips.

D. A triple-star hierarchical system

Analyzing a set of hierarchical triple-star systems stud-
ied by Fabrycky and Tremaine [20], NFLRT again found
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FIG. 7: Evolution of inclination and eccentricity in a triple-
star system. Blue: octupole order. Red: hexcadapole order.
(Color figures in online version.)

orbital flip behavior (Fig. 9 of [7]). The system studied
consists of an inner binary with m1 = 0.25M�, m2 =
M�, a = 60 a.u., and an outer star, with m3 = 0.6M�,
a = 800 a.u. In this example, the parameters are

α = 0.48 ε = 0.075 , η = 0.16 ,

∆ = 0.6 , δ = 2.05× 10−10 . (3.9)

The initial conditions are

e = 0.01 , E = 0.6 , z = 98o , ω = 0o , ω3 = 0o . (3.10)

In this example, the initial inner orbit is already retro-
grade. We evolve for 5 × 104 orbits, corresponding to
2 × 107 years. The results are shown in Fig. 7. The
octupole-order curves (blue) agree well with the curves
displayed in Fig. 9 of [7], while the hexadecapole con-
tributions (red) preserve the flips with minor changes.
However, if we include the hexadecapole orders and de-
crease a, making the inner binary more relativistic, while
holding the other parameters and initial conditions fixed,
then the flips to prograde become progressively more spo-
radic, finally disappearing completely when a = 18 a.u.

E. The CH Cygni system

Using the best fit parameters for the triple system CH
Cygni from Mikkola and Tanikawa [21], NFLRT showed
that including the octupole-order contributions changed
the evolution from conventional Kozai oscillations to or-
bital flips and excursions to large eccentricity. The pa-
rameters are

α = 0.227 , ε = 0.238 , η = 0.109 ,

∆ = 0.751 , δ = 7.89× 10−7 , (3.11)
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FIG. 8: Evolution of z and e in the CH Cygni system. Blue:
octupole order. Red: hexcadapole order. GR precessions are
included. (Color figures in online version.)

and the initial conditions are

e = 0.32 , E = 0.6 , z = 72o , ω = 145o , ω3 = 0o .
(3.12)

We evolve for 4000 orbits, corresponding to about 22
years, with results shown in Fig. 8. The octupole-order
results (blue) closely match those of [7], Fig. 11, show-
ing both orbital flips and large eccentricity excursions.
But in this case, with hexadecapole contributions (red),
the flips are suppressed and the eccentricity excursions
are reduced. GR precessions were included, but make no
discernable difference in this example.

IV. EQUAL-MASS INNER BINARIES

When the bodies making up the inner binary have
equal masses, the octupole terms vanish, leaving only
the quadrupole and hexadecapole contributions. It is
therefore interesting to explore whether the hexadecapole
terms alone can generate orbital flips and large eccentric-
ities. Since precise equality of masses is rare, this special
case might not be of generic astrophysical interest, al-
though it might be relevant for inner binaries consisting
of neutron stars, whose masses tend to cluster around
1.4M�.

In the equal-mass case, η = 1/4 and ∆ = 0, and thus
the free parameters reduce to three: α, ε and the GR pa-
rameter δ. Because the hexadecapole terms are smaller
than the quadrupole terms by a factor ε2, then if ε is
too small, hexadecapole effects are too small to be of any
consequence. One “sweet spot”, where orbital flips can
be induced by hexadecapole terms alone occurs around
the values ε ∼ 0.1 and α ∼ 10. Note that the combina-
tion αε3, which controls the leading quadrupole effects, is
still small; this constraint must hold so that the problem
remains within the perturbative regime.

The first example is displayed in Fig. 9. The chosen
parameters are:

α = 10.714 , ε = 0.127 , δ = 3.95× 10−9 . (4.1)

The initial conditions are

e = 0.8 , E = 0.6 , z = 75o , ω = 0o ,

ω3 = 0o or 180o (red) , 90o (blue) . (4.2)

A specific system with these parameters consists of two
1.4M� neutron stars orbiting a 30M� star or black hole,
with a = 7 a.u. and A = 55 a.u. Scaling all masses and
semimajor axes by a common factor ζ yields identical
evolutions, since the three parameters of Eq. (4.1) are
unchanged. Only the timescale set by the inner orbital
period changes, scaling by ζ. Evolving the system for 500
orbits of the inner binary, we find that the evolution for
ω3 = 0o (initial pericenters in opposite directions along
the line of nodes) is identical to that for ω3 = 180o (initial
pericenters in the same direction), resulting in an orbital
flip (red curves in Fig. 9), while the evolution for ω3 =
90o does not show flips. This is in contrast to the cases
where octupole terms dominate, where ω3 = 0o leads
to flips while ω3 = 180o does not. This makes sense
because, as can be seen from Eqs. (2.27), the octupole
terms change sign under the transformation ω3 → ω3 +
π, whereas the hexadecapole terms in Eqs. (2.28) are
invariant under that transformation. On the other hand,
many pieces of the hexadecapole terms change sign under
the transformation ω3 → ω3+π/2, and as a consequence,
the initial angle ω3 = 90o yields no flips.

In the foregoing example, the evolutions are the same
whether the GR precessions are included or not. We
can investigate when GR effects become important by
“dialing up” the GR parameter δ while holding α and ε
fixed. This is equivalent either to reducing a and A by
the same factor, holding the masses fixed, or to increasing
all the masses by the same factor, holding a and A fixed.
We find that orbital flips are preserved until δ is about
820 times larger than the value shown in Eq. (4.1).

Another example generates orbital flips from nearly
coplanar orbits, an analogue of the case discussed in Sec.
III B. The results are shown in Fig. 10. In this case the
parameters are

α = 17.857 , ε = 0.0875 , δ = 3.95× 10−9 . (4.3)

A sample system is again two 1.4M� neutron stars with
a = 7 a.u., but now orbiting a 50M� star or black hole
at A = 80 a.u. The initial conditions are

e = 0.99 , E = 0.6 , z = 5o , ω = 45o , ω3 = 0o . (4.4)

The quadrupole-order evolution, shown in blue, dis-
plays the standard Kozai-Lidov cycles, whereas the
hexadecapole-order evolution shows orbital flips and ex-
cursions to extreme eccentricities, well beyond (in the
sense of log(1−e)) the initial relatively large initial value
of e = 0.99. Here again, GR precessions play a negligible
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FIG. 9: Evolution of z and e for an equal-mass inner binary.
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nary in a nearly coplanar initial orbit. Blue: quadrupole or-
der. Red: hexadecapole order. GR precessions are included.
(Color figures in online version.)

role, suppressing the flips only when the GR parameter
δ is dialed up by a factor of about 80.

As a final example, we display in Fig. 11 the effect of
slightly unequal masses on the generation of orbital flips
via octupole-order terms. We again consider an inner
binary of total mass 2.8M�, with a = 4 a.u., orbiting a
star or black hole of mass 50M� at A = 50 a.u. The
initial conditions are

e = 0.8 , E = 0.6 , z = 75o , ω = 0o , ω3 = 0o . (4.5)

The equal-mass case shows no orbital flips in this case
(blue curves in Fig. 11), basically because ε = 0.08 is
smaller than in the previous cases, and the hexadecopole
terms alone are not large enough to do the job. As we
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FIG. 11: Evolution of z and e for equal and unequal-mass
inner binaries Blue: equal masses. Red: m1 = 1.33M�,
m2 = 1.47M�. GR precessions are included. (Color figures
in online version.)

change the two inner masses holding the total mass fixed,
the octupole terms kick in, but are initially too small
to generate flips, until we reach m1 = 1.33M�, m2 =
1.47M�, whereupon orbital flips and large eccentricities
are generated (red curves).

V. CONCLUDING REMARKS

We have extended the study of Kozai-Lidov type hier-
archical triple systems to hexadecapole order, or to order
(a/A)5, and examined a number of astrophysically inter-
esting cases to elucidate the effect of the higher order
terms on extreme behavior such as orbital flips and ex-
cursions to large eccentricity. Given the complexity of the
three-body problem, even in the hierarchical regime, it
may come as no surprise that we find a complicated range
of behaviors. In most cases, the hexadecapole terms have
only small quantitative effects on the long-term evolution
of the system.

In addition, in the astrophysical systems examined in
Sec. III, the parameter ε ranged from 0.06 to 0.24; at
the upper end of this range, the systems are not very
hierarchical. Given the inherently chaotic nature of the
three-body problem, it pays to be cautious in ascribing a
specific phenomenon (such as orbital flips) solely to the
presence of a higher-order term, as opposed to a possible
slight change in initial conditions.

For equal-mass systems (and possibly for a range of
nearly equal-mass systems), where the octupole terms
vanish or are suppressed, we found a region of parameter
space where orbital flips and excursions to large eccen-
tricity could be generate by the hexadecapole terms.

We have derived and presented the equations in as
clear a fashion as possible, to make it easy for other
researchers to use them to explore the full parameter
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space of hierarchical triple behavior. For example, all
the examples discussed in this paper are characterized
by β � 1, whereby the system’s angular momentum re-
sides primarily in the outer orbit. The other limit, β � 1
may yield interesting behavior when hexadecapole terms
are included (see [22, 23] for a studies at octupole order).
Finally one should look at the interplay between these
Newtonian N -body effects and GR effects beyond the
basic pericenter precessions, including higher PN contri-
butions, frame dragging effects, gravitational-radiation
reaction damping, and effects arising from “cross-terms”
between GR and quadrupole contributions [24].
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Appendix A: A Delaunay/Osculating elements
dictionary

Here we provide a dictionary that may be useful in
translating between the language of osculating orbit ele-
ments used in this paper, and the language of Delaunay
variables used in conventional treatments of many-body
dynamics, and in particular in NFLRT [3, 7].

NFLRT used the subscript 2 to denote the orbit ele-
ments of the outer body, whereas we use the subscript 3;
they use k2 to denote the Newtonian constant G. There
are six Delaunay “coordinates”: the two mean anomalies
`1 and `2, which correspond roughly to our true anoma-
lies f and F , the longitudes of the ascending nodes h1,
and h2, which correspond to Ω and Ω3 and the arguments
of pericenter g1 and g2, which correspond to ω and ω3.
The “conjugate momenta” to those variables are (Eqs.
(3) – (8) of [7]):

L1 = mη
√
k2ma1 , L2 = Mη3

√
k2Ma2 ,

G1 = L1

√
1− e21 , G2 = L2

√
1− e22 ,

H1 = G1 cos ι1 , H2 = G2 cos ι2 . (A1)

Since G1 = Jb = mη
√
Gmp and G2 = J3 = Mη3

√
GMP ,

it is straightforward to read off the correspondences
(a1, a2) 
 (a, A), (e1, e2) 
 (e, E), (ι1, ι2) 
 (ι, ι3),

with z = ιtot = ι+ ι3. Note that

G1

G2
= β =

sin ι3
sin ι

. (A2)

The parameters C2 and C3 of [7], Eqs. (21) and (B1),
are given by

C2 =
k4

16

m7m7
3

M3(m1m2)3
L4
1

L3
2G

3
2

=
G

16
η η3

M2a2

A3(1− E2)3/2
,

C3 = −15k4

64

m9m9
3(m1 −m2)

M4(m1m2)5
L6
1

L3
2G

5
2

=
15G

64
η η3∆

M2a3

A4(1− E2)5/2
. (A3)

The ratio

C3

C2
=

15

4
∆
a

A
(1− E2)−1 , (A4)

consistent with Eq. (24) of [7]. The amplitudes of the
perturbing effects on the elements of each orbit are con-
trolled in [7] by the ratios

C2

G1
=

1

16

(
Gm

a3

)1/2
αε3

(1− e2)1/2(1− E2)3/2
,

C2

G2
=

1

16

(
Gm

a3

)1/2
η(1 + α)1/2ε7/2

(1− E2)2
,

C3

G1
=

15

64

(
Gm

a3

)1/2
αε4∆

(1− e2)1/2(1− E2)5/2
,

C3

G2
=

15

64

(
Gm

a3

)1/2
η(1 + α)1/2ε9/2∆

(1− E2)3
. (A5)

These amplitudes correspond to those displayed in Eqs.
(2.25) and (2.27). Finally, in making comparisons with
[7], it is useful to note that

dι

dt
=

cos zĠ1 + Ġ2

G1 sin z
,

dι3
dt

=
Ġ1 + cos zĠ2

G2 sin z
. (A6)

With these translations, it can be shown that at
quadrupole order, our Eqs. (2.25) are identical to Eqs.
(A26) - (A35), and that at octupole order, our Eqs. (2.27)
are identical to Eqs. (B6) - (B17) of [7].
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