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The strong gravitational field around a proto-neutron star can modify the neutrino flavor trans-
formations that occur above the neutrinosphere via three General Relativistic (GR) effects: time
dilation, energy redshift, and trajectory bending. Depending on the compactness of the central
object, the neutrino self-interaction potential is up to three times as large as that without GR prin-
cipally due to trajectory bending which increases the intersection angles between different neutrino
trajectories, and time dilation which changes the fluxes. We determine whether GR effects are
important for flavor transformation during the different epochs of a supernova by using multi-angle
flavor transformation calculations and consider a density profile and neutrino spectra representative
of both the accretion and cooling phases. We find the GR effects are smaller during the accre-
tion phase due to low compactness of the proto-neutron star and merely delay the decoherence;
the neutrino bipolar oscillations during the cooling phase are also delayed due to the GR effects
but the delay may be more important because the delay occurs at radii where it might alter the
nucleosynthesis in the neutrino driven wind.

PACS numbers: 14.60.Pq,97.60.Jd,13.15.+g

I. INTRODUCTION

The collapse of the core of a massive star at the end of
its life forms a hot and dense object known as a proto-
neutron star which cools via the emission of neutrinos
over a period of ∼ 10 s [1, 2]. The spectra and flavor
distribution of the neutrinos that emerge from the super-
nova are not the same as those emitted from the proto-
neutron star: for a recent review see Mirizzi et al. [3].
At the present time the most sophisticated calculations
of the neutrino flavor transformation adopt the so-called
‘bulb’ model: the neutrino source is a spherically sym-
metric, hard neutrinosphere, the calculation assumes a
steady state, and neutrinos are followed along multiple
trajectories characterized by their angle of emission rel-
ative to the radial direction - the ‘multi-angle’ approach
[4, 5]. The Hamiltonian governing the flavor evolution
for a single neutrino depends on the local density profile
plus a contribution from all the other neutrinos which
are escaping the proto-neutron star - the neutrino self-
interaction. The neutrino self-interaction depends upon
the neutrino luminosity, mean energy and a term propor-
tional to 1 − cos Θ due to the current-current nature of
the weak interaction where Θ is the angle between two
neutrino trajectories. Curiously, while the density pro-
file and the neutrino spectra are sometimes taken from
hydrodynamical simulations of supernova which include
General Relativistic (GR) effects either exactly or ap-
proximately, e.g. from the simulations by Fischer et al.

[6], the calculations of the neutrino flavor transformation
ignore them.

The flavor transformation that occurs in a supernova
will alter the expected signal from the next Galactic su-
pernova [7–10], as well as modify the Diffuse Supernova
Neutrino Background [11–17], and the nucleosynthesis
that occurs in the neutrino driven wind [18–22]. Neu-
trino heating in the region behind the shock is thought
to be the mechanism by which the star explodes and such

heating depends upon the neutrino spectra of each flavor
which depends upon the flavor transformation [23, 24].
With so many different consequences of flavor transfor-
mation, one wonders how including GR in the flavor
transformation calculations might alter our expectations.

GR effects upon neutrino oscillations in vacuum have
been considered on several occasions e.g. [25–32]. The in-
clusion of matter is occasionally considered [33–36] and
the effect of GR usually limited to a shift in location
and adiabaticity of the Mikheyev-Smirnov-Wolfenstein
(MSW) resonance [37, 38] via the redshift of the neutrino
energy. The effects of GR upon neutrino self-interactions
have not been considered. The effect of GR has also been
studied for the neutrinos emitted from the accretion disk
surrounding a black hole formed in the merger of two
neutron stars, a black hole and a neutron star, or in a
collapsar. For example, Caballero, McLaughlin and Sur-
man [39] studied the GR effects for accretion disk neu-
trinos (but without neutrino transformation) and found
the effects upon the nucleosynthesis were large because
of the significant changes to the neutrino flux.

The aim of this paper is to explore the GR effects upon
flavor transformation in supernovae including neutrino
self-interactions and determine whether they might be
important in different phases of the explosion. Our pa-
per is organized as follows. In section §II we describe our
calculation and how the GR effects are included. Section
§III contains our results for the two representative cases
we study: luminosities, mean and rms energies, density
profiles and source compactness characteristic of the ac-
cretion phase, and a different set representative of the
cooling phase. In section §IV we discuss the conditions
that lead to the formation of a neutrino halo - neutrinos
that were emitted but which later turned-around and re-
turned to the proto-neutron star. We present a summary
and our conclusions in section §V.
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II. CALCULATION DESCRIPTION

A. GR Effects Upon Neutrinos

Before describing the formulation of neutrino oscilla-
tions in a curved spacetime, we first describe the three
general relativistic effects that will be important. For
this paper we adopt an exterior Schwarzschild metric for
the space beyond the neutrinosphere1 which is given by

dτ2 = B (r) dt2 − dr2

B (r)
− r2dψ2 − r2sin2ψ dφ2, (1)

where the function B(r) is B (r) = 1 − rs/r and rs is
the Schwarzschild radius given by rs = 2GM with M the
gravitational mass. Throughout our paper we set ~ = c =
1. Since the rest mass of all neutrino species are much
smaller than the typical energies of supernova neutrinos,
we can comfortably take the ultra-relativistic limit and
assume neutrinos follow null geodesics just like photons.
The Schwarzschild metric is isotropic so all geodesics are
planar. By setting dτ2 = 0 and dφ = 0 so that the
geodesic lies in the plane perpendicular to the equatorial
plane, we obtain

B (r) dt2 =
dr2

B (r)
+ r2dψ2. (2)

The energy of a neutrino E decreases as it climbs out
of the gravitational well such that its energy at a given
radial coordinate r relative to its energy at r → ∞, E∞,
is

E

E∞

=
1

√

B (r)
. (3)

The angular momentum ℓ of the neutrino also decreases
as it climbs out of the potential well by the same scaling.
This means the ratio of the neutrino’s angular momen-
tum to its energy is constant and in our chosen plane is
given by

ℓ

E
=

r2

B (r)

∣

∣

∣

∣

dψ

dt

∣

∣

∣

∣

= b (4)

where b is a constant called the impact parameter. The
impact parameter can be evaluated at the neutrinosphere
r = Rν where we find it is given by

b =
Rν sin θR

√

1 − rs/Rν

, (5)

where θR is the the emission angle of the neutrino with
respect to the radial direction at the neutrinosphere. Us-
ing Eq. (4) to eliminate dt from Eq. (2) we find2

dψ = ±
[

1

b2
− 1

r2
B (r)

]−1/2
dr

r2
, (6)

1 For simplicity we ignore the gravitational effect of the matter

outside the neutrinosphere.
2 Here the plus sign is for outgoing neutrinos, the minus sign is for

ingoing neutrinos, this is true for all following equations.

This equation can be used to describe the neutrino tra-
jectory associated with a certain emission angle θR. Or
using Eq. (4) to eliminate dψ from Eq. (2) gives

dt = ± 1

B (r)

dr
√

1 − b2

r2B (r)
. (7)

For an observer at position r the relation between the
coordinate time t and the local proper time3 τ is

dτ2 = B (r) dt2 (8)

so using the result from Eq. (7) we find

dτ = ± 1
√

B (r)

dr
√

1 − b2

r2B (r)
. (9)

This collection of equations will be useful when we de-
scribe flavor oscillations in a curved spacetime.

B. Neutrino Oscillations In A Curved Spacetime

Our calculations of the effects of GR on neutrino flavor
transformation are based upon the neutrino bulb model
established by Duan et al. [4, 5]. In this model, neutri-
nos are emitted from a hard neutrinosphere with radius
Rν and for simplicity we assume the angular distribution
of emission is half-isotropic. The setup is illustrated in
Fig. 1 which shows the trajectory of a neutrino emitted

ψ

Rθ

θ

R
ν

r

FIG. 1. The schematic of a neutrino trajectory in strong
gravitational field. Here Rν is the radius of neutrinosphere, r
is the distance from the center, θR is the emission angle, ψ is
the polar angle, and θ is the angle of intersection.

3 The “local proper time” is defined as the clock time of an observer

sitting at a particular point along the neutrino trajectory.



3

at the neutrinosphere Rν with angle θR relative to the ra-
dial direction. After propagating to radial coordinate r
with angle ψ relative to the radial direction at the point
of emission, it makes an angle θ relative to the radial
direction at (r, ψ). The formulation of neutrino flavor
transformation in a curved spacetime has been consid-
ered on multiple occasions [28–33]. The flavor state at
some local proper time τ of a neutrino with momentum
q is related to the flavor state at the local proper time of
emission τ0 with momentum q0 via an evolution matrix
S(τ,q; τ0,q0) which evolves according to the Schrödinger
equation. In a curved spacetime the evolution matrices
evolves with the local proper time τ as

i
dS

dτ
= H (τ)S. (10)

Here H is the Hamiltonian which is also a function of
the local proper time for the case of neutrinos in a non-
uniform medium. The local proper time τ may be re-
placed with the radial coordinate r by using Eq. (9)
once the impact parameter/emission angle is given. Sim-
ilarly, the evolution of the antineutrinos is given by an
evolution matrix S̄ which evolves according to a Hamil-
tonian H̄ . Once the evolution matrix has been found, the
probability that a neutrino in some generic initial state
νj with momentum q0 at τ0 is later detected as state
νi at proper time τ and momentum q is P (νj → νi) =
Pij = |Sij(τ,q; τ0,q0)|2.

The Hamiltonian H is the sum of three terms: H =
HV + HM + HSI , where HV is the vacuum term, HM

is the matter term to describe the effect of passing
through matter, and HSI is a term due to neutrino self-
interactions. For the antineutrinos the Hamiltonian is
also a sum of three terms with H̄ = H̄V + H̄M + H̄SI ,
which are related to the corresponding terms in the
neutrino Hamiltonian via H̄V = H∗

V , H̄M = −H̄∗
M ,

H̄SI = −H̄∗
SI . In a flat spacetime the vacuum term for a

neutrino with energy E takes the form of

H
(f)
V =

1

2E
UV





m2
1 0 0

0 m2
2 0

0 0 m2
3



U †
V (11)

where mi are the neutrino masses and UV is the uni-
tary matrix relating the ‘mass’ and flavor bases. The
flavor basis is denoted by the superscript (f) upon rele-
vant quantities and we order the rows/columns as e, µ,
τ (here τ is the neutrino flavor, not local proper time).
We adopt the Particle Data Group parameterization of
the matrix UV which is in terms of three mixing angles
θ12, θ13 and θ23 plus a CP violating phase δCP [40]. In
a curved spacetime the energy of a neutrino is depen-
dent on position due to the gravitational redshift so the
vacuum term will change accordingly and is

H
(f)
V =

√

B(r)

2E∞

UV





m2
1 0 0

0 m2
2 0

0 0 m2
3



U †
V . (12)

The matter Hamiltonian HM in the flavor basis depends
upon the electron density ne(r) and is simply

H
(f)
M =

√
2GF ne(r)





1 0 0
0 0 0
0 0 0



 . (13)

C. The GR correction to neutrino self-interactions

In addition to the vacuum and matter terms, in a neu-
trino dense environment such as a supernova we must
add to the Hamiltonian a term due to neutrino self-
interactions. The form of the self-interaction is

HSI (r,q) =
√

2GF

∑

α=e,µ,τ

∫

(1 − q̂ · q̂′) [ρα (r,q′) dnα (r,q′) − ρ∗
ᾱ (r,q′) dnᾱ (r,q′)] dq′ (14)

where ρα(r,q) is the density matrix of the neutrinos at
position r with momentum q and initial flavor α de-
fined as ρα(r,q) = ψα(r,q)ψ†

α(r,q), with ψα(r,q) be-
ing the corresponding normalized neutrino wave function,
dnα(r,q) is the differential neutrino number density [4],
which is the differential contribution to the neutrino num-
ber density at r from those neutrinos with initial flavor
α and energy |q| propagating in the directions between
q̂ and q̂ + dq̂, per unit energy (the hats on q and q′

indicate unit vectors). Note that here we have replaced
the local proper time τ with the radial coordinate r to
denote the location along a given neutrino trajectory.

In order to use Eq. (14) we have to first specify the
expression for dnα(r,q). This requires relating the neu-
trino momenta q at radial coordinate r back to their
values q0 at the neutrinosphere where they are initial-
ized. After this relationship is obtained we can substi-
tute dnα(r,q) with dnα(Rν ,q0) and calculate HSI by
integrating over the neutrino momentum distributions
at the neutrinosphere. While the magnitude of q is
related to the magnitude of q0 via an energy redshift
q = q0

√

B(Rν)/B(r), relating q̂ to q̂0 means finding
the relation between the emission angle θR and the angle
θ shown in Fig. 1 since the neutrino trajectory is pla-
nar. In flat spacetime, the relation between θR and θ can
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FIG. 2. The relationship between θ and θR for rs/Rν =
0, 0.2 and 0.5 evaluated at r = 10Rν .

be found through geometric arguments [4]. In a curved
spacetime, however, θ and θR might be expected to be
related only after solving for the neutrino trajectory. But
fortunately, for the Schwarzschild metric the relation be-
tween θ and θR can also be found simply by making use
of the fact that the impact parameter b is a conserved
quantity along each neutrino trajectory [39]. It makes no

difference whether the impact parameter is evaluated at
Rν or at r, therefore b(r) = b(Rν). Using this conserved
quantity we must have

r sin θ
√

1 − rs/r
=

Rν sin θR
√

1 − rs/Rν

, (15)

from which we find

cos θ =

√

1 −
(

Rν sin θR

r

)2 (

1 − rs/r

1 − rs/Rν

)

. (16)

In Fig. 2 we plot the angle θ as a function of emission an-
gle θR for three different ratios of rs to Rν at r = 10Rν.
The figure shows that for each particular emission angle
θR, the trajectory bending effect always makes the angle
θ larger than without GR. In the bulb model (1 − q̂ · q̂′)
is found to be equivalent to (1 − cos θ cos θ′) after aver-
aging over the angles in the plane perpendicular to the
radial direction. Thus the correction to cos θ by GR in-
creases the magnitude of HSI by increasing the value of
1 − q̂ · q̂′ for every neutrino.

Now we have the expression relating θ to θR, we can
write the expression for the differential number density,
after taking time dilation into account, as

dnα (r,q) ≡ dnα (r, q, θ) ≡ dnα (Rν , q0, θR) =
1

2πr2
√

B(r)

[

Lα,∞

〈Eα,∞〉

]

fα (q0)

(

cos θR

cos θ

) (

dq0

dq

)

d cos θR, (17)

where fα (q0) is the normalized distribution function for
flavor α with momentum q0 that redshifts to q at r, Lα,∞

is the luminosity of flavor α at infinity if no flavor trans-
formation had occurred, and similarly 〈Eα,∞〉 is the mean
energy of neutrinos of flavor α at infinity again assuming
no flavor transformation had occurred. The expression
for the antineutrinos is similar. The derivation of Eq.
(17) can be found in the Appendix.

The density matrix ρα(r,q) for neutrinos at r with
momentum q is related to the corresponding den-
sity matrix at the neutrinosphere via ρα(r,q) =
S(r,q;Rν ,q0) ρα(Rν ,q0)S†(r,q;Rν ,q0) and the same
for the antineutrinos using the evolution matrix
S̄(r,q;Rν ,q0).

Combining these equations together, we obtain the GR
corrected expression of neutrino self-interaction in curved
spacetime as

HSI (r,q) =

√
2GF

2πr2
√

B(r)

∑

α=e,µ,τ

×
∫

(1 − cos θ cos θ′)

{[

Lα,∞

〈Eα,∞〉

]

ρα(r,q′) fα (q′
0) −

[

Lᾱ,∞

〈Eᾱ,∞〉

]

ρ⋆
ᾱ(r,q′) fᾱ (q′

0)

} (

cos θ′
R

cos θ′

)

d cos θ′
R dq

′
0.

(18)

When we take the weak gravity limit rs ≪ r and
rs ≪ Rν we find this expression reduces to the same
equation found in Duan et al. [4, 5]. This equation in-
cludes two GR effects: trajectory bending and time dila-

tion (the energy redshift of the luminosity cancels with
the energy redshift of the mean energy). In order to ap-
preciate how significant the GR effects can be for the
self-interaction Hamiltonian we show in Fig. 3 the neu-
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FIG. 3. The neutrino trajectories converging at r = 3Rν for
(a) rs/Rν = 0 and (b) rs/Rν = 0.6.

trino trajectories which converge at a certain point above
the surface of the central proto-neutron star. From the
perspective of an observer at this point, the neutrinos
seem to be coming from an expanded source whose ra-
dius is increased by a factor of

√

(1 − rs/r)/(1 − rs/Rν),
which can be seen from Eq. (16). As noted earlier, the
effect of trajectory bending causes the neutrino trajecto-
ries to cross at larger angles than in the case without GR.
Time dilation also enhances the self-interaction because
it leads to a larger effective neutrino flow rate. Close to
the neutrinosphere time dilation is the larger effect be-
cause the effect of trajectory bending is small. At larger
radii the situation is reversed with trajectory bending
more important than time dilation.

To quantify the magnitude of the GR effects upon the
self-interaction we show in the top panel of Fig. 4 the
enhancement of the self-interaction due to GR, which
is defined to be the ratio of the magnitude of the self-
interaction potential with GR effects to that without, as a
function of the coordinate r and assuming no flavor oscil-
lation occurs, for different values of rs/Rν . The striking
feature of the GR effects is that, even though the space-
time curvature is only pronounced near the proto-neutron
star, the enhancement of the neutrino self-coupling turns
out to be a long-range effect that is asymptotic to a value
greater than unity which depends upon the ratio rs/Rν .
Since the influence of GR on neutrino flavor transforma-
tion is not just a local effect, it can have repercussions
upon processes at larger radii such as neutrino heating
in the accretion phase and nucleosynthesis in the cooling
phase.

As we have seen, the magnitude of the GR effect is
governed by ratio of the radius of the neutrinosphere rel-
ative to the Schwarzschild radius of the proto-neutron
star which itself is just proportional to the mass of the
proto-neutron star. This suggests we define a neutrino
‘compactness’ - similar to the definition of compactness
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FIG. 4. Top: The enhancement factor as a function of dis-
tance for three different ratios of the Schwarzschild radius
relative to the neutrinosphere radius. Bottom: The enhance-
ment factor as a function of compactness, at three different
distances. The two vertical dashed lines indicate the compact-
ness of the sources we use in our calculations for the accretion
phase and cooling phase, respectively.

found in O’Connor & Ott [41] - as

ξν =
M/M⊙

Rν/10 km
=
rs/2.95 km

Rν/10 km
= 3.39

rs

Rν
. (19)

In the bottom panel of Fig. 4 we plot the enhancement
factor as a function of compactness at different distances
from the center of the proto-neutron star. For a very
compact neutrino source we find the enhancement of the
self-interaction can be as large as a factor of 300% if ξν ∼
2.26 which corresponds to rs/Rν = 2/3. We shall explain
the significance of this compactness in section §IV. The
blue line in this figures shows the enhancement factor at
the neutrinosphere, where the trajectory bending effect
is minimal. Here the enhancement is purely due to time
dilation.

III. NUMERICAL CALCULATIONS

With the formulation complete and with the insights
gained from the computation of the enhancement as a
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FIG. 5. The matter density profiles of the 10.8 M⊙ simulation
by Fischer et al. [6] at postbounce times tpb = 0.3 s (red solid
line) and tpb = 2.8 s (blue solid line).

function of compactness, we proceed to compute numer-
ically the multi-angle neutrino flavor evolution for two
representative cases. These are a density profile, neu-
trino spectra and compactness typical of the accretion
phase of a supernova, and one representative of the cool-
ing phase. The neutrino mixing angles and square mass
differences we adopt are m2

2 − m2
1 = 7.5 × 10−5 eV2,

m2
3 − m2

2 = −2.32 × 10−3 eV2 θ12 = 33.9◦ θ13 = 9◦ and
θ23 = 45◦. The CP phase δCP is set to zero. We do
not consider a normal mass ordering on the basis of the
results by Chakraborty et al. [42] and Wu et al. [22].

A. Application to SN accretion phase

For the accretion phase we use the density profile at
tpb = 0.3 s postbounce from Fischer et al. [6] for the
10.8 M⊙ progenitor. As previously stated, this simu-
lation includes GR effects in both the hydrodynamics
and evolution of the neutrino phase space density (see

Flavor Luminosity Lα,∞

e 41.52 × 1051 erg/s

µ, τ 14.23 × 1051 erg/s

ē 42.35 × 1051 erg/s

µ̄, τ̄ 14.39 × 1051 erg/s

Flavor Mean Energy 〈Eα,∞〉

e 10.39 MeV

µ, τ 16.19 MeV

ē 12.67 MeV

µ̄, τ̄ 16.40 MeV

TABLE I. The luminosities and mean energies used for the
accretion phase calculation.
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FIG. 6. The survival probability of electron neutrinos as a
function of distance in the SN accretion phase, when tpb = 0.3
s. The result is averaged over all angular bins. Rν is set to
25 km, red solid line and blue dotted line are the results with
and without GR effect, respectively. The vertical dashed lines
labeled rsync and rend are the predicted beginning and ending
locations of bipolar oscillations as given by the equations given
in [45]. The position of the shock wave is also indicated and
labeled as rshock.

Liebendörfer et al. [43] for further details about the
code). The density profile at this snapshot time is shown
by the red line in Fig. 5. We set the neutrinosphere
radius to be Rν = 25 km which corresponds to the
minimum of the electron fraction for this model at this
time. This working definition for the neutrinosphere ra-
dius comes from noting the coincidence of the electron
fraction minimum and the neutrinosphere radii shown in
figures (7) and (8) in Fischer et al. and produces a curve
which is similar to figure (15) found in their paper. We
note that the value of Rν we adopt is different from the
value estimated by others, e.g. [42, 44], which tend to
use relatively larger values for Rν during the accretion
phase. From the simulation we find the mass enclosed
within the Rν = 25 km radius is M = 1.33 M⊙, giv-
ing a compactness of ξν = 0.53. The neutrino luminosi-
ties and mean energies we use are also taken from the
same simulation and are listed in table (I). To save com-
putational resources we use a source distribution fα(q0)
which is a delta-function at a single energy taken to be
15 MeV. Single-energy calculations were also undertaken
by Chakraborty et al. [45] when they also studied the
self-interaction effects during the accretion phase. As
previously stated, the angular distribution is assumed to
be half-isotropic which is the same distribution used in
Duan et al. [4, 5].

Our results are shown in Fig. 6 which is a plot of the
electron flavor survival probability averaged over all an-
gular bins as a function of distance. In the figure we also
include three vertical dashed lines to indicate the start of
the bipolar oscillation region, the position of the shock-
wave, and the end of the bipolar oscillation region. The
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predictions for the beginning and end of the bipolar oscil-
lation region come from equations given in Chakraborty
et al. [45]. The change in the angle-averaged survival
probability Pee which occurs at r ∼ 475 km is simply
decoherence [42]. Comparing the results with and with-
out GR effects we see the decoherence is slightly delayed
when GR is included but the difference is only of order
∼ 20 km and the final result is identical to the case with-
out GR. Thus it appears GR has little effect upon flavor
transformation during the accretion phase and where lit-
tle change occurs is in a region where it has little conse-
quence.

B. Application to SN cooling phase

As the proto-neutron star cools it contracts which in-
creases the compactness. The sensitivity of the neutrino
self-interaction to the compactness means we might ex-
pect a larger effect from GR during the cooling phase. To
test whether this is the case we use the density profile at
tpb = 2.8 s postbounce from the Fischer et al. [6] simula-
tion for the same 10.8 M⊙ progenitor and which is shown
by the blue line in Fig. 5. We set the neutrinosphere ra-
dius to be Rν = 17 km which, again, is close to the min-
imum of the electron fraction for this model at this time
and consistent with figure (15) from Fischer et al.. The
mass enclosed within this radius is M ≈ 1.44 M⊙, giving
a compactness of ξν = 0.85. For this cooling epoch cal-
culation we use multi-energy as well as multi-angle. The
neutrino energy range is chosen to be E∞ = 1 MeV to
E∞ = 60 MeV, and is divided into 300, equally spaced,
energy bins. To generate the neutrino spectra for flavor
α at the neutrinosphere we use the luminosities, mean
energies and rms energies at this snapshot of the sim-
ulation - listed in table (II) - and insert them into the
pinched thermal spectrum of Keil, Raffelt and Janka [46]
which has the form

fα(q0) =
(Aα + 1)

Aα+1
qAα

0

〈Eα,Rν
〉Aα+1

Γ(Aα + 1)
exp

(

− (Aα + 1) q0

〈Eα,Rν
〉

)

,

(20)

with 〈Eα,Rν
〉 = 〈Eα,∞〉/

√

B(Rν) and the pinch parame-
ter Aα for flavor α is given by

Aα =
2 〈Eα,∞〉2 − 〈E2

α,∞〉
〈E2

α,∞〉 − 〈Eα,∞〉2
. (21)

The result of this calculation is shown in Fig. 7 where
we plot the electron neutrino flavor survival probability
averaged over all angular bins and energy bins (using
the emitted neutrino spectrum as the weighting function)
as a function of distance. At this epoch self-interaction
effects occur much closer to the proto-neutron star and
the effect of GR is more important. The net result of
adding GR is to delay the onset of bipolar oscillations
by around 25 km and once more we find the probability
at large radii are almost identical to that without GR.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 150  200  250  300  350

P
ee

r [km]

Without GR
rs = 4.25km

FIG. 7. The survival probability of electron neutrinos as a
function of distance using neutrino spectra and a density pro-
file taken from the cooling phase of a simulation of a 10.8 M⊙

progenitor by Fischer et al. [6]. The electron flavor survival
probability is averaged over all angular bins and energy bins.
The red solid line and blue dotted line are the results with
and without GR effects respectively.

But while this shift in the onset of bipolar oscillations
may seem small, we note the neutrino flavor evolution
in the region from 50 km . r . 500 km was found to
be crucial for determining the nucleosynthesis yields in
the calculations by Duan et al. [20] and Wu et al. [22]
so even a relatively small delay of flavor transformation
caused by GR might have a consequence.

Flavor Luminosity Lα,∞

e 2.504 × 1051 erg/s

µ, τ 2.864 × 1051 erg/s

ē 2.277 × 1051 erg/s

µ̄, τ̄ 2.875 × 1051 erg/s

Flavor Mean Energy 〈Eα,∞〉

e 9.891 MeV

µ, τ 12.66 MeV

ē 11.83 MeV

µ̄, τ̄ 12.70 MeV

Flavor rms Energy
√

〈E2
α,∞〉

e 11.12 MeV

µ, τ 14.99 MeV

ē 13.65 MeV

µ̄, τ̄ 15.07 MeV

TABLE II. The luminosities, mean energies, and rms energies
used for the cooling phase calculation.
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ν-source

1

23

FIG. 8. Typical neutrino trajectories near a ultra-compact
source. The inner dashed lines and the outer dashed lines
represent the Schwarzschild radius and the photon sphere re-
spectively. The three trajectories correspond to three different
emission angles.

IV. THE GR NEUTRINO HALO

So far we have considered only cases where all neutri-
nos propagate to r → ∞. However if the compactness
of the source becomes too large the neutrinosphere be-
comes smaller than the “photon sphere”, whose radius is
3rs/2. When this occurs there will be a critical emission
angle for neutrinos beyond which they cannot escape to
infinity. Following the argument in Hartle [47], one can
obtain a condition for the neutrinos to escape to infinity
to be

2

3
√

3

Rν

rs

1
√

1 − rs/Rν

sin θR < 1. (22)

We show three example neutrino trajectories for the case
where Rν/rs < 3/2 in Fig. 8. Trajectories 1 and 2 are
open and a neutrino emitted along these trajectories will
propagate to infinity: the trajectories of neutrinos emit-
ted at sufficiently large angles - such as trajectory 3 - will
turn around and return to the proto-neutron star. Note
that the farthest place where a neutrino can turn around
is the photon sphere. The consequence of such trajec-
tories are included in simulations which include GR. In
principle there is a substantial change to the flavor evo-
lution calculations when neutrinos start to follow trajec-
tories such as the trajectory 3 in Fig. 8 because they lead
to the formation of a neutrino ‘halo’ around the proto-
neutron star, similar to the neutrino halos produced by
scattering on matter [48, 49].

From Eq. (22) we can evaluate the critical angle as a
function ofRν/rs. The relation between the critical angle
as a function of Rν/rs is shown in Fig. 9. If Rν/rs > 3/2,
clearly neutrinos with all emission angles can escape and
no neutrino halo is formed. We define a critical com-

pactness ξν⋆ to be the case where Rν/rs = 3/2 and
find it equal to ξν⋆ = 2.26 - the value discussed ear-
lier. The compactness of the sources we have considered
for our previous numerical calculations did not approach
this value because the mass of the proto-neutrons star
is not sufficiently large and the neutrinospheres lay be-
yond the photon sphere. To reach the critical compact-
ness for formation of the halo we require a more mas-
sive proto-neutron star with a smaller neutrinosphere.
Whether a proto-neutron star surpasses the critical com-
pactness while the proto-neutron star is still cooling via
neutrino emission will depend upon the Equation of State
of dense matter and the neutrino opacity [50, 51]. Note
that from causality, the radius of a neutron star is re-
quired to be greater than RNS & 2.823M [50] which,
if we set Rν = RNS , corresponds to a compactness of
ξν = 2.4, which is beyond the critical value ξν⋆. A halo
will certainly form immediately preceding the collapse of
a proto-neutron star to a black hole.

The formation of a neutrino halo has consequences for
the cooling of the proto-neutron star as well as the flavor
transformation due to neutrino self-interaction. One can
find a presentation of the changes that occur to the emit-
ted neutrino spectra as the mass of the proto-neutron star
approaches its maximum mass in Liebendörfer et al. [43].
In their simulations, as the maximum mass is approached
(but before the black holes forms) the luminosity of the
µ and τ flavors increases due to contraction of the proto-
neutron star while the luminosities of electron neutrino
and electron antineutrinos drop. The mean energies of
all flavors increases.

When a halo forms, in principle, one would have to
completely change how the flavor calculations are under-
taken in the halo region - the zone between the neutri-
nosphere and the photon sphere. In such cases the fla-
vor evolution up to the photon sphere cannot be treated
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FIG. 9. The maximum emission angle of neutrinos that can
escape the source, for different values of Rν/rs. The vertical
dashed line indicates the position of the photon sphere.
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as an initial value problem - as we have done in this
paper - because the flavor evolution up to the photon
sphere of outward moving neutrinos is affected by neu-
trinos that were also emitted in an outward direction but
which turned around and are now moving inwards. Thus
in the halo region a paradigm beyond the bulb model
would be needed to correctly deal with the flavor evolu-
tion. Prevailing understanding from the extant literature
would indicate that in the case of three active flavors of
neutrino emitted spherically symmetrically, one should
not expect flavor transformation within the halo: if this
is true then the only effect of the formation of a halo
would be to alter the luminosity and angular distribu-
tion of the neutrinos beyond the photon sphere (which
now becomes the effective neutrinosphere). But in other
circumstances - such as calculations that include sterile
neutrinos [52–56] or calculations with non-standard neu-
trino interactions [44, 57–59] - flavor transformation can
occur much closer to the neutrinosphere in which case
the formation of a halo may have greater consequences.

V. SUMMARY AND CONCLUSIONS

In this paper we have considered the effects of General
Relativity upon neutrino flavor transformation in a core-
collapse supernova. We adopted a Schwarzschild metric
to describe the spacetime and included three GR effects
- trajectory bending, time dilation, and energy redshift.
Of the three, time dilation is the major effect close to
the proto-neutron star, whose role is replaced by tra-
jectory bending at larger radii. The size of the GR ef-
fects were found to scale with a single parameter which
is the compactness of the source: the relative ratio of the
Schwarzschild radius to the neutrinosphere radius. For
large compactness with Rν close to the radius of the pho-
ton sphere, the neutrino self-interaction Hamiltonian can
be up to approximately three times larger than without
GR. We calculated the flavor evolution in two represen-
tative cases to determine whether the GR effects led to
significant differences compared to calculations without
GR. These cases were a density profile and neutrino spec-
tra typical of the accretion phase, and a density profile
and neutrino spectra typical of the cooling phase. In both
cases we found the effect of GR was to delay the onset of
flavor transformation but for the accretion phase the fla-
vor transformation occurred due to decoherence at large
radii where the change would have little consequence.
In contrast, the change to the onset of bipolar oscilla-

tions during the cooling phase may be more important
because it is much closer to the proto-neutron star and
may impact the nucleosynthesis in the neutrino driven
wind. Finally, we showed that GR effects can produce a
halo of neutrinos surrounding the proto-neutron star for
very compact neutrino sources. If a halo forms then, in
principle, one would have to treat flavor transformation
in the halo region using a different technique than the
usual approach of treating it as an initial-value problem.
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Appendix: The GR corrected expression for the

neutrino self-interaction

In order to get the correct expression for dnα(r, q, θ),
we start from the conservation of neutrino flow through
an enclosing spherical surface after taking time dilation
into account but ignoring flavor transformation. This
allows us to write

r2
√

B (r)Fα (r, q) dq = R2
ν

√

B (Rν)Fα (Rν , q0) dq0,

(A.1)

where Fα(r, q) is the flux of neutrinos with energy q at
r per unit energy that were emitted with energy q0 at
the neutrinosphere. Integrated over all momenta, both
sides of this equation must evaluate to 1

4πLα,∞/ 〈Eα,∞〉
where Lα,∞ is the luminosity of flavor α at infinity as-
suming no oscillations, and similarly 〈Eα,∞〉 is the mean
energy at infinity again assuming no oscillations. At the
neutrinosphere Rν we have

Fα (Rν , q0) =

∫ 1

0

2πjα (q0, θ
′
R) cos θ′

R d cos θ′
R, (A.2)

where jα (q0, θR) is the emitted intensity of flavor α with
energy q0 at angle θR with respect to the radial direction.
At radial coordinate r the flux is

Fα (r, q) =

∫ θmax

0

cos θ′ dnα (r, q, θ′) , (A.3)

where θmax is the angle with respect to the radial direc-
tion of neutrinos that were emitted at the neutrinosphere
with angle θR = π/2. Combining Eq. (A.1),(A.2) and
(A.3) we obtain the result that

dnα (r, q, θ) =
2πR2

ν

r2

√

B (Rν)

B (r)
jα (q0, θR)

(

cos θR

cos θ

) (

dq0

dq

)

d cos θR, (A.4)

In the case of half-isotropic emission the intensity jα is independent of θR and can be written as

jα (q0) =
1

4 π2R2
ν

√

B (Rν)

[

Lα,∞

〈Eα,∞〉

]

fα (q0) , (A.5)
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where fα (q0) is the normalized spectral distribution for flavor α at Rν . The final expression for dnα (r, q, θ) is thus

dnα (r, q, θ) =
1

2 π r2
√

B (r)

[

Lα,∞

〈Eα,∞〉

]

fα (q0)

(

cos θR

cos θ

) (

dq0

dq

)

d cos θR. (A.6)
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