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Quarkonium as relativistic bound state on the light front

Yang Li,∗ Pieter Maris, and James P. Vary

Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA

We study charmonium and bottomonium as relativistic bound states in a light-front quan-

tized Hamiltonian formalism. The effective Hamiltonian is based on light-front holography.

We use a recently proposed longitudinal confinement to complete the soft-wall holographic

potential for the heavy flavors. The spin structure is generated from the one-gluon exchange

interaction with a running coupling. The adoption of asymptotic freedom improves the

spectroscopy compared with previous light-front results. Within this model, we compute the

mass spectroscopy, decay constants and the r.m.s. radii. We also present a detailed study

of the obtained light-front wave functions and use the wave functions to compute the light-

cone distributions, specifically the distribution amplitudes and parton distribution functions.

Overall, our model provides a reasonable description of the heavy quarkonia.

I. INTRODUCTION

Non-perturbative calculations of quantum chromodynamics (QCD) provide insights into the

fundamental structure of hadrons which constitute the majority of the visible matter in the Uni-

verse. Lattice gauge theory has produced high precision results for hadron spectroscopy and many

other observables. It is expected that Lattice QCD will eventually provide a valid description of

the experimental data arising from both the theoretical progress and the growth of computational

capacity. On the other hand, QCD at high energy is most conveniently expressed through the light-

front variables [1]. While the so-called “hard processes” may be evaluated through perturbation

theory (pQCD), non-perturbative information from QCD is also needed and is encoded within the

so-called “light-cone distributions”. The light-cone distributions are intrinsically Minkowskian, and

cannot be easily extracted from a Euclidean formulation of quantum field theories. It is anticipated

that the light-front1 Hamiltonian formalism provides a complementary alternative to lattice gauge

theory [2], with convenient access to light-cone distributions and other observables.

In principle, the hadron mass spectrum and light-front wave functions (LFWFs) can be obtained

from diagonalizing the light-front quantized QCD (LFQCD) Hamiltonian operator [3]. Ab initio

light-front Hamiltonian approaches, such as Discretized Light-Cone Quantization (DLCQ, [4]) and

∗ leeyoung@iastate.edu
1 In this article, we use the words “light-front” and “light-cone” interchangeably.
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Basis Light-Front Quantization (BLFQ, [5]), have made important strides in tackling various test

problems, and show promise of advancing towards more realistic field theories, including QCD [6].

As a complementary method to these ab initio approaches, light-front holography constructs an

effective Hamiltonian based on insights from string theory, and has been shown, notwithstanding

criticisms (e.g., [7, 8]), to be a valuable approximation to QCD [9]. The efforts to improve light-

front holography can be roughly cast into two categories: one is on the holographic QCD side (see

[9] and the references therein); the other is on the light-front Hamiltonian side (see [10] for a recent

review).

The present work falls into the second category. We generalize the light-front holographic

QCD of Brodsky and de Téramond to incorporate quark masses and quarkonium spin structure

by extending the “soft-wall” light-front Hamiltonian. Our model introduces a phenomenological

effective Hamiltonian. Key elements include a confining potential in the longitudinal direction

and an effective one-gluon exchange interaction derived from light-front QCD [11, 12]. It was long

pointed out by Lepage and Brodsky [1] that the dominant ultraviolet (UV) physics can be analyzed

through one-gluon exchange. Here, we combine the one-gluon exchange physics at short distance

and the holographic QCD at long distance. The present work improves our previous calculation [11]

by including the evolution of the strong coupling as a function of invariant 4-momentum transfer.

Incorporating the running coupling not only implements important QCD physics, but also improves

the UV asymptotics of the kernel. In particular, a previous non-covariant UV counterterm is now

removed and the hyperfine structure is readily improved as we present in this work.

The motivation of the present work is multi-fold. As stated, we supplement the light-front

holographic QCD interaction with one-gluon exchange, rather than patching the holographic wave

functions with, e.g., spin structures (see, e.g., Ref. [13] and the references therein). The spec-

troscopy and the wave functions are obtained as a natural output. More importantly, we solve the

problem using the basis function method [5]. Effectively, we are applying BLFQ to a phenomeno-

logical interaction that emulates features of QCD. Indeed, this work is a direct extension of the

BLFQ approach to positronium in QED [14]. Finally, we acknowledge the similarities between our

work and the relativistic bound-state models in QCD (e.g., Refs. [15–19]), especially the light-front

QCD bound-state models [20–25].

We organize this paper as follows. In Sect. II, we introduce the theoretical model, including

the longitudinal confinement and a running strong coupling. The formulation and the methods

are detailed in Sect. III. Sect. IV summarizes and analyzes the numerical results, including the

spectroscopy, decay constants and radii. Sect. V presents LFWFs and light-cone distributions
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computed from them. We summarize the paper in Sect. VI.

II. HOLOGRAPHIC CONFINEMENT PLUS ONE-GLUON EXCHANGE

We extend light-front holography by introducing realistic QCD interactions such as the one-

gluon exchange interaction with running coupling [11]. In addition we include finite quark masses,

important for heavy flavors, as well as a longitudinal confining potential to complement the trans-

verse holographic confining potential. Spin structure and excited states (radial and angular) nat-

urally emerge from the one-gluon exchange and its non-perturbative interplay with the confining

potential [12]. The effective Hamiltonian Heff ≡ P+P−eff − ~P 2
⊥ reads,

Heff =
~k2
⊥ +m2

q

x
+
~k2
⊥ +m2

q̄

1− x
+ κ4~ζ2

⊥ −
κ4

(mq +mq̄)2
∂x
(
x(1− x)∂x

)
− CF 4παs(Q

2)

Q2
ūs′(k

′)γµus(k)v̄s̄(k̄)γµvs̄′(k̄
′). (1)

where ~ζ⊥ ≡
√
x(1− x)~r⊥ is Brodsky and de Téramond’s holographic variable [9], ∂xf(x, ~ζ⊥) =

∂f(x, ~ζ⊥)/∂x|~ζ , CF = (N2
c − 1)/(2Nc) = 4/3 is the color factor for the color singlet state. κ

is the strength of the confinement, and mq (mq̄) is the mass of the quark (anti-quark). Q2 =

−(1/2)(k′ − k)2 − (1/2)(k̄′ − k̄)2 is the average 4-momentum squared carried by the exchanged

gluon. In terms of kinematical variables,

Q2 =
1

2

(√x′

x
~k⊥−

√
x

x′
~k′⊥

)2
+

1

2

(√1− x′
1− x

~k⊥−
√

1− x
1− x′

~k′⊥

)2
+

1

2
(x−x′)2

(m2
q

xx′
+

m2
q̄

(1− x)(1− x′)

)
+µ2

g.

(2)

A. Longitudinal Confinement

In Eq. (1), the term κ4~ζ2
⊥ ≡ κ4x(1− x)~r2

⊥ is the “soft-wall” confinement from light-front holog-

raphy, which is introduced in the massless case. For heavy quarkonium, the quark masses and the

longitudinal dynamics cannot be ignored2 and we introduce a longitudinal confining interaction

to complete the transverse holographic confinement. The form of the longitudinal confinement is

designed to produce a power-law behavior for the distribution amplitudes φ(x) ∼ xa(1−x)b at the

endpoints (cf. [26–28]).

2 Without a longitudinal confinement, the longitudinal excitations will not be separated by mass gaps. In light-

front holography (no quark mass nor one-gluon exchange), these excitations are degenerate and the system is

two-dimensional in nature.
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We fix the strength of the longitudinal confinement by matching to the transverse holographic

confinement in the non-relativistic limit. Therefore, rotational symmetry is retained in the heavy-

quark limit. Another advantage of this choice for the longitudinal confinement is that it pro-

duces, without the one-gluon exchange, analytic solutions. Therefore, it affords computational

convenience within the basis function method (see Sect. III B). In the massless limit, our wave

function (without the one-gluon exchange) reduces to the soft-wall wave function of Brodsky and

de Téramond3 [9]. It has been suggested that in the massless limit one can choose the longitudinal

confining strength to be independent of the quark mass to reproduce the Gell-Mann-Oakes-Renner

relation [26]. Our proposal shares some similarities with other proposals in the literature [28–30].

B. Running Coupling

As mentioned, we employ a running coupling based on the 1-loop pQCD. The running coupling

is a function of the 4-momentum transfer squared Q2 = −q2 > 0 (see also Fig. 1), viz

αs(Q
2) =

1

β0 ln
(
Q2/Λ2 + τ

) ,
αs(M

2
z )

1 + αs(M2
z )β0 ln(µ2

ir +Q2)/(µ2
ir +M2

z )
, (3)

where β0 = (33− 2Nf )/(12π), with Nf the number of quark flavors, Nf = 4 for charmonium and

Nf = 5 for bottomonium. A constant τ is introduced to avoid the pQCD IR catastrophe. Similar

ansätze are widely adopted in the literature (e.g. [18]). Λ and constant τ are obtained by fixing

the strong coupling at the Z-boson mass αs(M
2
z ) = 0.1183 and at Q = 0. In practice, we choose

αs(0) = 0.6, corresponding to µir = 0.55 GeV for Nf = 4. We find, however, the spectra are not

sensitive for the choice of αs(0) within the range of 0.4 ≤ αs(0) ≤ 0.8.

Introducing the evolution of the strong coupling implements asymptotic freedom for the one-

gluon exchange through a natural dependence on the covariant 4-momentum transfer Q2. The

use of the running coupling also serves to improve the UV asymptotics of the one-gluon exchange

kernel. In our previous work [11], we used a fixed coupling. The effective one-gluon exchange

kernel, as derived from the leading-order effective Hamiltonian approach, produces a divergent

results, as is well known in the literature (e.g., Refs. [31–33]). This divergence is the result of the

high momentum contribution from the spin non-flip part of the Hamiltonian matrix elements. It

can be easily seen from the power counting in transverse momenta. In Ref. [11], we adopted a

UV counterterm proposed by Krautgätner, Pauli and Wölz (KPW) [31] (cf. Refs. [14, 34–36]).

However, the KPW counterterm is non-covariant, and introduces a major source of violation of

3 See Eq. (8) for our normalization convention.
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Nf=4

αs(Q2)=
αs (MZ

2)

1 + αs (MZ
2) β0 ln 
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FIG. 1. The effective running coupling implemented in this work. Data points correspond to various

experimental measurements. The vertical and horizontal lines mark the location of Mz and αs(M
2
z ).

the rotational symmetry that is manifested in the spectrum. With asymptotic freedom, the UV

divergence associated with the one-gluon exchange kernel is absent. Therefore, the non-covariant

KPW counterterm is not needed and we omit it in the present work. As we will see below, the

rotational symmetry is improved compared to the results of Ref. [11].

III. HAMILTONIAN FORMALISM

A. Eigenvalue Equation

The mass spectrum and the wave functions are obtained from diagonalizing the effective light-

front Hamiltonian operator (1):

Heff|ψh(P, j,mj)〉 = M2
h |ψh(P, j,mj)〉. (4)

where P = (P−, P+, ~P⊥) is the 4-momentum of the particle; j and mj are the particle’s total

angular momentum and the magnetic projection, respectively.
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The Fock space representation of quarkonium reads:

|ψh(P, j,mj)〉 =
∑
s,s̄

∫ 1

0

dx

2x(1− x)

∫
d2k⊥
(2π)3

ψ
(mj)

ss̄/h (~k⊥, x)

× 1√
Nc

Nc∑
i=1

b†si
(
xP+,~k⊥ + x~P⊥

)
d†s̄i
(
(1− x)P+,−~k⊥ + (1− x)~P⊥

)
|0〉. (5)

The coefficients of the expansion, ψ
(mj)

ss̄/h (~k⊥, x) are the valence sector LFWFs with s (s̄) representing

the spin of the quark (antiquark). The quark and anti-quark creation operators b† and d† satisfy

the canonical anti-commutation relations,{
bsi(p

+, ~p⊥), b†s′i′(p
′+, ~p′⊥)

}
=
{
dsi(p

+, ~p⊥), d†s′i′(p
′+, ~p′⊥)

}
= 2p+(2π)3δ3(p− p′)δss′δii′ , (6)

where δ3(p− p′) ≡ δ(p+− p′+)δ2(~p⊥− ~p′⊥). We have kept only the qq̄ sector while, in principle, the

qq̄g sector can be included by, e.g., a perturbative treatment [37]. The hadron state vector can be

orthonormalized according to the one-particle state [cf. Eq. (6)]:

〈ψh(P, j,mj)|ψh′(P ′, j′,m′j)〉 = 2P+(2π)3δ3(P − P ′)δjj′δmj ,m′jδhh′ , (7)

Then, the orthonormalization of the LFWFs reads,∑
s,s̄

∫ 1

0

dx

2x(1− x)

∫
d2~k⊥
(2π)3

ψ
(m′j)∗
ss̄/h′ (~k⊥, x)ψ

(mj)

ss̄/h (~k⊥, x) = δhh′δmj ,m′j . (8)

Note that different hadron states with the same quantum numbers, such as J/ψ and ψ′, are also

orthogonal. It is also useful to introduce LFWFs in the transverse coordinate space:

ψ̃ss̄(~r⊥, x) ≡ 1√
x(1− x)

∫
d2k⊥
(2π)2

ei~k⊥·~r⊥ψss̄(~k⊥, x). (9)

with orthonormalization,∑
s,s̄

∫ 1

0

dx

4π

∫
d2~r⊥ ψ̃

(m′j)∗
ss̄/h′ (~r⊥, x)ψ̃

(mj)

ss̄/h (~r⊥, x) = δhh′δmj ,m′j . (10)

Parity P is a dynamical symmetry on the light front, as it swaps light-front coordinate x− and

light-front time x+. The mirror parity mP ≡ Rx(π)P, which only flips one of the transverse spatial

coordinates (x1), survives as a kinematical symmetry in light-front dynamics. The eigenvalue

equations related to the mirror parity m̂P and the charge conjugation Ĉ are [11, 31, 35, 38]:

m̂P |ψh(P, j,mj)〉 = (−i)2jP|ψh(P̃ , j,−mj)〉, Ĉ|ψh(P, j,mj)〉 = C|ψh̄(P, j,mj)〉. (11)

Here P and C are the parity and charge conjugation quantum numbers, respectively; and P =

(P−, P+, P 1, P 2) is the total 4-momentum of the particle, P̃ = (P−, P+,−P 1, P 2). h̄ represents

the antiparticle of hadron h.
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Particles are further classified by the eigenvalues of the intrinsic angular momenta { ~J 2,Jz}, viz

~J 2|ψh(P, j,mj)〉 = j(j + 1)|ψh(P, j,mj)〉, Jz|ψh(P, j,mj)〉 = mj |ψh(P, j,mj)〉. (12)

On the light front, ~J 2 is dynamical and, in principle, it should be diagonalized simultaneously with

the light-front Hamiltonian operator P− to obtain the total angular momentum j [3]. Accordingly,

in a truncated and regularized model space, ~J 2 may not commute with P−, and the rotational

symmetry is only approximate (see Fig. 4). To extract j, we compute the mass eigenvalues from all

mj sectors. We count the multiplicity of the nearly-degenerate mass eigenstates with the further

help of the mirror parity, charge conjugation and other relevant quantities4. For this scheme to

succeed, the degeneracies have to be observed in the results with sufficient accuracy to resolve

ambiguities.

B. Basis Representation

The eigenvalue equation (4) can be solved in a basis function approach [5, 11]. The basis function

is particularly advantageous for the present model with the holographic confining potential, since,

in the absence of the one-gluon exchange term, it can be diagonalized analytically. On the other

hand, the confining interactions in momentum space are highly singular. The solutions can be

expressed in terms of the analytic functions φnm and χl. For the transverse direction, we have (see

Fig. 2a):

φnm(~q⊥; b) = b−1

√
4πn!

(n+ |m|)!

(
q⊥
b

)|m|
exp

(
− q2
⊥/(2b

2)
)
L|m|n (q2

⊥/b
2) exp

(
imθq), (13)

where ~q⊥ , ~k⊥/
√
x(1− x), q⊥ = |~q⊥|, θq = arg ~q⊥. Lan(z) is the associated Laguerre polynomial. b

is the harmonic oscillator (HO) basis parameter in mass dimension. Following Ref. [11], we choose

b ≡ κ to match the confining strength. For simplicity, we will often omit the label b though it is

implicit throughout. In the longitudinal direction, we have (see Fig. 2b):

χl(x;α, β) =
√

4π(2l + α+ β + 1)

√
Γ(l + 1)Γ(l + α+ β + 1)

Γ(l + α+ 1)Γ(l + β + 1)
x
β
2 (1− x)

α
2 P

(α,β)
l (2x− 1). (14)

Here P
(α,β)
l (z) is the Jacobi polynomial. α and β are dimensionless basis parameters. In the

model, they are α = 2mq̄(mq + mq̄)/κ
2, β = 2mq(mq + mq̄)/κ

2. Again, we will drop the explicit

dependence on α or β from now on.

4 For example, the decay constants.
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(a) (b)

FIG. 2. Left panel : the transverse basis function φnm(~k⊥; b) at b = 1, n = 5, arg~k⊥ = 0; Right panel : the

longitudinal basis function χ`(x;α, β) at α = β = 16.

In the presence of the one-gluon exchange term, we use these analytic functions as a basis to

expand the LFWFs in,

ψss′/h(~k⊥, x) =
∑
n,m,l

ψh(n,m, l, s, s′)φnm(~k⊥/
√
x(1− x))χl(x). (15)

Here the coefficients ψh(n,m, l, s, s′) are obtained from diagonalization. The basis is constructed

to conserve the magnetic projection of the total angular momentum: mj = m+ s+ s′.

Performing a 2D Fourier transformation gives the LFWFs in coordinate space. The Fourier

transformation of a HO function is a HO function with a relative phase, which simplifies the

expression greatly.

ψ̃ss′/h(~r⊥, x) =
√
x(1− x)

∑
n,m,l

ψh(n,m, l, s, s′) φ̃nm(
√
x(1− x)~r⊥)χl(x). (16)

Here φ̃nm is the 2D HO in coordinate space:

φ̃nm(~ρ⊥; b−1) = b

√
n!

π(n+ |m|)!
(bρ⊥)|m| exp

(
−b2ρ2

⊥/2
)
L|m|n (b2ρ2

⊥) exp
[
imθρ+iπ(n+|m|/2)

]
. (17)

In practical calculations, the basis is truncated and wave functions are obtained in the basis

expansion. Following Refs. [5, 11, 14], we truncate the transverse and the longitudinal bases

separately by their energies:

2n+ |m|+ 1 ≤ Nmax, 0 ≤ l ≤ Lmax. (18)

As such, the Nmax-truncation provides a natural pair of UV and IR cutoffs: Λuv ' b
√
Nmax,

λir ' b/
√
Nmax, where b = κ is the oscillator basis energy scale parameter. Lmax represents the
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FIG. 3. Comparison of the ground-state longitudinal wave functions obtained from the invariant mass

ansatz: N1 exp
(
− m2

q

2κ2x(1−x)

)
and from BLFQ: N2

(
x(1− x)

)2m2
q/κ

2

. Both wave functions are normalized to

unity as prescribed in Eq. (8).

resolution of the basis in the longitudinal direction. Namely, the basis cannot resolve physics at:

∆x . L−1
max [14]. The complete basis is reached by taking Nmax →∞, Lmax →∞.

The eigenvalues of the parity and charge conjugation operators can be extracted from the basis

representation of the LFWFs as [11],

(−i)2jP = 〈ψ−mj |m̂P |ψmj 〉 =
∑

n,m,l,s,s̄

(−1)mψ∗−mj (n,−m, l,−s,−s̄)ψmj (n,m, l, s, s̄). (19)

C = 〈ψmj |Ĉ|ψmj 〉 =
∑

n,m,l,s,s̄

(−1)m+l+1ψ∗mj (n,m, l, s̄, s)ψmj (n,m, l, s, s̄). (20)

C. Generalizing Light-Front Holography

Before proceeding to the full diagonalization, it is worth looking at the results without the

one-gluon exchange, where the solutions are analytical. The mass eigenvalues are:

M2
n,m,l = (mq +mq̄)

2 + 2κ2(2n+ |m|+ l + 1) +
κ4

(mq +mq̄)2
l(l + 1). (21)

Here l is the longitudinal quantum number, not the orbital angular momentum. The corresponding

wave functions are:

ψnml(~k⊥, x) = φnm(~k⊥/
√
x(1− x))χl(x). (22)
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States may be identified according to their mass spectrum with the help of parity P and charge

conjugation C. The quarkonium ground state (1S) is identified with n = 0,m = 0, l = 0:

ψgs(~k⊥, x) = N exp
[
− ~k2
⊥/(2κ

2x(1− x))
](
x(1− x)

)2m2
q/κ

2

. (23)

In the literature, a commonly-used way to incorporate quark masses in the AdS/QCD wave function

is through the invariant mass ansatz (IMA) [39], viz,

N exp
[
− ~k2
⊥/(2κ

2x(1− x))
]
→ N ′ exp

[
− (~k2

⊥ +m2
q)/(2κ

2x(1− x))
]
. (24)

Figure 3 compares the purely longitudinal part of our ground-state wave function with that of the

IMA wave function. Our longitudinal wave function becomes almost identical to the IMA wave

function at large quark mass, except near the endpoints. This reflects the fact that rotational

symmetry is restored in the non-relativistic limit with our choice of longitudinal basis functions.

The first excited state (1P) is identified with n = 0,m = ±1, l = 0 or n = 0,m = 0, l = 1, noting

that for heavy quarkonium, the term κ4/(mq + mq̄)
2l(l + 1) is small comparing to the remaining

terms. There are four 1P states: χ0 (0++), χ1 (1++), χ2 (2++) and h (1+−). Let us focus on h and

restrict the discussion to mj = 0. From Eq. (20), we conclude: −1 = C = (−1)m+l+1(−1)s+1, where

s is the total spin, viz s = 0 for singlet and s = 1 for triplet. Apparently, for both sets of quantum

numbers (m = ±1, l = 0 or m = 0, l = 1), s = 0. From Eq. (19), −1 = (−1)jP = (−1)m(−1)s+1,

implyingm = 0. Therefore, the correct quantum numbers for hmeson (1+−) are n = 0,m = 0, l = 1

with a singlet spin configuration, which is consistent with the non-relativistic quantum number

assignment 1 1P0. Note that the orbital motion is excited through the longitudinal direction but

not the transverse direction. This cannot be obtained from IMA5.

IV. NUMERICAL RESULTS

TABLE I. Summary of the model parameters (see text).

Nf αs(0) µg (GeV) κ (GeV) mq (GeV) rms (MeV) δjM (MeV) Nexp Nmax = Lmax

cc̄ 4 0.6 0.02 0.966 1.603 31 17 8 32

bb̄ 5 0.6 0.02 1.389 4.902 38 8 14 32

5 In the literature, the longitudinal excitations are typically obtained from modeling the spin structure via the spinor

wave function ūΓv. However, the longitudinal profile of the spinor wave function is qualitatively different from the

holographic wave function.
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FIG. 4. A representative bottomonium mass spectrum obtained by diagonalizing the light cone Hamiltonian

within various mj sectors at Nmax = Lmax = 32. Even though the rotational symmetry is not exact, the

approximate degeneracies are sufficient to extract j. States with the same orbital angular momentum ` tend

to cluster, as expected from the non-relativistic quark model, even though ` is not a good quantum number,

which is also helpful for identifying states.

We apply the model to heavy quarkonia (charmonium and bottomonium), where the quark

masses are large and the radiative corrections are negligible. Therefore these are ideal systems to

test our model. The model parameters are summarized in Table I.

As mentioned, we fixed αs(0) = 0.6. For fixed Nmax and Lmax, we use experimental data

to fit the confining strength κ and the effective quark mass mq (mc and mb) using the mass

eigenvalues in the mj = 0 sector. We employ the experimental values, compiled by the Particle

Data Group (PDG) [40], below the open charm or open bottom threshold. We also introduced

a small mass parameter µg = 0.02 GeV to regularize the integrable Coulomb singularity in the

energy denominator and avoid numerical instability6. As has been shown in previous work with

fixed coupling, the mass eigenvalues are converged with respect to µg → 0 within the numerical

precision.

The effective Hamiltonian (1) is diagonalized for various mj sectors. Fig. 4 shows a representa-

tive spectrum as a function of mj . The spectrum is symmetric with respect to ±mj , a consequence

of the mirror parity symmetry (11). The discrete quantum numbers mP = (−i)2jP and C are com-

puted to help identify states as mentioned. Total spin 〈~s2〉 = s(s+ 1) as an approximate quantum

number is also exploited. States with the same j but different mj ’s are not exactly degenerate ow-

6 Our numerical method is designed such that no singularity is encountered in the actual calculation. Nevertheless,

we introduced this parameter, smaller than all other energy scales, to further tame the integrable singularity.
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FIG. 5. The reconstructed charmonium (left panel) and bottomonium (right panel) spectra at Nmax =

Lmax = 32. The horizontal and vertical axises are jPC and invariant mass in GeV, respectively. Model

parameters are listed in Table I. Calculated states are marked by boxes to represent the spread of the mass

eigenvalues in mj owing to violation of the rotational symmetry (see text). The mean mass spreads, i.e.

the average heights of the boxes, are 17 MeV and 8 MeV for charmonium and bottomonium, respectively.

The r.m.s. deviations of the masses from the PDG values are 31 MeV and 38 MeV for charmonium and

bottomonium, respectively. See text for details.

ing to the violation of the rotational symmetry. As is seen in Fig. 4, the approximate degeneracies

are easily visible, at least for low-lying states. So the multiplicities, together with mP , C, s and

the constraints:

|`− s| ≤ j ≤ `+ s, P = (−1)`+1, C = (−1)`+s, (25)

can be employed to deduce the full set of quantum numbers n 2s+1̀
j or jPC, where ` is the total

orbital angular momentum, n the radial quantum number. We also cross-check the state identifi-

cation with the decay constants and the wave functions themselves (see Sect. V).

A. Spectroscopy

The reconstructed spectra at Nmax = Lmax = 32 are presented in Fig. 5. In these figures, we

use boxes to indicate the spreads of the mass eigenvalues from different mj . The mean values,
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TABLE II. Comparison of differences between fits and PDG experimental data between results of Ref. [11]

and those presented here. δMcc̄ is the rms mass deviation for charmonium from the PDG data. δjM cc̄ is

the mean mass spread for charmonium. “fix-αs (refitted)” improves the bottomonium fits by ∼10 MeV.

δjM cc̄ δMcc̄ (rms) δjM bb̄ δMbb̄ (rms) Nmax = Lmax

fix-αs [11] 49 MeV 52 MeV 17 MeV *58 MeV 24

fix-αs (refitted) — — 15 MeV 48 MeV 24

running-αs 17 MeV 31 MeV 7 MeV 39 MeV 24

running-αs 17 MeV 31 MeV 8 MeV 38 MeV 32

* In Ref. [11], this is misquoted as 50 MeV.

marked by dashed bars, are defined as:

M ≡

√
M2
−j +M2

1−j + · · ·+M2
j

2j + 1
, (26)

where Mmj is the mass eigenvalue associated with the magnetic projection mj . This definition is

motivated by the covariant light-front analysis of relativistic bound states in Refs. [33, 41]. On the

other hand, the mass spreads δjM ≡ maxMmj −minMmj measure the violation of the rotational

symmetry. We also introduce the mean spread:

δjM ≡

√√√√ 1

Nh

j 6=0∑
h

(δjMh)2.
(
Nh ≡

j 6=0∑
h

1
)

(27)

For charmonium (bottomonium) states evaluated by PDG below the threshold, the mean mass

spread is 17 MeV (8 MeV), improving our previous results [11] by a factor of ∼3 (∼2). More

comparison between the results of this work and those of Ref. [11] is collected in Table II.

Our light-front Hamiltonian approach yields states with high angular and radial excitations,

which are not easily accessible in some other methods. No exotic quantum numbers emerge from

our calculation, as is expected from the two-body truncation. In bottomonium, predictions are

made for various states below the BB threshold, as also predicted in other approaches (e.g., [42–

44]). The quality of the spectra can be measured by the root mean squared (r.m.s.) deviation from

the experimentally measured values. For charmonium (bottomonium), the r.m.s. mass deviation

is 31 MeV (38 MeV), improving the fixed coupling results [11] by as much as ∼40% (∼20%).

See Table II for further comparisons. Our spectroscopy is competitive with those obtained from

other relativistic models [19, 42–44]. Not only are the mass spectra improved, the spread of the

mass eigenvalues δjM due to the violation of rotational symmetry, is also significantly reduced

as mentioned. A related issue is the quenching of the hyperfine splitting found within the fixed
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FIG. 6. The Nmax convergence. The left panel compares the J/ψ and ηc mass eigenvalues as a function

of N−1
max (Nmax = Lmax, mj = 0) for fixed and refitted parameters. For the former (“fix-parameter”),

parameters are the same for all Nmax, and are chosen to be the fitted values at Nmax = 32. For the latter

(“refit-parameter”), parameters are refitted for each Nmax. The right panel shows the hyperfine splittings

Mψ(nS)−Mηc(nS) as a function of N−1
max (Nmax = Lmax, mj = 0) with fixed parameters. The PDG values are

marked as crosses. In both figures, different fitting functions, a+b/Nmax +c/N2
max (solid), a+b exp(−cNmax)

(dashed), a + b exp(−c
√
Nmax) (dot-dashed), are shown for the fix-parameter results. The refit-parameter

results are simply connected by a straight line segments.

coupling results. With the running coupling, this issue is resolved and the hyperfine splittings are

consistent with the experimental values, as shown in Fig. 5 (cf. Fig. 6). Therefore, the violation of

the rotational symmetry is significantly reduced.

Figure 6 shows the trends of the charmonium mass eigenvalues as functions of N−1
max (with

Nmax = Lmax). The left panel presents the convergence trends of the ground-state masses (ηc

and J/ψ). The right panel presents the convergence trends for the hyperfine splittings between

1S (MJ/ψ −Mηc) and 2S (Mψ′ −Mη′c) states. Two sets of parameters are used: the fix-parameter

results use model parameters from the Nmax = Lmax = 32 fit; the refit-parameter calculation refits

the model parameters for each Nmax = Lmax. Smooth extrapolations are made using three types

of functions: a+ b/Nmax + c/N2
max (solid), a+ b exp(−cNmax) (dashed), a+ b exp(−c

√
Nmax) (dot-

dashed). Both hyperfine splittings, 1S and 2S, show reasonable convergence in the complete basis

limit (N−1
max = L−1

max = 0).

Table III compares the spectroscopy obtained from different Nmax = Lmax fits. While results

from different Nmax = Lmax are well converged, the r.m.s. deviation decreases as Nmax = Lmax

increases. In the present work, we adopt Nmax = Lmax = 32 for our presented results, unless

otherwise specified.
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TABLE III. Model sensitivity with respect to the basis size Nmax = Lmax. The model parameters fits and

the r.m.s. deviations are well converged as Nmax = Lmax increases.

αs(0) Nf µg (GeV) κ (GeV) mq (GeV) rms (MeV) δjM (MeV) Nexp Nmax = Lmax

cc̄ 0.6 4 0.02

0.985 1.570 41 15

8 states

8

0.979 1.587 32 21 16

0.972 1.596 31 17 24

0.966 1.603 31 17 32

bb̄ 0.6 5 0.02

1.387 4.894 48 6

14 states

8

1.392 4.899 41 6 16

1.390 4.901 39 7 24

1.389 4.902 38 8 32

B. Decay Constants

Decay constants are defined as the local vacuum-to-hadron matrix elements:

〈0|ψ(0)γ+γ5ψ(0)|P (p)〉 = ip+fP , (28)

〈0|ψ(0)γ+ψ(0)|V (p, λ)〉 = e+
λMV fV . (29)

Here only the “good” currents (the “+” component) are used. The corresponding LFWF repre-

sentation reads [1],

fP,V

2
√

2Nc
=

∫ 1

0

dx

2
√
x(1− x)

∫
d2k⊥
(2π)3

ψ
(λ=0)
↑↓∓↓↑(x,

~k⊥). (30)

For this calculation, we choose Nmax = 8 for charmonium and Nmax = 32 for bottomonium, roughly

corresponding to Λuv , κ
√
Nmax ≈ 1.7mq, where Λuv is the UV regulator, and mq is the heavy

quark mass. This choice is motived by the competition between the needs for both a better basis

resolution and a lower UV scale since our model does not incorporate radiative corrections. We

also provide an indicator for sensitivity by altering the basis truncation parameter Nmax. The

resulting charmonium and bottomonium decay constants are shown in Fig. 7, which also collects

PDG values converted from dilepton or diphoton decay widths [40], Lattice [43, 45–47] and Dyson-

Schwinger/Bethe-Salpeter equations (DSE/BSE or DSE, [48]; see also [49]) results for comparison.

Our results fall into the ballpark of the PDG values as well as those from other approaches wherever

available.
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FIG. 7. The decay constants for vector and pseudo-scalar charmonia and bottomonia. The results are

obtained with Nmax = Lmax = 8 for charmonium and Nmax = Lmax = 32 for bottomonium, corresponding

to UV cutoffs Λuv , κ
√
Nmax ≈ 1.7mq, where mq is the heavy quark mass. The widths of the “error

bars” are taken to be ∆fcc̄ =
∣∣fcc̄(Nmax = 8)− fcc̄(Nmax = 16)

∣∣ for charmonium and ∆fbb̄ = 2
∣∣fbb̄(Nmax =

32) − fbb̄(Nmax = 24)
∣∣ for bottomonium. They are used to indicate the sensitivity with respect to the

basis truncation, rather than the full error estimates. Results from PDG [40], Lattice [43, 45–47] and

Dyson-Schwinger equations (DSE) [48] are provided for comparison.

FIG. 8. “Charge” and mass radii of (pseudo-)scalar mesons (see text). Results are obtained from extrap-

olating Nmax = Lmax = 8, 16, 24, 32 values. The numerical uncertainty is quoted as the difference between

the extrapolated result and the largest basis result (Nmax = Lmax = 32). Charge radii from our earlier work

with fixd αs (BLFQ15, [11]) as well as other approaches [52, 53] are provided for comparison.

C. Radii

Classically and in non-relativistic quantum mechanics, the root-mean-square charge (mass)

radius is the expectation value of the displacement operator that characterizes the charge (mass)
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distribution of the system. In quantum field theory, no such local position operator is allowed and,

instead, the form factors are defined as the slope of the charge (gravitational) form factor at zero

momentum transfer:

〈r2
c〉 = −6

∂

∂Q2
Fch(Q2)

∣∣∣
Q→0

, 〈r2
m〉 = −6

∂

∂Q2
Fgr(Q

2)
∣∣∣
Q→0

. (31)

Remarkably, in LFWF representation [50], this definition exactly restores the charge (mass) distri-

bution interpretation [12]. For example, for (pseudo-)scalar mesons in the two-body approximation,

〈r2
c〉 =

3

2
〈~b2⊥〉 ,

3

2

∑
s,s̄

∫ 1

0

dx

4π

∫
d2r⊥ (1− x)2~r2

⊥ ψ̃
∗
ss̄(~r⊥, x)ψ̃ss̄(~r⊥, x), (32)

〈r2
m〉 =

3

2
〈~ζ2
⊥〉 ,

3

2

∑
s,s̄

∫ 1

0

dx

4π

∫
d2r⊥ x(1− x)~r2

⊥ ψ̃
∗
ss̄(~r⊥, x)ψ̃ss̄(~r⊥, x). (33)

Here ψ̃ are LFWFs in transverse coordinate space. ~ζ⊥ ,
√
x(1− x)~r⊥ is Brodsky and de

Téramond’s holographic variable [9], ~b⊥ , (1 − x)~r⊥ is Burkardt’s impact parameter [51]. This

relation is also valid when higher Fock sector contributions are included if the we define ~ζ⊥ and ~b⊥

in the n-body Fock sector as,

~ζ2
⊥ ,

∑
i

xi(~ri⊥ − ~R⊥)2, ~b2⊥ ,
∑
i

ei(~ri⊥ − ~R⊥)2, (34)

where ~R⊥ ,
∑

i xi~ri⊥ is the transverse center of the system, ei is the charge number of the i-th

constituent, and
∑

i ei ≡ Q.

Due to charge conjugation symmetry, the charge radii of quarkonium vanishes. Here we define

a fictitious charge radii by considering only the charge of the quark. With this definition, the

“charge” radii are the same as the mass radii in the non-relativistic limit, which suggests that their

difference is a pure relativistic effect. Fig. 8 presents the r.m.s. charge and mass radii of scalar

and pseudo-scalar mesons. In our results, the mass radii are in general smaller than the charge

radii and the difference is reduced in the heavier system (bottomonium). Fixed αs BLFQ results

(BLFQ15, [11]) as well as earlier results from quenched Lattice calculation [52] and DSE [53] are

included in Fig. 8 for comparison. Our results are systematically smaller. From the trend with

respect to basis truncation Nmax = Lmax, UV physics and/or higher Fock sector contributions may

be expected to produce significant corrections to our results for radii.
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V. WAVE FUNCTIONS, AMPLITUDES AND DISTRIBUTIONS

A. Light-Front Wave Functions

Wave functions offer first-hand insight into the system. They play a central role in evaluating

hadronic observables and light-cone distributions, and are an indispensable tool for investigating

exclusive processes in deep inelastic scattering. Compared with the widely used phenomenological

LFWFs in the literature, our wave functions generalize the AdS/QCD wave functions and provide

unified access to ground and excited states. In particular, the spin structure is generated from the

one-gluon exchange and its interplay with the confining interaction.

In this section, we present the valence sector wave functions. Heavy quarkonium is an ideal

system to explore the qualitative features of the wave functions, as they can be compared with

the familiar non-relativistic quantum mechanical wave functions. We show LFWFs with different

polarizations and spin alignments: ψλss̄(
~k⊥, x). For each spin configuration, the orbital angular

momentum projection m` = λ − s1 − s2 is definite (λ ≡ mj). Hence, the angular dependence

of the wave function factorizes: ψλss̄(
~k⊥, x) = Ψλ

ss̄(k⊥, x) exp(im`θ), with θ ≡ arg~k⊥, k⊥ ≡ |~k⊥|.

To visualize the wave functions, we drop the phase exp(im`θ), while retaining the relative sign

exp(im`π) = (−1)m` for negative values of k⊥. Namely, we plot:

Ψλ
ss̄(k⊥, x) ≡

 Ψλ
ss̄(k⊥, x), k⊥ ≥ 0,

Ψλ
ss̄(−k⊥, x)× (−1)m` , k⊥ < 0.

(35)

We also define: ψλ↑↓±↓↑(
~k⊥, x) ≡ 1√

2

[
ψλ↑↓(

~k⊥, x)± ψλ↓↑(~k⊥, x)
]
. The full set of results is collected in

supplemental materials. Here we focus on some selected results.

Figure 9 shows the LFWFs of the charmed ground-state pseudo scalar ηc(1S). There are two

independent components: ψ↑↓−↓↑(~k⊥, x) and ψ↓↓(~k⊥, x) = ψ∗↑↑(
~k⊥, x). The number of independent

components is not a priori the same in different relativistic approaches. One of the components is

related to the non-relativistic wave functions, whereas the other one is of purely relativistic origin

and becomes negligible in the non-relativistic limit. In covariant light-front dynamics, the extra

component depends on the orientation of the quantization surface [37, 41]. Its existence ensures

the rotational symmetry, albeit not exactly in our model [41]. The Lorentz structure of the pseudo

scalar wave function can be written as [37, 41],

ψss̄(~k⊥, x) = ūs(k1)
[
φ1(k⊥, x)γ5 + φ2(k⊥, x)

γ+γ5

P+

]
vs̄(k2). (36)

where γ+ = γ0+γ3. Let n = (1, 0, 0,−1) be a null vector perpendicular to the quantization surface.

γ+ = nµγ
µ, P+ ≡ nµPµ, depending on the orientation of the quantization surface.
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(a) ψ↑↓−↓↑(~k⊥, x)

(b) ψ↓↓(~k⊥, x) = ψ∗↑↑(~k⊥, x)

FIG. 9. LFWFs of ηc(1S). The left and central panels visualize LFWFs as functions of x and k⊥. The right

panels show LFWFs in the transverse plane kx–ky at x = 0.5.

For charmonium, the dominate component is the singlet ψ↑↓−↓↑ and its wave function resembles

an S-wave. In the non-relativistic limit, the longitudinal momentum fraction x is reduced to:

x → 1/2 + kz/(2mq). Hence, the x–k⊥ plots in Fig. 9 (central panels) are reduced to the kz–k⊥

density plots of the non-relativistic wave function, i.e. a slice of the full 3D wave function, in

the non-relativistic limit. To visualize the full 3D wave function, one may rotate the density plot

along the vertical axis at k⊥ = 0, applying a phase factor exp(im`θ) as necessary7. To facilitate

the visualization in 3D, we also plot the real part of the wave functions in the transverse plane at

x = 0.5 in Fig. 9 (right panels).

Figure 10 show the spin singlet components of the charmed and beautified pseudo scalars ηc(nS)

and ηb(nS). Each of them is the dominant component in their respective systems. The 2S and

3S states show both longitudinal and transverse nodes, consistent with the non-relativistic wave

functions. Therefore, the non-relativistic picture emerges in heavy quarkonium as expected. Note

that the node structure spans a broad kinematical region [x ∼ (0.2–0.8)] in charmonium, extending

7 This is where the relative sign at negative k⊥ is useful.
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(a) ηc(1S) (b) ηc(2S) (c) ηc(3S)

(d) ηb(1S) (e) ηb(2S) (f) ηb(3S)

FIG. 10. Spin singlet LFWFs ψ↑↓−↓↑(~k⊥, x) of charmonium (top panels) and bottomonium (bottom panels).

beyond the näıve non-relativistic scope: |x− 1
2 | � 1.

It is also interesting to compare the charmonium and bottomonium LFWFs, as shown in Fig. 11.

Bottomonium is associated with a larger mass scale and is broader in the transverse momentum

direction. On the other hand, bottomonium is more non-relativistic compared with charmonium,

and hence in the longitudinal direction its wave functions are narrower. Recall that in the non-

relativistic limit, the quarkonium distribution amplitude is a Dirac delta: φ(x) ∝ δ(x− 1
2).

Figure 12 compares selected spin configurations of the charmed vector mesons: J/ψ with its

“angular” excitation ψ(1D). The dominant components of J/ψ are ψλ=0
↑↓+↓↑ (Fig. 12a) and ψλ=1

↑↑ (see

supplemental materials) — both are S-wave. The D-wave components (e.g. Figs. 12b & 12c) are

small but non-vanishing in J/ψ as a result of S-D mixing. Similar sub-dominant components due

to relativity are often missing in phenomenological vector meson wave functions8, e.g., boosted

Gaussian wave function [13]. The dominant components of ψ(1D) are ψλ=0
↑↓+↓↑ (Fig. 12d), ψλ=0

↓↓

(Fig. 12e), and ψλ=1
↓↓ (Fig. 12f). It is evident that they resemble the non-relativistic D-waves

8 Very often, the spin structure of the phenomenological vector meson wave function is borrowed from the photon

wave function, which is obtained via light-cone perturbation theory.
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FIG. 11. Comparison of the spin singlet LFWFs ψ↑↓−↓↑(~k⊥, x) between charmonium (left) and bottomonium

(right). The magnitude of the wave function is in GeV−1.

Y20(k̂), Y21(k̂) and Y22(k̂), where Y`m(k̂) are the spherical harmonics. This becomes more evident

when LFWFs in the transverse plane (kx–ky) are considered (see Fig. 13). Fig. 14 displays Υ(2D),

a state consisting of both radial and angular excitations.

B. Distribution Amplitudes

LFWFs provide unique access to light cone distributions by integrating out the transverse mo-

mentum [3]. Among those, the distribution amplitudes (DAs) and the parton distribution functions

(PDFs) control the exclusive and inclusive processes at large momentum transfer, respectively [1].

DAs are defined from the light-like separated gauge invariant vacuum-to-meson matrix elements

[1, 54]. In light-front formalism, the leading-twist DAs within the light-cone gauge for pseudo-scalar

and vector mesons9 are [54–56]:

〈0|ψ(z)γ+γ5ψ(−z)|P (p)〉µ = ip+fP

∫ 1

0
dx eip+z−(x− 1

2 )φP (x;µ)
∣∣∣
z+,~z⊥=0,

(37)

〈0|ψ(z)γ+ψ(−z)|V (p, λ)〉µ = e+
λ (p)MV fV

∫ 1

0
dx eip+z−(x− 1

2 )φV (x;µ)
∣∣∣
z+,~z⊥=0,

(λ = 0) (38)

where fP,V are the decay constants (see Sect. IV B). MP,V are the mass eigenvalues. eµλ(p) is the

polarization vector. The non-local matrix elements as well as the DAs depend on the scale µ, the

renormalization scale or UV cutoff. In these definitions, DAs are normalized to unity, viz:∫ 1

0
dxφ(x;µ) = 1. (39)

9 In the present work, we focus on the longitudinal DA for vector mesons.
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(a) J/ψ: ψλ=0
↑↓+↓↑; ` = 0,m` = 0 (b) J/ψ: ψλ=0

↓↓ ; ` = 2,m` = 1 (c) J/ψ: ψλ=+1
↓↓ ; ` = 2,m` = 2

(d) ψ(1D): ψλ=0
↑↓+↓↑; ` = 2,m` = 0 (e) ψ(1D): ψλ=0

↓↓ ; ` = 2,m` = 1 (f) ψ(1D): ψλ=+1
↓↓ ; ` = 2,m` = 2

FIG. 12. Selected spin configurations of the charmed vectors J/ψ (top panels) and ψ(1D) (bottom panels).

FIG. 13. One component of ψ(1D): ψλ=+1
↓↓ in the x–k⊥ plane (left panel) and in the transverse plane kx–ky

at x = 0.5 (right panel).

In LFWF representation, DAs can be written as [1],

fP,V

2
√

2Nc
φP,V (x;µ) =

1√
x(1− x)

.µ2∫
d2k⊥

2(2π)3
ψλ=0
↑↓∓↓↑(x,

~k⊥). (40)

Here ψ↑↓±↓↑ = (ψ↑↓ ± ψ↓↑)/
√

2 as defined above and the minus (plus) sign is associated with the
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(a) ψλ=0
↑↓+↓↑; ` = 2,m` = 0 (b) ψλ=0

↓↓ ; ` = 2,m` = 1 (c) ψλ=+1
↑↓−↓↑; ` = 1,m` = 1

(d) ψλ=+1
↑↑ ; ` = 2,m` = 0 (e) ψλ=+1

↑↓+↓↑; ` = 2,m` = 1 (f) ψλ=+1
↓↓ ; ` = 2,m` = 2

FIG. 14. The 6 independent spin components of Υ(2D). These wave functions show both radial and angular

excitations, in accordance with the quantum number identifications.

pseudo-scalar (vector) state. The UV cutoff is taken as k⊥/
√
x(1− x) . µ (see, e.g., Refs. [1, 31,

57]). In the basis representation, the truncation parameter Nmax provides a natural UV regulator

µ ≈ κ
√
Nmax and no hard cutoff is needed in the integration.

Figure 15 compares the ground-state vector meson (J/ψ and Υ) DAs with predictions from

BLFQ and AdS/QCD with or without IMA [9, 58–60]. Calculations using pure basis functions

are also presented (AdS/QCD + LC), which turns out to be very close to AdS/QCD + IMA (cf.

Fig. 3), but very different from the full diagonalization (“BLFQ”) results. In fact, the BLFQ

results move towards the pQCD asymptotics as the scale increases. Obviously, the one-gluon

exchange interaction plays an important role at short distance as is expected. DAs of S-wave

heavy quarkonia are shown in Fig. 16. The difference between the pseudo-scalar mesons and the

accompanying vector mesons are, again, driven by the one-gluon exchange interaction. The shape

of the excited state DAs is consistent with what has been obtained from other methods, e.g. QCD

sum rule [62], wherever available. The basis functions are optimized for long-distance physics, i.e.,
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FIG. 15. Comparison of the longitudinal leading-twist distribution amplitudes of J/ψ (left) and Υ (right).

The pQCD asymptotic is given by 6x(1− x) [1]. The AdS/QCD prediction of Brodsky and de Téramond is

given by (8/π)
√
x(1− x) [9]. For AdS/QCD + IMA, we use parameters from Ref. [58] (cf. [60]) for J/ψ and

our parameters κ,mq for Υ. AdS/QCD+LC adopts longitudinal confinement to modify the AdS/QCD wave

function, viz the basis functions. BLFQ further implements the one-gluon exchange. The BLFQ results are

with basis truncation Nmax = Lmax = 8, 32 as indicated in the legends. The corresponding UV cutoffs are

µcc̄ ≈ 2.8, 5.5 GeV, µbb̄ ≈ 3.9, 7.9 GeV.

FIG. 16. The leading-twist distribution amplitudes of the S-wave charmonia (left) and S-wave bottomonia

(right) at Nmax = Lmax = 32. The corresponding UV cutoffs are µcc̄ ≈ 5.5 GeV, µbb̄ ≈ 7.9 GeV.

confinement, and DAs are sensitive to short-distance physics. The mismatch as a finite-basis effect

is clearly visible around the endpoints in these figures.

It is useful to compute the moments in order to quantitatively compare with other approaches.
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The n-th moment is defined as,

〈ξn〉 =

∫ 1

0
dx (2x− 1)nφ(x). (ξ ≡ 2x− 1) (41)

Table IV compares the first few moments of selected heavy quarkonia states obtained from various

approaches. Results from other approaches, including non-relativistic QCD (NRQCD, [61]), QCD

sum rule (QCDSR, [55, 56, 62]), light-front quark model (LFQM, [63]) and Dyson-Schwinger/Bethe-

Salpeter equations (DSE, [49]), are shown for comparison. In all these approaches, moments

are computed at the effective heavy quark mass scale µ ' mq, with the exception of DSE at

µ = 2 GeV. We provide results at µ ≈ 1.7mq, corresponding to Nmax = Lmax = 8 for charmonium

and Nmax = Lmax = 32 for bottomonium. For the sake of convenience, we also provide moments

at the effective heavy quark mass scale µ = mq (“BLFQ*”) through simple extrapolation (for

charmonium) or interpolation (for bottomonium). The 3σ (99.75% C.L.) extrapolation or inter-

polation errors (prediction intervals) are included. Our results are in reasonable agreement with

various other approaches, though relativistic models, including ours, are systematically larger than

those of NRQCD. Results from pQCD asymptotics and AdS/QCD of Brodsky and de Téramond

(AdS/QCD, [9]) are not particularly applicable for heavy quarkonia at the heavy quark mass scale

and are simply included for completeness. The second moment can be used to estimate the relative

velocity of the partons: 〈v2〉 ≈ 3〈ξ2〉, viz

cc̄ : 〈v2
ηc〉 ∼ 0.36, 〈v2

η′c
〉 ∼ 0.54; (µ ≈ 1.7mc)

bb̄ : 〈v2
ηb
〉 ∼ 0.21, 〈v2

η′b
〉 ∼ 0.30, 〈v2

η′′b
〉 ∼ 0.36. (µ ≈ 1.6mb)

(42)

C. Parton Distributions

The quark Parton Distribution Function (PDF) q(x;µ) is the probability of finding a collinear

quark carrying momentum fraction x up to scale µ. In the light-front formalism, it can be obtained

by integrating out the transverse momentum of the squared wave function:

q(x;µ) =
1

x(1− x)

∑
s,s̄

.µ2∫
d2k⊥

2(2π)3

∣∣ψss̄(x,~k⊥)
∣∣2. (43)

Within the two-body approximation, the PDF and its first moment are normalized to unity [cf.

Eq. (8)]: ∫ 1

0
dx q(x;µ) = 1,

∫ 1

0
dx
[
xq(x;µ) + (1− x)q(x;µ)

]
= 1. (44)
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TABLE IV. Comparison of heavy quarkonia moments from NRQCD [61], QCD sum rule [55, 56, 62], light-

front quark model [63] and DSE [49]. The DSE results are obtained at 2 GeV. Results from other approaches

are evaluated at quark mass scale µ ' mq. The BLFQ results are given at Nmax = Lmax = 8 for charmonium

and Nmax = Lmax = 32 for bottomonium, roughly corresponding to UV cutoffs µ = κ
√
Nmax ≈ 1.7mq. For

the convenience of comparison with other approaches, we also provide the extrapolated (ext.) or interpolated

(int.) results at the effective quark mass scale (BLFQ*). The 3σ (∼ 99.75% C.L.) statistical errors (pre-

diction intervals) are included to indicate the quality of the extrapolation or interpolation procedure. The

pQCD asymptotics [1] 〈ξn〉asy = 3/(n+ 1)(n+ 2) and the AdS/QCD results of Brodsky and de Téramond

(AdS/QCD, [9]) 〈ξn〉lfh = 2(n− 1)!!/(n+ 2)!!, and the IMA modified AdS/QCD results (IMA, [58, 60]) are

also provided for comparison.

NRQCD QCDSR LFQM DSE BLFQ* BLFQ AdS/QCD IMA pQCD

ηc

〈ξ2〉 0.075(11) 0.070(7) 0.0084+0.004
−0.007 0.10 0.096(13) 0.12 0.25 0.0058 0.20

〈ξ4〉 0.010(3) 0.012(2) 0.017+0.001
−0.003 0.032 0.019(2) 0.036 0.13 0.0084 0.086

〈ξ6〉 0.0017(7) 0.0032(9) 0.0047+0.0006
−0.0010 0.015 0.0036(27) 0.014 0.078 0.0018 0.047

〈ξ8〉 0.0059 −0.0005(46) 0.0068 0.055 0.00047 0.030

µ mc mc mc 2 GeV mc (ext.) 1.7mc ∞

J/ψ

〈ξ2〉 0.075(11) 0.070(7) 0.082+0.004
−0.006 0.039 0.096(20) 0.11 0.25 0.0058 0.20

〈ξ4〉 0.010(3) 0.012(2) 0.016+0.002
−0.002 0.0038 0.021(9) 0.030 0.13 0.0084 0.086

〈ξ6〉 0.0017(7) 0.0031(8) 0.0046+0.0005
−0.0010 7.3×10−4 0.0060(41) 0.011 0.078 0.0018 0.047

〈ξ8〉 3.3×10−4 0.0015(15) 0.0053 0.055 0.00047 0.030

µ mc mc mc 2 GeV mc (ext.) 1.7mc ∞

η′c

〈ξ2〉 0.22(14) 0.18+0.005
−0.07 0.157(9) 0.179

〈ξ4〉 0.085(110) 0.051+0.031
−0.031 0.043(7) 0.059

〈ξ6〉 0.039(77) 0.017+0.016
−0.014 0.013(3) 0.025

〈ξ6〉 0.0036(5) 0.012

µ mc mc mc mc (ext.) 1.7mc

ηb

〈ξ2〉 0.070 0.052(2) 0.071 0.25 0.20

〈ξ4〉 0.015 0.0081(61) 0.015 0.13 0.086

〈ξ6〉 0.0042 0.0020(48) 0.0051 0.078 0.047

〈ξ8〉 0.0013 0.0006(31) 0.0021 0.055 0.030

µ mb mb mb 2 GeV mb (int.) 1.6mb ∞

Υ

〈ξ2〉 0.014 0.047(17) 0.061 0.25 0.20

〈ξ4〉 4.3×10−4 0.0066(73) 0.012 0.13 0.086

〈ξ6〉 4.4× 10−5 0.0014(63) 0.0036 0.078 0.047

〈ξ8〉 3.7× 10−6 0.0004(30) 0.0014 0.055 0.030

µ mb mb mb 2 GeV mb (int.) 1.6mb ∞

η′b

〈ξ2〉 0.082(13) 0.10

〈ξ4〉 0.013(15) 0.022

〈ξ6〉 0.003(10) 0.0068

〈ξ8〉 0.0007(44) 0.0027

µ mb mb mb 2 GeV mb (int.) 1.6mb
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FIG. 17. PDFs of (pseudo-)scalar charmonia (left) and bottomonia (right) at Nmax = Lmax = 32. The

equivalent UV cutoffs are µcc̄ ≈ 5.5 GeV, µbb̄ ≈ 7.9 GeV.

Figure 17 shows PDFs of (pseudo-)scalar quarkonia. They exhibit distinctive features compared

with DAs. In particular, there is no dip at x = 1/2 in excited-state PDFs, in contrast to DAs.

There appear to be ripples on the downward slopes of PDFs for excited states as may be expected

from contributions of longitudinally excited basis functions.

The generalization of PDFs, known as generalized parton distributions (GPDs), unifying PDFs

and form factors, provide more insights into the system, and are directly related to experiments

[51, 64]. Wigner distributions are more general quantities unifying GPDs and the transverse

momentum distributions. In principle, all of them are accessible through LFWFs, at least in some

kinematical regime (e.g. [60]). For example, in the zero skewedness limit, the impact parameter

GPD q(x,~b⊥) of Burkardt [51] is related to the LFWFs simply by,

q(x,~b⊥) =
1

(1− x)2

∑
s,s̄

∣∣∣ψ̃ss̄(~b⊥/(1− x), x
)∣∣∣2. (

~b⊥ = (1− x)~r⊥
)

(45)

VI. SUMMARY AND DISCUSSIONS

We present a light-front model for quarkonium that incorporates light-front holographic QCD

and the one-gluon exchange interaction with a running coupling. We solve the model in the

Hamiltonian approach with a basis function expansion. We obtain mass spectroscopy and the

light-front wave functions. The spectroscopy agrees with the PDG data within 30–40 MeV of

r.m.s. mass deviation for states below the open flavor threshold. The overall quality improves the

previous work that employed a fixed strong coupling and a non-covariant counterterm. The wave

functions reveal rich structures, especially for excited states. Through analysis and comparison,
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we find these structures are consistent with the standard non-relativistic picture. From these wave

functions, we also compute the decay constants, r.m.s. radii, distribution amplitudes, and parton

distributions. Our results appear to be in reasonable agreement with those from other approaches

wherever available.

This work is an attempt to improve light-front holographic QCD approach by adding realistic

QCD interactions. In particular, we show that while rotational symmetry is broken due to trun-

cation, the extraction of angular momentum j is feasible and reliable [35, 38]. The Hamiltonian

formalism and the basis function approach enable us to access a wide range of states, including

radial and angular excited states extending over all known excited states and beyond. The obtained

light-front wave functions allow us to directly compute hadronic distributions such as distribution

amplitudes as well as hadronic observables. It should be emphasized that these attractive features

are not limited to the present effective model—they are the shared advantages within the light-front

Hamiltonian formalism [2].

We did not include self-energy in solving the heavy quarkonia. However, radiative corrections

may become important in evaluating some observables as we employ more realistic field-theory

dynamics. The calculation of the decay constants illustrates this particular challenge. As we move

to the light sector, the consistent inclusion of self-energies and renormalization issues may become

more acute if one wants to address additional phenomena within QCD such as chiral symmetry

breaking. Nevertheless, we believe the present work may serve as a substantial step for developing

an elaborate light-front model for hadrons as relativistic bound states.

While the advantages of the basis function expansion is obvious, it nevertheless requires more

investigation. The IR and UV scales are tied to the basis truncation parameter Nmax and Lmax.

Compared to the wave-equation approach, the UV asymptotics is not easy to analyze. We typically

rely on extrapolation of the basis parameters as developed in ab initio nuclear structure calculations

[65]. In BLFQ, the basis extrapolation requires further study. One investigation was conducted in

the context of strong coupling light-front QED and the authors found robust basis extrapolations

that are consistent with the wave-equation approach [14]. The coupling (α = 0.3), the transverse

basis as well as the one-photon exchange kernel used in Ref. [14] are very similar to the present

model.

Future developments should focus on the inclusion of higher Fock sectors and the non-

perturbative renormalization (see Ref. [10] for a recent review). In the top-down approach, a

systematic non-perturbative renormalization scheme should be developed and non-pertubative

dynamics has to be addressed using efficient numerical methods. Notable examples include the
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full basis light-front quantization (BLFQ, [5]), the renormalization group procedure for effective

particles (RGPEP, [66, 67]), the Fock sector dependent renormalization (FSDR, [68, 69]), and the

light-front coupled cluster method (LFCC, [70]). In the bottom-up approach, one is motivated to

design appropriate kernels that incorporate important physics while preserving the symmetries.

Notable physics goals for hadrons include the radiative corrections, asymptotic freedom and the

dynamical chiral symmetry breaking. Incorporating the running coupling is the first step. In both

approaches, the current model may serve as a first approximation. See also Refs. [71–75] for some

recent works bridging other approaches with the light-front approach.

The applicability of the current model is not restricted to heavy quarkonium. Extensions to

other meson and baryon systems, in principle, are straightforward, although new issues have to be

addressed in each of these systems.
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Appendix A: Light-Front Coordinates

We adopt natural units throughout the article: ~ = c = 1. We roughly follow the convention

of Ref. [14]. The light-front coordinates are defined as x = (x−, x+, x1, x2) ≡ (x−, x+, ~x⊥), where

x± = x0 ± x3. The inner product of two 4-vectors is defined as: a · b = 1
2a
−b+ + 1

2a
+b− − ~a⊥ ·~b⊥.

It should be noted that the determinant of the metric tensor is det g = −(1/4).

The Lorentz invariant phase space measure is∫
d4p

(2π)4
ϑ(p0)2πδ(p2 −m2) =

∫
d3p

(2π)32p0
ϑ(p0) =

∫
d2p⊥dp+

(2π)32p+
ϑ(p+), (m2 ≥ 0) (A1)
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where ϑ(z) is the unit step function. The one-particle state is normalized as: 〈p, j,mj |p′, j′,m′j〉 =

2p+ϑ(p+)(2π)3δ(p− p′)δjj′δmj ,m′j , where the Dirac delta is defined as δ3(p) ≡ δ(p+)δ2(~p⊥).

Appendix B: Few-Body Kinematics

We define boost-invariant momenta from the single-particle momenta {p+
i , ~pi⊥} as,

xi = p+
i /P

+, ~ki⊥ = ~pi⊥ − xi ~P⊥. (P+ =
∑
i

p+
i ,

~P⊥ =
∑
i

~pi⊥) (B1)

xi are the longitudinal light-front momentum fractions; and ki⊥ are the transverse relative mo-

menta. They satisfy: ∑
i

xi = 1,
∑
i

~ki⊥ = 0. (B2)

The n-body phase space integration measure factorizes:∏
i

∫
d2pi⊥dp+

i

(2π)32p+
i

ϑ(p+
i ) =

∫
d2P⊥dP+

(2π)32P+
ϑ(P+)

∏
i

∫ 1

0

dxi
2xi

∫
d2ki⊥
(2π)3

×2(2π)3δ
(∑

i

xi−1
)
δ2
(∑

i

~ki⊥

)
.

(B3)

The invariant mass squared of the n-body Fock state is:

s ≡ (p1 + p2 + · · · pn)2 =
∑
i

~k2
i⊥ +m2

i

xi
. (p2

i = m2
i ) (B4)

Appendix C: Spinors

The u, v spinors are defined as,

us(p) =
1

2
√
p+

(/p+m)γ+χs, vs(p) =
1

2
√
p+

(/p−m)γ+χ−s, (C1)

where χ+ = (1, 0, 0, 0)
ᵀ
, χ− = (0, 1, 0, 0)

ᵀ
; γ± = γ0 ± γ3; s = ± is the light-front helicity. The u, v

spinors defined above are polarized in the z-direction (or longitudinal direction):

Szu±(p+, ~p⊥ = 0) = ±1
2u±(p+, ~p⊥ = 0), Szv±(p+, ~p⊥ = 0) = ∓1

2v±(p+, ~p⊥ = 0). (C2)

Sz ≡ i
2γ

1γ2 and following the standard orthonormality

ūs(p)us′(p) = 2mδss′ , v̄s(p)vs′(p) = −2mδss′ , ūs(p)vs′(p) = v̄s(p)us′(p) = 0, (C3)

and completeness ∑
s=±

us(p)ūs(p) = /p+m,
∑
s=±

vs(p)v̄s(p) = /p−m. (C4)
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TABLE V. Spinor matrix elements ūs′1(p′1)γµus1(p1)v̄s2(p2)γµvs′2(p′2). mq (ma) is the mass of the quark

(antiquark). x = p+
1 /P

+ and x′ = p′+1 /P+ are longitudinal momentum fractions of the quark, ~p⊥ =

~p1⊥ − x~P⊥ and ~p′⊥ = ~p′1⊥ − x′ ~P⊥ are relative transverse momenta. For convenience, we use the complex

representation for the transverse vectors, viz, p , px + ipy and p∗ , px − ipy.

s1 s2 s′1 s′2
ūs′1

(p′1)γµus1 (p1)v̄s2 (p2)γµvs′2
(p′2)

2
√
x(1− x)x′(1− x′)

+ + + + m2
q

1
xx′ +m2

a
1

(1−x)(1−x′) + pp′∗

x(1−x)x′(1−x′)

− − − − m2
q

1
xx′ +m2

a
1

(1−x)(1−x′) + p∗p′

x(1−x)x′(1−x′)

+ − + − m2
q

1
xx′ +m2

a
1

(1−x)(1−x′) +
(
p′∗

x′ + p∗

1−x

)(
p
x

+ p′

1−x′

)
− + − + m2

q
1
xx′ +m2

a
1

(1−x)(1−x′) +
(
p∗

x
+ p′∗

1−x′

)(
p′

x′ + p
1−x

)
+ + + − ma

x′

(1−x)(1−x′)

(
p′

x′ −
p
x

)
− − − + ma

x′

(1−x)(1−x′)

(
p∗

x
− p′∗

x′

)
− + − − ma

x
(1−x)(1−x′)

(
p′

x′ −
p
x

)
+ − + + ma

x
(1−x)(1−x′)

(
p∗

x
− p′∗

x′

)
+ + − + mq

1−x′
xx′

(
p

1−x −
p′

1−x′

)
− − + − mq

1−x′
xx′

(
p′∗

1−x′ −
p∗

1−x

)
+ − − − mq

1−x
xx′

(
p

1−x −
p′

1−x′

)
− + + + mq

1−x
xx′

(
p′∗

1−x′ −
p∗

1−x

)
+ − − +

−mqma (x−x′)2
x(1−x)x′(1−x′)− + + −

+ + − −
0

− − + +

Here are some useful identities:

ūs′(p
′)γ+us(p) = 2

√
p+p′+δss′ , ūs′(p

′)γ+γ5us(p) = 2
√
p+p′+δss′sign(s). (C5)

The spinor matrix elements for the one-gluon exchange are collected in Table V (see also Table

I of Ref. [14]).

Appendix D: Polarization Vectors

a. gauge bosons The polarization vector of a gauge boson in light-cone gauge A+ = 0 is:

εµλ(k) = (ε−λ , ε
+
λ , ~ελ⊥) ,

(2~ελ⊥ · ~k⊥
k+

, 0,~ελ⊥

)
, (λ = ±1) (D1)

where ~ε±⊥ = 1√
2
(−1,∓i). The polarization vector defined here satisfies:

• kµεµλ(k) = 0;

• εµλ(k)ε∗λ′µ(k) = −δλ,λ′ ;
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• helicity sum: ∑
λ=±

εµ∗λ (k)ενλ(k) = −gµν +
nµkν + nνkµ

n · k
− k2

(n · k)2
nµnν . (D2)

Here n = (1, 0, 0,−1) is a light-like 4-vector (nµn
µ = 0) perpendicular to the light front.

b. vector bosons The polarization vector for the a vector boson:

eµλ(k) =
(
e−λ (k), e+

λ (k), ~eλ⊥(k)
)
,


(~k2⊥−m2

mk+
, k

+

m ,
~k⊥
m

)
, λ = 0(

2~ελ⊥·~k⊥
k+

, 0,~ελ⊥
)
, λ = ±1

(D3)

where m is the mass of the vector boson. The polarization vector defined here satisfies:

• kµeµλ(k) = 0;

• eµλ(k)e∗λ′µ(k) = −δλ,λ′ ;

• spin sum: ∑
λ=0,±1

eµ∗λ (k)eνλ(k) = −gµν +
kµkν

k2
. (D4)
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