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We extend the CGC approach to calculation of the double inclusive gluon production by including
high density effect in the CGC wave function of the projectile (proton). Our main result is that
these effects lead to the appearance of odd harmonics in the two particle correlation C(k, p). We
find that in the high momentum limit, |k|, |p| � Qs, this results in a positive c1{2}. Additionally
when the magnitudes of the two momenta are approximately equal, |k|/|p| ≈ 1, the density effects
also generate a positive third harmonic c3{2}, which translates into a non-vanishing v3 when the
momenta of the trigger and associated particle are in the same momentum bin. The sign of c3{2}
becomes negative when |k|/|p| > 1.1 suggesting an interesting experimental signature.

I. INTRODUCTION.

Currently one of the outstanding questions of strong interactions is the origin of long range rapidity correlations
observed in p-p and p-Pb collisions at LHC. Starting with the observation of the so-called ridge correlations in high
multiplicity p-p collisions by CMS [1], this phenomenon generated a lot of interest. Subsequent observation of the same
effect in p-Pb collisions by all three big experiments at LHC sharpened the questions even further [2–8]. In particular
the observation that the triangular “flow” coefficient v3 is practically identical in p-Pb and Pb-Pb collisions at the
same total multiplicity strongly suggests the origin of the correlations is due to some collective or quasi-collective
behavior. The recent experimental results are even more surprising [9, 10]; with an improved subtraction of hard
component, the ridge type correlations are now seen in the minimal bias p-p data, and even in events with lower than
average multiplicity.

One possibility is that the collectivity is the result of strong final state interactions, as is suggested by good
hydrodynamics fits to the data [11–14]. This is surprising in view of the fact that the correlations are observed up
to relatively high transverse momenta k ∼ 10 GeV, and also in events where the number of produced particles is
small. The transport model results presented in Ref. [15] show that final state interactions even with modest parton-
parton cross section describe well some aspects of the data. Another possibility is that the correlated features of
production are due to preexisting correlations in the wave function of the colliding hadrons. This last possibility has
been intensively studied during the last several years in the framework of the Color Glass Condensate [16–23].

The CGC-based calculations have successfully described the “ridge” data [21, 22]. Nevertheless the CGC approach
faces serious challenges in describing other aspects of data. Perhaps the most challenging aspect is description of
multi-particle correlations, in particular v2{4} 1. The mechanism utilized in the numerical work of Refs. [21, 22] is
not capable of producing this quantity as has been shown in Refs. [25, 26]. This is currently an open question, and
we do not have anything to add to this part of discussion.

Another enduring problem of the CGC-based approaches to correlations has been a non-vanishing value of the
triangular “flow” coefficient v3 clearly observed in the data. All the approaches in Refs. [16–23] predict that the
double inclusive production is symmetric under reversal of the direction of one of the transverse momenta 2

σ(k, p) = σ(k,−p) (1)

1 Here we follow the notation of Ref. [24]:

cn{2} ≡ v2n{2} = 〈exp [in(φ1 − φ2)]〉,

cn{4} ≡ −v4n{4} = 〈exp [in(φ1 + φ2 − φ3 − φ4)]〉 − 2〈exp [in(φ1 − φ3)]〉〈exp [in(φ2 − φ4)]〉.

2 Here and thereafter, in order to simplify the notation, we denote the transverse two-dimensional vectors by k, that is k ≡ ~k⊥ and
|k| ≡ |~k⊥|. For the scalar and the cross products we use k · q ≡ kiqi and k × q = εijkiqj correspondingly, where 1 ≤ i, j ≤ 2.
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even on the configuration-by-configuration basis. Such symmetry precludes existence of odd harmonics. Although
this is not a fundamental symmetry of QCD in any way, it proved to be very stubborn and difficult to avoid in CGC
without including final state interactions. It was recently shown analytically in Ref. [27] that odd harmonics are
indeed generated in the double inclusive production when classical evolution of the Yang-Mills fields in the final state
is accounted for. This conclusion is consistent with earlier numerical work [28], although in the latter case there is
some uncertainty as to whether the results reflect evolution to asymptotically large times. 3

The purpose of the present paper is to point out that in fact final state interactions are not essential to generate
odd harmonics within the CGC approach. Our central point is that all the CGC-based calculations so far have used
(some implicitly) the form of the CGC wave function which is appropriate for description of dilute projectile only.
This “dilute CGC” wave function leads to the accidental symmetry alluded to earlier. Corrections to this dilute limit
on the wave function level have been calculated a while ago [32, 33]. In particular it was shown in Refs. [32, 33] that
these corrections are essential to reproduce the JIMWLK evolution equation (see Refs. [34–38] and [39–41]) when the
evolution is generated by boosting the dense hadron. In the present paper we use this improved CGC wave function
to calculate the double inclusive gluon distribution.

We were inspired to consider this departure from the commonly employed dilute CGC state by an old work by
Kharzeev, Levin and McLerran (KLM) [42]. The idea suggested in Ref. [42] is that a wave function of a dense object
can naturally incorporate nontrivial correlations. Consider a fluctuation in such a wave function which contains a high
p parton. The transverse momentum of this parton has to be balanced in this component of a wave function. In a dilute
system it is most likely to be balanced by another hard parton with momentum −p. However in a dense environment it
is more likely that the balancing transverse momentum is shared by several semi hard partons. Although the original
suggestion in Ref. [42] was that the transverse momentum is distributed between semi hard partons at different
rapidities, the extent of this rapidity spread may be not too large. The momentum distribution in such a component
of the wave function looks somewhat like a directed flow, with the direction defined by the momentum of the hard
fluctuation. If the number of the balancing semi hard partons is large enough the two particle correlation function
should exhibit a maximum for same sign transverse momenta. This picture suggests a positive c1{2}, and possibly a
non-vanishing c3{2} in this type of components of a dense wave function. In fact with “directional flow” of the kind
described above one may expect a non-vanishing contribution to c2{4} as well, although this effect will be presumably
smaller. Of course it is a quantitative question whether these signatures survive the averaging over all components of
the wave function, and later the production process, and how large the net effect is.

In any case, it appears that the dilute CGC wave function does not encode the KLM-type correlations. It is not
all that surprising, given that the effect requires the partonic system to be dense enough. Hence the motivation to
consider high density corrections to the dilute CGC limit.

We find that when the improved wave function is used to calculate the double inclusive gluon production the
accidental symmetry present in the dilute limit disappears. This leads to appearance of the odd harmonics in the
two particle correlation function. We find (as in Ref. [27]) that the odd harmonics (c1{2} and c3{2}) are suppressed
relative to the even (e.g. c2{2}) parametrically by a factor of αs. This is roughly consistent with the experimentally
observed hierarchy between v2 and v3. We calculate c1{2} and c3{2} in the limit of high transverse momenta.

The paper is structured as follows. In Sec. 2 we describe the improved CGC wave function, and calculate the
antisymmetric (in (k, p) → (k,−p)) piece in the gluon pair density in the wave function. We show that this piece
does not vanish. The sign of the first harmonic is positive, while the sign of the third harmonic is negative. In
Sec. 3 we calculate the double inclusive gluon production for eikonal scattering on a target. We then expand the
general expressions in the limit of large transverse momentum of produced particles. Interestingly, we find that to
leading power in Q2

s/p
2 the antisymmetric part of the correlation function is saturated by a charge conjugation odd

“condensate”, i.e. the Odderon. Since the contribution of the Odderon is expected to be subleading at high energy,
we calculate the next order in the expansion, and estimate it using a simple model for target averaging. We find that
c1{2} is positive, while c3{2} is negative when |k|/|p| > 1.1 and |p|/|k| > 1.1, but is positive for 1.1 > |k|/|p| > 1/1.1.

We close by discussing our results and their implications in Sec. 4.

3 We mention two recent papers [29, 30], which purportedly obtain nonvanishing v3 without invoking final state interactions. We failed to
understand the theoretical framework of Ref. [29] and thus cannot comment on it. On the other hand Ref. [30] has focused on production
of identical gluons (same color and same polarization). It thus did not include some of the graphs which generally contribute to total
double inclusive production. In particular it does not include a subset of graphs with the amplitude in a color singlet state near the
produced gluon rapidity (which appear as diffractive graphs within the rapidity bin that includes the two observed gluons, see Ref. [31]).
It is well known that within the glasma graph calculations these “diffractive” contributions generate a correlation at ∆φ = π identical
in strength to that generated by “non-diffractive” graphs at ∆φ = 0, see for example Ref. [31]. Thus in the framework of the glasma
graphs inclusion of these additional contributions renders all odd harmonics to vanish.
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II. GLUON PAIR DENSITY IN THE CGC WAVE FUNCTION.

A. The CGC wave function.

We start with discussing the wave function of the vacuum of the soft gluons in the background of strong valence
color charge density.

The CGC calculations so far have relied on a simplified version of this wave function valid in the situation when the
color charge density is weak and perturbative. In this regime one can diagonalize the QCD Hamiltonian pertubatively
with the result that the vacuum of the soft modes is a coherent state of the form [43]

|CGC〉dilute = C|0〉 , (2)

where C is the displacement operator defined as

C = ei
√
2
∫
k
bαi(−k)[a†αi(k) + aαi(−k)]. (3)

Here |0〉 is the light cone vacuum of the soft modes, and the soft gluon creation and annihilation operators represent
the rapidity independent (rapidity averaged) mode of the soft gluon field over the soft rapidity interval, that is

aαi(k) ≡ 1√
Y

∫
dη

2π
aαi(η, k) . (4)

The Weizsäcker-Williams field bαi
4 is generated by valence color charges of a hadronic projectile

∂ibαi(x) = ρα(x). (5)

The field is two-dimensional pure-gauge:

bαi(x) = −1

g
fαβδU

+
βγ(x)∂iUγδ(x),

where U is a SU(3) element in the adjoint representation.
It has been known for a while that Eq. (2) is not an appropriate wave function for a dense system. In particular it

was shown by direct calculation in Refs. [32, 33] that in the soft gluon wave function the coherent state as in Eq. (2)
is accompanied by a Gaussian factor, so that the state is a coherent Bogoliubov (squeezed) state. The squeezing is
crucial to reproduce the JIMWLK evolution equation of a dense object at high energy, see Refs. [34–38] and [39–41].

The original presentation in Refs. [32, 33] is quite complicated. It involves calculation of the wave function of all soft
gluon rapidity modes in the soft rapidity interval. On the other hand it is clear that only the rapidity independent
mode is large, and it is this mode that is responsible for high energy evolution. This is obvious in Eq. (2). One
therefore expects that it should be possible to “integrate out” all the modes of the gluon field perturbatively except
for the rapidity independent one.

Such a first principle calculation has not been done. However there is a simplified way to infer the reduced wave
function of the rapidity integrated gluon mode using the results of Refs. [32, 33]. The important point is that the
general wave function derived in Refs. [32, 33] is Gaussian and integrating over part of the field modes is bound to
lead to a Gaussian shape of the reduced wave function as well. Therefore in order to find the reduced wave function
we ask what is the Gaussian wave function that depends only on the rapidity integrated field and which reproduces
the JIMWLK evolution equation. The answer is that the following reduced wave function fits the bill 5

ΨCGC[φ] = 〈φ|Ω|0〉 = ei2
∫
k
bαi(−k)φαi(k)〈φ|B〉 , (6)

where Ω = CB is a unitary operator and for convenience we separately defined the Gaussian state |B〉 as 6

|B〉 ≡ B|0〉; 〈φ|B〉 = N e− 1
2

∫
k,p

B−1
αβij(k,p)φαi(k)φβj(p) . (7)

4 The Fourier transform of the classical field is defined as bαi (k) =
∫
d2xe−ikxbαi (x).

5 We reiterate that to tie loose ends it would be desirable to derive this wave function directly from the results of Refs. [32, 33] by
integrating out the rapidity dependent modes of the soft gluon field. In the present paper we will not undertake this endeavour but will
rather content ourselves with the simplified argument given above.

6 Using the relation (16) one can recognise 〈φ|C|0〉 in the prefactor in Eq. (6).
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Here the field φ is defined as

φiα(k) =
1√
2

(
a†iα(k) + aiα(−k)

)
, (8)

The operator B is a unitary operator, exponential of a quadratic function of the creation and annihilation operators
a(k) and a†(k). We do not write it out explicitly as the knowledge of the wave function in field space is sufficient for
our purposes.

The constant N is the normalization factor and the operator B is given by

B = (1− l− L)2 = 1− l− L+ [l, L]+ , (9)

where the longitudinal projector in coordinate space is

lαβij (x, y) ≡ δαβ ∂i∂j
∂2

(x, y) (10)

and

Lαβij (x, y) = Uαγ(x)
∂i∂j
∂2

(x, y)U† γβ(y) = Dαγ
i

[
1

D2

]γλ
Dλβ
j . (11)

Here the covariant derivative is given by

Dαβ
i (x) = δαβ∂i − gfαβγbγi (x) . (12)

Note that the CGC state in Eq. (6) is not specified in terms of the light cone vacuum ket , but rather the wave
function is written in the “field representation”, meaning that it is a function of the field φ(k). The calculation of
various expectation values is performed by a functional integration over the field φ. In the weak field limit, where the
eikonal factor is trivial U(x) = 1, we have B(x−y) = δ2(x−y), or in momentum space B(k, p) = (2π)2δ2(k+p), and
the Gaussian state |B〉 in Eq. (6) becomes the light cone vacuum state, see also Eq. (2). In the dense regime b ∼ 1/g
and the correction due to a nontrivial squeezing parameter is an order one effect.

B. The pair density

Our first task is to see what is the effect of the nontrivial squeezing on the gluon pair density in the CGC wave
function.

The single gluon number density in the CGC wave function is given by the following formal expression

f(k) = N
∫
DρWP[ρ] fρ(k) = N

∫
DρWP[ρ] 〈CGC|a†iα(k)aiα(k)|CGC〉 , (13)

where N is the normalisation factor and we explicitly show the ensemble average with a weight functional WP[ρ]
characterising the distribution of the projectile color sources, ρ.

Similarly, we define the gluon pair density as

f(k, p) = N
∫
DρWP[ρ] fρ(k, p) = N

∫
DρWP[ρ] 〈CGC|a†iα(k)a†jβ(p)aiα(k)ajβ(p)|CGC〉 . (14)

Our normalisation of creation and annihilation operators is such that

[aiα(k), a†jβ(p)] = (2π)2δijδαβδ
2(k − p) . (15)

We define the field variable and its conjugate momentum

φiα(k) =
1√
2

(
a†iα(k) + aiα(−k)

)
,

πiα(k) =
i√
2

(
a†iα(k)− aiα(−k)

)
, (16)
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so that

[φiα(k), πjβ(p)] = i(2π)2δijδαβδ
2(k + p) (17)

and the inverse

aiα(k) =
1√
2

(φiα(−k) + iπiα(−k)) ,

a†iα(k) =
1√
2

(φiα(k)− iπiα(k)) . (18)

To calculate the expectation values in Eq. (14) we use the following properties of the displacement operator (3):

C†aαi(q)C = aαi(q) + i
√

2bαi(−q),
C†a†αi(q)C = a†αi(q)− i

√
2bαi(q). (19)

The expectation values in the Gaussian state |B〉 are

〈φiα(k)φjβ(k′)〉B =
1

2
Bαβij(k, k

′),

〈φiα(k)πjβ(k′)〉B = −i〈φiα(k)
δ

δφjβ(−k′) 〉 =
i

2
(2π)2δijδαβδ

2(k + k′),

〈πiα(k)φjβ(k′)〉B = 〈φjβ(k′)πiα(k)〉B − 〈[φjβ(k′), πiα(k)]〉 = − i
2

(2π)2δijδαβδ
2(k + k′),

〈πiα(k)πjβ(k′)〉B =
1

2
B−1αβij(k, k

′). (20)

In Eq. (14) we will keep only terms of order 1/g4 and 1/g2, neglecting all other subleading terms

fρ(k, p) ≈ 4biα(−k)biα(k)bjβ(−p)bjβ(p) + 2
(
biα(−k)biα(k)〈a†jβ(p)ajβ(p)〉B + bjβ(−p)bjβ(p)〈a†iα(k)aiα(k)〉B

)
+ 2

(
biα(k)bjβ(−p)〈a†jβ(p)aiα(k)〉B + bjβ(p)biα(−k)〈a†iα(k)ajβ(p)〉B

)
− 2

(
biα(k)bjβ(p)〈aiα(k)ajβ(p)〉B + biα(−k)bjβ(−p)〈a†iα(k)a†jβ(p)〉B

)
. (21)

Recall that we are interested in the odd moments of the correlation function. The only piece that can give a
non-vanishing contribution to this quantity is:

f̃ρ(k, p) = 2
(
biα(k)bjβ(−p)〈a†jβ(p)aiα(k)〉B + bjβ(p)biα(−k)〈a†iα(k)ajβ(p)〉B

)
− 2

(
biα(k)bjβ(p)〈aiα(k)ajβ(p)〉B + biα(−k)bjβ(−p)〈a†iα(k)a†jβ(p)〉B

)
=

1

2
biα(k)

[
Bαβij(−k, p) +B−1αβij(−k, p)− 2(2π)2δijδαβδ

2(p− k)
]
bjβ(−p)

+
1

2
biα(−k)

[
Bαβij(k,−p) +B−1αβij(k,−p)− 2(2π)2δijδαβδ

2(p− k)
]
bjβ(p)

+
1

2
biα(k)

[
−Bαβij(−k,−p) +B−1αβij(−k,−p)

]
bjβ(p)

+
1

2
biα(−k)

[
−Bαβij(k, p) +B−1αβij(k, p)

]
bjβ(−p), (22)

where fρ(k, p) = f̃ρ(k, p) + {explicitly even part}. Note that the purely “classical” term - the first term in Eq. (21) is
of order 1/g4, the antisymmetric piece Eq. (22) is of order 1/g2. Since the classical term contributes to v2 (see e.g.
Ref. [18]), we may expect the ratio v3/v2 to be of order αs, which is phenomenologically reasonable.

It is easy to see that terms with B−1 are even under p→ −p. The potential contribution to odd cumulants will be
given by the asymmetric part of f̃ , i.e.

1

2

(
f̃ρ(k, p)− f̃ρ(k,−p)

)
=

1

2

(
b(k)B̃(−k, p)b(−p) + b(−k)B̃(k,−p)b(p)

)
− 1

2

(
b(k)B̃(−k,−p)b(p) + b(−k)B̃(k, p)b(−p)

)
, (23)

where the matrix convolution is implied and B̃αβij(k, p) = Bαβij(k, p)− (2π)2δijδαβδ
2(p+ k).

Equation (23) is fairly complicated, as the squeezing parameter B is a non-local function of the classical field b. To
get some insight into this expression we will evaluate it in the limit of large k and p.
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C. The high momentum limit.

Henceforth we will assume that the color charge density is averaged over using the McLerran-Venugopalan (MV)
model [44, 45] with the width µ, that is

WP[ρ] = N̄ exp

{
−1

2

∫
k

ρa(k)ρa(−k)

µ2(k)

}
. (24)

where N̄ is a normalization factor ensuring the normalization of WP as the probability density distribution. For the
most part we take µ2(k) = µ2, but whenever necessary we will assume that µ2(k)k2/Q2

s→0 → 0, which implements the
global color neutrality constraint on the MV ensemble.

The high momentum limit then corresponds to the limit µ2/k2 � 1 and µ2/p2 � 1. Therefore we need to expand
our expression to leading order in µ2.

First we find the leading contribution to B̃(k, p) in the expansion in powers of ρ. We start with the key ingredients
for the operator L. The square of the covariant derivative is given by[

D2
]αβ

= δαβ∂2 − gfαβγ [∂i, b
γ
i ]+ + g2fαλγfλβγ

′
bγi b

γ′

i = δαβ∂2 − g[∂i, b
αβ
i ]+ + g2bαγi bγβi , (25)

where we introduced the adjoint representation for the field bi: b
αβ
i ≡ fαβγbγi . To second order in the field we get

1

D2
≈
[
1 + g

1

∂2
[∂i, bi]+ − g2

1

∂2
b2 + g2

1

∂2
[∂i, bi]+

1

∂2
[∂i, bi]+

]
1

∂2
. (26)

Thus

B̃ij = g2
{
−bi

1

∂2
bj − ∂i

1

∂2
b2

1

∂2
∂j +

∂i
∂2

(~∂ ·~b) 1

∂2
bj + bi

1

∂2
(~b · ~∂)

∂j
∂2

+
∂i
∂2

[
(~b · ~∂)

1

∂2
(~∂ ·~b)− (~∂ ·~b) 1

∂2
(~b · ~∂)

]
∂j
∂2

}
.

(27)
Note that there are no linear terms in bi. In momentum space this gives

B̃ij(k, p) ≡
∫
x,y

e−ikxB̃ij(x, y)e−ipy = g2
∫
q

bn(k − q)
[
tin(k)

1

q2
tmj(p)−

ki
k2

tnm(q)
pj
p2

]
bm(p+ q), (28)

where the transverse projector in momentum space reads

tij(q) = δij −
qiqj
q2

. (29)

We also have to expand the classical field b in powers of ρ. To leading order we have

bi(k) = kic(k) (30)

with c(k) ∼ ρ(k)/k2. Then

B̃ij(k, p) = −g2
∫
q

c(k − q) [tin(k)lnm(q)tmj(p) + lin(k)tnm(q)ljm(p)] c(p+ q), (31)

where the longitudinal projector of Eq. (10) in momentum space

lij(q) =
qiqj
q2

. (32)

Note that under the approximation (30), we will be interested in the combination kiB̃ij(k, p)pj , to which the first
term of Eq. (31) does not contribute:

kiB̃ij(k, p)pj = −g2
∫
q

c(k − q) [kntnm(q)pm] c(p+ q). (33)
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Therefore we obtain the following for the antisymmetric part

1

2

(
f̃ρ(k, p)− f̃ρ(k,−p)

)
= (34)

g2

[
1

2
cα(k)

∫
q

cαγ(−k − q) [kntnm(q)pm] cγβ(p+ q)cβ(−p)

+
1

2
cα(−k)

∫
q

cαγ(k − q) [kntnm(q)pm] cγβ(−p+ q)cβ(p)

+
1

2
cα(k)

∫
q

cαγ(−k − q) [kntnm(q)pm] cγβ(−p+ q)cβ(p)

+
1

2
cα(−k)

∫
q

cαγ(k − q) [kntnm(q)pm] cγβ(p+ q)cβ(−p)
]
.

Here to avoid confusion the color indices were explicitly shown. As before cαβ = fαβγcγ .
The above expression does not vanish configuration-by-configuration in contrast to what one would get by using

Eq. (1) of the dilute limit. This is encouraging enough to continue by computing an average with respect to the
projectile field using the Gaussian ensemble

〈cα(k)cβ(k′)〉ρ = −δαβ(2π)2δ2(k + k′)γ(k), (35)

where γ is defined by usual

〈 1

−∂2 ρ
α(x)

1

−∂2 ρ
β(y)〉ρ = δαβγ(x− y). (36)

In the MV model, we have γ(k) = µ2

k4 .
We finally get

1

2
〈f̃ρ(k, p)− f̃ρ(k,−p)〉ρ = −g2Nc(N2

c − 1)(2π)2S⊥γ(k)

∫
q

γ(q)pntnm(q − p)pm
(
δ2(p− k)− δ2(p+ k)

)
+ g2Nc(N

2
c − 1)S⊥γ(k)γ(p)kn [tnm(k − p) + tnm(k + p)] pm, (37)

where S⊥ is the transverse area of the projectile.
The first term describes the back-to-back component of the gluon correlation at exactly the same momentum. It

has to be treated as the “hard” component to be subtracted from the correlation and does not represent any particular
interest for the current study. The combination appearing in the last term can be simplified

kn [tnm(k − p) + tnm(k + p)] pm =
4k · p

|k − p|2|k + p|2 (k × p)2 =
4k · p

|k − p|2|k + p|2
(
k2p2 − (k · p)2

)
. (38)

Note that for k = p

kn [tnm(k − p) + tnm(k + p)] pm|p=k = k2 cos(φ), (39)

where φ is the angle between k and p.
In general we get

kn [tnm(k − p) + tnm(k + p)] pm =
4k3p3 cos(φ) sin2(φ)

k4 + p4 − 2k2p2 cos(2φ)
= k2C(z, φ), (40)

where

C(z, φ) =
2z3 sin(φ) sin(2φ)

z4 − 2z2 cos(2φ) + 1
; z ≡ |p||k| . (41)

We plot this function in Fig. 2.
As a proxy to c3{2}, our goal is to evaluate∫

dφei3φC(z, φ) =
z3

2i

∮
|ζ|=1

dζ
ζ(1 + ζ2)(1− ζ2)2

z2ζ4 − (1 + z4)ζ2 + z2
, (42)
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where ζ = eiφ was introduced. The poles are located at ±z and ±1/z. Therefore for z < 1,∫
dφei3φf(z, φ) = πz3(z2 − 1) (43)

and for z > 1 ∫
dφei3φf(z, φ) = π

1− z2
z3

. (44)

We plot the third harmonic in Fig. 3. We also plot the first harmonic c1{2}, which can be readily evaluated. We will
apply (but not explicitly detail) a similar procedure for the case of particle production in the next section.

We conclude that in the high momentum limit, the first correction to the dilute limit introduces a non-trivial odd
azimuthal anisotropy. The first harmonic is positive, but the third harmonic is negative. Since the flow coefficient v3
is defined as v3 =

√
c3{2}, our calculation does not yield a real v3.

We note however, that the calculation in this section is not a proper calculation of particle production, but rather
of correlations in the projectile wave function. In the next section we perform a more appropriate calculation, namely
that of particle production.

III. CORRELATIONS IN PARTICLE PRODUCTION.

In this section we calculate the double inclusive production in scattering of the CGC state Eq. (6).
Like in the previous section we will be forced into a high momentum approximation to be able to extract some

usable information from the general formulae. For the moment we start with the formal derivation.

A. The double inclusive production.

According to Refs. [46, 47] the single inclusive gluon production is given by

d3N

d2kdη
=

∫
DρWP[ρ]

∫
DαTWT[αT] 〈0|Ω†Ŝ†Ω

[
a†(k)a(k)

]
Ω†ŜΩ|0〉. (45)

and similarly for the double inclusive

d6N

d2kd2pdηkdηp
=

∫
DρWP[ρ]

∫
DαTWT[α] 〈0|Ω†Ŝ†Ω

[
a†(k)a†(p)a(p)a(k)

]
Ω†ŜΩ|0〉. (46)

Here WT[αT] is a probability density distribution for the target color field. We remind that Ω is the unitary operator

which diagonalizes the QCD Hamiltonian (6), and Ŝ is the second-quantized eikonal S-matrix

Ŝ = P exp

{
i

∫
d2xρ̂a(x)α̂T(x)

}
. (47)

Since Ω(φ, π) is a Gaussian operator, we can find the transformation of the fields and momenta under the action of Ω.
We read off these expressions from the expectation values of quadratic operators Eq. (20) calculated in the previous
section 7

Ωφ(k)Ω† = (1− l− L)−1(t− l)(k, p)φ(−p),
Ωπ(k)Ω† = (1− l− L)(t− l)(k, p){π(−p)− 2b(−p)}. (48)

7 In the following we discard the terms involving commutators of the field b which can be calculated at relevant order[32, 33]. In principle
these terms are not suppressed by αs relative to the terms we keep. However they correspond to processes where a gluon rescatters several
times on the same valence parton, which do not seem to be physically important. Including these terms would be very cumbersome and
not particularly illuminating.
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Let us simplify our notations by using the index i cumulatively for the rotational, color indices and spatial coordinate,
and by defining

Γ ≡ (t− l)(1− l− L); b̄ ≡ b[Sρ]; L̄ = L[b̄] . (49)

All the matrix products in the following expressions are understood in coordinate space. Transition to momentum
space is done eventually by the Fourier transform. We then have

CbiC† = bi; CΓ[b]C† = Γ[b];

C†biC = bi; C†Γ[b]C = Γ[b];

CπiC† = πi − 2bi; C†πiC = πi + 2bi; (50)

B†φiB = Γijφj ; B†πiB = Γ−1Tij πj ; BφiB† = Γ−1ij φj ; BπiB† = ΓTijπj ;

and finally

Ω†Ŝ†ΩφiΩ
†ŜΩ = Γ̄−1ij SjkΓklφl , (51)

Ω†Ŝ†ΩπiΩ
†ŜΩ = 2Γ̄Tij(Sjkbk − b̄j) + Γ̄TijSjkΓ−1Tkl πl ,

where Γ̄[b] ≡ Γ[b̄] . Only the following operators will be of relevance

A def
= Γ̄−1SΓ ,

B def
= Γ̄TSΓ−1T ,

C def
= 2Γ̄T (Sb− b̄) . (52)

More explicitly in momentum space

Aadim(k, l)
def
= Γ̄−1 abij (k, p)Sbc(q − p)Γcdjm(−q, l) ,

Badim(k, l)
def
= Γ̄Tabij (k, p)Sbc(q − p)Γ−1T cdjm (−q, l) ,

Cai (k)
def
= 2Γ̄Tabij (k, p)[Sbc(q − p)bcj(−q)− b̄bj(−p)] (53)

with

Sab(p− q) =

∫
x

Sab(x)e−i(p−q)x . (54)

For the defined combinations the following property obviously holds

ABT = 1. (55)

Using this definitions we can find the transformation of the creation/annihilation operators under the unitary

operator Ω†ŜΩ:

(Ω†ŜΩ)†a(k)(Ω†ŜΩ) =
1√
2

((Aφ)(−k) + i(Bπ)(−k) + iC(−k)) , (56)

(Ω†ŜΩ)†a†(k)(Ω†ŜΩ) =
1√
2

((Aφ)(k)− i(Bπ)(k)− iC(k)) . (57)

Now it is easy to find the expression for the single inclusive gluon production, see Eq. (45),

〈0|(Ω†ŜΩ)†a†(k)a(k)(Ω†ŜΩ)|0〉 =

1

4

{
trL,C[A(k, p)AT (−k,−p)] + trL,C[B(k, p)BT (−k,−p)]− trL,C[A(k, p)BT (−k,−p)]

− trL,C[B(k, p)AT (−k,−p)]
}

+
1

2
C(k)C(−k)

=
1

4

{
trL,C[A(k, p)AT (−k,−p)] + trL,C[B(k, p)BT (−k,−p)]

}
− 1

2
CAδ(0) +

1

2
C(k)C(−k) , (58)
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where trL,C represents trace over both color and Lorentz indices. In the above the transposition refers only to color
and Lorentz indices. The result is obviously symmetric under k → −k without any reference to averaging over the
projectile or target fields. The C(k)C(−k) agrees with the corresponding expression in Ref. [48]. Note that although
the structure of this term is that of the production off a classical field, the “field” C is not of entirely classical origin.
It is affected by the Bogoliubov part of the CGC vacuum wave function through the factor Γ̄ in Eq. (52). In the high
density limit, ρ ∼ 1/g, this is an order one correction to the classical result.

Now consider the double inclusive production (46) before averaging with respect to projectile/target configurations

F (k, p) ≡ 〈0|(Ω†ŜΩ)†a†(k)a†(p)a(p)a(k)(Ω†ŜΩ)|0〉. (59)

By inserting 1 = (Ω†ŜΩ)(Ω†ŜΩ)† after each creation and anihilation operator and using Eqs. (56) and (57) the
expectation value can be readily found.

The leading term is C4. As the analogous term in the single gluon inclusive production, this term is affected at
O(1) by the Bogoliubov component of the CGC wave function. Without the Bogoliubov correction this is just the
“glasma graph” term frequently discussed in the literature. Thus we see that the high density corrections affect the
glasma graph term at leading order.

However this term is symmetric under k → −k. As before we are interested only in extracting the piece that is
antisymmetric under this transformation. We will systematically neglect all symmetric terms in our analysis. We
thus keep only the NLO (in b) term only. For this operation instead of the equality sign we will use “|=”.

1

2
(F (k, p)− F (k,−p)) |= C(k)

2

AAT (−k, p)− (2π)2δ2(p− k)

2

C(−p)
2

+
C(−k)

2

AAT (k,−p)− (2π)2δ2(p− k)

2

C(p)

2

− C(k)

2

AAT (−k,−p)− (2π)2δ2(p+ k)

2

C(p)

2

− C(−k)

2

AAT (k, p)− (2π)2δ2(p+ k)

2

C(−p)
2

. (60)

Note that this term is entirely absent from the dilute limit of the glasma graph contribution. In the dense limit
discussed here it is nonvanishing, albeit suppressed with respect to the leading symmetric term by a single power of
αs.

B. High momentum expansion.

We now expand this expression in µ2/p2. First, expanding to order b2 (see Appendix B for details) we get:[
AAT − 1

]ab
ij

(k, p) ≈ (61)

g2
∫
q,l,m

[ [
facdSde(k − l)ρe(l − q)

] [
f cbfSfg(p−m)ρg(m+ q)

]
×

1

(k − q)2(p+ q)2
[tin(k)lnm(q)tmj(p) + lin(k)tnm(q)ljm(p)]

−
[
Sac(k − l)f cdeρe(l − q)

] [
Sbf (p−m)fdfgρg(m+ q)

]
×

1

(l − q)2(m+ q)2
[tin(l)lnm(q)tmj(m) + lin(l)tnm(q)ljm(m)]

]
.

Although we do not favor this classification, we nevertheless comment that the first term of Eq. (61) in the square
brackets corresponds to the so-called final state interaction – emission and possible rescattering of gluons after the
scattering of the valence charges off the target.

Also to leading order we have

Cai (k) ≈ i
∫
u

[
ui
u2
− ki
k2

]
Sas(k − u)ρs(u) . (62)

Here the second term also represents the final state interactions, as defined above.
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FIG. 1: Schematic representation of the types of diagrams that contribute to the double inclusive production at order g6ρ4.
The horizontal lines symbolize the valence gluons constituting the valence color charge density ρ. The vertical line denotes the
final state. Momenta of two final sate gluons are fixed. In the case of the three gluon final state, one of the gluons is summed
over inclusively. The blobs symbolize the scatterings on the target. The final state gluons can be emitted either before or after
these scatterings, and all the combinations have to be accounted for.

Now we have to put it all together. We will consider one term, the rest will be restored by inspection.

C(−k)

2

[
AAT (k, p)− (2π)2δ2(k + p)

] C(−p)
2

= g2
∫
q,l,m,u,v

(63)[facdSde(k − l) ρe(l − q)
1

f cbfSfg(p−m) ρg(m+ q)

2

Sas(−k − u) ρs(u)

3

Sbt(−p− v) ρt(v)

4

×

1

(k − q)2(p+ q)2

[
ui
u2

+
ki
k2

]
[tin(k)lnm(q)tmj(p) + lin(k)tnm(q)ljm(p)]

[
vj
v2

+
pj
p2

]

−

Sac(k − l)f cde ρe(l − q)
1

Sbf (p−m)fdfg ρg(m+ q)

2

Sas(−k − u) ρs(u)

3

Sbt(−p− v) ρt(v)

4

×

1

(l − q)2(m+ q)2

[
ui
u2

+
ki
k2

]
[tin(l)lnm(q)tmj(m) + lin(l)tnm(q)ljm(m)]

[
vj
v2

+
pj
p2

] ]
.

Note that although our original expressions for production resum infinite number of diagrams in the external field,
any fixed order in expansion in powers of ρ corresponds to a finite number of diagrams. Although it is not entirely
straightforward to identify directly the diagrams that correspond to eq.(63), the systematics of expansion in powers
of ρ and the discussion in Appendix A suggest that those are the diagrams illustrated schematically in Fig. 1. Thus
it should be possible to check the results of this section directly by computing the corresponding diagrams in the
framework of the light cone perturbation theory.

The next step is to contract the charge densities using the MV model. This generates three distinct contractions
in each one of the two terms〈

C(−k)

2

[
AAT (k, p)− (2π)2δ2(k + p)

] C(−p)
2

〉
ρ

= g2 [〈12〉〈34〉+ 〈13〉〈24〉+ 〈14〉〈23〉] ,

where the integers in the angular brackets denote the corresponding contractions of the sources identified in Eq. (63)
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by the numbers located below the rectangular brackets, so that

〈12〉〈34〉 = S†sa(−k − u)facdSde(k − l)S†ef (p+ l)ffcbSbs(−p+ u)µ2(u)µ2(q − l)× (64)

1

(k − q)2(p+ q)2

[
ui
u2

+
ki
k2

]
[tin(k)lnm(q)tmj(p) + lin(k)tnm(q)ljm(p)]

[
−uj
u2

+
pj
p2

]
,

+NcTr
[
S†(−k − u)S(k − l)S†(p+ l)S(−p+ u)

]
µ2(u)µ2(q − l)×

1

(l − q)4
[
ui
u2

+
ki
k2

]
[tin(l)lnm(q)tmj(l) + lin(l)tnm(q)ljm(l)]

[
−uj
u2

+
pj
p2

]
,

〈13〉〈24〉 = facdSde(k − l)S†ea(−k + l − q)f cbfSfg(p−m)S†gb(−p+m+ q)µ2(q − l)µ2(m+ q)×
1

(k − q)2(p+ q)2

[
(q − l)i
(q − l)2 +

ki
k2

]
[tin(k)lnm(q)tmj(p) + lin(k)tnm(q)ljm(p)]

[
− (m+ q)j

(m+ q)2
+
pj
p2

]
−Sac(k − l)f cdeS†ea(−k + l − q)Sbf (p−m)fdfgS†gb(q − p+m)µ2(q − l)µ2(m+ q)×

1

(l − q)2(m+ q)2

[
(q − l)i
(q − l)2 +

ki
k2

]
[tin(l)lnm(q)tmj(m) + lin(l)tnm(q)ljm(m)]

[
− (m+ q)j

(m+ q)2
+
pj
p2

]
,

〈14〉〈23〉 = facdSde(k − l)S†eb(−p+ l − q)f cbfSfg(p−m)S†ga(−k + q +m)µ2(l − q)µ2(m+ q)×
1

(k − q)2(p+ q)2

[
− (q +m)i

(q +m)2
+
ki
k2

]
[tin(k)lnm(q)tmj(p) + lin(k)tnm(q)ljm(p)]

[
(q − l)j
(q − l)2 +

pj
p2

]
−Sac(k − l)f cdeS†eb(−p+ l − q)Sbf (p−m)fdfgS†ga(−k + q +m)µ2(l − q)µ2(m+ q)×

1

(l − q)2(m+ q)2

[
− (q +m)i

(q +m)2
+
ki
k2

]
[tin(l)lnm(q)tmj(m) + lin(l)tnm(q)ljm(m)]

[
(q − l)j
(q − l)2 +

pj
p2

]
.

C. Operator product expansion.

The last step in the calculation of double inclusive production is the averaging over the target fields. Before
restricting ourselves to an explicit model for this averaging, we consider the case where the target fields are much
softer than p, k, that is Qs/p� 1 and Qs/k � 1. In this case we can perform what can be called an operator product
expansion in the general model-independent framework. The technical details are presented in Appendix B.

1. Odderon

To the leading order of the operator product expansion of Eqs. (64) we get

〈13〉〈24〉 = −
∫
q

µ4

p4k4
[tsn(k)lnm(q)tmj(p) + lin(k)tnm(q)ltm(p)]×[[

facdSde∂sS
†ea
]
(−q)

[
f cbfSfg∂tS

†gb
]
(q)−

[
Sacf cde∂sS

†ea
]
(−q)

[
Sbffdfg∂tS

†gb
]
(q)

]
, (65)

〈14〉〈23〉 = −
∫
q

µ4

p4k4
[tsn(k)lnm(q)tmj(p) + lin(k)tnm(q)ltm(p)]×[[

facdSde∂tS
†eb
]
(−q)

[
f cbfSfg∂sS

†ga
]
(q)−

[
Sacf cde∂tS

†eb
]
(−q)

[
Sbffdfg∂sS

†ga
]
(q)

]
. (66)

The sum of these expressions is odd under the charge conjugation transformation S → S† and thus is due to the
Odderon exchange. In principle this contribution does not have to vanish. However we do not have a well motivated
model how to incorporate the Odderon in the target probability distribution.8 We therefore have no way of determining
the sign of this contribution without a specific model. Additionally, the Odderon contribution becomes subleading

8 The Odderon contribution averages to zero in the MV model.
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at high energy, see e.g. [49, 50]. We therefore consider the next order term in the operator product expansion which
must dominate at high enough energy.

2. Non-vanishing contribution in the charge conjugation even ensemble.

The next order expressions analogous to Eqs. (65) and (66) are long and cumbersome. We therefore will not present
them here in full generality. Instead we directly present the result of averaging using a simple averaging model.

The averaging over the target fields is performed in the following way. We first note that since we are probing the
correlators of the eikonal factors S on short distance scales, we can write without any loss of generality9

S(x) = exp{iT aEai xi} . (67)

To calculate averages of local products we need to take a maximum of three derivatives on each factor of S, and
then set x = 0. Under this procedure

∂sS(x)→ iT aEas ; ∂r∂sS(x)→ −1

2
{T a, T b}EasEbt ; ∂t∂r∂sS(x)→ −i1

6
{T a, T b, T c}EasEbtEcr ; (68)

where {T a, T b, T c} denotes the sum of all permutations of a, b, c. To average over the color electric field E we then
use a simple Gaussian ensemble [26] with the basic two point function of the form

〈Eai Ebj 〉α = λ2δabδij . (69)

The details of the calculation are presented in Appendix C. The final expressions are

A1(k, p) ≡ 〈〈12〉〈34〉〉α = 7S⊥N
3
c (N2

c − 1)
λ4µ4

k6
δ2(p+ k)

∫
q

1

(k − q)4

(
3

2
− 2

(k · q)2
k2q2

− 5
(k × q)2k · (k − q)

(k − q)2q2k2

)
, (70)

A2(k, p) ≡ 〈〈13〉〈24〉〉α = −S⊥
4
N3
c (N2

c − 1)
µ4λ4

p6k6
(k · p), (71)

and finally

A3 ≡ 〈〈14〉〈23〉〉α = N3
c (N2

c − 1)S⊥
µ4λ4

k4p4

{
(72)

−7
k · p
k2p2

− 3
(k · p)3
k4p4

+
15

2

k · (k − p)p · (k − p)
k2p2(k − p)2 +

k · p(p · (k − p))2
k2p4(k − p)2 +

k · p(k · (k − p))2
k4p2(k − p)2

+
1

4

(k · (k − p))2
k2(k − p)2

(
5

k2
− 7

p2

)
+

1

4

(p · (k − p))2
p2(k − p)2

(
5

p2
− 7

k2

)
+

7

2

(
1

k2
+

1

p2

)
k · pk · (k − p)p · (k − p)

k2p2(k − p)2

+
3

8

[
k · (k − p)
k2(k − p)2 −

p · (k − p)
p2(k − p)2

]}
.

9 The reasoning behind this is the following. We will need to calculate averages of products for the eikonal factors of the type
〈S(x1)...S(xn)〉 where all distances are smaller than the inverse saturation momentum of the target, |xi − xj | < 1/Qs. For trans-
lationally invariant target, which we assume here, we can shift all the coordinates to vicinity of zero, so that |xi| < 1/Qs. We can now
fix the convenient gauge S(x = 0) = 1. This can always be done by using a residual x− independent gauge transformation without
leaving the light cone gauge. Eq. (67) is just expansion of the phase of the eikonal factor to leading order in x, which is a good
approximation since in the regime of interest x is smaller than the correlation length of the color electric fields. We note that this form
of the eikonal factor yields the Golec-Biernat–Wusthoff model [51, 52] of the dipole cross section. The McLerran-Venugopalan model
at short distances corresponds to an additional slow dependence of the field E on x in Eq. (67). This can be easily incorporated in our
formulae by considering λ2 to be a slowly (logarithmically) varying function of the external momenta p and k. Although this may be
important for quantitative comparisons to the data, it does not affect qualitative features of our results and at the level of accuracy of
the present paper is clearly irrelevant.
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FIG. 2: The correlation function as a function of the azimuthal angle, φ for different values of z = p/k. The correlation
functions are defined in the text and normalized by C(z = 1, φ = 0). Left panel - correlation in the projectile wave function.
Right panel - correlation in particle production.

The expression A1 yields “hard” back to back production. This is the analog of a similar term in our calculation
of pair density in the projectile wave function, and we neglect it for the same reason. We now combine all the terms
to obtain

1

2

[
d6N

d2kd2pdηkdηp
(k, p)− d6N

d2kd2pdηkdηp
(k,−p)

]
= 2g2 [A2(k,−p) +A3(k,−p)−A2(k, p)−A3(k, p)] . (73)

In Fig. 2 we show the correlation functions for produced gluons (right) and for gluons in the projectile wave function
(left). For the former, we defined the correlation function using Eq. (60) and normalizing by the uncorrelated piece
S2
⊥µ

4λ4/(k4p4)

1

2

d6N
d2kd2pdηkdηp

(k, p)− d6N
d2kd2pdηkdηp

(k,−p)
N4
cS

2
⊥µ

4λ4

k4p4

=
αsNc
S⊥p2

C(z = p/k, φ). (74)

For the latter, the correlations function is defined similarly.
The first and the third harmonics of the correlations functions are shown in Fig. 3.

IV. DISCUSSION AND CONCLUSIONS.

Note that the odd part of the production cross section is proportional to µ4λ4. This means that if either the
projectile or the target is dilute, this contribution to the correlated production vanishes. In this respect it is similar
to the even contribution from “glasma graphs”. As is clear from Eq. (74) the leading contribution to the odd part of
the correlation function is the same order in the color charge density as that to the even part, and is just suppressed
by one power of αs.

Another important point is that just like the glasma graph contribution, the odd contribution is long range in
rapidity. In fact our result Eq. (74) is rapidity independent. Some dependence on rapidity separation between the
gluons will undoubtedly appear once the rapidity difference is large enough |ηk − ηp| ∼ 1/αs. This effect is not
accounted for in our calculation.

The present calculation does not include contributions to two particle production arising from a single Pomeron
exchange. This contribution ( at the leading order in weak field expansion) is proportional to αsµ

2λ2 and obviously
does not appear in our formulae. For strong fields these contributions are subleading and for that reason they are not
contained in the CGC wave function. This single Pomeron mechanism leads predominantly to back-to-back minijet
production which can in principle contribute to nonvanishing odd azimuthal anisotropy. Such back-to-back jets are
however subtracted in the experimental analysis and are of no interest to us here.
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FIG. 3: The first and the third cumulants as a function of z = p/k obtained from the correlation function the projectile wave
function (WF) and from double inclusive particle production (PP).

Our calculation is based on the CGC wave function derived in the limit of the dense projectile. Recall that in
Ref. [33] this wave function was obtained in the leading order of light cone perturbation theory in strong background
with ρ ∼ 1/g. This wave function differs from the ”dilute CGC” coherent state by the Bogoliubov squeezing prefactor
which is an O(1) correction in this parametric regime. In this sense the squeezing provides the most important
correction to the wave function. All other corrections not included in this Bogoliubov factor lead to terms suppressed
by powers of the QCD coupling on the level of the wave function.

We have indeed shown that the full account of the squeezing leads to an O(1) correction to the “glasma graph” results
both in the single inclusive and the double inclusive production cross sections. This O(1) correction unfortunately
preserves the accidental symmetry (k, p) → (k,−p) observed in the dilute regime. However the expression for the
double inclusive production also contains a term odd under this transformation. This term is suppressed by a single
power of αs relative to the glasma graphs contribution. Our strategy in this paper was to take this odd contribution
at its face value and explore its consequences.

In order to get our numerical estimates we had to expand the production cross section to leading order in powers
of ρ. Excluding the odderon, the leading contribution is of order g6ρ4. In this order our calculation should be
interpretable in terms of a finite number of Feynman diagrams. We have tentatively identified the relevant graphs
in Fig. 1. We note that the procedure employed here does not sum all the Feynman diagram contribution to the
double inclusive cross section at order g6ρ4. For example the running coupling correction to the glasma graphs
is absent. However the physical feature that allows for appearance of the odd contribution in our calculation is the
nonfactorizable production of the two gluons (configuration by configuration at fixed color charge density). We believe
that including of the additional factorizable terms at the same order in αs (like the running coupling correction) will
have no effect on the calculation of v3.

We now discuss qualitative features of our results.
Consider first the shape of the (scaled, see Eq. (74)) correlation function in Fig. 2. Qualitatively, the gluon pair

density in the projectile CGC wave function is consistent with the expectations based on KLM argument outlined
in the introduction. Indeed the pair density has a strong peak in forward direction. At z ≈ 1 the peak is close to
φ = 0. As z grows the peak decreases in hight and moves to larger angles, but always stays at cosφ > 1/

√
3. These

properties remain practically unaltered in the double inclusive gluon production. The overall shape of the production
cross section resembles closely the form of the gluon pair density in the projectile wave function.

Note the overall normalization of the double inclusive production amplitude. As expected, it is suppressed by the
factor of S⊥p

2, reflecting the fact that the sources of correlation are local in the coordinate space. If we were able
to calculate production for p2, k2 ∼ Q2

s, the suppression factor would presumably be S⊥Q
2
s. This is exactly the same

as that of the local anisotropy [18, 19, 23] and the “glasma graph” [16], or Bose enhancement [53] contributions.
Our result has an additional suppression by a factor of αs relative to those contributions, however it is leading at
large Nc whereas both the glasma graphs and the local anisotropy are order 1/N2

c [16, 54]. At Nc = 3 and αs ∼ .2
the relative importance of these contributions is determined by a numerical factors of order one, which may well
be model-dependent. It does however raise an interesting possibility that additional contribution to v2 that should
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arise from using the amended CGC wave function can be competitive with the contributions hitherto considered, or
even larger than those at least close to the saturation momentum. We have not calculated here the even part of the
correlation function which gives rise to v2, but such calculation is certainly feasible and will be reported elsewhere.

Next consider Fig. 3 which shows the coefficients of the first and third harmonics in the correlation function. The
coefficient c1{2} is positive both for the pair density in the wave function and for pair production in scattering,
consistent with the KLM expectation. There is no significant difference between the two, although it drops slower
with z for production. The situation is different for c3{2}. It is always negative for the pair density in the wave
function. For particle production c3{2} is negative for most of z interval, but it changes sign and is positive for z
close to one, approximately for .9 < z < 1.1.

We do not have a good understanding why c3{2} changes sign due to scattering. We can nevertheless argue why
the form of the pair density should be distorted the most when the two momenta are close to each other in magnitude.
Remember that we are working in the regime where the momenta of produced particles are much larger than the
momentum transfer from the target. In this regime most of the momentum of the produced gluons is inherited from
the projectile wave functions. The role of the scattering is then mostly to decohere these gluons from the incoming
wave function and put them on shell. If the relative momentum of the gluons is large, they sit close to each other (in
coordinate space) in the projectile wave function, and it is difficult to decohere them. This is always the case if z � 1
(or z � 1). However the “bin” with z ≈ 1, contains two gluon configurations which have small relative momentum
and thus are well separated in the coordinate space. Such gluons probe widely separated regions of the target and
acquire significantly different eikonal phase during the propagation. The scattering is therefore much more efficient
in decohering such configurations from the incoming wave function. Thus we expect that in the z ≈ 1 “bin” the
scattering skews the distribution of pairs towards the ones which have same sign transverse momenta. This may be
the mechanism that produces a positive c3{2} in this transverse momentum bin.

The fact that we obtain positive c3{2} in a narrow range of z is rather interesting. When v3 is determined by taking
the square root of c3{2} keeping both the “trigger” and the “associated” particle in the same momentum bin, our
results yield a positive c3{2} and therefore real v3. Increasing the momentum of the bin p as per our results would
lead to a rather slow decrease of v3 as 1/p. However if one samples the trigger and associated particles from different
momentum bins, the v3 should decrease much faster as seen in experiment, see e.g. Ref. [55]. In fact it should cease
being real when the two bins are separated by about 10 − 20% of the central value. It would be very interesting to
see if such trend can be traced in the data at lower multiplicities and higher trigger momentum.

Finally we want to comment on the range of applicability of the improved CGC wave function that we have utilized
in the current calculation. In Refs. [32, 33] it was derived as the wave function containing the bulk of the probability
density in the field space. The tails of the wave function at large values of the field φ however are not described well by
this Gaussian shape. For that reason it should be used with caution. For example one cannot use this wave function
to describe nucleus-nucleus scattering. In the latter case the scattering modifies the field b by a “factor” of order one.
To calculate the scattering amplitude one would then need to take an overlap of two Gaussians with central values
displaced by an amount of order φ1−φ2 ∼ 1/αs. Such an overlap is dominated by the tails of the two wave functions
which are not under control in our approximation. Similarly, by a straightforward counting of powers of αs on can see
that the accuracy of the present approximation is not sufficient to calculate particle production when the number of
particles produced in the collision is O(1/αs). Even though the wave function Eq .(6) is more accurate than the dilute
limit Eq. (2), it is not accurate enough for processes where the number of produced particles is parametrically large.
The natural habitat of Eq. (6) is in situations where the number of produced particles in the collision is O(1). Note
that this is still parametric improvement over Eq. (2) which is strictly speaking valid only in the dense-dilute regime
where the number of produced particles is O(αs). Moreover, this regime is of relevance for minimal bias p-p collisions
where the correlations have been recently observed [9, 10]. With some measure of optimism we can hope that at least
qualitatively we can trust our results also in p-p the events with higher than average multiplicity, although probably
not for very high multiplicity events.
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Appendix A: The CGC wave-function

In this appendix we sketch the derivation of the Gaussian CGC ground state. For details of the derivation the
reader should consult the original work [32, 33], while here we only provide the main logical steps of the derivation.

First, we note that the CGC ground state is the ground state of the soft gluons in the presence of eikonal coupling to
valence modes represented by the color charge density ρ(x). We thus have to diagonalize the light cone Hamiltonian

Hsoft = HLFQCD +

∫
d2xρa(x)

∫
dη∂iAai (x, η) , (A1)

where HLFQCD is the QCD Hamiltonian on the light front, and η is rapidity. It is obvious that shifting the field one
can get rid of the last term in the Hamiltonian since it is linear in the field Ai. This shift is affected by the coherent
operator C = ei2

∫
k
bαi(−k)φαi(k) so that

CHsoftC† = H0 + δH2 + δH̃ . (A2)

Here δH2 is quadratic in the soft gluon operators, while δH̃ contains third and fourth power of Ai.
When the color source ρ is small, i.e. ρa = O(g), this shift diagonalizes the Hamiltonian up to terms of order g, i.e.

δH2 = O(g2) and δH̃ = O(g3). Thus in the weak filed limit the CGC ground state (up to higher order perturbative
corrections) is the coherent state

|CGC〉dilute = C|0〉 , (A3)

where |0〉 is the light cone vacuum of the soft gluons.

However in the strong field limit, where ρ = O(1/g), the situation is different, since δH2 = O(1) while δH̃ = O(g).
Thus in order to diagonalize the total Hamiltonian at order one, it is still necessary to diagonalize its nontrivial
quadratic part H0 + δH2. It can be achieved by a Bogoliubov transformation owing to quadratic dependence on the
field. The action of this Bogoliubov transformation on the soft gluon creation and annihilation operators was found
in Ref. [32]. The transformation is generated by unitary operator of the Gaussian form, schematically

B = exp{−1

2
(a+ a†)Λ(a+ a†)} . (A4)

Thus at the end of the day in the strong field limit the diagonalizing operator can be written in the form Ω = CB and
the wave function of the CGC ground state

ΨCGC[φ] = 〈φ|Ω|0〉 = ei2
∫
k
bαi(−k)φαi(k)〈φ|B〉 , (A5)

where for convenience we separately defined the Gaussian state |B〉 as

|B〉 ≡ B|0〉; 〈φ|B〉 = N e− 1
2

∫
k,p

B−1
αβij(k,p)φαi(k)φβj(p) . (A6)

As discussed in Ref. [33] this calculation can be given a diagrammatic interpretation. In particular the action of the
coherent operator on the soft gluon vacuum is represented by (exponentiating) the sum of the tree level diagrams and
corresponding virtual corrections, see Fig.3.

��
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��
��

��
��
��
��

�� �� ��

b

FIG. 4: The tree level diagrams representing the action of the coherent operator C on the soft gluon vacuum.

The action of the Bogoliubov operator is represented by (exponentiating) the sum in Fig. 4, including appropriate
virtual corrections.

Thus the diagrammatics of the CGC vacuum wave function Eq. (A6) is that of independent emission of single
gluons and pairs of gluons with subsequent rescattering of these gluons on the valence charge density.

It was explicitly shown in Ref. [32, 33] that the presence of the Bogoliubov operator B is crucial for derivation of
the JIMWLK evolution equation. Although the derivation in Ref. [32, 33] is fairly complicated, as it deals explicitly
with the contributions of all the rapidity modes of the soft gluon field, it was recognized in those papers that only
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FIG. 5: The diagrams representing the action of the Bogoliubov operator on the soft gluon vacuum.

limited amount of information is necessary in order to reproduce the JIMWLK equation. In particular it was shown
that all that is required of the Gaussian state |B〉 is that it correctly encodes the correlation function

〈B|φ(x)φ(y)|B〉 = (1− l− L)2(x, y) , (A7)

where φ(x) is the integrated over rapidity field Eq. (8). In the present paper, this property of the Gaussian state was
used to infer the form of the state after integration over all the rapidity modes except for the constant mode φ(x).

Appendix B: Expansion in the classical field.

In this Appendix we derive Eq. (61) - the expansion of the main calculational block for the double inclusive
production cross section to leading order in the projectile charge density (or equivalently b). For notational simplicity
we rescale the classical field b via b→ 1

g b. Using Eq. (26) we have

1−l−L ≈ t−l+b 1

∂2
∂+∂

1

∂2
b− ∂

∂2
[∂b]+

∂

∂2
−b 1

∂2
b+b

1

∂2
[∂b]+

1

∂2
∂+

∂

∂2
[∂b]+

1

∂2
b+

∂

∂2
b2
∂

∂2
− ∂

∂2
[∂b]+

1

∂2
[∂b]+

∂

∂2
(B1)

and

Γ = 1 + b
1

∂2
∂ − ∂ 1

∂2
b− ∂

∂2
[∂b]−

∂

∂2
− b 1

∂2
b+ b

1

∂2
[∂b]+

1

∂2
∂ +

∂

∂2
[∂b]−

1

∂2
b− ∂

∂2
b2
∂

∂2
− ∂

∂2
[∂b]−

1

∂2
[∂b]+

∂

∂2
(B2)

with the inverse

Γ−1 = 1− b 1

∂2
∂ + ∂

1

∂2
b+

∂

∂2
[∂b]−

∂

∂2
− b 1

∂2
∂b

1

∂2
∂ +

∂

∂2
b∂

1

∂2
b− ∂

∂2
b∂

1

∂2
b∂

∂

∂2
+

∂

∂2
∂b

1

∂2
∂b

∂

∂2
. (B3)

The expression we need is

AAT = Γ̄−1SΓΓTST Γ̄−1 = Γ̄−1S(t− l)B(t− l)ST Γ̄−1T (B4)

so

(t−l)B(t−l) = 1−bi
1

∂2
bj−∂i

1

∂2
b2

1

∂2
∂j+

∂i
∂2

(~∂·~b) 1

∂2
bj+bi

1

∂2
(~b·~∂)

∂j
∂2

+
∂i
∂2

[
(~b · ~∂)

1

∂2
(~∂ ·~b)− (~∂ ·~b) 1

∂2
(~b · ~∂)

]
∂j
∂2
. (B5)

We only need expression in Eq. (B4) to order b2

AAT − 1 ≈ Γ̄−1Γ̄−1T + S(t− l)B̃(t− l)S† − 1 (B6)

= b̄i
1

∂2
b̄j + ∂i

1

∂2
b̄2

1

∂2
∂j −

∂i
∂2

(~∂ · ~̄b) 1

∂2
b̄j − b̄i

1

∂2
(~̄b · ~∂)

∂j
∂2
− ∂i
∂2

[
(~̄b · ~∂)

1

∂2
(~∂ · ~̄b)− (~∂ · ~̄b) 1

∂2
(~̄b · ~∂)

]
∂j
∂2

−Sbi
1

∂2
bjS
† − S∂i

1

∂2
b2

1

∂2
∂jS

† + S
∂i
∂2

(~∂ ·~b) 1

∂2
bjS
† + Sbi

1

∂2
(~b · ~∂)

∂j
∂2
S†

+S
∂i
∂2

[
(~b · ~∂)

1

∂2
(~∂ ·~b)− (~∂ ·~b) 1

∂2
(~b · ~∂)

]
∂j
∂2
S†.

In order to perform Fourier transformation we use Eq. (28)

[
AAT − 1

]
(k, p) ≈

∫
q

b̄n(k − q)
[
−tin(k)

1

q2
tmj(p) +

ki
k2

tnm(q)
pj
p2

]
b̄m(p+ q) (B7)

+

∫
q,l,m

S(k − l)bn(l − q)
[
tin(l)

1

q2
tmj(m)− li

l2
tnm(q)

mj

m2

]
bm(m+ q)S†(p−m).
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Using Eq. (31) we get

[
AAT − 1

]
(k, p) ≈

∫
q

c̄(k − q) [tin(k)lnm(q)tmj(p) + lin(k)tnm(q)ljm(p)] c̄(p+ q) (B8)

−
∫
q,l,m

S(k − l)c(l − q) [tin(l)lnm(q)tmj(m) + lin(l)tnm(q)ljm(m)] c(m+ q)S†(p−m).

Finally we have to substitute c(k) = 1
k2 ρ(k) and c̄(k) = 1

k2

∫
l
S(k − l)ρ(l) to obtain

[
AAT − 1

]ab
ij

(k, p) ≈
∫
q,l,m

(B9)[
1

(k − q)2(p+ q)2
[fS(k − q − l)ρ(l)] [tin(k)lnm(q)tmj(p) + lin(k)tnm(q)ljm(p)] [fS(p+ q −m)ρ(m)]−

1

(l − q)2(m+ q)2
[S(k − l)fρ(l − q)] [tin(l)lnm(q)tmj(m) + lin(l)tnm(q)ljm(m)] [fρ(m+ q)]S†(p−m)

]
,

where we have indicated explicitly the position of the structure constant tensor f for the purposes of color algebra.
After shifting the momentum integration variable in the first term, and restoring the original normalization of b and
ρ used in the main text we can finally write[

AAT − 1
]ab
ij

(k, p) ≈ g2
∫
q,l,m

(B10)[ [
facdSde(k − l)ρe(l − q)

] [
f cbfSfg(p−m)ρg(m+ q)

]
×

1

(k − q)2(p+ q)2
[tin(k)lnm(q)tmj(p) + lin(k)tnm(q)ljm(p)]

−
[
Sac(k − l)f cdeρe(l − q)

] [
Sbf (p−m)fdfgρg(m+ q)

]
×

1

(l − q)2(m+ q)2
[tin(l)lnm(q)tmj(m) + lin(l)tnm(q)ljm(m)]

]
.

Appendix C: Operator product expansion.

In this Appendix we derive the operator product expansion, i.e. expansion of the double inclusive cross section in
powers of the derivatives ∂S. The physical parameter of this expansion is Q2

s/k
2 or Q2

s/p
2 where Qs is the saturation

momentum of the target.
In order to organize the expansion we will use the following notation X[n,m,l] where n, m and l are integers

corresponding to the orders in the expansion of the terms originating from C(k), AAT , and C(p) correspondingly. For
example, the notation [1, 0, 2] means the expansion of C(k) to the first order, AAT to the leading order, C(p) to the
second order.

Some preliminary formulae are in order. Define w = −k − u, then the expansion of C(k) involves the following or,
similar modulo redefinition of the variables, expansion

ui
u2

+
ki
k2

=
(−w − k)i
(k + w)2

+
ki
k2

= −
[
wi
k2
− 2

ki(k · w)

k4

]
(C1)

+

[
kiw

2

k4
− 4

ki(k · w)2

k6
+ 2

wi(k · w)

k4

]
(C2)

−
[
−wiw

2

k4
+ 4

wi(k · w)2

k6
+ 4

kiw
2(k · w)

k6
− 8

ki(k · w)3

k8

]
(C3)

≡ 1

k2
[−wsCsi(k) + wswtDsti(k)− wswtwrEstri(k)] . (C4)
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Similarly for C(p) define v = −p+ u. Then

− ui
u2

+
pi
p2

= − (p+ v)i
(p+ v)2

+
pi
p2

= −
[
vi
p2
− 2

pi(p · v)

p4

]
(C5)

+

[
piv

2

p4
− 4

pi(p · v)2

p6
+ 2

vi(p · v)

p4

]
(C6)

−
[
−viv

2

p4
+ 4

vi(p · v)2

p6
+ 4

piv
2(p · v)

p6
− 8

pi(p · v)3

p8

]
(C7)

≡ 1

p2
[−vsCsi(p) + vsvtDsti(p)− vsvtvrEstri(p)] . (C8)

Here

Csi(k) = (t− l)si(k) (C9)

Dsti(k) = [δst − 4lst(k)]
ki
k2

+ 2δsi
kt
k2

= δst
ki
k2

+ 2(t− l)si(k)
kt
k2
, (C10)

Estri(k) =
1

k2

[
− δsi[δtr − 4ltr(k)] + 4lsi(k)(t− l)tr(k)

]
. (C11)

Now the expansion of AAT will involve

1

(l − q)4 =

[
1

(k − q − a)2

]2
=

1

(k − q)4 + 4
a · (k − q)
(k − q)6 − 2

a2

(k − q)6 + 12
[a · (k − q)]2

(k − q)8 (C12)

and [
t(l)l(q)t(l) + l(l)t(q)l(l)

]
ij

=
[
l(q) + l(l)− l(l)l(q)− l(q)l(l)

]
ij

(C13)

=
[
l(q) + l(k)− l(k)l(q)− l(q)l(k)

]
ij

− 1

k2

[
aikj + ajki − 2(a · k)

kikj
k2

]
+

1

k2q2

[
(q · a) [qikj + qjki] + (q · k) [qiaj + qjai]− 2(a · k)(q · k)

qikj + kiqj
k2

]
+

1

k2

[
aiaj − 2(a · k)

kiaj + kjai
k2

+ kikj
4(a · k)2 − k2a2

k4

]
− 1

k2q2

[
(a · q)[aiqj + qiaj ]−

2(a · k)(k · q)
k2

[qiaj + aiqj ]

−2(a · k)(a · q)
k2

[qikj + kiqj ] +
[4(a · k)2 − k2a2](q · k)

k4
[qikj + kiqj ]

]
,

where we used

lin(l) = lin(k − a) = lin(k)− 1

k2

[
aikn + anki − 2(a · k)

kikn
k2

]
+

1

k2

[
aian − 2(a · k)

kian + knai
k2

+ kikn
4(a · k)2 − k2a2

k4

]
. (C14)

Combining these together we get

1

(l − q)4
[
t(l)l(q)t(l) + l(l)t(q)l(l)

]
ij

=

=
1

(k − q)4A
0
ij(k, q) +

1

k2(k − q)4 asA
1
sij(k, q) +

1

k2(k − q)4 asatA
2
stij(k, q), (C15)

where we defined

A0
ij(k, q) =

[
l(q) + l(k)− l(k)l(q)− l(q)l(k)

]
ij
, (C16)
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A1
sij(k, q) = tsi(k)kjtsj(k)ki + (t− l)sk(k)

[
lki(q)kj + lkj(q)ki

]
+ δsiljk(q)kk + δsj lik(q)kk

+ 4
k2

(k − q)2 (k − q)s
[
l(q) + l(k)− l(k)l(q)− l(q)l(k)

]
ij
, (C17)

A2
stij(k, q) = −2

k2

(k − q)2 (1− 6l)st(k − q)
[
l(q) + l(k)− l(k)l(q)− l(q)l(k)

]
ij

+ [(t− l)si(k)(t− l)tj(k)− δstlij(k)]

− [(t− l)si(k)(t− l)tn(k)− δstlin(k)]lnj(q)− [(t− l)sn(k)(t− l)tj(k)− δstljn(k)]lni(q)

+ 4
(k − q)t
(k − q)2

(
tsi(k)kjtsj(k)ki + (t− l)sk(k)

[
lki(q)kj + lkj(q)ki

]
+ δsiljk(q)kk + δsj lik(q)kk

)
. (C18)

With these expressions we can now proceed to reduce term by term Eq. (64). We start with the first term.

1. 〈12〉〈34〉.

Here we know that the terms that do not involve expansion of l cancel between the two lines. Thus we only write
the terms that involve the coefficients A and B.

〈12〉〈34〉[1,1,1] = NcTr
[
S†(w)S(a)S†(p+ k − a)S(v)

]
µ4wsvtar

1

p2k4(k − q)4Csi(k)A1
rij(k, q)Ctj(p)

= iNc

∫
a,w

Tr
[
∂sS

†(w)∂rS(a)S†(p+ k − a)∂tS(−p− k − w)
]
µ4 1

p2k4(k − q)4Csi(k)A1
rij(k, q)Ctj(p)

= iNcTr
[
{∂rSS†}(p+ k){∂tS∂sS†}(−p− k)

]
µ4 1

p2k4(k − q)4Csi(k)A1
rij(k, q)Ctj(p). (C19)

The quantity under trace is a function of one momentum (p + k), which is sharply peaked around p + k = 0. We
therefore can expand it in derivatives of a delta function. In general we have:

f(p)g(−p) = δ2(p)

∫
k

f(k)g(−k)− ∂iδ2(p)

∫
k

kif(k)g(−k) +
1

2
∂i∂jδ

2(p)

∫
k

kikjf(k)g(−k)

= δ2(p)

∫
x

f(x)g(x) + i∂iδ
2(p)

∫
x

[∂if(x)]g(x)− 1

2
∂i∂jδ

2(p)

∫
x

[∂i∂jf(x)]g(x). (C20)

In Eq. (C19) only the derivative of the delta function survives if we assume rotational invariance of the target averages,
and we therefore obtain

〈12〉〈34〉[1,1,1] = −∂nδ2(p+ k)Nc

∫
x

Tr
[
{∂n[∂rSS

†]∂tS∂sS
†}(x)

] ∫
q

µ4

p2k4(k − q)4Csi(k)A1
rij(k, q)Ctj(p), (C21)

〈12〉〈34〉[1,2,1] = δ2(p+ k)Nc

∫
x

Tr
[
{[∂n∂rS]S†∂tS∂sS

†}(x)
] ∫

q

µ4

p2k4(k − q)4Csi(k)A2
nrij(k, q)Ctj(p), (C22)

〈12〉〈34〉[2,1,1] = −δ2(p+ k)Nc

∫
x

Tr
[
{[∂rS]S†∂tS[∂n∂sS

†]}(x)
] ∫

q

µ4

p2k4(k − q)4Dnsi(k)A1
rij(k, q)Ctj(p), (C23)

〈12〉〈34〉[1,1,2] = −δ2(p+ k)Nc

∫
x

Tr
[
{[∂rS]S†[∂n∂tS]∂sS

†}(x)
] ∫

q

µ4

p2k4(k − q)4Csi(k)A1
rij(k, q)Dntj(p). (C24)

Substituting the condensates (see Appendix D) we get

〈〈12〉〈34〉sum〉α = 7N3
c (N2

c − 1)
λ4µ4

k6
δ2(p+ k)

∫
q

1

(k − q)4

(
3

2
− 2

(k · q)2
k2q2

− 5
(k × q)2k · (k − q)

(k − q)2q2k2

)
. (C25)
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2. 〈13〉〈24〉.

To calculate this term we define

−k + l − q = w; k − l = a; p−m = b; −p+m+ q = v (C26)

which gives

q − l = −(k + w); m+ q = p+ v; q = −(w + a) = v + b. (C27)

Now

〈13〉〈24〉[1,0,1] =
µ4

p4k4
Csi(k)Ctj(p)(−k + l − q)s(−p+m+ q)t [tin(k)lnm(q)tmj(p) + lin(k)tnm(q)ljm(p)]×[

facdSde(k − l)S†ea(−k + l − q)f cbfSfg(p−m)S†gb(−p+m+ q)

−Sac(k − l)f cdeS†ea(−k + l − q)Sbf (p−m)fdfgS†gb(q − p+m)

]

= − µ4

p4k4
Csi(k)Ctj(p) [tin(k)lnm(q)tmj(p) + lin(k)tnm(q)ljm(p)]×[[

facdSde∂sS
†ea
]
(−q)

[
f cbfSfg∂tS

†gb
]
(q)−

[
Sacf cde∂sS

†ea
]
(−q)

[
Sbffdfg∂tS

†gb
]
(q)

]

= − µ4

p4k4
[tsn(k)lnm(q)tmj(p) + lin(k)tnm(q)ltm(p)]×[[

facdSde∂sS
†ea
]
(−q)

[
f cbfSfg∂tS

†gb
]
(q)−

[
Sacf cde∂sS

†ea
]
(−q)

[
Sbffdfg∂tS

†gb
]
(q)

]
. (C28)

It is clear that this expression is odd under the charge conjugation transformation S → S†, and therefore vanishes
in any MV-like model. In principle this contribution is nonzero, however it is impossible to determine its sign without
a specific model. We therefore will not consider it any further.

〈13〉〈24〉[2,0,1] = − µ4

p4k4
Drsi(k)Ctj(p)(−k + l − q)r(−k + l − q)s(−p+m+ q)t ×

[tin(k)lnm(q)tmj(p) + lin(k)tnm(q)ljm(p)]×[
facdSde(k − l)S†ea(−k + l − q)f cbfSfg(p−m)S†gb(−p+m+ q)

−Sac(k − l)f cdeS†ea(−k + l − q)Sbf (p−m)fdfgS†gb(q − p+m)

]

= i
µ4

p4k4
Drsi(k)Ctj(p) [tin(k)lnm(q)tmj(p) + lin(k)tnm(q)ljm(p)]×[[

facdSde[∂r∂sS
†ea]
]
(−q)

[
f cbfSfg∂tS

†gb
]
(q)−

[
Sacf cde[∂r∂sS

†ea]
]
(−q)

[
Sbffdfg∂tS

†gb
]
(q)

]
, (C29)

〈13〉〈24〉[1,0,2] = i
µ4

p4k4
Csi(k)Drtj(p) [tin(k)lnm(q)tmj(p) + lin(k)tnm(q)ljm(p)]×[[

facdSde∂sS
†ea
]
(−q)

[
f cbfSfg[∂r∂tS

†gb]
]
(q)−

[
Sacf cde∂sS

†ea
]
(−q)

[
Sbffdfg[∂r∂tS

†gb]
]
(q)

]
. (C30)
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Adding the two together we get

〈13〉〈24〉[2,0,1] + 〈13〉〈24〉[1,0,2] = i
µ4

p4k4

[
Drsi(k)Ctj(p) + Cti(k)Drsj(p)

]
[tin(k)lnm(q)tmj(p) + lin(k)tnm(q)ljm(p)]×[[

facdSde[∂r∂sS
†ea]
]
(−q)

[
f cbfSfg∂tS

†gb
]
(q)−

[
Sacf cde[∂r∂sS

†ea]
]
(−q)

[
Sbffdfg∂tS

†gb
]
(q)

]
. (C31)

This expression is also odd under charge conjugation. Additionally the integral over q results in an object with five
rotational indices. There is no invariant tensor with five indices in 2 dimensions, therefore for a rotationally invariant
target charge distribution this term vanishes.

〈13〉〈24〉[2,0,2] = − µ4

p4k4
Dlsi(k)Drtj(p) [tin(k)lnm(q)tmj(p) + lin(k)tnm(q)ljm(p)]×[[

facdSde[∂l∂sS
†ea]
]
(−q)

[
f cbfSfg[∂r∂tS

†gb]
]
(q)−

[
Sacf cde[∂l∂sS

†ea]
]
(−q)

[
Sbffdfg[∂r∂tS

†gb]
]
(q)

]
. (C32)

Writing Sab = S†ba in the second term, we see that this expression again is antisymmetric under S → S†. Therefore
again, it vanishes in a MV-like model.

Going back to Eq. (64) it is obvious that if we set l = k, p = m in the second chain of projectors and in the
“propagators”, both the expressions in 〈13〉〈24〉 and 〈14〉〈23〉 are odd under the charge conjugation. Thus in both
these expressions we only need consider terms where at least one of the momenta l or m is expanded around k and p
respectively.

Again we expand

1

(k + w)2(p+ v)2
=

1

k2p2

[
1− 2p · v

p2
− 2k · w

k2
− w2

k2
− v2

p2
+

4(k · w)2

k4
+

4(p · v)2

p4
+

4(k · w)(p · v)

k2p2

]
, (C33)

1

(k − q)2(p+ q)2
=

1

k2p2
× (C34)[

1− 2p · (v + b)

p2
− 2k · (w + a)

k2
− (w + a)2

k2
− (v + b)2

p2

+
4(k · (w + a))2

k4
+

4(p · (v + b))2

p4
+

4(k · (w + a))(p · (v + b))

k2p2

]
and [

l(q)− l(k − a)l(q)− l(q)l(p− b) + l(k − a)l(p− b)
]
ij

=
[
l(q)− l(k)l(q)− l(q)l(p) + l(k)l(p)

]
ij

(C35)

− 1

k2

[
aikn + anki − 2(a · k)

kikn
k2

][
l(p)− l(q)

]
nj
− 1

p2
[
l(k)− l(q)

]
in

[
bnpj + pnbj − 2(b · p)pnpj

p2

]
+

1

k2

[
aian − 2(a · k)

kian + knai
k2

+ kikn
4(a · k)2 − k2a2

k4

][
l(p)− l(q)

]
nj

+
1

p2
[
l(k)− l(q)

]
in

[
bnbj − 2(b · p)pjbn + pnbj

p2
+ pjpn

4(b · p)2 − p2b2
p4

]
+

1

k2p2

[
aikn + anki − 2(a · k)

kikn
k2

][
bnpj + pnbj − 2(b · p)pnpj

p2

]
. (C36)

All of this will generate different terms where the derivatives will act on different factors of S. It thus seems prudent
to organize things according to different powers of the four momenta. The overall factor which will multiply all the
following expressions is

−Sac(a)f cdeS†ea(w)Sbf (b)fdfgS†gb(v)
µ4

k2p2
= Tr[S(a)fdS†(w)]Tr[S(b)fdS†(v)]

µ4

k2p2
. (C37)

These are the contributions that arise from using only Eq. (C33):
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1

k4p2
wswrwovt

[
Csi(k)[−δro + 4lro(k)] + 2Dsri(k)k0

][
l(q)− l(k)l(q)− l(q)l(p) + l(k)l(p)

]
ij
Cjt(p), (C38)

1

p4k2
wsvrvovtCsi(k)

[
l(q)− l(k)l(q)− l(q)l(p) + l(k)l(p)

]
ij

[
Ctj(p)(−δro + 4lro(p)) + 2Dtrj(p)p0

]
, (C39)

2

k2p2
wswrvovt

{[
Dsri(k) + Csi(k)

kr
k2

]
Ctj(p)

po
p2

+ Csi(k)
kr
k2

[
Dtoj(p) + Ctj(p)

po
p2

]}
×
[
l(q)− l(k)l(q)− l(q)l(p) + l(k)l(p)

]
ij
, (C40)

1

k4p2
wswraovt

[
Dsri(k) + 2Csi(k)

kr
k2

][
tio(k)kn + tno(k)ki

][
l(p)− l(q)

]
nj
Ctj(p), (C41)

1

k4p2
wsarvovtCsi(k)

[
tir(k)kn + tnr(k)ki

][
l(p)− l(q)

]
nj

[
Dtoj(p) + 2Ctj(p)

po
p2

]
, (C42)

1

2k4p2
wsaraovtCsi(k)

[
δon
[
δri − 4lri(k)

]
+ δoi

[
δrn − 4lrn(k)

]
− 2lin(k)

[
δro − 4lro(k)

][
l(p)− l(q)

]
nj

]
Ctj(p), (C43)

1

k2p4
wswrbovt

[
Dsri(k) + 2Csi(k)

kr
k2

][
l(k)− l(q)

]
in

[
tjo(p)pn + tno(p)pj

]
Ctj(p), (C44)

1

k2p4
wsbrvovtCsi(k)

[
l(k)− l(q)

]
ni

[
tjr(p)pn + tnr(p)pj

][
Dtoj(p) + 2Ctj(p)

po
p2

]
, (C45)

1

2k2p4
wsbrbovtCsi(k)

[
l(k)− l(q)

]
in

[
δon
[
δrj − 4lrj(p)

]
+ δoj

[
δrn − 4lrn(p)

]
− 2ljn(p)

[
δro − 4lro(p)

]]
Ctj(p), (C46)

1

k4p4
wsarbovtCsi(k)

[
tir(k)kn + tnr(k)ki

][
tjo(p)pn + tno(p)pj

]
Ctj(p). (C47)

From the above we have to subtract terms that arise from Eq. (C34), but only when they are not accompanied by
expansion of the projector part. In other words, all the terms above that contain at least one factor of a or b remain
as they are, but the rest get modified by the subtraction. The additional terms that have to be added are

− 1

k4p2

[
ws(w + a)r(w + a)ovtCsi(k)[−δro + 4lro(k)] + wswr(w + a)ovt2Dsri(k)k0

]
×
[
l(q)− l(k)l(q)− l(q)l(p) + l(k)l(p)

]
ij
Cjt(p), (C48)

− 1

p4k2
Csi(k)

[
l(q)− l(k)l(q)− l(q)l(p) + l(k)l(p)

]
ij

×
[
ws(v + b)r(v + b)ovtCtj(p)(−δro + 4lro(p)) + wsvr(v + b)ovt2Dtrj(p)p0

]
, (C49)

− 2

k2p2

[
l(q)− l(k)l(q)− l(q)l(p) + l(k)l(p)

]
ij
× (C50){[

wswrDsri(k) + ws(w + a)rCsi(k)
kr
k2

]
(v + b)ovtCtj(p)

po
p2

+ws(w + a)rCsi(k)
kr
k2

[
vovtDtoj(p) + (v + b)ovtCtj(p)

po
p2

]}
.
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In other words Eqs. (C38), (C39) and (C40) have to be exchanged for

− 1

k4p2
wswraovt

[
Csi(k)[−δro + 4lro(k)] + 2Dsri(k)k0

][
l(q)− l(k)l(q)− l(q)l(p) + l(k)l(p)

]
ij
Cjt(p)

− 1

k4p2

[
wswoarvt + wsaoarvt

]
Csi(k)[−δro + 4lro(k)]

[
l(q)− l(k)l(q)− l(q)l(p) + l(k)l(p)

]
ij
Cjt(p), (C51)

− 1

p4k2
wsvrbovtCsi(k)

[
l(q)− l(k)l(q)− l(q)l(p) + l(k)l(p)

]
ij

[
Ctj(p)(−δro + 4lro(p)) + 2Dtrj(p)p0

]
− 1

p4k2

[
wsbrvovt + wsbrbovt

]
Csi(k)

[
l(q)− l(k)l(q)− l(q)l(p) + l(k)l(p)

]
ij
Ctj(p)(−δro + 4lro(p)), (C52)

− 2

k2p2

{
wswrbovt

[
Dsri(k) + Csi(k)

kr
k2

]
Ctj(p)

po
p2

+ wsarvovtCsi(k)
kr
k2

[
Dtoj(p) + Ctj(p)

po
p2

]
(C53)

+
[
wsarvovt + wsarbovt + wswrbovt + wsarbovt

]
Csi(k)

kr
k2
Ctj(p)

po
p2

]}[
l(q)− l(k)l(q)− l(q)l(p) + l(k)l(p)

]
ij
.

We can simplify these expressions by using the following identities

(t− l)(k)
[
l(q)− l(k)l(q)− l(q)l(p) + l(k)l(p)

]
(t− l)(p) = l(q)− l(k)l(q)− l(q)l(p) + l(k)l(p), (C54)

k
[
l(q)− l(k)l(q)− l(q)l(p) + l(k)l(p)

]
(t− l)(p) = k

[
l(q)− l(k)

]
l(p).

Thus we have

− 1

k4p2
wswraovt

[
[−2δro + 12lro(k)]

[
l(q)− l(k)l(q)− l(q)l(p) + l(k)l(p)

]
st

+ 2δsr

[
l(k)l(q)l(p)− l(k)l(p)

]
ot

]
− 1

k4p2

[
wsaoarvt

]
[−δro + 4lro(k)]

[
l(q)− l(k)l(q)− l(q)l(p) + l(k)l(p)

]
st
, (C55)

− 1

p4k2
wsvrbovt

[[
l(q)− l(k)l(q)− l(q)l(p) + l(k)l(p)

]
st

[−2δro + 12lro(p)] + 2[l(k)l(q)l(p)− l(k)l(p)]soδrt

]

− 1

p4k2

[
wsbrbovt

][
l(q)− l(k)l(q)− l(q)l(p) + l(k)l(p)

]
st

[−δro + 4lro(p)], (C56)

− 2

k4p4

{
wswrbovtδsr

[
k[l(q)− l(k)]l(p)

]
t
po + wsarvovtδtokr

[
l(k)[l(q)− l(p)]p

]
s

(C57)

+
[
4wsarvovt + wsarbovt + 4wswrbovt + wsarbovt

]
krpo

[
l(q)− l(k)l(q)− l(q)l(p) + l(k)l(p)

]
st

}
.

Now collecting terms we find

−Tr[∂oSf
d∂s∂rS

†](q)Tr[Sfd∂tS
†](−q) µ4

k6p4
× (C58)[

[−2δro + 12lro(k)]
[
l(q)− l(k)l(q)− l(q)l(p) + l(k)l(p)

]
st

+ 2δsr

[
l(k)l(q)l(p)− l(k)l(p)

]
ot

]
−Tr[∂o∂rSf

d∂sS
†](q)Tr[Sfd∂tS

†](−q) µ4

k6p4
[−δro + 4lro(k)]

[
l(q)− l(k)l(q)− l(q)l(p) + l(k)l(p)

]
st
,

−Tr[Sfd∂sS
†](q)Tr[∂oSf

d∂r∂tS
†](−q) µ4

k4p6
× (C59)[[

l(q)− l(k)l(q)− l(q)l(p) + l(k)l(p)
]
st

[−2δro + 12lro(p)] + 2[l(k)l(q)l(p)− l(k)l(p)]soδrt

]

−Tr[Sfd∂sS
†](q)Tr[∂o∂rSf

d∂tS
†](−q) µ4

k4p6

[
l(q)− l(k)l(q)− l(q)l(p) + l(k)l(p)

]
st

[−δro + 4lro(p)],
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− 2µ4

k6p6

{
Tr[Sfd∂s∂rS

†](q)Tr[∂oSf
d∂tS

†](−q)

×
[
δsr

[
k[l(q)− l(k)]l(p)

]
t
po + 4krpo

[
l(q)− l(k)l(q)− l(q)l(p) + l(k)l(p)

]
st

]
+Tr[∂rSf

d∂sS
†](q)Tr[Sfd∂o∂tS

†](−q)

×
[
δtokr

[
l(k)[l(q)− l(p)]p

]
s

+ 4krpo

[
l(q)− l(k)l(q)− l(q)l(p) + l(k)l(p)

]
st

]

+2
[
Tr[∂rSf

d∂sS
†](q)Tr[∂oSf

d∂tS
†](−q)krpo

[
l(q)− l(k)l(q)− l(q)l(p) + l(k)l(p)

]
st

}
, (C60)

Tr[∂oSf
d∂s∂rS

†](q)Tr[Sfd∂tS
†](−q) µ4

k4p4
× (C61)[ 1

k2

[
Dsri(k) + 2Csi(k)

kr
k2

][
tio(k)kn + tno(k)ki

][
l(p)− l(q)

]
nj
Ctj(p) + (p↔ k)

]
,

Tr[∂rSf
d∂sS

†](q)Tr[Sfd∂o∂tS
†](−q) µ4

k4p4
× (C62)[ 1

k2
Csi(k)

[
tir(k)kn + tnr(k)ki

][
l(p)− l(q)

]
nj

[
Dtoj(p) + 2Ctj(p)

po
p2

]
+ (p↔ k)

]
,

Tr[∂o∂rSf
d∂sS

†](q)Tr[Sfd∂tS
†](−q) µ4

k4p4
× (C63)[ 1

2k2
Csi(k)

[
δon
[
δri − 4lri(k)

]
+ δoi

[
δrn − 4lrn(k)

]
− 2lin(k)

[
δro − 4lro(k)

]][
l(p)− l(q)

]
nj
Ctj(p) + (p↔ k)

]
,

Tr[∂rSf
d∂sS

†](q)Tr[∂oSf
d∂tS

†](−q) µ4

k6p6
× (C64)

Csi(k)
[
tir(k)kn + tnr(k)ki

][
tjo(p)pn + tno(p)pj

]
Ctj(p).

We can simplify these expressions by using the following

Dsri(k) + 2Csi
kr
k2

= 4(t− l)si(k)
kr
k2

+ δsr
ki
k2
, Dsri(k) + Csi

kr
k2

= 3(t− l)si(k)
kr
k2

+ δsr
ki
k2
, (C65)

Csi(k)[−δro + 4lro(k)] + 2Dsri(k)ko = −δsiδro + 8δsi(t− l)ro(k) + [antisymmetric under(s↔ o)], (C66)

Csi(k)
[
tir(k)kn + tnr(k)ki

]
= tsr(k)kntnr(k)ks = δsrkn − δnrks, (C67)

Csi(k)
[
δon
[
δri − 4lri(k)

]
+ δoi

[
δrn − 4lrn(k)

]
− 2lin(k)

[
δro − 4lro(k)

]]
= 2δrs(t− l)on(k) + 2δrolsn(k)

+antisymmetric under(o↔ r). (C68)

There is an additional significant simplification. Recall that at the end of the day we need to subtract from these
expressions the same expressions with p → −p. Thus any term which is even under such transformation will cancel
in the final answer.

We will further use the model for the calculating the target correlations, as explained in Appendix D. With this
averaging procedure denotes by 〈. . . 〉α, the integral involving qiqj is always proportional to δij . This means that
it can be calculating considering the trace over the rotational indices, and thus we can substitute in all expressions
lij(q) → 1/2δij . With this substitution all the integrals over q simply yield local condensates of the products of the
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target S-matrices. Given this, the expressions become quite simple:

〈〈13〉〈24〉〉α =

∫
x

Tr[Sfd∂s∂rS
†]Tr[Sfd∂t∂oS

†](x)
2µ4

k6p6
×X + (C69)

∫
x

Tr[∂rSf
d∂sS

†]Tr[Sfd∂o∂tS
†](x)

µ4

k4p4
× Y + (C70)∫

x

Tr[∂rSf
d∂sS

†]Tr[∂oSf
d∂tS

†](x)
µ4

k6p6
× (C71)[

δsrδtok · p− δtoprks − δsrptko + δrokspt − 2krpo

[
1− l(k)− l(p) + 2l(k)l(p)

]
st

]
(C72)

+(symmetric under p→ −p)

= −1

4
N3
c (N2

c − 1)
µ4λ4

p6k6
(k · p) (C73)

We did not bother to calculate the first two terms involving X and Y , since the condensates that multiply them
vanish in our model (see Appendix D).

3. 〈14〉〈23〉.

For this term of the calculation we introduce

k − l = a; p−m = b; −p+ l − q = v; −k + q +m = w (C74)

or

q − l = −(p+ v); q +m = k + w; q = k − p+ (w + b). (C75)

With these definitions the expansion now is exactly the same as for the calculation of 〈13〉〈24〉. The only thing that
changes is the common factor, which now is

Tr[S(a)fdS†(v)S(b)fdS†(w)]
µ4

k2p2
. (C76)

The effect of this is that all the expansion is the same, but in the final expression the derivatives acting on the two
factors S† have to be interchanged. Another major difference is that the momentum of the Fourier transform of the
composite operators is not q, but q + p − k. It also means that we need to consider one extra term, of the type
[1, 1, 1], which will give a contribution proportional to the derivative of the delta function. This last contribution we
will calculate last. Meanwhile we can recycle our results.

Tr
[
[Sfd∂s∂r∂oS

†](q + p− k)[Sfd∂tS
†](−q − p+ k)

] µ4

k4p4
× (C77)[ 1

k2

[
Csi(k)[−δro + 4lro(k)] + 2Dsri(k)k0

][
l(q)− l(k)l(q)− l(q)l(p) + l(k)l(p)

]
ij
Cjt(p) + (p↔ k)

]
,

Tr
[
[Sfd∂s∂rS

†](q + p− k)[Sfd∂o∂tS
†](−q − p+ k)

] 2µ4

k4p4
× (C78){[

Dsri(k) + Csi(k)
kr
k2

]
Ctj(p)

po
p2

+ Csi(k)
kr
k2

[
Dtoj(p) + Ctj(p)

po
p2

]} [
l(q)− l(k)l(q)− l(q)l(p) + l(k)l(p)

]
ij
,

Tr
[
[∂oSf

d∂tS
†](q + p− k)[Sfd∂s∂rS

†](−q − p+ k)
] µ4

k4p4
× (C79)[ 1

k2

[
Dsri(k) + 2Csi(k)

kr
k2

][
tio(k)kn + tno(k)ki

][
l(p)− l(q)

]
nj
Ctj(p) + (p↔ k)

]
,
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Tr
[
[∂rSf

d∂o∂tS
†](q + p− k)[Sfd∂sS

†](−q − p+ k)
] µ4

k4p4
× (C80)[ 1

k2
Csi(k)

[
tir(k)kn + tnr(k)ki

][
l(p)− l(q)

]
nj

[
Dtoj(p) + 2Ctj(p)

po
p2

]
+ (p↔ k)

]
,

Tr
[
[∂o∂rSf

d∂tS
†](q + p− k)[Sfd∂sS

†](−q − p+ k)
] µ4

k4p4
× (C81)[ 1

2k2
Csi(k)

[
δon
[
δri − 4lri(k)

]
+ δoi

[
δrn − 4lrn(k)

]
− 2lin(k)

[
δro − 4lro(k)

]][
l(p)− l(q)

]
nj
Ctj(p) + (p↔ k)

]
,

Tr
[
[∂rSf

d∂tS
†](q + p− k)[∂oSf

d∂sS
†](−q − p+ k)

] µ4

k6p6
× (C82)

Csi(k)
[
tir(k)kn + tnr(k)ki

][
tjo(p)pn + tno(p)pj

]
Ctj(p).

Now for the [1, 1, 1] contribution. Since this is going to end up contributing to a derivative with respect to q, we
only need to keep here the terms that depend on q. Thus we have

wsarvt
1

k4p2
Csi(k)Ctj(p)

[
tri(k)kn + trn(k)ki

]
lnj(q) + wsbrvt

1

k2p4
Csi(k)Ctj(p)lin(q)

[
trj(p)pn + trn(p)pj

]
. (C83)

Therefore

iTr
[
[∂rSf

d∂tS
†](q + p− k)[Sfd∂sS

†](−q − p+ k)
] µ4

k6p4
Csi(k)Ctj(p)

[
tri(k)kn + trn(k)ki

]
lnj(q) + (p↔ k)

= −∂oδ(q + p− k)

∫
x

Tr
[
∂o
[
∂rSf

d∂tS
†]Sfd∂sS†]] µ4

k6p4
Csi(k)Ctj(p)

[
tri(k)kn + trn(k)ki

]
lnj(q) + (p↔ k)

=

∫
x

Tr
[
∂o
[
∂rSf

d∂tS
†]Sfd∂sS†]] µ4

k6p4(k − p)2
×Csi(k)Ctj(p)

[
tri(k)kn + trn(k)ki

][
tno(k − p)(k − p)j + toj(k − p)(k − p)n

]
+ (p↔ k). (C84)
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Finally we implement the δ-function approximation and also use Eqs. (C65):

〈14〉〈23〉 = −
∫
x

Tr[∂oSf
d∂tS

†Sfd∂s∂rS
†]
µ4

k6p4
×[

[−2δro + 12lro(k)]
[
l(k − p)− l(k)l(k − p)− l(k − p)l(p) + l(k)l(p)

]
st

+ 2δsr

[
l(k)l(k − p)l(p)− l(k)l(p)

]
ot

]
−
∫
x

Tr[∂o∂rSf
d∂tS

†Sfd∂sS
†]
µ4

k6p4
[−δro + 4lro(k)]

[
l(k − p)− l(k)l(k − p)− l(k − p)l(p) + l(k)l(p)

]
st

−
∫
x

Tr[Sfd∂r∂tS
†∂oSf

d∂sS
†]
µ4

k4p6
×[[

l(k − p)− l(k)l(k − p)− l(k − p)l(p) + l(k)l(p)
]
st

[−2δro + 12lro(p)] + 2[l(k)l(k − p)l(p)− l(k)l(p)]soδrt

]

−
∫
x

Tr[Sfd∂tS
†∂o∂rSf

d∂sS
†]
µ4

k4p6

[
l(k − p)− l(k)l(k − p)− l(k − p)l(p) + l(k)l(p)

]
st

[−δro + 4lro(p)]

−
∫
x

2µ4

k6p6

{
Tr[Sfd∂tS

†∂oSf
d∂s∂rS

†]

[
δsr

[
k[l(k − p)− l(k)]l(p)

]
t
po

+4krpo

[
l(k − p)− l(k)l(k − p)− l(k − p)l(p) + l(k)l(p)

]
st

]

+Tr[∂rSf
d∂o∂tS

†Sfd∂sS
†]

[
δtokr

[
l(k)[l(k − p)− l(p)]p

]
s

+4krpo

[
l(k − p)− l(k)l(k − p)− l(k − p)l(p) + l(k)l(p)

]
st

]

+2
[
Tr[∂rSf

d∂tS
†∂oSf

d∂sS
†]krpo

[
l(k − p)− l(k)l(k − p)− l(k − p)l(p) + l(k)l(p)

]
st

}

+

∫
x

Tr
[
Sfd∂s∂rS

†Sfd∂t∂oS
†
] µ4

k4p4

[
6[l(k − p)(t− l)(p) + (t− l)(k)l(k − p)]st

krpo
k2p2

+

2δsr[l(k − p)l(p)]it
kipo
k2p2

+ 2δto[l(k)l(k − p)]si
pikr
k2p2

+ 12
(k · p)kskrptpo

k4p4
− 2δsr

(k · p)ptpo
k2p4

− 2δto
(k · p)kskr
k4p2

]

+Tr
[
∂oSf

d∂tS
†Sfd∂s∂rS

†
] µ4

k4p4

[
1

k2

[
4δso

krkn
k2
− 4δno

kskr
k2

+ δsrtno(k)
]
lnj(k − p)(t− l)jt(p) + (k → p)

]

+Tr
[
∂rSf

d∂o∂tS
†Sfd∂sS

†
] µ4

k4p4

[ 1

k2

[
δsrkn − δnrks

][
l(p)− l(k − p)

]
nj

[
4(t− l)tj(p)

po
p2

+ δto
pj
p2
]

+ (p↔ k)
]

−Tr
[
∂o∂rSf

d∂tS
†Sfd∂sS

†
] µ4

k4p4
×[ 1

2k2

[
δosδrn + δonδrs + 2δonlrs(k) + 2δrolsn(k)− 2δrnlso(k)− 4δsolrn(k)

]
l(k − p)nj(t− l)tj(p) + (p↔ k)

]
+Tr

[
∂rSf

d∂tS
†∂oSf

d∂sS
†
] µ4

k6p6

[
δsrδto(k · p)− δsrkopt − δtokspr + δorkspt

]
+

∫
x

Tr
[
∂o
[
∂rSf

d∂tS
†]Sfd∂sS†]] µ4

k4p4(k − p)2 ×[
1

k2
[
δrskn − δrnks

][
tno(k − p)(k − p)j + toj(k − p)(k − p)n

]
(t− l)jt(p) + (p↔ k)

]
. (C85)
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Now, using the averages from Appendix D we have:

〈〈14〉〈23〉〉α = N3
c (N2

c − 1)S⊥
µ4λ4

k4p4

{
(C86)

−7
k · p
k2p2

− 3
(k · p)3
k4p4

+
15

2

k · (k − p)p · (k − p)
k2p2(k − p)2 +

k · p(p · (k − p))2
k2p4(k − p)2 +

k · p(k · (k − p))2
k4p2(k − p)2

+
1

4

(k · (k − p))2
k2(k − p)2

(
5

k2
− 7

p2

)
+

1

4

(p · (k − p))2
p2(k − p)2

(
5

p2
− 7

k2

)
+

7

2

(
1

k2
+

1

p2

)
k · pk · (k − p)p · (k − p)

k2p2(k − p)2

+
3

8

[
k · (k − p)
k2(k − p)2 −

p · (k − p)
p2(k − p)2

]}
.

Finally the sum is given by

〈〈13〉〈24〉+ 〈14〉〈23〉〉α = N3
c (N2

c − 1)S⊥
µ4λ4

k4p4

{
(C87)

−29

4

k · p
k2p2

− 3
(k · p)3
k4p4

+
15

2

k · (k − p)p · (k − p)
k2p2(k − p)2 +

k · p(p · (k − p))2
k2p4(k − p)2 +

k · p(k · (k − p))2
k4p2(k − p)2

+
1

4

(k · (k − p))2
k2(k − p)2

(
5

k2
− 7

p2

)
+

1

4

(p · (k − p))2
p2(k − p)2

(
5

p2
− 7

k2

)
+

7

2

(
1

k2
+

1

p2

)
k · pk · (k − p)p · (k − p)

k2p2(k − p)2

+
3

8

[
k · (k − p)
k2(k − p)2 −

p · (k − p)
p2(k − p)2

]}
.

Appendix D: Target averaging.

In this appendix, we compute averages over the target fields using the averaging procedure explained in the text
defined by the two point function in Eq. (69). First lets consider

〈Tr[Sfd∂s∂rS
†]Tr[Sfd∂t∂oS

†]〉α =
1

4
〈EasEbrEctEeo〉αTr[fd{fa, f b}]Tr[fd{f c, fe}] = 0 (D1)

due to Tr[fd{fa, f b}] = 0. Analogously we have

〈Tr[∂rSf
d∂sS

†]Tr[Sfd∂t∂oS
†]〉α = 0. (D2)

Proceeding further we get

〈Tr[∂rSf
d∂sS

†]Tr[∂oSf
d∂tS

†]〉α =
1

4
N3
c (N2

c − 1)λ4[δroδst − δrtδso], (D3)

〈Tr
[
Sfd∂s∂o∂rS

†Sfd∂tS
†
]
〉α = − 5

12
N3
c (N2

c − 1)λ4[δstδro + δsrδto + δsoδtr], (D4)

〈Tr
[
Sfd∂s∂rS

†Sfd∂t∂oS
†
]
〉α = −N3

c (N2
c − 1)λ4

[
δsrδto +

1

8
[δstδro + δsoδrt]

]
, (D5)

〈Tr
[
∂oSf

d∂tS
†Sfd∂s∂rS

†
]
〉α =

1

2
N3
c (N2

c − 1)λ4
[
δotδsr +

3

4
[δosδtr + δorδts]

]
, (D6)

〈Tr
[
∂rSf

d∂t∂oS
†Sfd∂sS

†
]
〉α = N3

c (N2
c − 1)λ4

[
δrsδot +

1

8
[δrtδos + δroδts]

]
, (D7)

〈Tr
[
∂o∂rSf

d∂tS
†Sfd∂sS

†
]
〉α = −1

2
N3
c (N2

c − 1)λ4
[
δorδts +

3

4
(δosδrt + δotδsr)

]
, (D8)
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〈Tr
[
∂rSf

d∂tS
†∂oSf

d∂sS
†
]
〉α = −N3

c (N2
c − 1)λ4

[
δrsδto +

1

4
δrtδos

]
, (D9)

〈Tr
[
∂o
[
∂rSf

d∂tS
†]Sfd∂sS†]〉α = 〈Tr

[
∂o∂rSf

d∂tS
†Sfd∂sS

†
]
〉+ 〈Tr

[
∂rSf

d∂o∂tS
†Sfd∂sS

†
]
〉

= −1

2
N3
c (N2

c − 1)λ4
[
δorδts +

3

4
(δosδrt + δotδsr)

]
+

1

8
N3
c (N2

c − 1)λ4 [δroδts + δrtδos + 8δrsδot]

= −1

8
N3
c (N2

c − 1)λ4 [3δorδts + 2δosδrt − 5δotδsr] , (D10)

〈Tr
[
[∂n∂rS]S†∂tS∂sS

†]〉α = −N2
c (N2

c − 1)λ4
[
δrnδts +

3

4
(δntδrs + δnsδrt)

]
, (D11)

〈Tr
[
[∂rS]S†∂tS[∂n∂sS

†]
]
〉α = N2

c (N2
c − 1)λ4

[
δsnδtr +

3

4
(δnrδts + δntδrs)

]
, (D12)

〈Tr
[
[∂rS]S†[∂n∂tS]∂sS

†]〉α = −N2
c (N2

c − 1)λ4
[
δtnδrs +

3

4
(δnsδrt + δnrδst)

]
, (D13)

〈Tr
[
∂n[∂rSS

†]∂tS∂sS
†]〉α = 〈Tr

[
[∂n∂rS]S†∂tS∂sS

†]〉+ 〈Tr
[
∂rS∂nS

†∂tS∂sS
†]〉α (D14)

= −N2
c (N2

c − 1)λ4
[
δrnδts +

3

4
(δntδrs + δnsδrt)

]
+N2

c (N2
c − 1)λ4

[
δrnδts + δntδrs +

1

2
δnsδrt

]
=

1

4
N2
c (N2

c − 1)λ4 [δntδrs − δnsδrt] .
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