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We present a formalism to compute Brownian thermal noise in functional optical surfaces such as
grating reflectors, photonic crystal slabs or complex metamaterials. Such computations are based
on a specific readout variable, typically a surface integral of a dielectric interface displacement
weighed by a form factor. This paper shows how to relate this form factor to Maxwell’s stress
tensor computed on all interfaces of the moving surface. As an example, we examine Brownian
thermal noise in monolithic T-shape grating reflectors. The previous computations by Heinert et
al. [Heinert et al., PRD 88 (2013)] utilizing a simplified readout form factor produced estimates of
thermal noise that are tens of percent higher than those of the exact analysis in the present paper.
The relation between the form factor and Maxwell’s stress tensor implies a close correlation between
the optical properties of functional optical surfaces and thermal noise.

PACS numbers: 05.40.-a, 04.80.Nn, 42.79.Fm, 06.30.Ft

I. INTRODUCTION

Thermal noise sets a crucial limitation to several high
precision instruments, for example ultra-stable laser res-
onators for the realization of optical clocks, high reso-
lution optical spectroscopy and gravitational wave de-
tectors [1–6]. Particularly, Brownian displacement noise
from random motion of amorphous optical coatings, as
utilized for high reflectivity Bragg mirrors, represents
a severe bottleneck for future sensitivity improvements
of these measurement systems [7–11]. The reason for
the large Brownian noise amplitude is the high mechan-
ical loss of the coating materials. Currently, several ap-
proaches to reduce Brownian coating thermal noise are
under investigation, for example optimizing the mechan-
ical properties of amorphous materials, or using crys-
talline coating stacks based on AlGaAs/GaAs and Al-
GaP/GaP as low-loss coating materials [12–17].
As an alternative to Bragg mirrors, grating reflectors
based on crystalline silicon have been theoretically pro-
posed [18] and experimentally realized [19–21]. Since
these elements can be monolithically implemented with-
out adding any amorphous material with high mechanical
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loss, they are promising as low-noise optical components.
In contrast to Bragg mirrors, in grating reflectors high re-
flectivity is realized by an optical resonance which leads
to a penetration of the light into a surface layer of only
a few hundred nanometers thickness [22, 30]. Fig. 1 il-
lustrates a typical field distribution in a monolithic high
reflectivity structure. The lower grating region acts as a
supporting structure that prevents the light from leaking
into the substrate.
A typical task in high-precision opto-mechanical exper-
iments is to measure the phase shift of light reflected
from a mirror surface - or, alternatively, the change of
the optical mode frequency if the mirror is a part of the
optical resonator. For small displacements, this readout
variable depends linearly on the displacement of the re-
flecting surface. It can be expressed as:

ẑ(t) =
⁄

f(r̨)u‹(r̨, t) dA. (1)

r̨ is the location of a point on the surface, and u‹(r̨, t) is
the displacement of the mirror perpendicular to the sur-
face A at r̨ and time t. The form factor f(r̨) depends on
the intensity profile of the laser beam and is proportional
to the laser light intensity at r̨ as will be shown below. In
the case of a planar surface the form factor is simply the
laser beam profile whereas in the case of a structured sur-
face the determination of f(r̨) is a non-trivial task. The



2

standard way to compute thermal noise in this variable
is to use a formulation of the fluctuation-dissipation the-
orem by Callen and Welton [24] which employs a virtual
oscillating pressure of the form [7]:

p(r̨) = F

0

cos(Êt)f(r̨), (2)

where F

0

is an arbitrary constant characterizing the total
force applied to the surface and f(r̨) is the form factor of
Eq. 1. The virtual pressure is utilized to determine the
strain energy density ‘(x, y, z). This strain distribution
then serves as a basis to calculate the dissipated mechan-
ical energy in the system at a given frequency Ê. Using
the model of structural loss, the dissipated energy reads
[7]:

W

diss

(Ê) = Ê

⁄
‘(r̨)„(r̨) dV , (3)

with „(r̨) as the mechanical loss angle. The integral in
Eq. 3 needs to be performed over the whole component
under investigation. The Brownian thermal noise power
spectral density can be expressed by:

S

z

(Ê, T ) = 8k

B

T

Ê

2

W

diss

F

2

0

. (4)

The challenge is to compute the form factor on arbitrary
surfaces, and this paper gives a direct and exact answer.
The previous approach by Heinert et al. [25] gave an ap-
proximation by assuming, that the form factor was con-
stant on large segments on the interface. Heinert et al.
evaluated the impact on the overall phase shift of the re-
flected light by displacing these segments as a whole. In
contrast, this paper finds that the form factor is strongly
inhomogeneous, which significantly a�ects the computa-
tion of thermal noise spectral density.
As an application of our formalism, we investigate Brow-
nian thermal noise in monolithic silicon T-shape grating
reflectors and compare the results with the work by Hein-
ert et al. [25]. In addition, we investigate the impact of
width of the support structure as a critical parameter
for Brownian thermal noise. We find that an optimum
support structure width exists which minimizes Brown-
ian noise. Due to manufacturing errors, the geometric
dimensions of the grating may di�er from the design val-
ues by a few nanometers. We evaluate the consequences
of manufacturing errors and show that it may lead to de-
viations of thermal noise by a factor of about 2.5.
The article is organized as follows: In Sec. II we intro-
duce the calculation method based on Maxwell’s stress
tensor. Afterwards, in Sec. IV we discuss how the geo-
metric grating parameters of T-shape grating reflectors
with di�erent support structure widths were defined. In
Sec. V we utilize these parameters to compute the virtual
forces required for the thermal noise calculations, the en-
ergy of elastic deformation in response to these forces,
and finally the Brownian thermal noise.

FIG. 1. Distribution of E
x

and E
z

in the high reflectivity
grating reflector discussed by Heinert et al. [25]. The calcu-
lation was performed by means of the rigorous coupled wave
algorithm (RCWA) [26] for a wavelength of 1550 nm, normal
incidence and transverse-magnetic polarized light.

II. CALCULATION OF BROWNIAN THERMAL
NOISE IN FUNCTIONAL OPTICAL SURFACES

The form factor can be described following [27, 28]. Let
us first consider an optical cavity of length L. When one
of the two mirrors is moved by a displacement of z the
eigenfrequency Ê of the cavity is changed by ”Ê:

”Ê

Ê

= z

L

. (5)

The quantity z contains the measurement signal, e.g. a
gravitational wave signal. But also random perturba-
tions u‹(r̨) caused by Brownian motion may contribute
to a frequency change and thus disturb the measurement
signal. The question to be answered is, how such a dis-
placement translates into the frequency change of the
cavity. A slow displacement does not change the number
of photons in the cavity. This condition of adiabaticity is
satisfied very well if the frequencies of interest are much
smaller than the inverse light roundtrip inside the cavity,
as is valid for the LIGO gravitational wave detector. In
this case the relation

E
Ê

= const. (6)

is fulfilled, where E represents the energy of the eigen-
mode. Therefore, a change of the energy ”E may be con-
verted into frequency change of the optical eigenmode:

”E
E = ”Ê

Ê

. (7)

The energy change is a result of the work performed
against the ponderomotive pressure perpendicular to the
surface p‹. Thus, the energy change of the optical cav-
ity mode caused by displacements u‹(r̨) can be expressed
by:

”E =
⁄

p‹(r̨)u‹(r̨) dA. (8)
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The ponderomotive pressure relates a perturbation u‹(r̨)
of an arbitrary surface to an e�ective translation û of the
cavity mirror as a whole:

ẑ = L

E

⁄
p‹(r̨)u‹(r̨) dA (9)

The ponderomotive light pressure results from the dif-
ference of Maxwell’s stress tensor on both sides of the
interface:

p‹(r̨) = �‡ij(r̨)ninj , (10)

where ni is the unit vector normal to the surface and a
summation over the dummy indices i and j is implied.
Maxwell’s stress tensor SI-units reads:

‡ij = Á

0

Á

r

EiEj + 1
µ

0

µ

r

BiBj ≠ 1
2

3
Á

0

Á

r

E

2 + 1
µ

0

µ

r

B

2

4
”ij .

(11)

Á

0

and µ

0

are the dielectric and magnetic field constants,
Ei is the vacuum electric field amplitude and Bi the mag-
netic field amplitude, respectively. On arbitrary surfaces,
the electromagnetic field distribution can be calculated
with the finite element tool COMSOL [29]. In the fol-
lowing sections, we will use the Maxwell stress tensor to
evaluate the virtual forces in T-shaped monolithic grat-
ing reflectors and derive Brownian thermal noise thereof.
Since the electric and magnetic fields depend on the posi-
tion at the surface, the stress tensor components ‡ij are
also a function of the position. For the sake of readabil-
ity, we will omit this explicit spatial dependency in our
notation.

III. VIRTUAL PRESSURE IN MONOLITHIC
T-SHAPE GRATING REFLECTORS

In a T-shape structure the relevant components of the
stress tensor are ‡

xx

and ‡

zz

(see Fig. 2) and the re-
sulting pressure is the di�erence of the pressures inside
and outside the structure. For non-magnetic materials
(µ

r

= 1) the relevant pressure components at the grating
surface are:

�‡

xx

= Á

0

2 (Á
r

≠ 1)
3

E

2

x

Á

r

+ E

2

y

+ E

2

z

4
, (12)

�‡

zz

= Á

0

2 (Á
r

≠ 1)
3

E

2

z

Á

r

+ E

2

y

+ E

2

x

4
. (13)

E

x

, E

y

and E

z

are the vacuum fields and Á

r

is the rela-
tive permittivity of the grating material. To relate our
method to the results of Heinert et al. [25], we will re-
strict our considerations on light with transverse mag-
netic (TM) polarization (Ey = 0). In this case the pres-
sure components reduce to:

FIG. 2. Distribution of the virtual pressure components (left).
Overview of the geometric structure parameters (right).

�‡
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4
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�‡

zz

= Á

0

2 (Á
r

≠ 1)
3

E

2

z

Á

r

+ E

2

x

4
. (15)

By using finite element analysis, the pressure components
can be calculated and applied to the surface of the struc-
ture [29]. Using Eq. 9, one can show that F

0

is the overall
radiation pressure force from the light beam onto the mir-
ror. On can evaluate it directly from the Maxwell stresses
at the dielectric interface. In this case one should care-
fully keep track of the sign contributions from the force
applied at di�erent segments of the grating as shown in
Fig. 2. The resulting force F

0

is the integral of the pres-
sure over the surface A of a single period normalized to
a unity length in y-direction parallel to the ridges. The
elastic energy then is the volume integral of the energy
density ‘ over one T-shape ridge. In combination with
the mechanical loss „(x, y, z) this yields the dissipated
energy W

diss

(see Eq. 3). In the 1D periodic structure
three main contributions may be identified: The elastic
energy due to ±‡

zz

pressures on the front and back side
of the optical grating (i.e. the upper grating region),
the elastic energy due to the ±‡

xx

pressures on the side
walls of the optical grating and the elastic energy caused
by ±‡

xx

pressures on the side walls of the supporting
structure. Cross terms account for about 5% of the to-
tal elastic energy. The field distribution in the structure
and therewith the stress tensor component depends on
the geometric parameters of the grating structure. Thus,
before calculating thermal noise in the structure, in the
following section we will explain how suitable parameters
yielding high reflectivity are determined.

IV. CHOICE OF GEOMETRIC GRATING
PARAMETERS

As shown in Fig. 2, five parameters characterize the
structure of a grating reflector: grating period �, width
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FIG. 3. Calculated high reflectivity parameter range {w
g

, h
g

}
for di�erent periods. A supporting structure width w

s

of
40 nm was utilized. The incident light has a wavelength of
1550 nm, an incidence angle of 0¶ and transverse-magnetic
polarization.

w

g

and depth h

g

of the optical grating as well as width
w

s

and depth h

s

of the support structure. We utilize the
rigorous coupled wave analysis (RCWA) [26], a standard
tool to solve Maxwell’s equations in periodic structures
for the computation of reflectivity and explore how the
reflectivity depends on the grating parameters. The ba-
sic requirements for suitable parameter sets are: a high
reflectivity, low field enhancement inside the structure to
minimize virtual pressure and possibly compact struc-
tures to minimize the elastic deformation energy. Thus,
we choose high reflectivity configurations employing low-
Q optical resonances with low field enhancement [30] and
minimize the total depth h

g

+ h

s

. As mentioned above,
the supporting structure’s task is to optically decouple
the optical grating from the substrate. The penetration
depth of light into the support increases with decreasing
refractive index contrast between the optical grating and
the support structure. The index contrast, in turn, is
determined by the width w

s

of the supporting structure.
Hence w

s

is an important parameter for Brownian ther-
mal noise and is used as a free parameter in the following
discussions.
For a given w

s

, the size of the parameter space {w

g

, h

g

}
providing high reflectivity depends on the grating period
�. Its shape and position is determined by the complex
interplay of two Bloch modes propagating in the optical
grating. This mechanism for high reflectivity is discussed
in detail in the works by Lalanne et al. [22] as well as
by Karagodsky et al. [23]. Fig. 3 illustrates the range
{w

g

, h

g

} calculated with RCWA for three di�erent pe-
riods. In order to achieve large fabrication tolerances,
the high-reflectivity range of w

g

and h

g

has to be max-
imized. As illustrated in Fig. 3, the size of the relevant
parameter range grows with increasing grating period.
However, for large grating periods the high-reflectivity
domain in the w

g

≠ h

g

plain degenerates to a ring which
is detrimental in terms of fabrication tolerances if the
reflectivity drops below the target value inside the en-
closed area. For each target reflectivity R, which is typ-
ically R Ø 99.99% [31] there exists an optimal period
which maximizes the size of the simply connected high-
reflectivity area. With R Ø 99.99% the optimal period
for the configuration investigated in Fig. 3 is 631 nm. The

optimal working point is then located in the center of the
area obeying R Ø 99.99%. The depth of the supporting
structure h

s

does not substantially influence the reflectiv-
ity distribution within the parameter range {w

g

, h

g

}. To
achieve structures as compact as possible, at the end of
the optimization process the minimal h

s

for R Ø 99.99%
may be chosen. Following this strategy, the optimal pa-
rameters in dependence of support structure widths w

s

were determined. The resulting values are shown in Ta-
ble I. It is noteworthy that enhancing w

s

from 40 nm to
220 nm increases h

s

by a factor of 3.4 whereas the other
parameters change by less than 20%.

V. RESULTS AND DISCUSSION

With the grating parameters shown in Table I the stress
tensor, the pressure and the resulting force F

0

at the grat-
ing surface were calculated. The computation of the elas-
tic stress distribution within the grating structure was
performed with the finite element tool COMSOL [29].
All calculations refer to an incident light power of 1 W.
The power determines the absolute values of the forces
and of the elastic energy but it has no influence on the
thermal noise amplitude [27, 28]. The related material
parameters are illustrated in Tab. II. Fig. 4 shows the
contributions of the di�erent interfaces to the total force.
The colors of the data points correspond to the colors
used in Fig 2. For small w

s

the force at the back side
of the optical grating dominates the contributions from
the other interfaces. A very similar situation was found
by Heinert et al. [25]. There, the magnitude of the force
at the front side is by a factor of 54 smaller than the

TABLE I. Structure parameters for R > 99.99%. In the h
g

-
w

g

plot (see Fig. 3) the parameter sets represent the center
of the highly reflective parameter space {w

g

, h
g

} for a wave-
length of 1550 nm, normal incidence and TM-polarization.
Additionally, the structure parameters utilized by Heinert et
al. [25] are displayed.

w
s

in nm � in nm h
s

in nm w
g

in nm h
g

in nm
40 631 640 385 395
60 633 630 385 392
80 637 620 382 390
100 642 620 384 384
120 649 630 384 379
140 660 670 386 371
160 675 750 385 361
172a 688 800 388 350
180 701 920 391 345
200 739 1280 397 335
220 776 2200 409 322

a Structure used by Heinert et al. [25].
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TABLE II. Material parameters for silicon. „
grat

is the me-
chanical loss of the grating structure, fl the density, Y the
Young’s modulus and ‡ the Poisson ratio.

T = 300 K T = 10 K
„

grat

5 ◊ 10≠5 [32] 1 ◊ 10≠5 [33]
fl in kg/m3 2331
Y in GPa 130 [34]
‡ 0.28 [34]

force at the back side. Our calculations reveal a factor of
57. The dominance of the forces at the back side are a
consequence of the E

z

distribution in the structure (see
Fig. 1) which is enhanced at the back side of the optical
grating.
In x-direction, for small w

s

the optical grating con-
tributes more to the force than the support structure,
because the electromagnetic field barely penetrates into
the support structure. With increasing w

s

the refractive
index contrast between optical grating and support struc-
ture decreases. As a result, the field is increasingly pulled
into the support structure and the field in the upper re-
gion of the support structure increases. Fig. 5 shows the
elastic energy U

elast

stored in one grating ridge for high
reflectivity configurations with di�erent w

s

. Here, we re-
fer to the linear elastic energy density per unit length in
y-direction (compare Fig. 2):

U
elast

=
⁄

‘ dxdz. (16)

A frequency of 100 Hz was used. Fig. 5 demonstrates that
the ridge behaves like a loaded one-dimensional beam
with

U
elast

= kx

2

2 = F

2

2k

Ã h

s

w

s

. (17)
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FIG. 4. Linear density of virtual forces (per unit length in
y-direction) at the surface.
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10-26
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 J/

m
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~hs/ws

FIG. 5. Linear elastic energy density U
elast

(per unit length in
y-direction) in dependence of the support grating width using
a frequency of 100 Hz.

The ratio ws
hs

represents the spring constant k. For small
w

s

the elastic energy is dominated by the 1/w

s

depen-
dence. Reducing w

s

the spring becomes softer and more
elastic energy can be stored. For large w

s

the thickness
of the supporting structure needs to be increased to im-
pede light from coupling to the substrate. The increased
h

s

again leads to a reduced spring constant and to higher
elastic energies. The characteristic dependence on w

s

is also evident in the thermal noise amplitude which is
shown in Fig. 6 for a frequency of 100 Hz and a tempera-
ture of 300 K. Thermal noise becomes minimal for a sup-
port structure width w

s

of about 160 nm. At cryogenic
temperatures Brownian thermal noise is further reduced
due to decreased mechanical loss and temperature.
Deviations from the grating design parameters may not

40 80 120 160 200 240
6x10-22

8x10-22

10-21

1.2x10-21

1.4x10-21

1.6x10-21

1.8x10-21
2x10-21

 B

R=99.99% 
R=99.999%
R=99.5%
 Heinert et al.

S z
1/
2  in

 m
/H

z1/
2

ws in nm

~(hs/ws)
1/2

 A

FIG. 6. Brownian noise amplitude at a frequency of 100 Hz
and a temperature of 300 K and a beam radius of 9 cm re-
sulting from the elastic energies shown in Fig. 5. In addition,
datapoint A marks the calculation result by Heinert et al.
[25]. For comparison, point B was calculated by applying
Maxwell’s stress tensor to the same grating parameters. The
noise amplitudes for R > 99.5% and R > 99.999% are shown
to illustrate the impact of the reflectivity requirement.
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only influence the feasible reflectivity but also thermal
noise. Therefore, we investigated thermal noise for pos-
sible parameter combinations obeying the reflectivity re-
quirement of 99.99%. To this end, we utilized the param-
eters given in Table I as working points and performed
an error estimation by checking the dependence of ther-
mal noise on the parameters h

s

, w

s

, h

g

and w

g

. Thermal
noise remains in the same order of magnitude for all rel-
evant parameter combinations. Deviations of w

s

change
the spring constant of the grating and therefore make the
largest contributions to changes in thermal noise. For
small values of w

s

the reflectivity requirement gives tol-
erances of about ±10 nm which are comparable to the
values of w

s

. That is why small w

s

exhibit the error bars
of maximum size.
Finally, we evaluate how thermal noise behaves for
slightly di�erent reflectivity requirements of R > 99.5%
and R > 99.999%. In both cases a w

s

of 172 nm was
chosen. Brownian thermal noise decreases by 20% for
R > 99.5% and increases by 1.6% for R > 99.999%. This
variation of thermal noise is a consequence of reduced or
enhanced h

s

which are necessary to achieve R > 99.5%
and R > 99.999%, respectively.
In comparison to the results by Heinert et al. [25] the
calculation with Maxwell’s stress tensor yields a thermal
noise amplitude which is by a factor 0.61 smaller than
the estimate given in the previous work (see Fig. 6). The
complex field distribution utilized in the present article
was treated as a homogenous averaged distribution in
[25]. This leads to the observed deviations of the ther-
mal noise amplitude. It should be noted, that changes
of the refractive index inside the dielectric material are
neglected in the present study and may be subject to fu-
ture work.
The electric field distribution and thus also Brownian
thermal noise of grating reflectors with 1D periodicity de-
pend on the polarization of the incident light (see Eq. 13).
Therefore, in the grating design the polarization depen-
dence has to be carefully taken into account [35]. With
advanced grating concepts 2D periodic structures this

dependence can be overcome [20].

VI. CONCLUSION

We presented a method to calculate Brownian thermal
noise in micro- and nanostructured surfaces. In our ap-
proach, computing the Maxwell stress tensor at the di-
electric interface leads directly to the mechanical readout
variable that is monitored by optical fields. The method
is exact and computationally simpler compared to the ap-
proximate method developed by Heinert et al. [25] where
the fluctuations of each structural part in all possible di-
rections need to be considered separately to calculate the
weighing factors. The application of the method to T-
shape monolithic grating reflectors reveals the following
behavior: for small support widths, the elastic energy
is high as the deformation of the support structure in
response to the virtual forces becomes high. However,
increasing the width requires a detrimental increase of
the support structure depth in order to keep the reflec-
tivity high. Therefore, for Brownian thermal noise an
optimal w

s

exists that all T-shape grating designs should
aim for. The presented method is applicable to arbitrary
functional optical surface structures and incident light
properties.
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