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Many dark matter interaction types lead to annihilation processes which suffer from p-wave sup-
pression or helicity suppression, rendering them sub-dominant to unsuppressed s-wave processes.
We demonstrate that the natural inclusion of dark initial state radiation can open an unsuppressed
s-wave annihilation channel, and thus provide the dominant dark matter annihilation process for
particular interaction types. We illustrate this effect with the bremsstrahlung of a dark spin-0 or
dark spin-1 particle from fermionic dark matter, Xx — ff or ffZ’. The dark initial state radiation
process, despite having a 3-body final state, proceeds at the same order in the new physics scale
A as the annihilation to the 2-body final state Xx — ff. This opens an unsuppressed s-wave at
lower order in A than the well-studied lifting of helicity suppression via Standard Model final state
radiation, or virtual internal bremsstrahlung. This dark bremsstrahlung process should influence
LHC and indirect detection searches for dark matter.

I. INTRODUCTION

The particle nature of dark matter (DM) remains un-
known. In order to significantly probe its properties in
indirect detection experiments, large or unsuppressed an-
nihilation rates are desirable. The DM annihilation rate
will generally be largest if it proceeds via an unsuppressed
s-wave process. Unfortunately, there are a number of
well motivated DM models in which the s-wave anni-
hilation to Standard Model (SM) products, ff, is ab-
sent or helicity suppressed. This renders indirect detec-
tion very unlikely, as the p-wave term is suppressed by
a factor of the DM velocity squared (with v? ~ 107¢ in
the present universe) while a helicity suppression factor
of (ms/my)? can be significant for annihilation to light
fermions. These suppressions are well-known features of
neutralino annihilation in supersymmetric theories, but
in fact are more general.

It is well known that such suppressions can be lifted
via the bremsstrahlung of a SM particle. For example,
an unsuppressed s-wave can be opened via the radia-
tion of a photon [1-6] or electroweak gauge boson [7—14]
during the DM annihilation processes. This has led to
much recent work on the importance of SM radiative cor-
rections in dark matter annihilation [1-33]. Despite the
bremsstrahlung annihilation process having a 3-body fi-
nal state, it can be the dominant annihilation channel in
the universe today (if not at freeze out) because the sup-
pression from additional coupling and phase space factors
is small compared to the v? ~ 1075 suppression of the
p-wave contributions. Past work has primarily used final
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state radiation (FSR) or virtual internal bremsstrahlung
(VIB) to lift the suppression. If the DM is a SM gauge
singlet, initial state radiation (ISR) of a SM particle is
obviously not possible, however ISR of a W or Z bo-
son from SU(2) charged DM is possible, and has been
considered in [34-36].

An interesting possibility is that helicity or p-wave
suppressions can instead be lifted by the ISR of a
dark sector field. In this scenario, an initial state dark
bremsstrahlung process can dominate over other sup-
pressed channels. This will require that the dark sector
contains more particles than just the DM candidate itself
which, in fact, is very well motivated: the visible sector
itself comprises more than one particle species, and like-
wise multiple dark sector fields are a common feature
of many self-consistent, gauge-invariant, and renormaliz-
able models. For example, mass generation in the dark
sector can require the introduction of new fields, such as
a dark Higgs, while DM stability may arise from a charge
under a new dark sector gauge group, requiring the in-
troduction of dark photons. More generally, models in
which DM interactions are mediated by the exchange of
only an axial-vector mediator are not gauge invariant.
They require the addition of a dark Higgs to unitarize
the longitudinal component of the gauge boson, and to
give mass to both the gauge boson and DM [37-42]. In-
deed, the simultaneous presence of both spin-1 and spin-0
mediators lead to new indirect detection phenomenology
that does not arise in single mediator models [39-41].
Similarly, both scalar and pseudoscalar mediators can
naturally appear together in complete theories [43-46].

In this paper, for the first time, we explore the pos-
sibility that helicity or p-wave suppressions of the DM
annihilation process are lifted by dark bremsstrahlung
from the initial state. We investigate the case where
fermionic DM, ¥y, radiates either a dark spin-1 field, Z’,
or spin-0 field, ¢, to give the ISR processes Xx — ffZ’
or Xx — ffo, respectively, as shown in Figure 1.
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FIG. 1. Dark vector (left) and dark scalar (right) ISR. Note
in both cases that there is also an additional diagram for
emission from the other initial state DM.

Bremsstrahlung annihilation processes are very closely
related to the mono-X processes utilized in collider DM
searches [47-79], as they are controlled by the same ma-
trix element. For example, the radiation of photons from
fermions in the FSR annihilation process Xx — ff7 is
the analogue of the collider ISR mono-photon process
ff — Xx7. Likewise, the ISR of a dark spin-0 or spin-
1 field from the initial state x in the Xx — ff¢ or
Yx — ffZ' annihilation processes are then the analogue
of the FSR mono-Z’ [80-84] or mono-dark Higgs [42] col-
lider processes, respectively.

For the purpose of illustration, we shall assume
the Xx — ff process is adequately described by
an effective field theory (EFT operator) of the form
(1/A%)(xTx)(fTf). We will see that the s-wave contribu-
tion to the ISR process scales as (ov)isr o< O(1/A%), i.e.,
the same order in A as the 2-body annihilation Yy — ff.
In comparison, the well-studied lifting of helicity suppres-
sions via FSR or VIB radiation can only produce unsup-
pressed s-wave cross sections at higher order in 1/A, with
cross sections scaling as (ov)psgr, 1sr o< O(1/A%)!.

In Section II, we provide an overview of suppressions
to fermionic DM annihilation cross sections, and discuss
annihilation both directly to SM particles, and to dark
mediators. In Section III we outline possible dark ISR an-
nihilation processes, and investigate two interesting cases
in more detail in Sections V and IV. We present our con-
clusions in Section VI.

II. OVERVIEW OF FERMIONIC DARK
MATTER ANNIHILATION

A. Direct annihilation to SM particles

If DM is a Majorana fermion, the possible interactions
which can mediate a xx — ff annihilation process are:

I This observation was also made in the case of ISR of a W/Z
boson from SU(2) doublet DM [34-36].

e s-channel exchange of an axial-vector: helicity sup-
pressed s-wave,

e s-channel exchange of a scalar: no s-wave,

e s-channel exchange of a pseudoscalar:
pressed s-wave, or

unsup-

e t-channel exchange of a sfermion-like scalar: helic-
ity suppressed s-wave.

In the t-channel case, Fierz rearrangement to s-channel
form gives A ® A and A ® V structures. The A ® A
has a helicity suppressed s-wave, while the A ® V has
no s-wave. For Majorana DM, we thus see that the s-
channel exchange of a pseudoscalar is the only case of
an unsuppressed s-wave. All other possibilities feature
either helicity or v? suppressions.

For Dirac DM, there are additional possibilities be-
cause vector couplings, which vanish for Majorana par-
ticles, are also allowed. Note, however, that while
the exchange of a vector results in an unsuppressed s-
wave annihilation cross section, these models are also
well constrained because they lead to unsuppressed spin-
independent scattering in direct detection experiments.

A summary of the cross section suppression factors, for
both annihilation and scattering, for all possible Lorentz
structures for Yx — ff, is given in Ref. [85].

B. Direct annihilation to dark mediators

Table I details whether fermionic DM annihilation to
two different mediators (yx — MiMs) is s- or p-wave,
depending on the Lorentz structures of the DM-mediator
interactions. For annihilation to any two spin-1 media-
tors, the rate is s-wave. For any two spin-0 mediators,
the rate is p-wave unless one scalar and one pseudoscalar
are both present. For a mixed spin-0 and spin-1 final
state, if the spin-1 is a vector, the processes are s-wave,
while if the spin-1 is an axial-vector, the processes are
p-wave?.

If one of these mediators is off-shell while the other is
on-shell, it is equivalent to the dark ISR process discussed
in the following section — where the on-shell mediator
corresponds to the dark ISR, and the off-shell mediator
has been integrated out to give the EFT vertex. As such,
the annihilation type for dark ISR is related to the un-
derlying Lorentz structures of the mediators. We now
discuss the dark ISR processes in detail.

2 If there exist direct couplings between the dark mediators them-
selves, it is possible to have an s-wave process with a spin-0 plus
spin-1 final state where the spin-1 is an axial-vector [39, 41].
Details of such couplings are model dependent, and we do not
consider such processes in this work.
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TABLE I. Suppression factors for fermionic DM annihilation to two different mediators M; and M2, which have varying Lorentz
structures: vector (V), axial-vector (A), scalar (S) or pseudoscalar (P). The combination of mediators can be two spin-0 final
states, two spin-1 final states, or a mixed spin-0 plus spin-1 final state. Note for Majorana DM, the V' cases do not exist.

L oT;| vy Ff xXx — ffZ' xXx = ffo
Iy =V [z =Aly=8Ty=P
Vev 1 1 1 1 1
ARV v? 1 1 v? v?
VoA 1 1 1 1 1
AR A |[(my/my)? 1 1 v? v?
S®S v? 1 v? v? 1
P®S 1 1 v? 1* v?
S® P v? 1 v? v? 1*
PP 1 1 v? 1 v?

TABLE II. Suppression factors for fermionic DM annihilation processes, for varying Lorentz structures: vector (V), axial-vector
(A), scalar (S) or pseudoscalar (P). In some cases, helicity suppression (oc m%/m3) or p-wave suppression (o v?) can be lifted
to s-wave (o 1) by including dark bremsstrahlung, with no relative suppression factors. Note that the presence of any vector
or axial-vector ISR implies the existence of the competing s-wave process Xx — Z’Z’. An asterisk * indicates that the s-wave
process Xx — ¢1¢2 will inevitably be induced via scalar(¢:)-pseudoscalar(¢pz) mixing in a CP violating scenario. Note for

Majorana DM, the V cases do not exist.

III. DARK INITIAL STATE RADIATION

In this section, we consider the scenario where the ISR
of a dark sector particle lifts helicity or p-wave suppres-
sion in fermionic DM annihilation processes.

Figure 1 demonstrates the dark sector ISR in DM an-
nihilation. For the sake of illustration, we use an EFT to
describe the interactions between DM and SM fermions.
The qualitative effects we discuss are relevant for UV
completions which map to the relevant cases. We assume
one mediator is sufficiently heavy, such that the EFT de-
scription can safely be used without unitarity issues.

Table IT details the annihilation type and relative sup-
pression of all processes (whether they are s-wave, p-
wave, or helicity suppressed). This reveals which Lorentz
structures for particular dark ISR will lift suppression in
DM annihilation.

We see, for example, that the radiation of a dark vector
is a promising ISR scenario which lifts the suppression of
DM annihilation for several Lorentz structures: S ® S,
S® P, A® A, and A ® V. Radiating an axial-vector

lifts suppression in A ® A and A ® V annihilation pro-
cesses. Radiating a scalar fails to lift any suppression of
the annihilation cross section. Radiating a pseudoscalar,
however, makes a process with a S® .S or S® P structure
s-wave. In the case of S ® P or P ® S, any scalar with
such a structure will not have well-defined CP properties.
Thus the mixing between the heavy scalar and the pseu-
doscalar is inevitable, and a 2 — 2 s-wave contribution,
XX — ¢102 will be induced, where ¢; is a scalar and ¢o
is a pseudoscalar.

It is also important to note that once an additional
dark sector field is included to allow dark ISR, there can
also be s-wave annihilations of DM into the dark radi-
ation. For spin-1 ISR, the direct annihilation to medi-
ators Yx — Z'Z’' is s-wave for both vector and axial-
vector couplings, and can dominate the total DM anni-
hilation rate for some choices of the coupling strength or
masses. In the case that the dark radiation is a spin-0
field, the t-channel annihilation process Xx — ¢¢ is p-
wave suppressed for both scalar and pseudoscalar cou-
plings, and so can very naturally be sub-dominant to the



suppression-lifting ISR process. Also note that for suf-
ficiently light dark radiation, Sommerfeld effects can be
important.

To avoid the “dark radiation” contributing to the relic
density, it must eventually decay to SM states. This
can easily be arranged without introducing other con-
sequences, e.g., via a gauge or Higgs portal to the SM,
which can naturally appear for inclusion of a gauge boson
or scalar, respectively. Such SM states can be a signal for
indirect detection experiments (see, i.e., Refs. [39, 86]).
We will assume that the couplings of the dark radiation
to the SM are small, such that the 2 — 2 exchange of
dark radiation will be subdominant.

We now study in detail two particular cases of the lift-
ing helicity or p-wave suppression: S ® S with dark pseu-
doscalar ISR and A® A with dark vector ISR. We choose
the former as it is the only scenario where introducing
dark ISR to lift a p-wave cross section does not induce an
additional competing 2 — 2 s-wave process. We choose
the latter as an example of lifting helicity suppression.
Other scenarios and Lorentz structures can dominate in
particular regions of parameter space. Note also that
in all the scenarios discussed, UV completions with the
same Lorentz structures would map to the same results
we present. Our results are not specific to EFTs, but
rather to the underlying Lorentz structures.

IV. LIFTING P-WAVE SUPPRESSION IN S® S
INTERACTIONS

In this section, we demonstrate how p-wave suppres-
sion can be lifted through dark pseudoscalar ISR, in the
case of the Lorentz structure I'y ® I'y = S ® S. Such a
structure is possible for both Majorana and Dirac DM,
with the Majorana interaction terms differing by a factor
of 1/2. We will also discuss any new competing annihi-
lation processes.

A. p-wave suppressed Yy — ff

For the Lorentz structure I'y, ® I'y = S ® S, the DM
interactions with SM fermions are described by the four-
Fermi operator

L > 3300, 1)

where X is a Dirac DM candidate, f are SM fermions and
A is the cutoff scale for new physics, representing a heavy
field which has been integrated out.

The operator in Eq. (1) yields a p-wave suppressed DM
annihilation cross section for Yy — ff given by

UQmi (1 - m?/mi) 3/2
ov = SrAd . (2)

where my is the mass of the SM fermion and m, is the
DM mass. v here denotes relative velocity. The v? pref-
actor shows that this is clearly a p-wave suppressed pro-
cess. We now explicitly show that, for such an operator,
including dark pseudoscalar radiation lifts this suppres-
sion, and the dominant s-wave process can be Xx — ff¢.

B. Dark pseudoscalar ISR, xx — ff¢

We consider a minimal setup in which the EFT oper-
ator of Eq. (1) is augmented by a coupling of the DM to
a new pseudoscalar ¢,

L > 3 OT) +Higotn,  ©)

where g4 is the coupling constant. While some com-
plete model may have relations between the couplings
and masses of the dark sector particles, for the sake of
illustration we take all masses and couplings to be inde-
pendent parameters. The annihilation cross section for
the dark pseudoscalar ISR process Yx — ff¢ is given (in
the my = 0 limit) by

2,,2
9oy
<UU>XY—>f?¢ = 483 N4 x (4)

3 2 1 1- pi
{1 +24p54/1 - pi(5p¢ —2)tan™ By
¢
+21p7 — 105p% + 83p5 + 12p7(1 — 907 + 10p3) In p¢},

where py = mg/2m,. Clearly this process is no longer
velocity suppressed term, and so is s-wave. Furthermore,
it scales oc O(1/A%), i.e., the same order in A as the anni-
hilation to ff which scales as oc O(v2/A*). In contrast,
FSR or VIB of a SM particle, e.g. Xx — f[f~, only allows
unsuppressed s-wave annihilation at higher order in 1/A,
with a cross section scaling oc O(1/A%).

C. Competition with Yx — ¢o¢

Unlike the dark vector radiation case which will be
discussed in the next section, there is no additional s-
wave 2 — 2 process induced for spin-0 fields because the

X ———r oo 2
--------- 6
X ——t—Lmeeee b

FIG. 2. s-wave process for DM annihilation to pseudoscalars,
XX — ¢po. Note that there are a total of six diagrams that
contribute.



¢¢ final state is p-wave suppressed. In the limit my <
m,, the p-wave suppressed cross section for Xx — ¢¢ is

g4

3847mm?2 (5)

OUxx—¢dp =

Instead, the s-wave annihilation to 3 pseudoscalars
po¢ [87] shown in Fig. 2 will compete with the ISR
ff¢ channel. Note that both these 2 — 3 process suffer
the same 3-body phase space suppression. In the limit
mg < My, the s-wave cross section for Xx — ¢¢¢ is

gg(77r2 —60)
153673m2

(00)xx— 009 = (6)
The full cross section is described in Appendix A.

Figure 3 displays the annihilation cross sections for the
pseudoscalar ISR and ¢¢¢ annihilation processes, illus-
trating potential regions of parameter space where either
process is the dominant annihilation channel, depending
on values of the couplings, DM and pseudoscalar masses.
Other than providing kinematic thresholds for when the
annihilations are allowed, the rates are effectively inde-
pendent of the pseudoscalar mass. The pseudoscalar ISR
process dominates over the three-body pseudoscalar pro-
cess for much of the parameter space.

V. LIFTING HELICITY SUPPRESSION IN A® A
INTERACTIONS

In this section, we demonstrate how helicity suppres-
sion can be lifted through dark vector ISR, in the case of
the Lorentz structure I'y, ® I'y = A® A. Such a structure
is very natural for Majorana DM, but is also possible
with Dirac DM. We will also discuss any new competing
annihilation processes.

A. Helicity suppressed \x — ff

For the Lorentz structure I'y, ® I'y = A ® A, the DM
interactions with SM fermions are described by the four-
Fermi operator

Lint D %(ﬂ“fx)(%“f’f), (7)

where we shall again assume that the DM candidate yx is
a Dirac fermion.

The operator in Eq. (7) yields a helicity suppressed
DM annihilation cross section for xx — ff,

m%y/1—m3/m2 @

2mA4

In the limit that m¢ — 0, this process is vanishing. We
now explicitly show that including dark vector radiation
of a Z' lifts this helicity suppression, such that the dom-
inant s-wave process can be xx — ffZ’.
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FIG. 3. Comparison of the s-wave cross sections for the pseu-
doscalar ISR (pink) and 3-body ¢¢¢ (black) annihilation pro-
cesses for mgy, A and g4 as labeled, and my = 0. Note the
largest value shown for m, corresponds to m, ~ v/4wA, where
the validity of the EFT within the perturbative regime is sat-
isfied.

B. Dark vector ISR, \x — ffZ'

We again consider a minimal scenario where, in ad-
dition to the EFT interaction of Eq. (7), we include a
coupling of the DM to a new spin-1 field, Z’,

1
Line 2 55 (0y50) (F*5) + 920X 2, (9)



where gz  is the coupling constant. For the sake of il-
lustration, we have chosen a Z’ coupling of vector form
to Dirac DM. Alternatively, an axial-vector Z’ could be
chosen (for either Dirac and Majorana DM) which would
also open an unsuppressed s-wave, as shown in Table II.
The annihilation cross section for the dark vector ISR
process Yx — ffZ' is given (in the m; = 0 limit) by
9z m3
(OV)sysFrz = 367T73AX4X (10)

V1-—p2,
{4+24p%,(1 +5p%)4/1 — % tan~! Vo Pz

Pz

— 27p%, — 60p% +83p%, +12p%,(10p%, — 3)1In pz }

where pz = myz /2m,. As the cross section does not
vanish in the limit m; — 0, this process no longer has
the helicity suppressed (mfc / mi) dependence. It also has
no velocity suppression, and so is s-wave. Again, we see
the dark ISR cross section scales oc O(1/A%), i.e., the
same order in A as the annihilation to ff which scales
o< O(m%/(m3AY)).

C. Competition with yy — 2’7’

The inclusion of the Z’ vector induces an additional
two-body annihilation process, Yx — Z'Z’, as shown
in Fig. 4. This process is also s-wave (irrespective of
whether the Z’ couplings are of vector or axial-vector
form). Therefore, the dominant annihilation channel will
be Xx = Z'Z" or Xx — ffZ', either of which may dom-
inate depending on the region of parameter space. The
cross section for the annihilation of Dirac DM to a pair
of Z' is given by

e

9% (1—4p%))
lﬁﬂmi(l — 2p22/)2’

(11)

COFY T

where again pz = mgz: /2m,,.

X — >—mr s 77

S

X z'

FIG. 4. s-wave process for DM annihilation to dark vectors.
Note there is also a contribution from the u-channel diagram.

Figure 5 displays the annihilation cross sections for
Dirac DM for both processes, illustrating regions of pa-
rameter space where either process may be the dominant
annihilation channel. As the annihilation cross section to
ffZ' contains two powers of gz while that for Z’Z’ con-
tains fours powers of this coupling, the dark ISR process

can easily dominate when gz is small. As the coupling
becomes larger, Z’'Z’ dominates for more of the param-
eter space. If the Z’ is particularly heavy, the dark ISR
process can also dominate over Z'Z’ due to kinematic
constraints.
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FIG. 5. Comparison of the s-wave cross sections for Dirac DM
annihilating via the dark vector ISR process (cyan) and the
2-body Z'Z' process (purple), for mz/, A and gz as labeled,
and my = 0. Note the largest value shown for m, corre-
sponds approximately to the largest value permitted within
a gauge-invariant and perturbative framework, without other
new physics appearing.



VI. CONCLUSION

The observation of an unexplained flux of SM parti-
cles in the astrophysical sky can be interpreted as a DM
signal. To probe the nature of DM via such an indirect
detection signal, it is important to know which processes
may provide the dominant contributions or strongest con-
straints. In this paper, for the first time, we have ex-
plored the possibility that dark ISR can open an unsup-
pressed s-wave annihilation channel. This can be the
dominant DM annihilation mode in models where the
lowest order processes are helicity or p-wave suppressed.

We found that dark ISR from the initial state Yy
can lift such suppressions for several different types of
dark radiation and DM interaction structures. For four-
Fermi type interactions of DM with SM fermions, several
Lorentz structures suffer suppressed 2 — 2 annihilation
processes — AR A, AQV, S®S, and S® P. The ISR of
a dark vector opens an unsuppressed s-wave in all these
cases. Radiating an axial-vector lifts the suppression of
the A® A and A ® V annihilation processes, while ra-
diating a pseudoscalar opens an s-wave for the S ® S or
S ® P interaction types.

An important feature of dark ISR is that the
bremsstrahlung annihilation rate scales as (ov)isp
O(1/A%), i.e., the same order in A as the 2-body an-
nihilation Yy — ff. In comparison, the opening of an
unsuppressed s-wave via FSR or VIB of a SM particle
(e.g. as in the well studied Yy — ff7v process) occurs
only at higher order in 1/A, with a cross section scaling
as (ov)rsr, 1sR X O(1/A%).

When introducing a new field for dark ISR, additional
competing annihilation processes are induced. For the
ISR of a dark vector or axial-vector, a competing s-wave
annihilation process is Xx — Z’Z’. For the case of scalar
or pseudoscalar ISR, there is no equivalent 2 — 2 s-wave
process. However, the annihilation to 3 pseudoscalars,
XX — ¢op, is s-wave and can dominate in some regions
of parameter space. As such, the interplay of several
annihilation processes must always be considered.

The introduction of dark radiation should not be
viewed as an additional or unnecessary complication to
dark sector theories. It is highly likely that the dark
sector, like the visible sector, has multiple field content.
Dark vectors arise naturally when the DM stability
is due to a charge under a new gauge group, while
dark scalars are well motivated when considering mass
generation in the dark sector. Indeed, self-consistent,

gauge invariant models frequently contain such features.
We have shown that it is important to include dark
radiative corrections in these scenarios, as they can be
the dominant annihilation channel.
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APPENDIX

Appendix A: Three pseudoscalar cross section

The cross section for DM annihilation into three pseu-
doscalars, Xx — @@, is given by

6 ) max
gd) 2 Ty

(V) xx—00 = J5313 dry [ dy

' Po Ty

2
(1 — 4(x1 + x2) + da12y + A(x] + 23) + 2p] — 3pj))
2 )

(A1)

X

8m2 (x1 — p3)? (w2 — p3)? (1 — 21 — 22 — p)

with x1 9 = Ei9/2m, where E; o is the energy of two
of the three pseudoscalars in the center of mass frame of
the DM pair. The integrand is clearly symmetric with
respect to z; and x2, as expected. The integration limits

min,max

x are functions of xo and py expressed as

B 1—|—2m%—|—p§,—x2(3—|—pi):;A

min,max A9
$1 2(1_2332+st) ) ( )
where
A= [43:3 — dao(23 — p3) (1= p3)
1/2

+a3(1 = 6p3 — 3p4) — p5(1 — 205 — 3p5)

In the limit mg < m,, this produces the s-wave cross
section shown in Eq. (6).
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