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The response of elastic materials to external changing conditions can proceed through small and
discrete releases of stress, rather than a continouos and smooth deformation as described by the
classical elasticity theory. In a macroscopic elastic body, the sum of all those small crackling events
can create a detectable displacement noise (crackling noise). In this paper we consider the case
of the steel cantilevers used in the seismic isolation systems of ground based gravitational wave
detectors, to provide the vertical isolation needed to reach the detector target sensitivity. Those
instruments are reaching unprecedented displacement sensitivity, at a level that might be limited by
crackling noise in the aforementioned cantilevers. Understanding this source of noise is extremely
important, especially considering its intrinsic non-linear nature.

Since a detailed microscopical model of crackling noise in polycrystalline steel is not available at
the moment, we suggest a phenomenological microscopical model, and the focus of this paper is on
how crackling noise scales with the size and geometry of the cantilevers. The goal of this paper is
to provide a method to scale up future measurements of crackling noise from small test cantilevers
to the large ones used in advanced gravitational wave detectors.

I. INTRODUCTION

The classical theory of elastic bodies treats the response
to varying external forces as continuous and smooth.
However, this description, while valid on average at a
macroscopic scale, is not correct at the microscopic scale.
Recent experiments showed that plastic deformation is
actually the result of a large number of discrete events,
mainly due to dislocation movements. We will call those
single events crackling. Especially when the elastic mate-
rial is stressed close to its yield point, it has been shown
experimentally that large crackling events can occur [1–
4]. This phenomenon, often referred as creep has been
studied in the design phases of the seismic isolation sys-
tem of the Virgo, TAMA and GEO600 seismic isolation
system [5–7]. It has been shown experimentally that
creep is largely reduced after the first loading cycles of
the material [1]. Moreover, a proper choice of the ma-
terial used in the suspension can also largely reduce the
rate and intensity of the crackling or creep events. Ex-
perimental studies showed that Maraging steel was the
best candidate for this use [8–10]. Additionally, very low
frequency deviations from linear elasticity have been ob-
served experimentally [11]. We would like to stress that
all the studies cited above are focused either on single,
isolated loud events or very low frequency deviations from
linearity.
In this paper we are interested in a different regime of
crackling, namely the possibility of a large number of
small crackling events even when the material is loaded
far from the yield point. Such events would have not been
detected by any of the cited experiments, due to limits
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in their sensitivity. If a large number of such crackling
events occurs in a material, it is possible to detect the
collective response of the elastic system in the form of
an incoherent crackling noise, see for example [12] for a
review. The properties of this crackling noise are believed
to follow some universality classes, although the details
can vary from material to material.

Several experiments have been carried out to study the
statistical properties of crackling noise. To the best of our
knowledge, all of them were limited to microscopic sys-
tems [13, 14], or aimed at the detection of single crackling
events [15–17]. The theoretical understanding of crack-
ling focused mainly on the prediction of general statistical
properties of the size and time distribution, using mean
field theory approaches [18] or microscopical numerical
simulations [19]. In particular it is widely accepted that
the amplitude and properties of the crackling noise can
depend on the static stress applied to the material, as
well as on the stress rate [11, 20]. However, again to the
best of our knowledge, there are no quantitative mod-
els of the expected crackling noise in materials like steel.
Moreover, the focus of most of the experimental and the-
oretical work is on the plastic regime, when metals are
stressed to near the yield point. Our interest is instead in
the elastic regime, with stress close to 50% of the yield,
since this is the operating conditions of the cantilever
springs used in the mirror suspensions of gravitational
wave detectors [5, 21, 22]. Recent experimental and the-
oretical studies [23] have shown a deviation from the sim-
ple elastic behavior in copper nano pillars, indicating the
possibility that crackling noise can arise even in systems
far from the yield point.

In this paper we consider a different approach, neither
looking for single crackling events nor for low frequency
deviations from linearity. The idea is to detect the col-
lective result of all the crackling events in a macroscopic
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system. The motivation can be found in the use of
maraging steel [24] cantilever springs (called blades be-
low) in the seismic isolation systems and mirror suspen-
sions of advanced gravitational wave detectors, such as
Advanced LIGO [25], KAGRA [26] and Advanced Virgo
[27]. Those detectors are designed to observe of gravi-
tational waves, by means of extremely sensitive interfer-
ometric measurements of the horizontal displacement of
kg-scale test masses. Those test masses must be care-
fully isolated, in both horizontal and vertical directions,
from ground motion, by means of sophisticated active
and passive seismic isolation systems [5, 21, 22]. Any
noise in excess of thermal noise will reduce the detector
sensitivity (at the relevant frequencies above 10 Hz) and
must be carefully understood and mitigated. Moreover,
this excess noise can be non-stationary, being modulated
by low frequency residual seismic motion.

The goal of this work is not to develop a microscopical
model of crackling noise, based on ab-initio simulations
or extrapolating from experimental data. Instead, we try
to develop a phenomenological model that allows us to
encapsulate the way crackling noise scales with the geom-
etry and the size of the elastic system in consideration.
Studies similar to the one reported in this paper have
been carried out previously, focusing mainly on the steel
wires or the fused silica fibers that are used to suspend
the test masses [1, 28]. In this paper we focus on the
cantilever springs which are used in the Advanced LIGO
suspension system (fig. 1). An example of such blades is
shown in fig. 2. A trapezoidal steel cantilever is rigidly
clamped at the wide end and free to move under a static
load suspended from the narrow end. The blade is sub-
ject to a time varying perturbation due to external forces
and seismic induced motion of the attachment point, that
can trigger crackling events due to the changing stress in
the material. The most relevant observable of the sys-
tem is the vertical displacement of the blade tip, since
this is transmitted down to the test mass through the
wire that connects the blade to the lower parts of the
Advanced LIGO quadruple suspension system, as shown
schematically in fig. 1. We focus on the blades that sus-
pend the lowest two stages from the Upper Intermediate
Mass (UIM), since there is little vertical attenuation be-
low them. Any noise in the upper stage blades is further
attenuated by the additional vertical isolation in the UIM
stage.

The rate and amplitude of crackling events are believed to
depend on the stress and stress rate in the material [20].
In the Advanced LIGO suspension, time-varying stress
in the blade is driven by the low frequency (below 1 Hz)
residual seismic motion. We therefore expect the typical
signature of crackling to be a non-stationary noise, which
statistical properties varying in correlation with the slow
change of the seismic motion of the blade attachment
point.

The lack of theoretical models of crackling noise in the
elastic regime, inspired new experimental investigations
that are being carried out in the LIGO Laboratory at

FIG. 1. Simplified scheme of the quadruple suspension sys-
tem. The cantilevers being analyzed in this paper are those
in the upper intermediate mass (UIM).
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FIG. 2. An example of the metallic cantilevers considered
in this paper. The blade is rigidly clamped at its base, pre-
curved, and it straightens when a load is applied on the blade
tip.

Caltech. Details of this Crackling Noise Experiment are
described in [29]. Here it suffices to say that a direct
measurement of the displacement of the blade tip due to
crackling noise is being attempted. To accommodate the
experimental setup into the available space, smaller scale
maraging blades are used (length of about 10 cm instead
of about 30 cm as in the full scale Advanced LIGO sus-
pension system), loaded with a single mass suspended by
a steel wire. It is therefore necessary to develop a model
to scale up the results obtained in the test facility to the
full scale system. This is the goal of the work presented
here. In the next sections we will describe a phenomeno-
logical model obtained from a set of simple generic as-
sumptions, and how to integrate it into a model of the
entire cantilever and its interaction with the full suspen-
sion system. In this paper we describe the details of the
model used to describe crackling noise in the blades used
in the Advanced LIGO suspension system. A similar ap-
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proach can be used to derive the same kind of description
for the Crackling Noise Experiment. We simply state the
results in that case, the interested reader can refer to [30]
for more details.

II. PHENOMENOLOGICAL MODEL OF
CRACKLING NOISE

The microscopic model of crackling noise is built on
four assumptions about the nature of the single crack-
ling events:

1. Typical length scale and independency. Each
crackling event affects a region of the metal crys-
tal lattice that, even though involving many atoms
at once, is much smaller than the size of the
blade itself. Even if we consider the possibility of
avalanches of dislocation motion [12, 13], the size
of the region involved is microscopic. We there-
fore treat crackling events as localized releases of
energy. Additionally, since the interaction length
is much smaller than the blade size, events hap-
pening at macroscopically different positions in the
blade are statistically independent.

2. Large number of events. Given the Advanced
LIGO sensitivity and the suspension performance,
we mostly focus on the 10-100 Hz region. We as-
sume that the rate of events is reasonably large on
the characteristic time scale we are interested in, so
that we cannot distinguish single crackling events
but we only measure the incoherent sum of many
of them in the form of random noise.

3. Elastic blade response. Even though the mi-
croscopic behavior of the material shows deviation
from linearity (otherwise there would be no crack-
ling noise), we assume that on a macroscopic scale
the response of the blade to excitation from isolated
crackling events follows a simple linear elastic law.

4. Dependency on local properties. We describe
the rate and distribution of crackling events as lo-
cal variables, which however are allowed to have
different values in different points inside the blade.
Those variables can depend only on local properties
of the blade. Some of those properties are related
to the material (Young modulus, yield stress, den-
sity of dislocation etc.). Since all blades are made
of the same uniform material, we can assume that
those properties are constant from blade to blade.
Based on the assumption of an average elastic be-
havior of the blade, the two variables that can affect
the crackling noise rate and amplitude are the local
stress and the local stress rate.

The first and second assumptions allow us to describe
crackling noise in the Advanced LIGO suspension and in
the Crackling Noise Experiment, as the incoherent sum of
the effect of a large number of localized events, following
a Poissonian distribution with a rate r(x, y, z) that de-
pends on the position into the blade (z is the coordinate

along the blade length, x is the transverse coordinate
along the blade width, and y along the blade thickness,
see fig. 2). We are interested in the motion of the test
mass: the third assumption allows us to model it with
the response R(t, x, y, z) of the blade and suspended el-
ements to a single, localized force with a (random) am-
plitude f0(x, y, z) and a time evolution χ(t). We assume
that all crackling events have the same average time de-
pendency, while the amplitude can vary. Therefore the
power spectral density of the vertical test mass motion
due to the incoherent sum of all crackling events can be
written as[31]:

STM (ω) = |χ̃(ω)|2
∫ L

0

dz

∫ h/2

−h/2
dy

∫ b(z)/2

−b(z)/2
dx

2r(z, x, y)
〈
f0(z, x, y)2

〉
|R̃(ω, z, x, y)|2 (1)

where the integration is performed over the entire blade
length L, thickness h and variable width b(z), and〈
f0(z, x, y)2

〉
denotes the average squared value of the

crackling event amplitude, depending on the local statis-
tics. R̃ and χ̃ are the Fourier transforms of the cor-
responding time domain functions. The microscopic
physics of crackling events is encoded in the product
C(z, x, y) = 2r(z, x, y)

〈
|f0(z, x, y)|2

〉
. The fourth as-

sumption above implies that this crackling noise coef-
ficient C depends on the coordinates only through the
local stress σ(z, x, y) and stress rate σ̇(z, x, y). In gen-
eral, the functional dependency of C on σ and σ̇ can be
much more complex. However, the blades used in both
the Crackling Noise Experiment and the large quadruple
suspension systems are operating close to the same frac-
tion of the yield stress (about 50%). Therefore it is safe
to assume that a power series expansion of C holds for
both systems:

C ' C0 + C1σ + C2σ
2 + C3σ̇ + C4σ̇

2 + C5σσ̇ . . . (2)

Since the thickness is significantly smaller than the length
b� L, we can use the thin beam approximation [32, 33].
The stress is therefore independent of the transverse co-
ordinate x, and it has a linear dependency on y, measured
with respect to the blade neutral mid surface. Therefore,
when integrating over y in eq. 1, only the terms propor-
tional to σ2, σ̇2 and σσ̇ survives. This leaves us with
three coefficients C2, C4 and C5 that encode the micro-
scopic physics of crackling noise.

The total stress at each location in the blade has two
components: a static part due to the initial pre-curvature
and the static load that straighten the blade, and a time
varying contribution due to either the motion of the blade
attachment point due to residual seismic motion (in the
Advanced LIGO suspension) or the driving force applied
to the tip of the blade (in the Crackling Noise Experiment
[29]). We will compute below both components using an
elastic model of the blade.
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III. ELASTIC MODEL OF THE CANTILEVER

Based on the third assumption, we can describe the blade
as a linear elastic body. The blade is shaped like a
trapezium, with length L, thickness h and variable width
b(z) = b0(1 − βz/L) where β is a shape factor, b0 is the
major width. We describe the deformation of the blade
with the displacement w(z) of the median surface as a
function of the coordinate z which runs along the blade
length. The median is also a neutral surface of null stress.
The only non zero component of the stress is the zz com-
ponent, which is given by [32, 33]

σzz = −Ey∂
2w(z)

∂z2
(3)

where E is the Young’s modulus of the material.
In the following sections we use a variational approach
to derive the equilibrium position, the equations of mo-
tion and the boundary conditions for the loaded blade,
following the approach described in [33].

III.1. Equilibrium equation and static stress

The blade is clamped at its wide base, rigidly attached
to the UIM stage of the suspension (fig. 1), and a metal
wire is used to suspend the lower elements of the system.
However, to compute the static deformation of the blade
under load, we can simply model the suspended elements
with a total mass ML concentrated at the blade tip. As
shown in fig. 2, the blade is initially curved with a radius
R0 and it deforms to a shape close to flat when loaded.
Following [32, 34], the potential energy of the system can
be written as a function of the local angle θ(z) that the
blade neutral surface forms with the z axis:

U [θ(z)] =

∫ L

0

[
I(z)

E

2

(
dθ

dz
− dθ0

dz

)2

+MLg sin θ(z)

]
dz

(4)
where I(z) = 1/12 b(z)h3 is the transverse momentum and
θ0(z) = z/R0 describes the unloaded circular shape of
the blade. Requiring that the variation of the energy is
zero with respect to the variable θ provides us with the
equation of equilibrium and two boundary conditions:

d

dz

[
I

(
dθ

dz
− dθ0

dz

)]
− MLg

E
cos θ = 0 (5)

θ(0) = 0 (6)

dθ

dz
(L) =

1

R0
(7)

Since we already know that the equilibrium solution for
a loaded pre-curved blade is very close to flat, we can
use the approximation |θ| � 1 to simplify and solve eq. 5
with the correct boundary conditions:

θe(z) =
L

R0

1− β
β2

[
−β z

L
− log

(
1− β z

L

)]
(8)
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FIG. 3. Simplified models of the quadruple suspension sys-
tem. In (a) the UIM stage is free to move, while in (b) its
displacement is prescribed.

with the additional condition that R0 = EI0/gLML. Here
log denotes the natural logarithm. The static stress com-
ponent can then be easily derived using eq. 3.

III.2. Dynamical equations, time varying stress
and response to a single crackling event

To study the time-dependent response of the blade to
an external disturbance (either the low frequency seis-
mic motion or the localized crackling events) we need to
build the full action for the system, which is composed
of two parts: one related to the elastic deformation of
the blade itself, and one related to the dynamics of the
other suspension elements. If we describe the blade neu-
tral surface position as a deviation from the equilibrium
w(z), relative to the blade clamp position, then the elas-
tic potential energy is given by

U [w] =

∫ L

0

[
EI

2

(
dθe
dz
− dθ0

dz
+
d2w

dz2

)2
]
dz (9)

where we have neglected the gravitational potential en-
ergy of the blade, since it is typically small with respect
to the elastic term and to the contribution coming from
the suspended elements. The kinetic energy term for the
blade is given by

T [w] =

∫ L

0

ρA(z)

2

(
d(w + x0)

dt

)2

dz (10)

where A(z) = hb(z) is the blade transverse section area, ρ
the material density, and x0 is the motion of the element
where the blade base is attached. The work done by an
external driving force with volume density f(z) can be
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described by the additional term

F [w, t] =

∫ L

0

A(z)f(z)w(z) dz (11)

The term in the action that describes the blade is then
simply given by the time integral of the above contribu-
tions

Sblade[w, ẇ] =

∫ t=t2

t=t1

(U [w]− T [ẇ]− F [w]) dt (12)

To obtain the equation of motion for the blade we need
to compute the variation of this action with respect to
the blade deformation w(z). Using a sequence of in-
tegration by parts in both z and t, remembering that
δw(z, t1) = δw(z, t2) = 0 and using the definition of the
equilibrium position θe and of the initial curvature θ0, it
is straightforward to show that the equation of motion
for the blade deformation is given by

EI(0)
(

1− β z
L

)
w′′′′−EI(0)

2β

L
w′′′+ρAẅ = Af −ρAẍ0

(13)
where w′ denotes derivative with respect to z and ẇ
derivative with respect to time. The integrations by parts
leave some terms computed at z = 0 and z = L. Those
terms, combined with the contributions from the vari-
ation of the action describing the suspended elements,
provide the boundary conditions that the solutions must
satisfy.
In order to correctly describe the dynamics of the blade,
we need to include a model of the elements in the sus-
pension chains that are above and below it.
In the general case, all the elements in the suspension
system can be described as concentrated masses with ap-
propriate moments of inertia, and unidimensional elastic
elements. Therefore we can describe the dynamics of the
entire suspension, except for the blade, with an action
which is function of a set of generalized coordinates xi.
The suspension is connected to the blade only at the tip
and at the base, so the suspension action will depend on
the blade deflection only through w(0) and w(L). There-
fore the variation of the action with respect to w will
contain two terms connecting the blade with the dynam-
ics of the suspension. Those terms will not influence the
blade elastic equation for w(z), but only the boundary
conditions involving w(0) and w(L).
In the cases we are studying, to keep the model as sim-
ple as possible, but still capturing the vertical dynamics
of the suspension, we made some simplifying assump-
tions, depicted in fig. 3. First of all, we are interested in
the motion of the lowest element in the suspension, the
test mass. The motion of the blade tip due to crackling
events is mostly vertical. The lower stages of the suspen-
sion are attached to two blades: therefore uncorrelated
crackling events would generate an angular motion of the
lower stages and of the test mass. However, due to the
construction symmetry of the system, this motion would

only excite the roll degree of freedom of the test mass (ro-
tation around the interferometer laser beam axis) which
is very weakly coupled to the gravitational wave signal
and therefore can be neglected. Moreover, the suspension
stages below the blades provide a large attenuation of all
horizontal and angular motions. Therefore we can focus
only on the vertical motion of all elements. The vertical
motion of the test mass then couples to horizontal dis-
placement mostly through the earth curvature over the
interferometer 4-km-long baseline.

Additionally, the thin beam approximation we are using
implies that we are ignoring the twisting modes of the
blades, i.e. those that produce a rotation of the blade
around the z axis. Although those modes could be ex-
cited by off centered crackling events, they have a much
weaker coupling to the motion of the lower suspension
stages, since the suspension wires are attached in a cen-
tered position on the blade tips.

We need to find the motion of the blade and of the sus-
pended elements in two cases: (a) when the blade is sub-
ject to a localized crackling event and (b) when the blade
is driven by a prescribed motion of the base. In case (a)
we want to describe the response of the test mass to a sin-
gle crackling event, but we are interested only in a correct
description in the observation band of Advanced LIGO,
which is for frequencies above 10 Hz. Since all the upper
stages of the suspension have resonant frequencies much
below this by design, we can model the UIM (Upper In-
termediate Mass where the blade base is clamped, see
fig. 1) as a free mass and ignore again the dynamic of the
stages above it. In this case we absorb the UIM motion
x0 into the blade clamp position and allow w(0) 6= 0. In
case (b), the typical residual seismic motion of the UIM
stage in the Advanced LIGO suspension is concentrated
at very low frequencies ( 100 mHz), well below all reso-
nances of the upper stages of the suspension. Therefore
we can simply prescribe the motion x0 of the blade base
and ignore the dynamic of the upper suspension. In this
case we enforce w(0) = 0.

Assuming that each of the suspension wires behave like
a simple spring, with stiffness k1 and k2, it is straight-
forward to write the potential and kinetic energies of the
suspension in the cases under analysis:

U (a)
susp [w(0), w(L), x1, x2] = Mugw(0) +Mg (x1 + x2)

+
1

2
k1 [w(L)− x1]

2

+
1

2
k2 [x2 − x1]

2

K(a)
susp [ẇ(0), ẋ1, ẋ2] =

1

2
Muẇ(0)2 +

1

2
M
(
ẋ21 + ẋ22

)
U (b)
susp [x1, x2, w(L)] = Mg(x1 + x2)

+
1

2
k1 [w(L)− x1]

2

+
1

2
k2 [x2 − x1]

2

K(b)
susp [ẋ1, ẋ2] =

1

2
M
(
ẋ21 + ẋ22

)
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In both cases we measure the coordinates from the equi-
librium positions. The expressions above can be added to
the expression of the action already derived for the blade.
They contain terms dependent on the blade deformation
at z = 0 and z = L, which contributes to the boundary
conditions that the solutions must satisfy. By computing
the variation of the total action with respect to w(z), we
obtain the following four boundary conditions for case
(a):

w′(0) = 0

w′′(L) = 0

−βEI0
L
w′′(0) + EI0w

′′′(0) +Muẅ(0) = 0

(β − 1)EI0w
′′′(L) + k1 (w(L)− x1) = 0

and similarly for case (b):
w′(0) = 0

w′′(L) = 0

w(0) = 0

(β − 1)EI0w
′′′(L) + k1 (w(L)− x1) = 0

In both cases the fourth boundary condition provides the
link between the elastic dynamics of the blade and of the
suspended elements. By computing the variation of the
total action with respect to the variables xi, we get a set
of differential equations, where the forcing term is given
by w(L):

Mg − k1 (w(L)− x1) + k2 (x1 − x2) +Mẍ1 = 0 (14)

Mg − k2 (x1 − x2) +Mẍ2 = 0 (15)
We can solve those equations in the frequency domain,
and therefore completely describe the behavior of the sus-
pended elements. This allow us to write w(L) − x1 as a
function of w(L) only, valid in both case (a) and case (b):

k1 (w(L)− x1) =
k1Mω2

(
2k2 −Mω2

)
−k1k2 + (k1 + 2k2)Mω2 −M2ω4

w(L)

= K(ω)w(L)
where the last equality defines the new quantity K(ω).
To find the response of the system to either seismic resid-
ual motion or a crackling event, we solve the inhomoge-
neous differential equation 13 as an expansion in eigen-
modes:

w(z, t) =

∞∑
i=0

αi(t)wi(z) (16)

where wi(z) are the solutions of the following eigenmode
equation (subject to the correct boundary conditions
stated above):

EI(0)
(

1− β z
L

)
w′′′′i −EI(0)

2β

L
w′′′i −ρAω2

iwi = 0 (17)

The blade elastic equation becomes

∞∑
i=0

wi

(
ω2
i αi + α̈i

)
=
f

ρ
− ẍ0

which can be solved by a Fourier transform. We first
define the force and seismic motion projection into the

eigenmodes and the orthogonality matrix as follows

Fj =

∫ L

0

A(f − ρẍ0)wjdz (18)

Mij =

∫ L

0

ρAwiwjdz (19)

The eigenmodes are not orthogonal, due to the inhomo-
geneous boundary conditions [33], therefore Mij is not
diagonal. The blade displacement in response to a dis-
tributed force or to seismic motion can be written as

w(z) =

∞∑
i=0

1

ω2
i − ω2

[
M−1F

]
i
wi(z) (20)

where the bold symbols denotes matrices and vectors and
the subscript i refers to the i-th element of the vector ob-
tained from the matrix product in square brackets. The
orthogonality matrix can be computed in a closed form
from the boundary conditions. The details are not re-
ported here since they add little to the discussion. The
interested reader can refer to [30] for more details.

IV. NUMERICAL SOLUTION OF THE
EQUATIONS

Equation 13 cannot be solved analytically in the case
of a trapezoidal blade. Therefore we resort to numeri-
cal methods. We first rewrite all the equations and the
boundary conditions in terms of the dimensionless vari-
able u = z/L. In this way the length of the blade is
factored out explicitly. Then we note that the boundary
conditions involve both the blade displacement at u = 0
and u = 1. To cope with this complication, we follow the
method described in [35]. For an arbitrary frequency ωi

we can find the four independent solutions qj of eq. 13
that satisfies the following set of conditions at u = 0:

q1 : q1(0) = 1 q′1(0) = 0 q′′1 (0) = 0 q′′′1 (0) = 0

q2 : q2(0) = 0 q′2(0) = 1 q′′2 (0) = 0 q′′′2 (0) = 0

q3 : q3(0) = 0 q′3(0) = 0 q′′3 (0) = 1 q′′′3 (0) = 0

q4 : q4(0) = 0 q′4(0) = 0 q′′4 (0) = 0 q′′′4 (0) = 1

The solution that satisfies our original boundary condi-
tion is a linear combination wi =

∑4
j=1 ajqj . Substi-

tution of this expression into the boundary conditions
gives a set of four homogeneous equations in the four un-
known ai. This linear system has a non trivial solution
only if its determinant, which is a function of qj(0) and
qj(1), is zero. This provides us the condition that must
be satisfied for ωi to be an eigenvalue. We use numerical
methods to find the zeros of the determinant and there-
fore find the first few eigenvalues ωi and corresponding
eigenmodes wi. We can then use equations 14 and 15 to
compute the vertical motion of the test mass. The first
few eigenmodes for case (a) are shown in fig.4. Similar
results are obtained for case (b), the main difference be-
ing the additional constraint of zero displacement of the
blade for z = 0.
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FIG. 4. The first few eigenmodes and eigenfrequencies for
the system described in the text, in the case of a free UIM
stage (case a). The left panel shows the blade deformation
w for each mode, as a function of the dimensionless variable
u. The right panel shows, on a different vertical scale, the
corresponding motion of the suspended masses xi, following
the convention of fig. 3. Units are arbitrary: the eigenmodes
are normalized to unity mass, as defined by eq. 19.

V. RESULTS

The numerical solutions described in the previous section
allows us to compute all the components needed to de-
rive an expression for the crackling-noise-induced vertical
motion of the test mass. First of all, we need to compute
the motion of the test mass due to a single crackling event
in an arbitrary position z0. We can use eq. 20 and use
the following expression for a localized force

f0(z) =
δ(z − z0)

A(z0)
(21)

The vertical motion of the test mass can then be com-
puted using the result from eq. 20 and the transfer func-
tion from the motion of the blade tip w(L) to x2, which
can be computed from equations 14 and 15:

T2(ω) =
k1k2

k1k2 − k1Mω2 − 2k2Mω2 +M2ω4
(22)

This is a low pass filter with a corner frequency well be-
low the range of interest for the crackling noise projec-
tions. Moreover, the only eigenmode that contributes
significantly to the vertical motion of the test mass is the
fundamental one, as apparent from fig. 4. Therefore we
can write the following approximated expression for the
motion of the test mass due to a single crackling event in
a position z0 with unit amplitude, as defined in sec. II:

R̃(ω, z0) = −T2(ω)

ω2
χ̃0(ω)w0(L)

( ∞∑
i=0

M−10i wi(z0)

)

= −T2(ω)

ω2
χ̃0(ω)w0(L)γ(z0)

where the last term in brackets defines the crackling noise
coupling function γ(z0).

The second ingredient we need is the stress induced
by the residual seismic motion of the blade attachment
point. Again, we can compute it starting from eq. 20 and
the distributed force

f(z, t) = −ρẍ0(t) (23)

Working in Fourier transform, we can write the projec-
tion of the force into the eigenmodes as

Fi(ω) = ρω2x̃0(ω)

∫ L

0

Awidz

Next, we take into account that the residual seismic mo-
tion at the UIM stage is concentrated at low frequencies
(100-200 mHz), lower than all eigenfrequencies. The fact
that the load mass is much larger than the blade mass
implies that the fundamental mode is a few Hz, while
all higher modes are at much higher frequencies. This
in turns implies that in the sum in eq. 20, only the fun-
damental mode contributes significantly. Therefore we
can write the blade deformation in the form below, after
going back to time domain:

w(z) ' 1

ω2
0

(
M−1F

)
i
w0(z)

= −w0(z)

ω2
0

ρω2ẍ0

( ∞∑
i=0

M−10i

∫ L

0

Awidz

)

= −w0(z)

ω2
0

ρω2ẍ0Γ

where the last term in brackets defines the seismic noise
coupling coefficient Γ. From this result, the seismic in-
duced stress can be computed using eq. 3.

We can now substitute the results obtained in this section
into the integral in eq. 1 which gives us the total verti-
cal displacement of the test mass due to crackling noise,
using the definition of the crackling noise coefficients of
eq. 2. Since all numerical computations are performed in
the dimensionless variable u, we recast all coefficients and
integrals in terms of u, and factor out all the geometrical
dimensions of the blade. The final result is given by

STM (ω) =
|χ̃(ω)T2(ω)|2

6ω4

b0h
3w2

0(L)E2

ρ2A2
0

·

[
Î0
LR2

0

C2 +

Î1Γ̂

L3R0ω2
0

(2C2ẍ0 + C5
...
x 0) + (24)

Î2Γ̂2

L5ω4
0

(
C2ẍ

2
0 + C4

...
x 2

0 + C5ẍ0
...
x 0

) ]

where we have defined the following quantities, that are
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all related to the eigenmodes and eigenfrequencies.

b̂(u) = 1− βu

ŵi =

∫ 1

0

du (1− βu)wi(u)

M̂ij =

∫ 1

0

du (1− βu)wi(u)wj(u)

γ̂(u) =

∞∑
i=0

M̂−10i wi(u)

Γ̂ =

∞∑
i=0

M̂−10i ŵi

Î0 =

∫ 1

0

du b̂(u)γ̂2(u)

(
1− u

1− βu

)2

Î1 =

∫ 1

0

du b̂(u)γ̂2(u)
1− u

1− βu
w′′0 (u)

Î2 =

∫ 1

0

du b̂(u)γ̂2(u)w′′0 (u)2

If the crackling noise coefficients Ck were known, eq. 24
would provides us with an estimate of the test mass ver-
tical motion.
As explained in the introduction, since we are lacking
a microscopical description of crackling events, we have
developed an experimental setup, described in details in
[29], to measure the Ck for a smaller blade. The same
approach described above can be used to obtain the ex-
pected scaling laws for crackling noise in this experimen-
tal setup. Apart from the blade dimensions, there are
two notable differences. First, there is only one mass
suspended from the blade tip: therefore the boundary
condition equations and the dynamics of the suspended
elements are different. Second, instead of considering the
noise modulation due to residual seismic motion, we can
apply a controlled sinusoidal excitation to the blade tip,
with amplitude F0 and frequency Ω. The same approach
described above can be used to compute the total verti-
cal motion of the experiment test masses due to crackling
noise. The detailed computations are not reported here,
the interested reader can refer to [30]. The result is

Svertical(ω) =
|χ̃(ω)T1(ω)|2

6ω4

w2
0(L)h3b0E

2

ρ2A2
0

[
Î0
R2

0L
C2 +

Î1
R0L3

(−2C2F0 − C5Ḟ0) +

Î2
L5

(C2F
2
0 + C4Ḟ

2
0 + C5F0Ḟ0)

]
(25)

where the same definitions used in the previous case hold,
of course using the eigenmodes and eigenvalues computed
for the Crackling Noise Experiment system.

VI. DISCUSSION

By combining eq. 24 and eq. 25 with future results from
the Crackling Noise Experiment [29], we will be able to

compute a projection of crackling noise for the quadruple
suspensions used in Advanced LIGO. Since we still lack
a microscopical description of the crackling events, we
do not have any hint on the time evolution χ(t), which
in turn means that we are missing the frequency depen-
dency of the crackling noise. This frequency dependency
will be another outcome of the experimental results.
However, we can estimate if the sensitivity of the Crack-
ling Noise Experiment described in [29] will be enough
to detect crackling noise at a level which would pro-
vide meaningful noise projections for Advanced LIGO.
We can start with the design sensitivity of the Advanced
LIGO detectors, in the low frequency 10-30 Hz range.
Assuming a coupling of vertical to horizontal motion of
the test mass of about 10−3 (due to the earth curvature
over the 4-km-long interferometer arms), and consider-
ing the cumulative effect of two blade for each of the
four test masses, we can estimate that a vertical noise
level of the order of 3 × 10−20 m at 20 Hz would result
in a horizontal noise at the design sensitivity. The ex-
pected residual seismic motion at the level of the UIM
stage can be estimated to be of the order of 3× 10−8 m,
peaked at the microseismic frequency of about 200 mHz
[36]. Using eq. 24 and the parameters listed in table I,
we can translate this vertical noise into equivalent values
for the crackling noise coefficients: C2 ∼ 3× 10−36Hz m,
C4 ∼ 4×10−28Hz−1 m and C5 ∼ 4×10−36 m. Finally, we
can use eq. 25 and assume F0 ∼ 10−3 N and Ω ∼ 2π×0.1
Hz, to translate the estimate of the crackling noise coef-
ficients (that would affect Advanced LIGO sensitivity)
into the level of modulated noise to be detected in the
Crackling Noise Experiment. The results are of the order
of 10−12 m /

√
Hz for C2 and C4, and 10−8 m /

√
Hz for

C5, all computed at 20 Hz. Those modulated noise am-
plitudes are well within reach of the experimental setup
described in [29].
In conclusion, the model described in this work, although
using a simplified description of the dynamic of the sus-
pended element, is sufficient to capture the salient ele-
ments of how crackling noise scales with the dimension
and geometry of the blades. When a suitable microscopic
model of crackling events becomes available, it is straight-
forward to incorporate the predicted dependency of rate
and amplitude on the stress and stress rate, thus directly
predicting the level of crackling noise to be expected in
Advanced LIGO. On the other hand, once data from the
Crackling Noise Experiment become available, the results
described in this work will allow the computation of noise
projections or upper limits for Advanced LIGO.
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Quadruple suspension blade Crackling Noise Experiment blade
Length [mm] L 365 91

Maximum width [mm] b0 49 18
Minimum width [mm] b1 10 4.2

Geometry β 0.20 0.23
Thickness [mm] h0 4.2 1.0

Mass [kg] mB 0.294 0.008
Young’s modulus [GPa] 186

Density [kg/m3] 8000
Quadruple suspension Crackling Noise Experiment

UIM mass Mu [kg] 22
Suspended masses M or m [kg] 39.7 2.2

Wire length L1 [m] 0.34 0.15
Fiber length L2 [m] 0.340
Wire radius r1 [mm] 0.60 0.5
Fiber radius r2 [mm] 0.4

Wire Young’s modulus E1 [GPa] 212 200
Fiber Young’s modulus E2 [GPa] 72

TABLE I. Summary of the main mechanical and geometrical properties of the maraging blades used in the systems under
consideration.
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