
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Vacuum radiation pressure fluctuations and barrier
penetration

Haiyun Huang and L. H. Ford
Phys. Rev. D 96, 016003 — Published 11 July 2017

DOI: 10.1103/PhysRevD.96.016003

http://dx.doi.org/10.1103/PhysRevD.96.016003


Vacuum Radiation Pressure Fluctuations and Barrier Penetration

Haiyun Huang1, ∗ and L. H. Ford1, †

1Institute of Cosmology, Department of Physics and Astronomy

Tufts University, Medford, Massachusetts 02155, USA

Abstract

We apply recent results on the probability distribution for quantum stress tensor fluctuations to

the problem of barrier penetration by quantum particles. The probability for large stress tensor

fluctuations decreases relatively slowly with increasing magnitude of the fluctuation, especially

when the quantum stress tensor operator has been averaged over a finite time interval. This can

lead to large vacuum radiation pressure fluctuations on charged or polarizable particles, which can

in turn push the particle over a potential barrier. The rate for this effect depends sensitively upon

the details of the time averaging of the stress tensor operator, which might be determined by factors

such as the shape of the potential. We make some estimates for the rate of barrier penetration by

this mechanism and argue that in some cases this rate can exceed the rate for quantum tunneling

through the barrier. The possibility of observation of this effect is discussed.
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I. INTRODUCTION

In a recent paper [1], we showed how the one loop radiative correction to potential

scattering and to quantum tunneling may be obtained from simple arguments involving the

vacuum fluctuations of the time-averaged quantized electric field. In particular, the one loop

enhancement of the quantum tunneling rate obtained by Flambaum and Zelevinsky [2] may

be understood as the vacuum electric field giving the particle an extra boost to get over the

barrier. The effects of vacuum electric field fluctuations on light propagation in nonlinear

materials were discussed in Refs. [3, 4].

In the present paper, we will discuss the effect of vacuum radiation pressure fluctuations

in enhancing tunneling rates. Here we are dealing with fluctuations of the electromagnetic

stress tensor, rather than of the fields themselves. The role of classical radiation pressure on

electrons and atoms in astrophysics has long been studied [5]. The variance of the radiation

pressure fluctuations in a coherent state, which plays a role in laser interferometer detectors

of gravity waves, was calculated in Refs. [6–9]. The variance of the time averaged radiation

pressure fluctuations in the vacuum state has been treated by several authors in the context

of Casimir force fluctuations [8, 10, 11]. Time averaging will play a crucial role in our analysis

as well. The fluctuations of a quantum stress tensor operator at a single spacetime point

are not defined in the sense that all of the moments, beyond the first moment, of such an

operator diverge. In general, time averaging of the quantum stress tensor is needed to yield

finite results for the moments. It is also true that the correlation and n-point functions of a

stress tensor operator are finite provided that none of the spacetime points involved are at

null separations. The Fourier transform of a correlation function yields a power spectrum,

which can be useful for the study of the variance of the fluctuations. This approach was

used in Refs [12, 13] to study fluctuations of a mirror in the vacuum.

In the present paper, we will consider the effects of large radiation pressure fluctuations

in the vacuum state. By “large”, we mean fluctuations which are much larger than the

root-mean-square value found in calculations of the variance. The probability distributions

for quantum stress tensor vacuum fluctuations have been discussed in Refs. [14–16]. These

distributions contain the information needed to go beyond calculations of the variance of

the fluctuations, a fact which was acknowledged by Barton [10]. The part of the probability

distribution which describes large fluctuations is determined by the higher moments (n� 2)
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of the time averaged operator. Thus approaches which focus upon the variance or the

power spectrum of the fluctuations, such as were used in Refs. [6–13] are not particularly

useful for the study of large fluctuations. A key result is that the distributions for stress

tensor fluctuations fall relatively slowly as the magnitude of the fluctuation increases, much

more slowly than does the Gaussian distribution which describes time averaged electric field

fluctuations. This means that large radiation pressure fluctuations are not so rare as one

might have expected. This is especially the case when the relevant stress tensor has been

averaged over a finite time interval [16], that is, with an averaging function which is strictly

zero outside of a finite interval. Such an averaging functions may be viewed as describing a

measurement made over a finite time. Here we will explore the possible role of large vacuum

radiation pressure fluctuations in pushing a particle over a barrier more quickly than it

would tunnel through the barrier.

It is well known that at finite temperature, it is possible for particles to acquire enough

energy to fly over a barrier without tunneling, a process known as thermal activation. The

effect we will consider bears some similarities to thermal activation, but can occur at zero

temperature. Our effect is also related to the noise-induced activation studied by Antunes, et

al, in Ref. [17]. These authors treat a model of a quantum particle in a double well potential

which is linearly coupled to a bath of quantum oscillators. They find a form of activation

at zero temperature which can be ascribed to the quantum fluctuations of the oscillator

bath. A key difference between the model of Ref. [17] and that in the present paper is that

we assume the particle to be coupled quadratically to the quantized electromagnetic field

through the stress tensor. This leads to the possibility of large, non-Gaussian fluctuations.

The outline of this paper is as follows: The results of Ref. [16] on probability distributions

will be summarized in Sec. II and extended to the specific case of electromagnetic radiation

pressure fluctuations. The effects of vacuum radiation pressure fluctuations on barrier pene-

tration by charged particles will be examined in Sec. III. Estimates of the magnitude of this

effect will be given, and the conditions under which it can dominate quantum tunneling will

be discussed. The possible role of radiation pressure fluctuations in nuclear fusion will be

treated in Sec. IV. The effect of radiation pressure fluctuations on polarizable, uncharged,

particles will be discussed in Sec. V. Section VI summarizes and discusses the main results

of the paper.

Units in which ~ = c = 1, and Lorentz-Heaviside units for electromagnetic quantities will
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be used unless otherwise noted.

II. PROBABILITY OF LARGE STRESS TENSOR FLUCTUATIONS

In this section, we first review previous results on the probability distribution function

for quantum stress tensor fluctuations, and then apply these results to the specific case of

vacuum pressure fluctuations of the quantized electromagnetic field.

A. Finite Duration Measurements and the Probability Distribution

Here we summarize the key results of Ref. [16] which will be needed in the present paper.

Let Q(t) be an operator which is a quadratic function of a free field operator, and define its

time average with respect to f(t) by

T =

∫ ∞
−∞

Q(t) f(t) dt , (1)

where ∫ ∞
−∞

f(t) dt = 1 . (2)

In general, it is the time average, T , rather than the local operator, Q, which is observable

in the sense that one may assign a well defined probability distribution to T , but not to Q.

The key idea is that measurements of a quantum stress tensor which occur in a finite time

interval should be described by a sampling function of time, f(t), which is smooth and has

compact support. Thus f(t) is taken to be a C∞, but non-analytic, function which is strictly

zero outside of a finite time interval whose width is approximately τ . The Fourier transform

of such a function will have an asymptotic form for large argument which falls faster than

any power, but more slowly than an exponential function. Define the Fourier transform by

f̂(ω) =

∫ ∞
−∞

dt e−iωtf(t) . (3)

A useful set of compactly supported sampling functions is defined by

f̂(ω) = e−|ω|
α

, (4)

where 0 < α < 1. (Units in which τ = 1, following the notation in Ref. [16], are adopted

temporarily. Later, we return to general units for τ when needed for clarity.) The corre-

sponding functions of time, f(t), are expressible in terms of Fox H-functions [18, 19]. For
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our purposes, we only require that Eq. (4) hold asymptotically for ω � 1. This will be

sufficient to give the switching behavior which we now discuss. We will also require that

f̂(ω) ≥ 0. We can arrange for the initial switch-on of f(t), to occur at t = 0. In this case,

the functional form of f(t) as t→ 0+ is

f(t) ∼ t−µe−w t
−ν
, (5)

where

ν =
α

1− α
, (6)

µ =
2− α

2(1− α)
, (7)

and

w = (1− α)αα/(1−α) . (8)

The switch-off at the end of the finite interval will have the same functional form. The

parameter α describes both the rate of decrease of f̂(ω), and the behavior of f(t) at the

switch-on and switch-off. A simple electrical circuit which has a switch-on corresponding to

α = 1/2 was described in Ref. [16]. In this case, f(t) ∝ t−3/2 e−1/(4t) as t→ 0+.

The asymptotic form of the Fourier transform, f̂(ω), determines the rate of growth of

the moments of the sampled stress tensor and in turn, the probability for large fluctuations.

Let T be a normal-ordered quadratic operator which has been averaged with the sampling

function f(t), and define its moments by

µn = 〈0|T n|0〉 . (9)

We express T in a mode sum of creation and annihilation operators as

T =
∑
i j

(Aij a
†
i aj +Bij ai aj +B∗ij a

†
i a
†
j) , (10)

where the coordinate space mode functions are assumed to be plane waves proportional to

e−iωt. Now µn may be expressed as a sum of n-th degree polynomials in the coefficients Aij

and Bij. These coefficients have the functional forms

Aij ∝ (ωiωj)
(p−2)/2 f̂(ωi − ωj) , (11)

and

Bij ∝ (ωiωj)
(p−2)/2 f̂(ωi + ωj) , (12)
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where p is an integer determined by the dimensions of the operator T . In the case of stress

tensor operators, which will be our primary concern, p = 3. However, we will consider the

possibility of larger values of p in Sec. V.

It was argued in Ref. [16] that there is one term in the expression for µn which dominates

for n� 1. This term is

Mn = 4
∑
j1···jn

Bj1j2 Aj2j3 Aj3j4 · · ·Ajn−1jn B
∗
jnj1

. (13)

The dominance of this term can be understood as arising from the relative minus sign in the

argument of the f̂ factor in Aij, as compared to that in Bij. The dominant term contains

the maximum number of factors of Aij, which fall more slowly with increasing ωi. In any

case, Mn < µn as all of the terms neglected in Mn are positive, because f̂(ω) ≥ 0. Thus

Mn gives a lower bound on the exact moments. This will in turn give a lower bound on the

probability of large fluctuations. In the case where T is a time average of : ϕ̇2 :, where ϕ is

the massless scalar field,

Mn = kn

∫ ∞
0

dω1 · · · dωn(ω1 · · ·ωn)p f̂(ω1 +ω2)f̂(ω2−ω3) · · · f̂(ωn−1−ωn)f̂(ωn +ω1) , (14)

where

kn =
1

(2π2)n
(15)

and p = 3. For n� 1, the asymptotic form of Mn becomes

Mn ' kn [2πf(0)]n−2
p![(n− 1)p]!

(np+ 1)!

∫ ∞
0

du f̂ 2(u)unp+1 , (16)

and if f̂ has the form given in Eq. (4), we have

Mn ' kn [2πf(0)]n−2
p![(n− 1)p]!

α(np+ 1)! 2(np+2)/α
Γ

[
(np+ 2)

α

]
. (17)

The last factor in this expression reveals that for large n, the moments grow as (pn/α)!.

This rapid rate of growth of the moments leads to a slow decrease in the tail of the

probability distribution. Now return to arbitrary units for the sampling time τ and define the

dimensionless variable x = T τ p+1. Let P (x) be the probability distribution describing the

probability of finding various value of T in a measurement. As explained in Refs. [14, 15], this

probability distribution has a lower bound at the quantum inequality bound on expectation

values of T in an arbitrary state, x = −x0 < 0, but no upper bound, so∫ ∞
−x0

P (x) dx = 1 . (18)
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The asymptotic form for P (x) for large x may be written as

P (x) ∼ c0 x
b e−ax

c

. (19)

The constants c0, a, b, and c may be determined from Eq. (17) to be [16]

c =
α

p
, (20)

b = c

(
2

α
− p− 1

)
− 1 =

2− α
p
− (α + 1) , (21)

a = 2 [2πf(0)B]−α/p , (22)

and

c0 = c a(b+1)/cB0 p!α
−(p+2) 2−(2/α) [2πf(0)]−2 . (23)

Here the constants B0 and B are defined by

kn = B0B
n . (24)

Thus for the case of : ϕ̇2 :, we have B0 = 1 and B = 1/(2π2).

Because the moments µn grow faster than n! as n → ∞, the probability distribution

P (x) cannot be uniquely determined by its moments. However, the average behavior of the

asymptotic form in Eq. (19) can be inferred from the rate of growth of the moments, as was

discussed in Refs. [15, 16]. It is of interest to seek alternative derivations of the vacuum

stress tensor probability distribution, P (x). One possibility is numerical diagonalization

in a modified theory with a finite number of degrees of freedom. This possibility is under

investigation. It may also be possible to apply functional approaches, such as the Schwinger-

Keldysh, or closed time path method. However, so far this type of approach has been

used primarily in perturbative treatments and would need to be extended to apply to non-

perturbative problems such as that of the probability distribution.

B. Radiation Pressure Fluctuations

Now we wish to apply the results summarized in the previous subsection to the case

of vacuum electromagnetic radiation pressure fluctuations. These are fluctuations of the

time averaged energy or momentum flux components of the electromagnetic stress tensor.

Consider the momentum flux in the z-direction

T tz = (E×B)z = ExBy − Ey Bx , (25)

7



where E and B are the quantized electric and magnetic field operators, respectively. Let Sz

be the momentum flux sampled with f(t)

Sz =

∫ ∞
−∞

T tz(t,x) f(t) dt , (26)

where the sampling is in time at a fixed spatial location. Note that T tz, and hence Sz are

automatically normal ordered, as 〈0|T tz|0〉 = 0. The n-th moment of Sz is

µn = 〈0|(Sz)n|0〉 =

∫ ∞
−∞

dt1 f(t1)

∫ ∞
−∞

dt2 f(t2) · · ·
∫ ∞
−∞

dtn f(tn) 〈0|T tz1 T tz2 · · ·T tzn |0〉 , (27)

where T tzj = T tz(tj,x). When n � 1, we expect µn ∼ Mn ∼ Cn, where Cn is the n-th

connected moment.

We expect the high moments of the time averages of both T tz and of : ϕ̇2 :, to be of

the form of Eq. (17) with p = 3, but with different values for the constants kn. We may

relate kn(T tz) to kn(: ϕ̇2 :), the latter of which are given by Eq. (15), using a variation of

the argument in Sec. IIIB of Ref. [15]. The connected moments of : ϕ̇2 : may be expressed

as a sum of the possible connected contractions of the form

ϕ̇1ϕ̇1ϕ̇2ϕ̇2ϕ̇3ϕ̇3 · · · ϕ̇nϕ̇n , (28)

where the subscripts label operators at different spacetime points. Here the contraction of

the form

ϕ̇i · · · ϕ̇j (29)

contributes a factor of 〈ϕ̇i ϕ̇j〉 in the expression for Cn(ϕ̇2). The number of terms in Cn(ϕ̇2)

may be counted as follows: The first operator to contact has 2(n− 1) possible partners with

which it may be contracted. After this is done, the next operator has 2(n − 2) possible

partners. Thus the total number of terms will be

[2(n− 1)][2(n− 2)] · · · 2 = 2n−1 (n− 1)! . (30)

The corresponding calculation for the n-th connected moment of Sz, Cn(Sz), will involve

〈(ExBy − Ey Bx)1 (ExBy − Ey Bx)2 · · · (ExBy − Ey Bx)n〉 . (31)

The contractions of the electric and magnetic field operators are related to those for ϕ̇ by

the relations

〈Ei(t)Ej(t′)〉 = 〈Bi(t)Bj(t
′)〉 =

2

3
δij 〈ϕ̇(t)ϕ̇(t′)〉 , (32)
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and

〈Ei(t)Bj(t
′)〉 = 0 , (33)

where all operators are at the same spatial point. This means that Ex
1 can only contract with

other Ex operators, etc. Thus Ex
1 has n− 1 possible contractions, and By

1 can only contract

with other By operators whose associated Ex operator is still uncontracted, as otherwise a

disconnected moment would result. This leads to n− 2 possibilities. The next Ex operator

has n − 3 possibilities, ect. Thus a total of (n − 1)! terms arise from ExBy, and an equal

number from Ey Bx, leading to a total of 2(n − 1)! terms in Cn(Sz). Equation (32) tells

us that each contraction of electromagnetic field operators contributes a factor of 2/3 to

Cn(Sz), compared to the contribution of a ϕ̇ contraction to Cn(ϕ̇2). Thus, we may write

kn(Sz) =

(
2

3

)n
2(n− 1)!

2n−1 (n− 1)!
kn(ϕ̇2) =

4

(6π2)n
, (34)

where kn(ϕ̇2) is given by Eq. (15). This leads to

B0 = 4 and B =
1

6π2
(35)

for Sz. This result may also be derived by an alternative argument which involves direct

evaluation of the vacuum expectation value of a product of Sz operators.

As p = 3 for T tz, and hence for Sz, the probability distribution P (x) is a function of

x = τ 4 Sz. However, unlike the case of operators such as ϕ̇2 or the energy density, there

is no lower bound, and the distribution is symmetric P (−x) = P (x). The normalization

becomes ∫ ∞
−∞

P (x) dx = 1 . (36)

The asymptotic form for |x| � 1 is still given by Eq. (19), and the constants c, b, and a are

given by Eqs. (20), (21), and (22), respectively, with p = 3 and B as in Eq. (35). However,

the constant c0 is now one-half of that given by Eq. (23). The values of the parameters in

the tail of the radiation pressure probability distribution become

c =
α

3
, (37)

b = −4α + 1

3
, (38)

a = 2

[
f(0)

3π

]−α/3
, (39)
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and

c0 =
1

4α4

[
f(0)

3π

]2(2α−1)/3
[2πf(0)]−2 . (40)

C. Cumulative Probability Distribution

Often we are more interested in a cumulative probability distribution, rather than P (x)

itself. Define

P>(x) =

∫ ∞
x

P (y) dy , (41)

which is the probability to find any value of y with y ≥ x in a given measurement. If x� 1,

we may use the asymptotic form for P (x) given in Eq. (19) to find

P>(x) ≈ c0
a2/c c

Γ

(
2

c
, axc

)
≈ c0
a c

x1+b−c e−ax
c

= e−F (x) , (42)

where Γ(2
c
, axc) is an incomplete gamma function, and

F (x) = a xc − (1 + b− c) ln x− ln
( c0
ac

)
. (43)

The constants a and c0 depend upon f(0), the value of the sampling function at t = 0 in

τ = 1 units. Given that f(t) has unit area and characteristic width τ , we expect f(0) to be

of order one. Simple choices, such as that illustrated in Fig. 4 of Ref. [16], give a slightly

larger value. For the purposes of our estimates, we will set f(0) = π/2. Then the coefficients

which appear in Eqs. (19) and (42) for Sz, depend only upon the parameter α, and are listed

in Table I for selected values of α.

TABLE I: Coefficients for the Radiation Pressure Probability Distribution

α c b a c0 1 + b− c ln
(
c0
ac

)
1
2

1
6 −1 2.70 0.0411 −1

6 −2.39

1
3

1
9 −

7
9 2.44 0.310 1

9 0.132

1
4

1
12 −

2
3 2.32 1.19 1

4 1.82

D. Validity of the Worldline Approximation

The probability distributions treated in Ref. [16] and reviewed earlier in this section

involve only time averaging, that is, averaging along the worldline of a point particle in
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inertial motion. However, in realistic physical situations, such as those to be discussed in

the next section, some averaging in space as well may occur. A systematic treatment of the

effects of both space and time averaging will appear in Ref [20], including a discussion of the

range of validity of the worldline approximation. This discussion will be briefly summarized

here. The effect of spatial averaging can be described by a spatial sampling function g(x),

with three-dimensional Fourier transform ĝ(k). Now the expressions for the moments, such

as Eq. (14), will contain factors of ĝ in addition to those of f̂ , and integrations over d3kj. Let

s = `/τ denote the ratio the characteristic scale of the spatial sampling, `, to the temporal

scale, τ , and assume s� 1. In this case, we expect the worldline approximation to hold for

the lower moments, and hence the inner part of the probability distribution.

This statement can be made more quantitative as follows: For ω . 1/s, we have ĝ ≈ 1.

(Recall that ω is dimensionless in τ = 1 units.) The dominant contribution in ω to the n-th

moment comes near the maximum of the integrand in Eq. (16), which is

ωn ≈
( n

2 c

)1/α
(44)

if f̂ has the form in Eq. (4). Thus the worldline approximation gives an accurate estimate

for the n-th moment if

n . 2c s−α . (45)

For n� 1, we have

µn =

∫ ∞
−∞

xn f(x) dx ≈ 2c0

∫ ∞
0

xn+b e−ax
c

dx , (46)

for the case of the momentum flux Sz. The dominant contribution to this integral comes

near the maximum of its integrand,

xn ≈
( n
a c

)1/c
. (47)

We may now combine these results to infer that the worldline result should give a good

approximation to P (x) for

x .

(
2

a

)
s−p . (48)

For the case of stress tensors such as Sz, where p = 3 and a ≈ 2, as illustrated in Table I,

we find that the worldline approximation gives an accurate estimate for P (x) when

x . s−3 . (49)
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In addition, we need to have x� 1, so that the asymptotic probability distribution, Eq. (19)

is valid. We will see below that there is large region where both conditions may be satisfied.

E. Dependence upon the Switching Parameter α

A crucial feature of the asymptotic probability distributions given in Eqs. (19) and (42)

is the sensitive dependence upon the parameter α. A small decrease in the value of α can

cause a significant increase in the probability of a large stress tensor fluctuation. Recall that

this parameter was defined in Eq. (4), which gives the asymptotic behavior of the Fourier

transform, f̂(ω) of a wide class of compactly supported C∞ sampling functions. The Fourier

transform of such a function must fall faster than any power, but slower than an exponential,

and Eq. (4) describes the simplest class of functions with this behavior. The rate of decrease

of f̂(ω) for large ω is linked to the switch-on behavior of the sampling function f(t) through

Eqs. (5), (6), (7), and (8). Recall that if f̂(ω) is exactly given by Eq. (4), then f(t) is a

Fox H-function, but we are considering a broader class of functions for which Eq. (4) need

only hold asymptotically. Our view is that the specific form of the sampling function should

be determined by the details of the physical system. Note that the variance of the vacuum

radiation pressure fluctuations. which was addressed in Refs. [8, 10–13], is much less sensitive

to the details of the sampling function than is the probability of a large fluctuation, which

is the topic addressed here. Note that Eq. (47) implies that the probability distribution for

a large value of x� 1 is determined by moments of order

n ≈ ac xc � 1 . (50)

This reiterates the point made earlier that studies of the variance or the power spectrum

are not adequate to understand large fluctuations.

III. BARRIER HOPPING

In this section, we will discuss the possible effects of quantum radiation pressure fluc-

tuations on barrier penetration by quantum particles. Consider the situation illustrated

in Fig. 1, where a particle of mass m and energy E0 is incident upon a potential barrier

V (z), with classical turning points at z = z1 and z = z2, where E0 = V (z1) = V (z2). The
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probability of quantum tunneling through the barrier is given in the WKB approximation

by

PWKB = e−G , (51)

where

G = 2

∫ z2

z1

√
2m [V (z)− E0] dz . (52)

The mean value theorem implies the existence of zm, such that z1 ≤ zm ≤ z2 and

G = 2
√

2m [V (zm)− E0] d , (53)

where d = z2 − z1 is a measure of the spatial width of the barrier. Define a speed v1 by

v1 =
√

2 [V (zm)− E0]/m , (54)

which is the speed of a non-relativistic particle with kinetic energy V (zm)−E0. Now we can

express G as

G = 2 v1

(
d

λC

)
, (55)

where λC = 1/m is the reduced Compton wavelength of the particle. Thus, the WKB

tunneling probability decreases as an exponential of the product of speed v1 as a fraction of

the speed of light, and of the width of the barrier as a multiple of the Compton wavelength.

dE E0 0

Z

1

1

1

Z Z

V(z)

1 2

FIG. 1: A quantum particle with energy E0 tunnels through a potential barrier V (z). The classical

turning points are at z = z1 and z = z2. The characteristic spatial width of the barrier is d = z2−z1.
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A. The Effect of Large Vacuum Radiation Pressure Fluctuations

Now consider the possibility that the particle, while still to the left of the barrier in Fig. 2,

is subjected to a radiation pressure fluctuation in the +z direction. If the magnitude and

duration of this fluctuation are sufficiently large, it could push the particle over the barrier.

Let σ be the scattering cross section for radiation by the particle, such as the Thompson

cross section for a non-relativistic charged particle. The average force exerted on the particle

by the pressure fluctuation is σ Sz, and the work done if the particle moves a distance d to

the right during the fluctuation will be

∆E = σ Sz d . (56)

If ∆E > Vmax − E0, where Vmax is the maximum value of the potential, then the particle

will fly over the barrier, if the duration of the fluctuation is sufficiently long. Let v0 be the

average speed of the particle as it goes over the barrier, and let

τ =
d

v0
(57)

be the required duration (in arbitrary units). Here we assume that the motion of the

particle is non-relativistic, so that the radiation pressure in the rest frame of the particle is

approximately equal to that in the rest frame of the potential barrier. For the purpose of

a rough estimate, assume that the fluctuation is sufficiently large that ∆E is at least a few

times larger than Vz − E0 everywhere and take ∆E ≈ 1
2
mv20. Now we may combine the

above relations to write the dimensionless x as

x = τ 4 Sz ≈ md3

2σ v20
. (58)

Let the particle have an electric charge of q, so σ is the Thompson cross section

σ = σT =
q4

6πm2
. (59)

Now we can write

x = τ 4 Sz ≈ md3

2σ v20
. (60)

Note that if we hold all other variables fixed and increase v0, and hence ∆E, then x decreases,

so P>(x) typically increases, and the fluctuation becomes more probable. This arises because

the factor of 1/v40 coming from τ 4 dominates over the factor of v20 in ∆E.
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E0E 0

0

0
d

z

V(z)

FIG. 2: Here the particle temporarily receives extra energy from a quantum radiation pressure

fluctuation, which allows it to fly over the barrier.

If the cumulative probability, P>(x) is greater than PWKB, or

F (x) < G , (61)

then the radiation pressure fluctuations will dominate over quantum tunneling. This can

occur if d is sufficiently large, as G ∝ d but F grows more slowly than linearly in d. For

example, if α = 1/2, then F ∝
√
d for large d. For smaller values of α, the growth of F with

increasing d becomes even slower.

Recall that in Sec. II D, we argued that the validity of the worldline approximation for

stress tensor fluctuations requires

x s3 . 1 , (62)

where s is the ratio of the spatial to the temporal averaging scales. In the case of a particle

with a scattering cross section σ, we will take the spatial scale to be of order
√
σ, and set

s =

√
σ

τ
=

q2 λC√
6 π d

v0 . (63)

Now Eq. (62) becomes

x s3 =
q2

2
√

6π
v0 . 1 , (64)
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where the factors of λC and of d have canceled. Let q = Z e, and recall that e2/4π ≈ 1/137

is the fine structure constant to write Eq. (64) as(
Z

10

)2

.
1

v0
. (65)

This condition for the validity of the worldline approximation is generally satisfied for non-

relativistic (v0 � 1) elementary particles and smaller nuclei.

Consider the case of radiation pressure fluctuations on a particle whose charge has a

magnitude e such as an electron or proton, so Z = 1. For the purposes of an estimate,

assume that v1 ≈ v0. For given values of α and v0, we may use Eqs. (43), (55), and (60),

combined with the date in Table I, to find the value of x and hence of d at which F (x) = G.

A few examples are listed in Table II. As before, we have estimated the spatial dimension

of the worldtube of the particle to be of order
√
σ ≈ 0.021λC , so the ratio of the spatial to

the temporal sampling lengths is

s =

√
σ

τ
≈ v0 λC

47 d
. (66)

TABLE II: Dominance of radiation pressure fluctuations. For given α and v0, this table lists the

value of the width d at which radiation pressure fluctuations begin to dominate over quantum

tunneling.

α v0 G d/λC x s−3

1
2 0.5 132 132 1.0× 1010 1.9× 1012

1
2 0.1 1770 8880 7.8× 1016 7.3× 1019

1
3 0.5 12.5 12.5 8.8× 106 1.6× 109

1
3 0.1 54.1 271 2.2× 1012 2.1× 1015

1
4 0.5 0.64 0.64 1.2× 103 2.2× 105

1
4 0.1 3.8 19 7.6× 108 7.0× 1011

We can draw several inferences from the data in Table II. First, as the characteristic speed

v0 increases, the relative effect of radiation pressure fluctuations increases. This comes from

the decrease in the sampling time τ and the corresponding decrease in the parameter x. The

value v0 = 0.5 is at the upper limit of validity of a non-relativistic treatment, but gives a
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reasonable order of magnitude estimate of the maximum effect attainable in this treatment.

For α = 1/2, radiation pressure fluctuations only dominate over quantum tunneling in a

regime where both effects are very small. For example, for α = 1/2 and v0 = 0.5, the

probability of both effects at the cross over point is of the order of e−132. However, as α

decreases, the relative effect of radiation pressure fluctuations increases rapidly. For α = 1/4

and v0 = 0.1, at the point that F = G, the probability of a particle being kicked over the

barrier by a vacuum fluctuation is e−3.8 ≈ 0.02, and for barriers with width d > 19λC ,

radiation pressure fluctuations will dominate. In all of the cases illustrated, x s3 � 1, so

the worldline approximation seems to be valid. At the same time, x� 1, so the asymptotic

form, Eq. (19), of the probability distribution holds.

B. Sources of the Switching

In this subsection, we will discuss possible physical origins of the switching function,

f(t), which averages the T tz component of the electromagnetic stress tensor to produce the

averaged momentum flux on the particle. We are working within the hypothesis that this

function must be determined by the details of the physical situation or measurement. In the

case of a quantum particle impinging upon a potential barrier, one possibility is an interplay

between the shape of the particle’s wavepacket, and the geometry of the barrier. Consider

a particle moving in one space dimension with wavefunction ψ(z, t), and hence probability

density |ψ(z, t)|2. It is reasonable to require this to be a compactly supported function of

t at fixed z, or at least be strictly zero before some specified time. This will always be the

case if the source of the particle was switched on at a finite time in the past. Although it is

often convenient to use Gaussian wavepackets, or other functions with infinite tails in both

directions, these are idealizations which imply a source in the infinite past.

Whether the potential V (z) needs to be a compactly supported function of z is less clear.

However, it seems reasonable to consider such potentials, which describe systems with a

finite spatial extent. In this case, we might suppose that the sampling of the quantum stress

tensor by the particle occurs while the probability density |ψ(z, t)|2 and the potential V (z)

overlap in space. In this case, f(t) would be zero before the leading edge of the wavepacket

reaches the potential, and drops again to zero after the wavepacket has split into transmitted

and reflected components which have left the region where V (z) 6= 0. It is also possible to
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consider potentials of the form V (t, z), with explicit time dependence. Recall that a simple

electrical circuit with switch-on corresponding to α = 1/2 was discussed in Ref. [16].

Other possibilities can involve motion in more than one space dimension, as illustrated

in Fig. 3. Here the particle is initially moving in the y-direction in the local minimum of a

D 

L 

z 

y 

V 

FIG. 3: A particle moves along a potential trough in the y-direction, which modulates the radation

pressure fluctuations in the z-direction. These fluctuations may in turn push the particle over the

barrier.

potential trough on the left. The detailed shape of the potential as a function of y, as well as

the shape of the particle wavepacket, define a switching function for the components of the

electromagnetic stress tensor, including T tz. This in turn creates an averaged force in the

+z-direction, which can cause the particle to jump over the local maximum of the potential

to the trough on the right of the barrier. The temporal switch-on might be modulated by

the shape of the potential in the y-direction.
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IV. APPLICATIONS TO NUCLEAR FUSION

An example of barrier penetration by a charged particle arises in nuclear fusion, where a

smaller projectile nucleus must penetrate the Coulomb barrier of a larger target nucleus. For

small projectile nuclei, a simple quantum tunneling calculation gives reasonable agreement

with experiment. However, for larger projectile nuclei, such as 16O, or 40A, the simple

calculation underestimates the fusion cross section, often by many orders of magnitude [21,

22]. This is usually ascribed to effects such as deformation of the target nucleus. However,

we will explore the possibility that large vacuum radiation pressure fluctuations could be

large enough to explain the observed cross sections.

We will consider as an example the fusion of 40A with 154Sm. At a center of mass energy

of Ecm = 113.7 MeV, the experimentally measured cross section is [23]

σexp = 0.51± 0.10 mb . (67)

First, we review the theoretical calculation of the cross section using quantum tunneling

in a simple model [24]. Let µ be the reduced mass of the system and k =
√

2E/µ be the

wavenumber. The cross section may be expressed in a partial wave expansion as

σ(E) =
π

k2

∑
l

(2l + 1)Pl , (68)

where Pl is the transmission probability through the barrier for the l-th wave. The potential

for this wave can be modeled by an inverted harmonic oscillator potential

Vl(r) = −1

2
ω2
0µ(r −R0)

2 + El , (69)

where

El = E0 +
l(l + 1)

2µR2
0

. (70)

Here ω0, E0, and R0 are parameters which are determined semi-empirically. A fit to the

proximity function given in Ref. [25] leads to the values E0 = 123.4 MeV, R0 = 12.26 fm and

ω = 4.16 MeV. This potential models Coulomb repulsion at larger distances, and nuclear

attractive forces at shorter distances, and is illustrated in Fig. IV. The quantum tunneling

probability, Pl, for this potential is given by the Hill-Wheeler formula [26]

Pl(E) =
1

1 + exp[2π(El − E)/ω0]
. (71)
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E 

FIG. 4: Sketch of Coulomb barrier for nuclear fusion. The solid curve is the actual potential, which

combines Couloub repulsion at large separation, and attractive nuclear force at short separation.

The dashed curve is the inverted quadratic potential which is tangent to the actual one at the

maximum point. Here dl is the effective width of the barrier at energy E.

If we evaluate the predicted cross section using Eqs. (68) and (71), with the above choices

for the parameters, the result is

σHW ≈ 6× 10−6 mb ≈ 10−5 σexp . (72)

Clearly, the model described above fails badly for below-barrier energies, E < E0. However,

it does give reasonable results for the above-barrier case.

We now explore the hypothesis that the observed cross section in the below-barrier case

can be explained by large vacuum radiation pressure fluctuations, described by the tail of

the cumulative probability distribution given in Eq. (42). Let

Pl = P>(xl) ≈
c0
ac
x1+b−cl e−ax

c
l , (73)

where

xl =
µ d3l

2σT v20
. (74)

Here σT is the Thompson cross section, Eq. (59), and dl is the width of barrier for the l-th

partial wave, defined by

Vl

(
R0 ±

1

2
dl

)
= E . (75)
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The solutions of this equation are

dl = d0 [1 + ξ l(l + 1)]1/2 , (76)

where

d0 =
2

ω0

√
2(E0 − E)

µ
(77)

and

ξ =
4

(µω0R0 d0)2
. (78)

Define

S =
k2

π
σ , (79)

so we have

S =
c0
ac

∞∑
l=0

(2l + 1) {x0[(1 + l(l + 1)ξ]3/2}1+b−c e−a{x0[1+l(l+1)ξ}3/2]c . (80)

For the cases of interest here, this series converges well when about 103 terms are included.

We take the parameters c, b, a, and c0 to be those given by Eqs. (37) - (40), with

f(0) = π/2, and hence functions of α alone. The quantities x0 and ξ are determined by the

parameters specific to the 40A + 154Sm system, and may be expressed as

ξ = 4.8× 10−4 (81)

and

x0 = 6.0× 107 . (82)

In addition, we have d0 ≈ 2.3 fm in this case. More generally, we can write

ξ = 7.4× 10−4
(

4 MeV

ω0

)2(
32 u

µ

)2(
2 fm

d0

)2(
12 fm

R0

)2

(83)

x0 = 3.0× 107
(µ

u

)3( Z
18

)2(
d0

2 fm

)3(
0.1

v0

)2

(84)

for any nuclear fusion case, where Z is the atomic number of the incoming nucleus.

In the case of the 40A + 154Sm system, Z = 18 and µ ≈ 32u. At a center of mass energy

of Ecm ≈ 1
2
µ v20 ≈ 114 MeV, we have v0 ≈ 0.085. This leads to (Z/10)2 v0 ≈ 0.3. Thus

the crtierion for the validity of the worldline approximation, Eq. (65), is satisfied to fair

accuracy. This should be adequate for the order-of-magnitude estimates which we make.
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If we replace the sum in Eq. (80) by an integral,
∑∞

l=0 →
∫∞
0
dl then S → SI , where SI

may be expressed in terms of an incomplete gamma function:

SI =
2c0

3c2ξx
2/3
0

a−(5+3b)/(3c) Γ

(
5 + 3b− 3c

3c
, axc0

)
. (85)

If axc0 � 1, we have the asymptotic form

SI ∼ SIA =
2c0

3a2c2ξ
x1+b−2c0 e−ax

c
0 . (86)

Now we wish to find the value of α which produce a value of σ which agrees with the

experimental value, Eq. (67). This requires S ≈ 2.8 at E = 113.7 MeV. The choices which

arise from our best estimates of the nuclear parameters, ξ = 4.8× 10−4 and x0 = 6.0× 107

lead to α ≈ 0.27. The result for α is only weakly sensitive to the values of ξ and x0, and tend

to lie in the range 0.25 . α . 0.30, with increases in either ξ or x0 leading to smaller values

for α. For example, ξ = 10−4 and x0 = 107 lead to α ≈ 0.30, while ξ = 10−2 and x0 = 108

lead to α ≈ 0.25. These results may be obtained from either the sum S or the integral form

SI , which agree very with each other. Thus vacuum radiation pressure fluctuations with

α . 0.3 seem to be large enough to explain the observed cross section.

V. RADIATION PRESSURE FLUCTUATIONS ON A POLARIZABLE PARTI-

CLE

In this section, we will consider the effects of vacuum radiation pressure fluctuations on

an uncharged but electrically polarizable particle, such as an atom or a neutron. We will

assume that the polarizability, α0, is approximately independent of frequency. The Rayleigh

scattering cross section for scattering of a monochromatic electromagnetic wave of angular

frequency ω by such a particle is

σR =
α2
0

6 π
ω4 . (87)

Thus we can write the force in the z-direction on the particle as

f z = σR (E×B)z =
α2
0

6 π
(Ë× B̈)z . (88)

We will assume that the vacuum fluctuations of this force arise from the fluctuations of the

operator (Ë × B̈)z. More precisely, they arise from the fluctuations of the time averaged
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operator

Rz =

∫ ∞
−∞

(Ë× B̈)z f(t) dt , (89)

where the integrand is evaluated along the world line of the particle. This operator is very

similar to the operator Sz treated in Sec. II B, except for the additional time derivatives,

which lead to p = 7 for Rz.

The dimensionless variable, x, in the probability distribution P (x) for Rz is now x =

Rz τ 8. The asymptotic forms for P (x) and for the cumulative distribution P>(x) have the

forms in Eqs. (19) and (42), respectively. The numerical constants are determined as before,

using B0 = 4 and B = 1/(6π2), as for Sz, but now using p = 7. The results are displayed in

Table III. Note that here c = α/7, so P (x) and P>(x) decrease very slowly with increasing

TABLE III: Coefficients for the Probability Distribution of Rz.

α c b a c0 1 + b− c ln
(
c0
ac

)
1
2

1
14 −

9
7 2.27 8.86 − 5

14 4.00

1
3

1
21 −

23
21 2.18 319. −1

7 8.03

1
4

1
28 −1 2.13 3784 − 1

28 10.8

x and hence increasing averaged force.

The criterion for the validity of the worldline approximation, Eq. (48), now becomes

x s7 . 1 , (90)

where

s =
r0
τ
, (91)

and r0 = α
1
3
0 is the characteristic size of the particle. Consider the situation treated in

Sec. III A, where the particle can be pushed over a potential barrier by a vacuum force

fluctuation. Here we find

x =
3πmd7

α2
0 v

6
0

≈ 10md7

r60 v
6
0

, (92)

and s = v0 r0/d. Hence x s7 = 10mv0 r0, and the worldline approximation is valid when

v0 .
1

10mr0
. (93)
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This condition is difficult to satisfy for atoms. For the case of a hydrogen atom, for example,

we would need v0 . 4 × 10−7, or E0 . 8 × 10−8 eV, which corresponds to a temperature

below 0.1K.

The case of the neutron seems more promising, which has a static electric polarizability

of α0 ≈ 10−3 fm3 [27–29], or an spatial size of r0 ≈ 0.1 fm. The validity of the worldline

approximation requires v0 . 0.2. Here we will give some estimates for the limiting case

when v0 ≈ 0.2 and

x ≈ 7.8× 1011

(
d

1 fm

)7

. (94)

Here

G ≈ 2

(
d

1 fm

)
(95)

and F has the form in Eq. (43), with the coefficients given in Table III. As before, vacuum

radiation pressure fluctuations dominate over quantum tunneling when F < G. For the case

α = 1/2, this begins to occur when d ≈ 80 fm, so F = G ≈ 160, so the rates due to both

effects are very small. When α = 1/3, we have F = G at d ≈ 12.5 fm, corresponding to

P> = e−12.5 ≈ 3.7 × 10−6. In the case α = 1/4, we find that F < G for all values of d, so

the radiation pressure fluctuation effect dominates. For all values of α < 1, for sufficiently

large d, we have F ∝ dα, and hence growing more slowly than G.

VI. SUMMARY AND DISCUSSION

In this paper, we have explored the hypothesis that large vacuum radiation pressure

fluctuations can sometimes contribute noticeably to barrier penetration by quantum particles

with energies below the maximum of the barrier. This barrier penetration is usually assumed

to occur by quantum tunneling, the rate for which decreases exponentially with increasing

barrier height or width. Our analysis is based upon recent results on the vacuum probability

distributions for quantum stress tensor components averaged in time with a class of sampling

function with compact support [16]. We argue that such functions, which vanish outside of

a finite time interval, are more realistic descriptions of physical processes than are functions

with tails extending into the infinite past and future. We also suggest that the choice of

the sampling function should be determined by the details of the physical situation. Large

vacuum radiation pressure fluctuations of the quantized electromagnetic field are described
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by a probability distribution which falls more slowly than exponentially, as an exponential of

a fractional power of the sampled pressure. The relatively high probability of large vacuum

radiation pressure fluctuations leads to the possibility that these fluctuations can temporarily

give a particle enough energy to fly over the barrier classically. The probability of a large

fluctuation increases with decreasing time duration of the sampling function, which measures

the time required for the particle to traverse the barrier. Here we have studied the class of

sampling functions reviewed in Sec. II A, which are described by the parameter α, which

lies in the range 0 < α < 1. Smaller values of α are associated with a greater probability

of large fluctuations. For non-relativistic charged particles, the force exerted by radiation

pressure is proportional to the Thompson cross section.

Some estimates for the rate of this process were given in Sec. III A. It was found that

for sufficiently wide barriers, the vacuum radiation pressure effect can always dominate over

usual quantum tunneling. Furthermore, for sufficiently large incident energies, and hence

short sampling times, and for smaller values of α, the barrier penetration rate due to vacuum

fluctuation may be large enough to be observable. In Sec. IV, we examined the possible role

of vacuum radiation pressure fluctuations in nuclear fusion, especially heavy ion projectiles,

where the observed fusion cross sections are much larger than predicted by simple barrier

tunneling models. We find that radiation pressure fluctuations with α . 0.3 could explain

the observed cross sections.

In Sec. V, we turned to force fluctuations on electrically neutral, but polarizable, par-

ticles. Here the classical force is proportional to the Rayleigh scattering cross section and

is proportional to the fourth power of the incident wave frequency. We argued that the

quantum force fluctuations can be analyzed using the probability distribution for the time

average of the operator Ë × B̈, where E and B are the quantized electric and magnetic

field operators, respectively. We find the asymptotic form of the probability distribution

for this operator averaged with the same class of compactly supported sampling functions,

and find that it falls even more slowly than does the distribution for averaged stress tensor

components. We applied the result to barrier penetration by polarizable particles, using the

neutron as an example. As in the case of charged particles, it is possible for vacuum force

fluctuation effects to dominate over quantum tunneling.

In all cases, the effect is very sensitive to the details of the switching function, particularly

to the value of the parameter α. This strong dependence is a new feature of the large vacuum
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fluctuations being treated in this paper, and does not appear when only the variance is

considered, as was the case in earlier work [8, 10, 11]. Our view is that the functional form

of the switching function should be determined by the details of the physical system being

studied. Some progress in this direction has been made in the context of nonlinear optical

models for lightcone fluctuations [3, 4], where it was shown that the density profile of a slab

of nonlinear material defines the relevant sampling function for for electric field and squared

electric field fluctuations. In the context of barrier penetration, we have conjectured in

Sec. III B that a combination of the shape of the wavepacket of the incident particle and the

spatial dependence of the barrier potential may also define the relevant sampling function.

However, it is not yet clear how to use this information to explicitly determine a value for

α. This is a topic for future work. In the meantime, we may regard α as an undetermined

phenomenological parameter which might be possible to determine by experiment.
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