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Sally Dawson∗ and Christopher W. Murphy†

Department of Physics, Brookhaven National Laboratory, Upton, N.Y., 11973, U.S.A.

One of the simplest extensions of the Standard Model is the inclusion of an additional scalar
multiplet, and we consider scalars in the SU(2)L singlet, triplet, and quartet representations. We
examine models with heavy neutral scalars, mH ∼ 1−2 TeV, and the matching of the UV complete
theories to the low energy effective field theory. We demonstrate the agreement of the kinematic
distributions obtained in the singlet models for the gluon fusion of a Higgs pair with the predictions
of the effective field theory. The restrictions on the extended scalar sectors due to unitarity and
precision electroweak measurements are summarized and lead to highly restricted regions of viable
parameter space for the triplet and quartet models.

I. INTRODUCTION

The discovery of the Higgs boson at the LHC marks the beginning of the exploration of the nature of
electroweak symmetry breaking. Our knowledge of the structure of the scalar potential remains primitive
– there are no experimental measurements of the Higgs self-couplings and extended Higgs sectors can
easily be made consistent with LHC data on single Higgs production and searches for heavy neutral scalars.
The cleanest mechanism for obtaining information on the Higgs tri-linear coupling is a measurement of
double Higgs production from gluon fusion. In the Standard Model (SM), the rate for double Higgs
production is exceedingly small, presenting a challenge even for the high luminosity LHC.

The simplest extension of the SM scalar sector is the inclusion of an additional scalar multiplet, φ. If
these new scalar multiplets, φ, have light neutral scalars in addition to the 125 GeV Higgs boson, the new
scalars can be studied by direct production and they can also contribute resonant signatures to double
Higgs production. Alternatively, if the new neutral scalars are heavy, Mφ � mh, their contributions to
low scale physics can be captured in an effective field theory framework, with the largest effects coming
from dimension-6 operators [1–8].

We concentrate on UV complete models with scalar sectors that have renormalizable couplings to the
SM Higgs doublet. The list of such representations is rather short, and the parameters of these models are
tightly restricted by the requirements of perturbative unitarity and agreement with precision electroweak
measurements. We consider scalars that are SU(3)C singlets and SU(2)L singlets, triplets, and quartets.
(The interesting case of additional SU(2)L doublets has been extensively studied in the literature [3–
13].) Using standard techniques [1, 3], the heavy φ can be integrated out, leading to predictions for the
effective field theory dimension-6 coefficients corresponding to a given extended scalar model. We restrict
ourselves to contributions that arise at tree level. Furthermore, we assume no large non-linearities are
generated when the heavy φ is integrated out. That is to say, we are using the SM Effective Field Theory
(SMEFT), not Higgs Effective Field Theory (HEFT) [14–16].

An effective field theory has an expansion in powers of (Energy)2/Λ2, where Λ is a high scale UV cut-
off. At large values of the energy, kinematic distributions in the SMEFT can be expected to diverge from
the exact low energy results [17, 18]. A well known example in the case of gg → hh is the failure of the
mt →∞ limit to reproduce the exact cross section and invariant mass distribution [19–21]. The SMEFT
operators have different energy dependences in the high energy limit, and kinematic distributions could
potentially distinguish between the contributions of different dimension-6 operators [22–24]. We study
the accuracy of the effective field theory for reproducing the predictions of UV complete models with
heavy scalar singlets for the gg → hh process and compare the pT spectrum and the Mhh distributions
in the SMEFT and the UV complete singlet models [21, 25–29]. Analogous studies have shown good
agreement for single Higgs production in selected models with extended scalar sectors [5, 6].

The scalar triplet model violates custodial SU(2) and all of the SMEFT coefficients are proportional to
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this violation and hence are forced to be small [10, 30–33]. The combined requirements from measurements
of the ρ parameter and perturbative unitarity lead to models that are indistinguishable from the SM
through either single or double Higgs production. The quartet models [34] also violate custodial SU(2)
and we demonstrate that these models have extremely restricted regions of viable parameter space when
perturbative unitarity is enforced.

In Section II, we review the framework of the SMEFT with details given in Appendix A, while Section III
has descriptions of the extended scalar sectors we consider. Further details of the models are contained
in Appendix B. Section IV contains discussions of limits on the parameters of the scalar sectors from
the ρ parameter, single Higgs production, and the requirement of perturbative unitarity. In particular, a
discussion of limits on the SMEFT coefficients in models with extended Higgs sectors from single Higgs
production is given in Section IV B. The numerical comparison of the SMEFT and extended scalar models
for double Higgs production is in Section V, with conclusions in Section VI.

II. STANDARD MODEL EFFECTIVE FIELD THEORY

The Lagrangian we consider can be written as

LSMEFT = LSM + L(5) + L(6) + . . . (1)

where L(n) has dimension-n and can be parameterized as L(n) = Σi
c
(n)
i

vn−4O
(n)
i .

Including only the third generation fermions and neglecting possible mixing with the lighter generations,
the Higgs sector of the SM is given by

LSM ⊃ LH = (DµH)
†

(DµH)− VSM (H)

−
[
yb (q̄LbRH) + yt

(
q̄LtRH̃

)
+ yτ

(
l̄LτRH

)
+ h.c.

]
,

VSM (H) = −µ2
(
H†H

)
+ λ

(
H†H

)2
, (2)

where q̄L and l̄L are the left-handed (t, b)L and (ν, τ)L doublets, H̃ ≡ iσ2H∗, and the SU(2)L doublet H
is parameterized as,

H ≡
(
H1

H2

)
≡

(
w+

vh+h
′+iz√
2

)
. (3)

We are interested in the dimension-6 CP-conserving operators generated at tree level by extended
scalar sectors, which takes the form,

L(6) =
∑
i

ci
v2
Oi ⊃ L(6)

H

L(6)
H =

cH
2v2

∂µ
(
H†H

)
∂µ
(
H†H

)
+

cT
2v2

∣∣∣H†←→D µH
∣∣∣2 − c6λ

v2
(
H†H

)3
(4)

+

(
H†H

)
v2

[
cbyb (q̄LbRH) + ctyt

(
q̄LtRH̃

)
+ cτyτ

(
l̄LτRH

)
+ h.c.

]
,

where H†
←→
D µH ≡ H†DµH − (DµH

†)H. In the models we consider ct = cb = cτ ≡ cf at tree-level and
none of the extended scalar models we consider generate H†HV AµνV

Aµν (V is the SU(3)C , SU(2)L or
U(1) gauge boson) at tree level, so they are not included in Eq. (4). Minimizing the potential in Eq. (2)
yields the constraint

µ2 = λv2
(

1 +
3

4
c6

)
, (5)

where v ≈ 246 GeV is the vacuum expectation value (vev) of the Higgs field. With this normalization the
coefficients of the operators appearing in Eq. (4) are of order v2/Λ2, where again Λ is the cutoff of the
effective theory. In additional to the previously mentioned energy expansion, there is also a mass gap,
v2 < Λ2.
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We use the basis of Ref. [35], as it has a convenient normalization for our purposes. It is straightforward
to convert this basis into a different one, e.g. [36], and Appendix A contains information about operators
bases and other SMEFT details. We are primarily interested in the leading order (LO) EFT effects,
which generally means dimension-6 operators generated at tree level. We note that at one-loop the
renormalization group (RG) evolution of the operators OH and OT generates operators of the form
ψ2H2D [37–39]. The subset of dimension-6 operators considered in Eq. (4) is otherwise closed under RG
evolution at one-loop.

The kinetic energy for the Higgs boson, h′, in Eq. (1) is not canonically normalized. A field redefinition
can be made to correctly normalize the kinetic energy1 and eliminate derivative interactions [40, 41]

h′ = h

[
1− cH

2

(
1 +

h

v
+

h2

3v2

)]
, (6)

∂µh
′ = ∂µh

[
1− cH

2

(
1 +

h

v

)2
]
.

Using Eq. (6) the Higgs boson Lagrangian takes the form

Lh =
1

2
(∂µh)

2 − 1

2
m2
hh

2 − m2
h

2v

(
1 + c6 −

3

2
cH

)
h3 (7)

− m2
h

8v2

(
1 + 6c6 −

25

3
cH

)
h4 − m2

h

48v4
(3c6 − 4cH)h5 (h+ 6v) ,

with mh ≈ 125 GeV. There are also modifications to the Yukawa sector from Eq. (6)

Lyt = −mtt̄t

[
1 +

(
1− cH + 2ct

2

)
h

v
− cH + 3ct

2

(
h2

v2
+

h3

3v3

)]
, (8)

and similarly for the other SM fermions.

III. EXTENDED SCALAR SECTORS

We consider a number of extensions of the SM where a single new spin-zero multiplet, φ, is added to
the SM and require that there is a renormalizable interaction with the SM H doublet that is linear in φ.
There is a sizable literature on integrating out heavy scalars and studying their SMEFT contributions,
see for instance [3–7, 10–13]. The models we consider are: a real singlet (10), a real triplet (30), a complex
triplet (31), and two quartets: quartet1 (41/2) and quartet3 (43/2). The numbers in parentheses are the
SU(2)L×U(1)Y quantum numbers of the new scalars, all of which are color singlets. These models only
generate dimension-6 operators of the form H6 and H4D2 at tree level (where D is the SU(2)L ×U(1)Y
covariant derivative). As such they are good candidates to be discovered through deviations in double
Higgs production from the SM predictions.

The potential can schematically be written as (see also [34])

V (H,φ) = VSM (H) + VZ2 (H,φ) + VZZZ2
(H,φ) , (9)

where φ is the new scalar, and VSM is given in Eq. (2). For a real valued φ, the Z2 preserving potential
has the following form

VZ2 (H,φ) =
1

2
M2φaφa + λαH

†Hφaφa + λβ (φaφa)
2
, (10)

where a are the SU(2)L indices, and for a complex valued φ there may be multiple α and/or β-type
interactions. Additionally, when φ is complex, there is no factor of one-half in front of the mass term,

1 We work to linear order in the coefficients, ci.
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Model cH c6λSM cT cf

Real Singlet w/ explicit ZZZ2
m2

1v
2

M4

m2
1v

2

M4

(
λα − m1m2

M2

)
0 0

Real Singlet w/ spontaneous ZZZ2

(
λαv

4λβvφ

)2

0 0 0

2HDM 0 X 0 X

Real Triplet −m
2
1v

2

2M4

m2
1v

2λα
4M4

m2
1v

2

4M4

m2
1v

2

4M4

Complex Triplet −m
2
1v

2

2M4

m2
1v

2

2M4

(
λα1 − λα2

2

)
−m

2
1v

2

2M4

m2
1v

2

2M4

Quartet1 0 −λ
2
1v

2

M2 0 0

Quartet3 0 −λ
2
1v

2

M2 0 0

TABLE I: The dimension-6 operators from Eq. (4) that are generated at tree level in the models under
consideration. Here λSM = m2

h/2v
2. The 2HDM is listed for the sake of comparison (it additionally

generates four-fermion operators). Note that the factors of v are due to the normalization of Eq. (4).

and φaφa should be replaced with φa†φa. Depending on the SU(2)L representation of φ, the Z2 violating
potential contains one of the following interactions

VZZZ2
∼ m1H

2φ or VZZZ2
∼ λ1H3φ. (11)

If φ is a singlet there can also be a tadpole term and a cubic self-interaction, both of which violate the
Z2 symmetry.

The essential features of each model are listed below. Additional details have been relegated to Ap-
pendix B. We define the angle α to characterize the mixing between the neutral, CP -even components
of H and φ (

h
H

)
=

(
cosα − sinα
sinα cosα

)(
h′

ϕ

)
, (12)

where Re(H2) = vh+h
′

√
2

and Re(φ0) = vφ +ϕ, and vh and vφ are the vevs of H and φ, respectively. In all

of the models we consider, a non-zero value of α leads to a universal modification of the Higgs couplings
to SM particles (excluding the Higgs self-couplings). This angle has been bounded from the single Higgs
signal strengths by the ATLAS collaboration, with the result cosα > 0.94 at the 95% confidence level
(CL) [42].

With the above definitions of the vevs of H and φ, the electroweak (EW) vev is given by

v2 = v2h + 2
[
t(φ) (t(φ) + 1)− t3(φ)2

]
v2φ, (13)

where t(i), t3(i), and vi are the representation under SU(2)L of the ith multiplet, the neutral component
of the ith multiplet, and the vev of the ith multiplet, respectively. When φ is a singlet vh = v, and we
define

tanβs = vh/vφ. (14)

For higher SU(2)L representations, we define the mixing angle between the two vevs as

vh = v cosβ, vφ = v sinβ/
√

2 [t(φ) (t(φ) + 1)− t3(φ)2]. (15)

The potentials listed below are understood to be in addition to the SM-like potential, VSM . Given
these interactions, standard methods exist to determine which operators in the SMEFT are generated at
tree level in a given model [3, 10]. The dimension-6 results are compiled in Table I.

From Tab. I we see that taking λ1 or m1 → 0 while holding the other parameters fixed, or sending
M → ∞ also while keeping the other parameters fixed, causes the new scalar multiplet to decouple.2

2 The analogs of m1 and M in the singlet model with spontaneous Z2 breaking are λα and vφ, respectively.
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Model cH c6λSM cT cf
Real Singlet w/ explicit ZZZ2 tan2 α tan2 α

(
λα − m2

v
tanα

)
0 0

Real Singlet w/ spontaneous ZZZ2 tan2 α 0 0 0

Real Triplet −
8 sin2 βm4

H+

m4
H

4 sin2 βm6
H+

m4
H
v2

4 sin2 βm4
H+

m4
H

4 sin2 βm4
H+

m4
H

Complex Triplet − 4 sin2 βm4
A

m4
H

8 sin2 βm6
A

m4
H
v2

− 4 sin2 βm4
A

m4
H

4 sin2 βm4
A

m4
H

Quartet1 0
24 tan2 βm4

A

7m2
H
v2

0 0

Quartet3 0
8 tan2 βm4

A

3m2
H
v2

0 0

TABLE II: Approximate tree-level expressions for the dimension-6 Wilson coefficients in terms of
physical masses and mixing angles. We assume a common mass for the heavy Higgses – except for mA

(mH+ for the real triplet), which is associated with the alignment without decoupling limit – and take
this mass to be heavy. Additionally for the triplets and quartets, we assume α is sufficiently small such
that it can be neglected. Non-zero values for cT arise in the quartet models at dimension-8, and they
have the same parametric form as the (dimension-6) contribution to cT in the complex triplet model.

These are the analogs of the alignment without decoupling limit, and the decoupling limit of the 2HDM,
respectively [8, 9].

We also give approximate expressions for the dimension-6 Wilson coefficients in terms of physical
masses and mixing angles in Table II. We assume a common mass for the heavy Higgses – except for
mA (mH+ for the real triplet), which is associated with the alignment without decoupling limit – and
take this mass to be heavy. The heavy mass limit needs to be taken with m2

A sin2 β fixed for a weakly
interacting theory. Additionally for the triplets and quartets, we assume α is sufficiently small such that
it can be neglected.

• Singlets: The most general renormalizable potential is

Vs = 1
2M

2φ2 +m1H
†Hφ+m2φ

3 +m3
3φ+ λαH

†Hφ2 + λβφ
4. (16)

If m1,2,3 → 0, the potential exhibits an explicit Z2 symmetry. In the absence of a Z2 symmetry, the
parameters can be redefined to eliminate a vev for φ. In terms of the masses of the Higgs bosons
and the mixing angle α, the Wilson coefficient cH is the same whether or not there is an explicit
Z2 symmetry,

cH =

(
m2
H −m2

h

)2
sin2 2α

(m2
H +m2

h + (m2
H −m2

h) cos 2α)
2 . (17)

The limiting forms of Eq. (17) are

cH =

tan2 α mH →∞(
1− m2

h

m2
H

)2
α2 α→ 0

(18)

When the EFT coefficients are expressed in terms of the mass eigenstate parameters, we see from
Eq. (18) that sending α → 0 is equivalent to taking the alignment without decoupling limit, but
sending mH →∞ is not the same as taking the decoupling limit.

– Real Singlet with Explicit Z2 Breaking: When the Z2 symmetry for φ is explicitly broken,
the parameters in Eq. (16) can be redefined such that φ does not get a vev. Parameter space
exists such that this the deepest of the possible vacua in the theory [21, 43]. In addition, we
redefine M to allow for an easier comparison with the spontaneous symmetry breaking case.
The potential is then,

Vs = 1
2M

2φ2 +m1

(
H†H − v2

2

)
φ+m2φ

3 + λα

(
H†H − v2

2

)
φ2 + λβφ

4. (19)

In this case,

λSMc6 = cH

(
λα −

m1m2

M2

)
, (20)
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and λα and m2 are free parameters limited by perturbative unitarity, precision electroweak
measurements, and the minimization of the potential, while m1 can be expressed in terms of
mh, mH and α. For large M , M ∼ mH .

– Real Singlet with Spontaneous Z2 Breaking: In the case of an explicit Z2 symmetry,
φ develops a vev, φ = vφ + ϕ. This spontaneously breaks the symmetry, and leads to the
following potential:

Vs = λα

(
H†H − v2

2

) (
φ2 − v2φ

)
+ λβ

(
φ2 − v2φ

)2
. (21)

In this scenario c6 vanishes at tree level due to the explicit Z2 symmetry, but cH is still
non-zero [5].

• Triplets: We use an adjoint notation for the triplets

φ = φaT a =
1

2

(
φY

√
2φY+1

√
2φY−1 −φY

)
, (22)

where Y is the hypercharge of the triplet, and T a = σa/2 with σa being the Pauli matrices. All
of the Wilson coefficients in the triplet models are proportional to cT , indicating there is limited
potential for these models to modify double-Higgs production since cT is constrained by the ρ
parameter, see Eq. (36).

– Real Triplet: The real SU(2)L triplet is hypercharge neutral. The potential in this case is

Vtr = 1
2M

2φaφa +m1H
†T aHφa + λαH

†Hφaφa + λβ (φaφa)
2
. (23)

The Wilson coefficients are all proportional to ρ− 1, see Eq. (37) in what follows:

cT = cf = −cH
2

= ρ− 1, c6λSM = (ρ− 1)λα . (24)

– Complex Triplet: The complex triplet has hypercharge one. Much of the discussion is
similar to the real case. The potential is

Vtc = M2φ†aφa +m1

(
H†T aH̃φa + h.c.

)
+ λα1H

†Hφ†aφa (25)

+ iλα2H
†T aHεabcφ†bφc + λβ1

(
φ†aφa

)2 − λβ2εabcεadeφ†bφcφ†dφe.
The relations between the coefficients in the complex triplet case are different than in the real case,
but again all of the Wilson coefficients are proportional to ρ− 1:

cT = −cf = cH = ρ− 1, c6λSM = (1− ρ)

(
λα1
− λα2

2

)
. (26)

• Quartets: The SU(2)L quartets of interest have either hypercharge Y = 3/2 or 1/2. In both cases,
the Z2 preserving part of the potential is

Vq,Z2
= M2φ∗ijkφijk + λα1H

∗iHiφ
∗ljkφljk + λα2H

∗iHkφ
∗ljkφlji (27)

+ λβ1
(
φ∗ijkφijk

)2
+ λβ2φ

∗ijkφijnφ
∗lmnφlmk.

We use a symmetric tensor notation, φ = φ(ijk) [44], where the indices are summed over. Since the
Young’s Tableau for SU(2) only has one row, and representations are symmetric with respect to
exchange of blocks of a given row, a 2j+ 1 SU(2) multiplet can be written as a 2j index symmetric
tensor.

– Quartet1: In the Y = 1/2 case, the Z2 breaking term is

Vq1,ZZZ2
= −λ1

(
φ∗ijkHiHjεklH

∗l + h.c.
)
. (28)
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The only dimension-6 operator generated is [3]

c6λSM = −λ
2
1v

2

M2
. (29)

The quartet is the only model considered here that contains cubic interactions of the SM
H doublet with φ, leading to dimension-6 coefficients of O( 1

M2 ). The same value for c6 is
generated in the Y = 3/2 case.

Once EW symmetry is broken cT is generated at tree level through a dimension-8 operator.
When H gets a vev, φ is forced to get a vev. Using the results of Appendix B we find

vφ ≈
√

3λ1v
3
h

6M2
. (30)

The vev of φ leads to the dimension-8 contribution to cT ,

cT = −1

2

v2

M2
(c6λSM ) . (31)

We see that the tree level value for cT is 0 at dimension-6, and receives a non-zero tree level
contribution only at dimension-8.

– Quartet3: In the Y = 3/2 case, the Z2 breaking part of the potential is

Vq3ZZZ2
= −λ1

(
φ∗ijkHiHjHk + h.c.

)
. (32)

In this case the vev of φ is

vφ ≈
λ1v

3
h

2M2
, (33)

leading to a tree level dimension-8 contribution,

cT =
3

2

v2

M2
(c6λSM ) . (34)

Inclusion of these dimension-8 contributions to cT in a global fit would require a complete treatment
of all the dimension-8 operators, along with loop contributions from the dimension-6 operators, which
is beyond the scope of this work. They are included here to make the general point that there is no
symmetry requiring ρ to be 0 in the quartet models once electroweak symmetry is broken.

The set of models considered in this work only generate dimension-6 operators of the form H6, H4D2

at tree level. This is not obvious from Tab. I because we are using a non-redundant set of operators.
An additional scalar operator, OR, is generated by some of the models. However, when OR is eliminated
from our operator basis, see Appendix A, operators of the form ψ2H3 are generated in addition to
purely scalar operators. In contrast with the models we consider, the Two-Higgs Doublet Model (2HDM)
generically leads to operators of the form ψ2H3, ψ4, even if redundant operators are retained.3 Due to
this complication, and the fact that the 2HDM is extremely well studied, we do not analyze it in this
work. See Refs. [3–6, 13, 45] for some studies of the 2HDM in an effective field theory context.

For the singlet model, we separately considered the cases of explicit and spontaneous Z2 symmetry
breaking. What happens when a Z2 symmetry is imposed on a triplet or higher representation? If φ gets
a vev, there is a leftover global U(1) symmetry that leaves the CP -odd Higgs boson massless.4 There
are two ways out of this problem. The first solution is to not allow the additional multiplet to get a
vev. This is the analog of the inert 2HDM [46]. In this case, no dimension-6 operators are generated at
tree level, both in the inert 2HDM and in the higher representation models as well. Alternatively, the
pseudoscalar will acquire a mass in the higher representation models if the Z2 symmetry is softly broken.
In the triplet models it is possible to achieve a soft breaking of the Z2 symmetry, just as in the 2HDM,
through the interaction with coefficient m1. This is not the case for the quartet models where the only
(renormalizable) Z2 violating interaction is marginal.

3 The complex triplet can also interact with SM fermions. In particular, there could be the lepton number violating
interaction, ¯̀

Lφ
†(iσ2`cL) + h.c. We assume the Yukawa coupling associated with this interaction is negligibly small,

consistent with the existence of tiny neutrino masses.
4 In the real triplet model, it is the charged Higgs boson that is massless in this scenario.



8

IV. CONSTRAINTS

A. The Rho Parameter

The ρ parameter is defined as the ratio of neutral to charged currents at low energies [47]

ρ =
M2
W

M2
Z cos2 θW

. (35)

A recent global fit to EW precision data yielded the value [48]

ρexp. = 1 + (3.6± 1.9) · 10−4. (36)

In terms of dimension-6 operators, the ρ parameter takes the form

ρ = 1 + cT . (37)

Alternatively, the tree level contribution in the extended scalar models can be written in terms of the
Higgs vevs [49]

ρ =

∑
i

[
t(i) (t(i) + 1)− t3(i)2

]
v2i

2
∑
i t3(i)2v2i

. (38)

The numerator of Eq. (38) is equivalent to v2/2 (with v ≈ 246 GeV). We can use this fact to eliminate
one term from the sum in Eq. (38), say the i = 1 term. If the i = 1 SU(2)L multiplet is taken to be a
doublet, possibly SM-like, Eq. (38) simplifies to

ρ =
v2

v2 − 2
∑
i>1 [t(i) (t(i) + 1)− 3t3(i)2] v2i

. (39)

We can compare the calculations of ρ in the unbroken and broken phases of the theories, Eqs. (37)
and (39), respectively. Using the results of Appendix B we have checked that for the triplet models, with
the reasonable approximations vφ � v and vh ≈ v, the calculations of ρ agree in the two different phases.
On the other hand, in the quartet models the predictions for ρ in the broken phase and the dimension-6
contribution to the unbroken phase do not agree. A non-zero value of ρ− 1 is generated, as in Eq. 39, in
the broken phase by the non-zero value of vφ, while ρ = 1 at dimension-6 in the EFT. This mis-match
is understood by noting that at the tree level in the EFT, a non-zero value of ρ − 1 is generated by
dimension-8 operators.

In terms of the mixing angle β, the tree level contribution of each model to the ρ parameter is given
in Table III. Also shown in Tab. III is the bound on β from Eq. (36). We have included the dimension-8
contribution for the quartet model, since this is the leading tree level contribution to the experimentally
well-measured ρ parameter in the UV complete scalar theory. Since the global fit prefers a value for ρ
slightly greater than one, the models that contribute positively to ρ are somewhat less constrained than
those that contribute negatively to ρ.

As previously mentioned, all of the dimension-6 operators generated at tree level in the triplet models
are proportional to cT , which constrains the size of those Wilson coefficients to be small.

One way to understand why the triplet and quartet models yield a value for the ρ parameter different
from unity is to make a comparison with the SM. In particular, the Higgs sector of the SM possesses
an accidental SU(2)L × SU(2)R symmetry. When EW symmetry is broken, the accidental symmetry is
broken down to its vectorial subgroup, which is the custodial symmetry. This symmetry enforces ρ = 1
at tree level in the SM. Adding a single triplet or quartet field to the SM is problematic from this point
of view because those fields do not have definite representations under the SU(2)R component of the
accidental symmetry of the SM, and thus ρ = 1 cannot be enforced at tree level. A resolution to this
problem is to add two SU(2)L triplet fields to the SM that form a bi-triplet under SU(2)L × SU(2)R,
preserving custodial symmetry and the tree level ρ = 1 prediction. This is known as the Georgi-Machacek
model [50, 51]. This procedure can be generalized to include higher SU(2)L representations, including
quartets [52].
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Model ρ 3σ upper limit on β
Singlet 1 none
2HDM 1 none

Real Triplet sec2 β 0.030

Complex Triplet 2 (3− cos 2β)−1 0.014

Quartet1 7 (4 + 3 cos 2β)−1 0.033

Quartet3 (2− cos 2β)−1 0.010

TABLE III: The tree level contribution to ρ in a given model, and the corresponding 3σ upper limit on
the mixing angle β. The contribution to the quartet models arises at dimension-8 and is included
because it is the first non-zero tree level contribution to the well measured ρ parameter in the UV

complete theory.

Signal strength Value Correlation matrix µSMEFT

µγγggF+tth 1.16± 0.26 1 −0.30 1− cH + 0.01cf

µγγVBF+Vh 1.05± 0.43 −0.30 1 1− cH + 2.01cf

µbbggF+tth 1.15± 0.97 1 4.5 · 10−3 1− cH + 2.55cf

µbbVBF+Vh 0.65± 0.30 4.5 · 10−3 1 1− cH + 0.55cf

µττggF+tth 1.06± 0.58 1 −0.43 1− cH + 2.55cf

µττVBF+Vh 1.12± 0.36 −0.43 1 1− cH + 0.55cf

µWW
ggF+tth 0.98± 0.21 1 −0.14 1− cH + 0.55cf

µWW
VBF+Vh 1.38± 0.39 −0.14 1 1− cH + 1.45cf

µZZggF+tth 1.42± 0.35 1 −0.49 1− cH + 0.55cf

µZZVBF+Vh 0.47± 1.37 −0.49 1 1− cH + 1.45cf

TABLE IV: Higgs boson signal strengths from [54]. The right column has the signal strengths in the
SMEFT for the operators in Eq. (4). The left three columns are adapted from [55].

B. Single Higgs Production

Quite generically, theories that modify the rate for double Higgs boson production will also modify
the production rate for a single 125 GeV Higgs boson, as well as the Higgs boson’s branching ratios.
For the models with extended scalar sectors that we are interested in, measurements of the 125 GeV
Higgs boson yield the bound cosα > 0.94 at the 95% CL [42]. This suppresses the production of the
heavy neutral Higgs boson by sin2 α with respect to the SM rate, which is below the current experimental
sensitivities [53]. We are interested in bounding the Wilson coefficients that affect single Higgs production,
cH and cf that are generated in the extended scalar models. The fit is particularly simple in these models,
since other potential dimension-6 operators affecting Higgs couplings are not generated.

For a given Higgs boson production and decay process, i→ h→ f , the signal strength is defined as

µfi = µi · µf =
σ(i→ h)

(σ(i→ h))SM
· Br(h→ f)

(Br(h→ f))SM
. (40)

We use the combined results of ATLAS and CMS based on 7 and 8 TeV data [54], which can be found
in Table IV. The three leftmost columns of Tab. IV are adapted from Ref. [55], which obtains the values
of the signal strengths from Table 13 of [54], and estimates the correlations between the signal strengths
from Figure 14 of [54]. The rightmost column is the signal strength in the SMEFT for the operators in
Eq. (4). For loop level processes, we use the approximate expressions for the signal strengths given in
Ref. [56]. SM Higgs boson branching ratios and the total width are taken from Ref. [57].

The method of least squares is used to find the favored parameter space. The χ2 function schematically
is

χ2 ∼
(
~µfi − ~µSMEFT

)>
V −1

(
~µfi − ~µSMEFT

)
, (41)
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FIG. 1: Results of a χ2 fit to Higgs data to limit cH and cf . The darker and lighter regions represent
the 1σ and 2σ confidence regions, respectively. The magenta (dotted), yellow (dashed), and orange
(dot-dashed) line segments correspond to the real singlet, real triplet, and complex triplet models,

respectively. The signs of cH and cf are fixed in these models, which is why the line segments do not
cover the whole plane.

where V is the covariance matrix of the experimental values. The parameter values that minimize χ2 are

102cH = −8.8± 9.9, 102cf = 5.0± 10.7 (42)

r =

(
1 −0.196

−0.196 1

)
,

where the correlation matrix is denoted r to avoid confusion with the ρ parameter. Parameterizing the

SMEFT coefficients as cH ∼ ĉH v2

M2 , cf ∼ ĉf v2

M2 , the 95% confidence level limits from Eq. (42) are,

−18

(
M

2 TeV

)2

< ĉH < 7

(
M

2 TeV

)2

−2

(
M

2 TeV

)2

< ĉf < 5

(
M

2 TeV

)2

.

(43)

The SMEFT coefficients predicted in the previous sections from the extended scalar sectors are comfort-
ably within the limits of Eq. (43).

The confidence regions for the estimated parameters are determined using χ2 ≤ χ2
min +∆χ2, where the

1σ and 2σ regions are given by ∆χ2 = 1, 4 (2.30, 6.18) when the number of parameters to be estimated is
1 (2). The results of this fit are shown in Fig. 1. The darker and lighter regions represent the 1σ and 2σ
confidence regions, respectively. The red and green regions are fits to cH or cf with the other parameter
fixed to zero, while the blue region is a simultaneous fit to both parameters. Also shown in Fig. 1 are
the predictions for the real singlet (magenta, dotted), real triplet (yellow, dashed), and complex triplet
(orange, dot-dashed) models imposing the relations between coefficients shown in Tab. I. The signs of cH
and cf are fixed in these models, which is why the line segments do not cover the whole plane.

C. Perturbative Unitarity

There are a number of theoretical considerations that can be used to constrain the parameter space of
the extended scalar sectors, including requiring the potential to be bounded from below, or requiring the
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EW vev to be the deepest of the vacua in the theory.5 In this work we focus on theoretical constraints
coming from perturbative unitarity [59]. In non-renormalizable theories, such as the SMEFT, scattering
amplitudes generally grow with energy leading to a breakdown of unitarity at some critical energy. On
the other hand, the extended scalar sectors under consideration are unitarity, and their 2→ 2 scattering
amplitudes do not grow with energy at large s. However, the same approach may still be used to examine
where the breakdown of perturbation theory occurs. If a certain combination of parameters appearing in
a scattering amplitude is too large, the tree level amplitude will not be a good approximation of the full
amplitude.

Our approach to finding the unitarity or perturbativity bounds is the same in both cases. We compute
all the 2 → 2 scattering amplitudes, Mi→f (s, t), in the scalar sector of a given theory, including those
containing Goldstone bosons. The set of initial states in the SM and SMEFT with a net electric charge
of zero, for example, is i = {w+w−, zz, hh, hz}. The computation is done in the limit that the center-
of-mass energy,

√
s, is much larger than the other scales in the problem. For renormalizable theories this

simplifies the scattering amplitudes to a linear of combination of quartic couplings. The matrix of ` = 0
partial-wave amplitudes, (a0)i,f , is then computed from these scattering amplitudes

(a0)i,f =
1

16πs

∫ 0

−s
dtMi→f (s, t). (44)

The eigenvalues, a0, of this matrix are bounded by the unitarity of the S-matrix

|Re (a0)| ≤ 1

2
. (45)

The unitarity or perturbativity bounds derived in this work ultimately come from (45). For a point in
the parameter space to be considered viable, we require that Eq. (45) is satisfied for every eigenvalue for
that choice of parameters unless otherwise specified. We consider only tree level contributions, and so
our results must be taken as rough estimates near the edge of our viable region. In these regions, the
parameters of the potential are becoming strong, and it is possible that loop corrections could provide
significant constraints.

We begin by discussing the unitarity bounds on the SMEFT. The Feynman rules for the SMEFT in
Rξ gauge have recently been presented in Ref. [60]. Using the results of [60], and neglecting terms that
do not grow with energy, we find the (unique) eigenvalues of the matrix of partial-wave amplitudes for
high energy scalar scattering in the SMEFT are

a0 =
s

32πv2
{3 (cT + cH) , 3cT − cH , − (3cT + cH) , −cH} (46)

Since cT is constrained to be small by the ρ parameter, we can ignore it in determining the critical energy.
Our results are in agreement with Ref. [40], which considered a subset of amplitudes (and only cH). With
these approximations, we find the SMEFT will break down at an energy no higher than

Ecrit. ≈
√

16π

3cH
v ≈ 1 TeV

√
cH

. (47)

For coefficients, ci ∼ 1(0.01), the EFT is not valid above a scale Ecrit. ∼ 1(10) TeV. The range of validity
of a weakly interacting EFT arising from a high energy scalar sector is thus quite limited [17]. At the
scale Ecrit., the EFT needs to be matched with the UV complete scalar model, potentially leading to
some tension with the lower limits on heavy scalar particles.

We now turn our attention to the perturbativity bounds on the extended scalar sector theories. Using
the method described above, typical bounds on the real singlet model with a spontaneously broken Z2

symmetry are shown in Fig. 2. In the left panel, the contours are labeled with the maximum value of
mH/GeV that is viable at that point. Darker shading indicates viable parameters space for a heavier
new scalar. In the right panel, the shaded parameter space is allowed, and going to larger values of

5 General bounded from below conditions for models of the type we are interested in can be found in Ref. [58].
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FIG. 2: Perturbativity bounds on the real singlet model with a spontaneously broken Z2 symmetry.
(Left:) The contours are labeled with the maximum value of mH/GeV that is viable at that point.
Going from lighter to darker shading indicates that heavier new scalars are allowed. (Right:) The

shaded parameter space is allowed, and going to larger values of cosα slightly increases the amount of
viable parameter space, and darker shading indicates that heavier new scalars are allowed.

cosα slightly increases the amount of viable parameter space. Considering only the high energy limit of
HH → HH, perturbative unitarity requires,

m2
H <

16πv2

tan2 βs
, (48)

which explains the general features of the RHS of Fig 2. It is fair to say there is plenty of viable parameter
space in this model. The J = 0 partial wave for HH → HH scattering can equivalently be expressed in
terms of the scalar couplings of Eq. (19),

|a0(s→∞)| = 3 |λβ |
2π

, (49)

making it clear that unitarity violation corresponds to the quartic scalar coupling becoming large.
The real singlet model with an explicitly broken Z2 symmetry also has a fair amount of viable parameter

space. This is illustrated in Fig. 3. Just as in the left panel of Fig. 2, the contours are labeled with the
maximum value of mH that is viable at that point. From Fig. 3 we see that λα, which enters into
the Wilson coefficient c6, is essentially a free parameter. Some of the viable parameter space in Fig. 3
will be ruled out by requiring the potential to be bound from below, λα > −2

√
λβλ, but this does

not significantly affect our conclusion. As in the spontaneously broken Z2 case, perturbative unitarity
violation corresponds to large values of the scalar quartic couplings λβ and the mixed doublet-scalar
quartic coupling, λα.

The triplet and quartet models exhibit qualitatively similar behavior as far as perturbativity is con-
cerned. The bounds on the real triplet model, with the simplifying assumption that the masses of the
heavy Higgs bosons are equal, are shown in Fig. 4. See Fig. 5, Fig. 6, and Fig. 7 for the complex triplet,
quartet1, and quartet3, respectively. We also assume, for simplicity, the masses of the heavy Higgs bosons
are all equal in the complex triplet and quartet3 models. On the other hand, for the quartet1 model we
take mH+ =

√
2mA, (see Eq. (B18)) and set the masses of the all the non-singly charged, heavy Higgs

bosons to be equal. Furthermore, for the quartet1 model we neglect the eigenvalues from the partial-wave
matrices whose initial states had a net electric charge of either zero or one. These are 18×18 and 15×15
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FIG. 3: Perturbativity bounds on the real singlet model with an explicitly broken Z2 symmetry. Just as
in the left panel of Fig. 2, the contours are labeled with the maximum value of mH/GeV that is viable
at that point, and going from lighter to darker shading indicates that heavier new scalars are allowed.

matrices, respectively, and thus are difficult to diagonalize. Explicitly, as an example, the singly charged
initial scattering states in the quartet1 model are

i ={H++H−2 , H
+
1 H, H

+
1 A, H

+
2 H, H

+
2 A, H

++H−1 , w
+h, (50)

w+z, H++w−, H+
1 h, H

+
1 z, H

+
2 h, H

+
2 z, w

+H, w+A}.

Similarly, for the quartet3 model, we did not consider the eigenvalues from the partial-wave matrix whose
initial states had a net electric charge of zero, which is a 16× 16 matrix.

There are two main points we learn from Figs. 4, 5, 6, and 7. Firstly, unless the ‘heavy’ Higgs bosons
are actually somewhat light, mH < 200 GeV, combining the perturbativity bounds with the constraint on
tanβ coming from the ρ parameter forces cosα to be much closer to one than experimental measurements
would otherwise require. Secondly, for given values of α and β there are upper limits on the masses of
the heavy Higgs bosons since no other parameters enter into the quartic couplings. We can use the first
point to investigate the second point in more detail.

In the limit α ≈ β ≈ 0, which is suggested by Figs. 4, 5, 6, and 7 as the only perturbative region
consistent with the ρ parameter, the expressions for the partial wave amplitudes simplify. This allows us
to derive fairly simple analytic upper bounds on the masses of the heavy Higgs bosons or on the splittings
between different masses in a multiplet. The bounds for the real triplet model with α ≈ β ≈ 0 are

469 GeV > mH , (51)(
β

0.03

)2

(11.7 GeV)
2
>
∣∣m2

H+ −m2
H

∣∣ .
For numerical purposes we take β to be at its upper limit, β = 0.03. We also neglected the mass of the
125 GeV Higgs boson in this analysis, which is justified a posteriori since both the upper limit on m2

H
and the mass splitting squared divided by β2 are quite a bit larger than m2

h. Comparable bounds are
found in the other models.



14

0.0 0.2 0.4 0.6 0.8 1.0
0.80

0.85

0.90

0.95

1.00

tan β

co
s
α

200

280

360

440

0 1 2 3 4 5
0

2

4

6

8

10

12

14

102tan β
10

2
si
n
α

200 280 360
440

FIG. 4: Perturbativity bounds on the real triplet model. The contours are labeled with the maximum
value of mH/GeV that is viable at that point, with darker shading indicating heavier new scalars are

allowed. For simplicity we have set the masses of all the heavy Higgs bosons to be equal. In the absence
relatively light new scalars, combining the perturbativity bounds with the constraint on tanβ from the
ρ parameter forces cosα to be much closer to one than experimental measurements would otherwise

require.

V. DOUBLE HIGGS PRODUCTION

A. Formalism

Double Higgs boson production in gluon fusion has been computed in Refs. [61, 62]. There have been
many studies of double Higgs production using the both EFT approach as well as explicit models [21, 23,
24, 63–67]. The SM rate can be found in Refs. [68, 69]. The rate is dominated by top quark loops, and
for simplicity we neglect the b−loops. The SM rate is well below the current experimental limits from
ATLAS and CMS [70–73].

Consider a theory with neutral scalars, h and H, and non-standard scalar cubic couplings and top
Yukawa couplings parameterized as follows,

L ⊃ −1

6
λhhhvh

3 − 1

2
λhhHvh

2H− yht
mt

v
t̄th− yHt

mt

v
t̄tH. (52)

Expressions for λhhh and λhhH in the extended scalar models are given in Appendix B. In the models we
consider yht = cosα and yHt = sinα.

The partonic cross section for double Higgs production is [62]

dσ̂

dt
=

G2
Fα

2
s

(16π)
3

(
|C4F4(s) + C�F�(s, t)|2 + |C�G�(s, t)|2

)
, (53)

where we have included a factor of 1
2 for identical particles. The coefficients are given by

C4 =
∑

Hi=h,H

λhhHi
v2

s−m2
Hi

+ imHiΓHi
yHit, C� = y2ht. (54)

The form factors simplify considerably in the limit mt →∞ (see [62] for the full expressions),

F4 →
2

3
+O

(
s

m2
t

)
, F� → −

2

3
+O

(
s

m2
t

)
, G� → O

(
s

m2
t

)
. (55)
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FIG. 5: The same as Fig. 4, but for the complex triplet model.

0.0 0.2 0.4 0.6 0.8 1.0
0.80

0.85

0.90

0.95

1.00

tan β

co
s
α

200

275

350

425

0 1 2 3 4 5
0

2

4

6

8

10

12

14

102tan β

10
2
si
n
α

200
250 300 350

FIG. 6: The same as Fig. 4, but for the quartet1 model.

In the SMEFT, considering only the top quark, the coefficients appearing in the cross section for double
Higgs production are

C4 ≈
3m2

h

s−m2
h + imhΓh

(1 + c6 − 2cH − ct)− (cH + 3ct) , (56)

C� ≈ 1− cH − 2ct,

where we have expanded to linear order in the Wilson coefficients. The second term on the right-hand
side of the first line of Eq. (56) comes from the contact interaction t̄th2. Unlike the amplitude, the cross
section is not expanded in the Wilson coefficients. This is ensures a positive definite cross section.
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FIG. 7: The same as Fig. 4, but for the quartet3 model.

The hadronic level invariant mass distribution for double Higgs production is

dσ (pp→ hh)

dMhh
=

2Mhh

S
ffgg

(
M2
hh

S
,Mhh

)
σ̂ (gg → hh) , (57)

with S being the square of the collider center-of-mass energy, M2
hh = s, and ffgg is the gluon luminosity

function

ffgg (y, µF ) =

∫ 1

y

dx

x
fg/p (x, µF ) fg/p

(y
x
, µF

)
, (58)

where fi/p is the proton parton distribution function (PDF) of species i, and µF is the factorization
scale. The total cross section is obtained by integrating the invariant mass distribution over Mhh from
2mh to

√
S. Unlike the invariant mass distribution, the transverse momentum distribution requires the

differential partonic cross section,

dσ (pp→ hh)

dpT
= 2pT

∫ y?

−y?
dy

2s

S
ffgg

(
s

S
,

√
s

2

)
dσ̂(gg → hh)

dt
. (59)

The limit of integration for the rapidity is

y? =
1

2
log

(
1 +

√
1− 4 (m2

h + p2T ) /S

1−
√

1− 4 (m2
h + p2T ) /S

)
. (60)

Recall that s = 4
(
m2
h + p2T

)
cosh2(y) and t = −p2T −

(
m2
h + p2T

)
exp (−2y).

In the case of a heavy scalar, the pT distribution is peaked near m2
H = 4

(
m2
h + p2T

)
. One way to see

this is by looking at the pT distribution in the narrow width approximation (NWA)

dσ (pp→ hh)NWA

dpT
=
α2
sλ

2
hhHy

2
Ht

2048π2SΓH
ffgg

(
m2
H

S
,
mH

2

)
pT√

m2
H − 4 (m2

h + p2T )
+O

(
Γ0
H

)
. (61)

The total cross section is finite in the narrow width approximation despite the pole in the pT distribution

σ (pp→ hh)NWA =
α2
sλ

2
hhHy

2
Ht

8192π2S

mH

ΓH

√
1−

4m2
h

m2
H

ffgg

(
m2
H

S
,
mH

2

)
+O

(
Γ0
H

)
. (62)
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FIG. 8: dσ/dMhh in the spontaneously broken Z2 singlet model compared with the SMEFT predictions.

B. Numerical Results

In this section, we compare predictions for double Higgs production at the LHC in the singlet, triplet,
and quartet models with predictions from the dimension-6 SMEFT. We choose input parameters for
mixing and masses consistent with restrictions from perturbative unitarity and the ρ parameter. We use
CT12NLO [74] PDFs with a scale choice, µR = µF =

√
s. We include the full top quark mass dependence,

and neglect the small contribution from the b quark.

1. Singlet Model with spontaneously broken Z2 symmetry

In the SMEFT for the singlet model with a spontaneously broken Z2 symmetry, only cH is non-zero,
and we employ the large mass limit for the SMEFT results, cH ∼ tan2 α, in our plots. In this model, the
Z2 symmetry imposes c6 = 0 [3–5].

The left-hand sides of Fig. 8 and Fig. 9 show the invariant mass distributions for the spontaneously
broken Z2 singlet model for heavy Higgs masses of mH = 300, 600 and 800 GeV for

√
S = 13 and

100 TeV. The resonance peaks and interference patterns are clearly observed. The results in the SMEFT
are also shown. For mH = 600 and mH = 800 GeV, the SMEFT is a good approximation to the invariant
mass distribution below around 400 GeV at both

√
S = 13 and 100 TeV. Heavier masses are shown on

the right-hand sides of Fig. 8 and Fig. 9. Below Mhh ∼ mH/2 the agreement between the singlet model
results and the SMEFT limit is excellent. By the time mH reaches 2 TeV, the SMEFT almost exactly
reproduces the full model results.

The pT distributions for the spontaneously broken Z2 symmetric model are shown in Fig. 10. For
mH ∼ 1.5 TeV, the agreement below the resonance peak between the exact and SMEFT results is good
below about pT ∼ 400 GeV, while for mH = 2 TeV, the agreement is within a factor of 2 even at
pT = 1 TeV.

2. Singlet Model with explicitly broken Z2 Symmetry

The singlet model with explicit breaking of the Z2 symmetry is described by 6 parameters that we
fix to be v, mh, mH , α, λα, and m2. We take cosα = 0.94, λα = 0.1 (λα = 1), and m2 = v for our
numerical study. These parameters are chosen to obey all constraints from unitarity and the ρ parameter.
In Fig. 11, we show the Mhh in the explicitly broken Z2 singlet model and compare it with the SMEFT
predictions. The new feature of this model is that c6 is no longer forced to be zero and can be tuned by
adjusting λα. We see fairly good agreement between the full theory and the SMEFT for mH ∼ 2 TeV.
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FIG. 9: dσ/dMhh in the spontaneously broken Z2 singlet model compared with the SMEFT predictions.
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FIG. 10: dσ/dpT in the spontaneously broken Z2 singlet model compared with the SMEFT predictions.

3. Triplet Models

The triplet model is highly restricted by the experimental limit on the ρ parameter and when parameters
are chosen so as to be consistent with the ρ parameter and perturbative unitarity, the mixing angle α is
forced to be so small as to make the gg → hh cross section indistinguishable from the SM result. This is
a case where the new physics is not probed by either single or double Higgs production.

4. Quartet Models

From the previous sections, we see that the limit on the ρ parameter requires β < 0.033 for the quartet1
model and β < 0.010 for the quartet3 model. For small tanβ and small mixing α, perturbative unitarity
allows small regions of parameter space where the scalar masses are fine tuned. The allowed scalar
masses are electroweak scale, so the SMEFT is not applicable. In Fig 12, we compare the tri-linear
Higgs coupling to the SM coupling for allowed parameters in the quartet1 model. For tanβ → 0 and
sinα → 0, the SM is recovered, although cosα = 0.94 gives significant deviations in the hhh coupling
from the SM result. When the hhh coupling is non-SM like, the SM cancellation between the triangle
and box contributions to gg → hh is spoiled, and the results differ significantly from the SM. This is clear
in the cosα = 0.94 curve on the RHS of Fig. 12.
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FIG. 11: dσ/dMhh in the explicitly broken Z2 singlet model compared with the SMEFT predictions.

0 0.2 0.4 0.6 0.8 1

tanβ

0

1

2

3

4

5

λ
hhh

/λ
hhh

 (SM), cosα=.94

λ
hhH

/λ
hhh

(SM), cosα=.94

λ
hhh

/λ
hhh

 (SM), cosα=.99

λ
hhH

/λ
hhh

(SM), cosα=.99

Y=1/2 Quartet Model
m_H=m_A=190 GeV

300 400 500 600 700 800

M
hh

 (GeV)

0

1e-05

2e-05

3e-05

4e-05

5e-05

d
σ

/d
M

h
h
 (

p
b
/G

eV
)

cosα=.94
cosα=.99

Y=1/2 Quartet Model. √S=13 TeV
m

H
=m

A
=190 GeV, tanβ=.03

FIG. 12: Tri-linear Higgs couplings in the Y = 1
2 quartet model, normalized to the SM result (LHS).

The vertical yellow line is the largest value of tanβ = 0.03 allowed by perturbative unitarity for the
chosen masses. The RHS shows the invariant mass distribution for 2 choices for the neutral mixing

angle, α.

VI. CONCLUSIONS

We have considered modifications of the SM with additional SU(2)L Higgs singlets, triplets, and
quartets and computed their contributions to SMEFT coefficients in the limits that the new scalars are
heavy. The coefficients show a characteristic pattern in the heavy mass limit, shown in Tab. I. A feature
of the extended scalar models considered here is that they generate only a subset of the possible SMEFT
operators. A fit to these operators from single Higgs production (Fig. 1) shows that the data can not yet
distinguish between the extended scalar sectors considered here, although the sign of the cH is a generic
signature of the UV scalar multiplet.

The parameters of the extended sectors are restricted by measurements of the ρ parameter (see Tab. III)
and perturbative unitarity. In the triplet and quartet models, the ρ parameter limits typically force tanβ
to be small, while in all models, the requirement of perturbative unitarity puts an upper limit on the heavy
neutral scalar, mH , for a given value of tanβ. We have performed a consistent dimension-6 matching of
the scalar models to the EFT, with the exception of the quartet model, where we have included the first
non-zero tree level contribution to the ρ parameter, which arises at dimension-8. A complete dimension-8
study of the quartet model would be of interest, but beyond the scope of this work.
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Operator Relation to [36] Operators, Oi
References: [36] [10] [35] [3]

Coefficients, C̄i: Ci ai
c̄i
v2

ci∣∣D2H
∣∣2 |EoM |2 OD(

H†H
) (
DµH

†DµH
)

1
2
QH� − 1

2

(
H†H

) (
H†EoM + h.c.

)
O2 OR(

∂µ
(
H†H

))2 −QH� 2OH 2OH∣∣∣H†←→D µH
∣∣∣2 −QH� − 4QHD 2OT 2OT(

H†H
)
�
(
H†H

)
QH� 2O1∣∣H†DµH∣∣2 QHD OT(

H†H
)3

QH X 1
λ
O6 O6

TABLE V: Summary of dimension-6 operators involving H and Dµ, including relations amongst the
operators and the notation in the literature. The effective Lagrangian in each basis is L = ΣiC̄iOi.

There are regions of parameter space in the triplet model that are consistent with limits from the ρ
parameter, perturbative unitarity, and single Higgs production. In these models, the mixing between
the two neutral Higgs bosons is forced to be so small that both single and double Higgs production
look SM-like. These models must be probed by searches for the charged scalars, which are required by
perturbative unitarity to be rather light. The quartet models examined here have small regions of scalar
masses simultaneously allowed by the ρ parameter and perturbative unitarity limits. In both the triplet
and quartet models, however, the scalars are typically forced to be electroweak scale making the SMEFT
not applicable.

The most interesting model considered here is the singlet model. We have considered models with a
spontaneously broken and an explicitly broken Z2 symmetry. Limits from perturbative unitarity require
tanβs < 1 in the spontaneously broken model, but allow for a TeV scale neutral Higgs boson. Compar-
isons of the invariant mass and pT distributions from double Higgs production in the singlet models show
that for mH

>∼ 2 TeV, the agreement between the exact calculations and the SMEFT results is excellent.
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Appendix A: EFT Details

To help set the notation, consider the scalar potential of the SM

VSM = −µ2H†H + λ
(
H†H

)2
, (A1)

where HT =
(
w+, (v + h+ iz)/

√
2
)

with w± and z being the Goldstone bosons, and h is the physical

Higgs scalar. The vev of the Higgs fields is set by minimizing the potential (A1), v = µ/
√
λ. The tree

level mass for the Higgs boson is given by m2
h = 2λv2. Finally, the equation of motion for the Higgs in

the SM is [37, 75]

D2Hk = λv2Hk + 2λ
(
H†H

)
Hk − q̄jy†uuεjk + d̄ydqk + ēye`k ≡ EoM, (A2)

where j, k are SU(2) indices, the flavor indices are implicit, and ε = ε[jk] with ε12 = +1.
Table V summarizes the possible dimension-6 operators involving H and Dµ, the relations amongst

these operators, and how they are referred to in the literature [3, 10, 35, 36]. It is straighforward to
switch between operator bases, and convenient tables are given in Refs. [35, 76].

Redundant operators may appear in intermediate steps of calculations. An example of such an operator

is OR = H†H (DµH)
†

(DµH) with coefficient cR/v
2. To extract the coefficients of the D2H4 operators we
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follow the approach of [10], which considers the following scattering processes evaluated at the matching
scale

M (H1(p)H2(0)→ H1(p)H2(0)) = cR
p2

v2
, (A3)

M (H1(p)H2(0)→ H1(0)H2(p)) = (cH − cT )
p2

v2
,

M (H1(p)H2(−p)→ H1(0)H2(0)) = (cH + cT )
p2

v2
.

The subscripts in the above equations indicate the component of the Higgs doublet. The operator OR
can be removed with the following field definition [40, 77]

H → H − cR
2v2

(
H†H

)
H. (A4)

This field definition leads to contributions to the non-redundant operators

cH → cH − cR, cf → cf + cR/2. (A5)

As previously mentioned, the kinetic energy for the Higgs boson, h, in Eq. (1) is not canonically
normalized. This can be remedied by a simply rescaling [16, 39]

h→ h/
√

1 + cH . (A6)

Alternatively, a field redefinition can be made to correctly normalize the kinetic energy and eliminate the
derivative interactions [40, 41], Eq. (6). We stress that the two approaches yield equivalent results for
physical observables, as expected. Using (6) the Lagrangian now takes the form of Eq. (7). For example,
both approaches lead to the following amplitude for Higgs-Higgs scattering

M (hh→ hh) = −3m2
h

2v2

[
2 + 12c6 +

50

3
cH (A7)

+3 (1 + 2c6 − 3cH)

(
m2
h

s−m2
h

+
m2
h

t−m2
h

+
m2
h

u−m2
h

)]
.

Appendix B: Scalar Model Details

In this Appendix we give some additional details of the models considered in this work. The mixing
angles analogous to α in (12) in the CP -odd and charged Higgs sectors are functions of β, and are denoted
δ and γ, respectively.6 Additionally, we will sometimes express the sine, cosine, or tangent of an angle θ
as sθ, cθ, or tθ, respectively. Futhermore, we will sometimes use the following notation,

λ′i = λiv
2/ρ, m′i = miv/ρ, (B1)

with ρ given in Tab. III for each model.

1. Real Singlet with Explicit Z2 Breaking

It is straightforward to compute the dimension-6 operators [3]

c6λSM =
m2

1v
2

M4

(
λα −

m1m2

M2

)
, cH =

m2
1v

2

M4
, cT = cf = 0. (B2)

6 There are three singly charged scalars in the quartet1 model, and thus the diagonalization is more complicated in this
case.
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There are also shifts in the parameters of the renormalizable Lagrangian, for example, ∆λ = −m2
1/2M

2.
However these shifts are unphysical, and can simply be reabsorbed into the definition of the original
parameters in the effective theory. We have checked by explicit computation that the matching is the
same when starting either from the unbroken or broken phase of the full theory.

Now consider the masses and mixings in the full theory. The relations between the masses, mixing
angle α, and the Lagrangian parameters in the full theory (see (16)) are

4λv2 = m2
h +m2

H +
(
m2
h −m2

H

)
cos 2α, (B3)

2M2 = m2
H +m2

h +
(
m2
H −m2

h

)
cos 2α,

2m1v =
(
m2
H −m2

h

)
sin 2α.

Lastly, the couplings in the full theory that are relevant for double Higgs production are

λhhhv
2/3 = m2

h cos3 α+ 2v sin2 α (λαv cosα−m2 sinα) , (B4)

2λhhHv
2/ sinα =

(
2m2

h +m2
H

)
cos2 α− 2v (λαv (1 + 3 cos 2α)− 3m2 sin 2α) .

2. Real Singlet with Spontaneous Z2 Breaking

The only operator generated in this case is [5]

cH =

(
λαv

4λβvφ

)2

. (B5)

In terms of mass eigenstates the quartic couplings in (21) are

4λv2 = m2
h +m2

H +
(
m2
h −m2

H

)
cos 2α, (B6)

4λαvφv =
(
m2
H −m2

h

)
sin 2α,

16λβv
2
φ = m2

H +m2
h +

(
m2
H −m2

h

)
cos 2α,

with α the same as in Eq. (12). Interestingly, in the case of spontaneous Z2 breaking, cH has the exact
same form as (17) when written in terms of the physical masses and mixing angle.

The couplings relevant for double Higgs production are somewhat simpler in this case

λhhh =
3m2

h

v2

(
cos3 α− v

vφ
sin 3α

)
, (B7)

λhhH =
2m2

h +m2
H

2v2
sin 2α

(
cosα+

v

vφ
sinα

)
.

3. Real Triplet

The coefficients of the dimension-6 operators are [3, 10],

cH = −m
2
1v

2

2M4
, cT = −cH

2
, c6λSM = −cH

2
λα, cf = −cH

2
. (B8)

Minimizing the potential (V = (23) +VSM) yields the constraints

4µ2 = 4λv2c2β −m1vsβ + λαv
2s2β , (B9)

2M2vsβ = m1v
2c2β − 2λαv

3c2βsβ − 2λβv
3s3β .

The mixing angle in the charged sector is γ = β. The Lagrangian parameters can be traded for the
masses of the particles and the mixing angles

m1v = 2m2
H+ sinβ, (B10)

4λ′ = m2
h +m2

H +
(
m2
h −m2

H

)
cos 2α,

λαv
2 = m2

H+ +
(
m2
H −m2

h

)
csc 2β sin 2α,

4λβv
2 = 2m2

H+ +
(
m2
h +m2

H − 2m2
H+ +

(
m2
H −m2

h

)
cos 2α

)
csc2 β.
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The cubic couplings relevant for double Higgs production are

λhhhv
2 = 3m2

h

(
c3αc
−1
β − 2s3αs

−1
β

)
+ 6m2

H+s2αt
−1
β sα+β , (B11)

λhhHv
2 =

(
2m2

h +m2
H

)
sαcα

(
cαc
−1
β + 2sαs

−1
β

)
−m2

H+sαt
−1
β (sβ + 3s2α+β) .

4. Complex Triplet

The coefficients of the dimension-6 operators are [4, 10]

cH = −m
2
1v

2

2M4
, cT = cH , c6λSM = cH

(
λα2
2
− λα1

)
, cf = −cH . (B12)

Minimizing the potential (V = (25) +VSM) yields the constraints

8µ2 = 8λv2c2β + 4
√

2m1vsβ + (2λα1 − λα2) v2s2β , (B13)

−2M2sβ = 2
√

2m1vc
2
β + (2λα1 − λα2) v2c2βsβ − 2 (λβ1 + λβ2) v2s3β .

The CP -odd and charged Higgs mixing angles are tan 2δ = (2
√

2 sin 2β)/(1 − 3 cos 2β) and γ = −β,
respectively. In terms of the physical masses and CP -even mixing angle, the Lagrangian interaction
parameters are

−m′1 =
√

2m2
A sinβ, (B14)

4λv2 cos2 β = m2
h +m2

H +
(
m2
h −m2

H

)
cos 2α,

λα1v
2 = 2m2

H+ +
√

2
(
m2
H −m2

h

)
csc 2β sin 2α,

λ′α2 = 2m2
H+ (3− cos 2β)− 4m2

A,

2λβ1v
2 = 4m2

H+ +
(
m2
h +m2

H − 4m2
H+ + 2m2

H++ +
(
m2
H −m2

h

)
cos 2α

)
csc2 β,

−λ′β2 = 2m2
H+ sin2 β −m2

A +m2
H++ +

(
m2
A − 2m2

H+ +m2
H++

)
csc2 β.

The scalar cubic couplings are

2

3
λ′hhh =

(
2m2

A −m2
h −

(
m2
h + 2m2

A

)
c2α
)
cαcβ + 4m2

hc
3
αc
−1
β (B15)

+
√

2
(
m2
A − 3m2

h +
(
m2
h +m2

A

)
c2β
)
s3αs
−1
β ,

2λ′hhH =
(
2m2

h +m2
H

)
cαsα (3− c2β)

(
cαc
−1
β +

√
2s−1β sα

)
−m2

Acβ

(
sα

(
3
√

2t−1β s2α − 1
)

+ 3s3α

)
.

5. Quartet1

The potential (V = (27) + (28) + VSM) minimization conditions are

µ2

v2
= λc2β −

√
21

14
λ1cβsβ +

1

42
(3λα1 + 2λα2) s2β , (B16)

M2

v2
sβ =

√
21

6
λ1c

3
β −

1

6
(3λα1 + 2λα2) c2βsβ −

1

63
(9λβ1 + 5λβ2) s3β .

The rotation to the mass basis is most complicated in this case as there are three singly charged scalars.
The charged mass matrix is

MH+ =
v2c2β
42

(B17)

×

 tβ
(
7
√

21λ1 − λα2tβ
)

2
(√

7λα2tβ − 7
√

3λ1
)

21λ1 +
√

21λα2tβ
2
(√

7λα2tβ − 7
√

3λ1
)

7
√

21λ1t
−1
β + 2λβ2t

2
β − 7λα2

4
√
3

3 λβ2t
2
β

21λ1 +
√

21λα2tβ
4
√
3

3 λβ2t
2
β 7

√
21λ1t

−1
β + 8

3λβ2t
2
β + 7λα2

 .



24

The determinant ofMH+ is zero, as required by having a massless Goldstone boson. This also allows us
to write the masses of the charged Higgs bosons, mH+

1,2
, as

2mH+
1,2

= m2
H+ ∓∆m2

H+ , (B18)

m2
H+ = Tr (MH+) ,

∆m4
H+ = 2 Tr

(
M2

H+

)
− Tr (MH+)

2
.

As physical parameters we choose the masses of the CP -even Higgs bosons, their mixing angle, the mass
of the CP -odd Higgs boson, the mass of the doubly charged Higgs boson, and finally mH+ , which is twice
the average of the mass squared of the singly charged Higgs bosons. In terms of these quantities, the
Lagrangian parameters are

28λ′ = 6
(
m2
h +m2

H −m2
A

)
+
(
m2
h +m2

H + 6m2
A

)
c−2β +

(
m2
h −m2

H

)
c2α

(
6 + c−2β

)
,

√
7λ′1 = 2

√
3m2

Atβ , (B19)

14λ′α1 =
1

25 + 24c2β

[
112

(
7m2

H++ + 2m2
H+ − 2m2

A

)
+ 42

(
3m2

A + 14m2
H++ + 4m2

H+

)
c2β

−
√

7
(
m2
h −m2

H

)
(136 + 171c2β + 36c4β) s−1β c−1β s2α

]
,

λ′α2 =
3

1 + 49t−2β

[
6
(
7m2

H++ + 2m2
H+

)
− 63m2

A + 7
(
11m2

A − 7m2
H++ − 2m2

H+

)
s−2β

]
,

4λ′β1 =
1

25 + 24c2β

[
40
(
m2
H++ + 35m2

H+

)
− 1463m2

A − 486
(
m2
h +m2

H

)
−3
(
63m2

A + 48
(
m2
h +m2

H

)
− 10

(
m2
H++ + 14m2

H+

))
c2β

+49
(
26m2

A + 7
(
m2
h +m2

H

)
− 20m2

H+

)
s−2β

+
(
m2
h −m2

H

)
c2α

(
486 + 144c2β − 343s−2β

)]
,

4λ′β2 =
9

25 + 24c2β

[
497m2

A − 8
(
m2
H++ + 35m2

H+

)
+3
(
35m2

A − 2
(
m2
H++ + 14m2

H+

))
c2β + 196

(
m2
H+ − 2m2

A

)
s−2β

]
.

For generic parameters, the splitting between the masses of the singly charged Higgs bosons is

∆m4
H+

m4
H+

= 1 +
7

25 + 24c2β

m2
H++

m2
H+

(
2 +

7m2
H++

4m2
H+

)
(B20)

−
1470c2β

(4 + 3c2β) (25 + 24c2β)

m2
A

m2
H+

(
1 +

3

5

mH++

m2
H+

)
+

147c2β (155 + 27c2β)

2 (4 + 3c2β)
2

(25 + 24c2β)

m4
A

m4
H+

.

We caution that Eq. (B20) will not work in certain special cases, such as when there are degeneracies
in some of the mass parameters. Note however that Eq. (B18) will always be correct. Lastly, the cubic
couplings are

7

3
λ′hhh = m2

h (4 + 3c2β) c−1β

(
c3α −

√
7t−1β s3α

)
(B21)

+m2
A

(
cα (10− 11c2α) cβ + c3αc

−1
β +

√
7sα

(
5c2α − 2 + 7s−2β s2α

)
sβ

)
,

14λ′hhH =
(
2m2

h +m2
H

)
(4 + 3c2β)

(
cαc
−1
β +

√
7sαs

−1
β

)
s2α

+ 3m2
A

(
sα

(
2c2αc

−1
β − 7

√
7s−1β s2α

)
+ cβ (3sα − 11s3α) +

√
7 (3cα − 5c3α) sβ

)
.
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6. Quartet3

The potential (V = (27) + (32) + VSM) minimization conditions are

6
µ2

v2
= 6λc2β − 3

√
3λ1cβsβ + (λα1 + λα2) s2β , (B22)

6
√

3
M2

v2
s−2β = 9λ1t

−3
β − 3

√
3 (λα1 + λα2) t−2β − 2

√
3 (λβ1 + λβ2) .

The six quartic couplings can be traded for mh, mH , mA, mH+ , mH++ , and α, the mixing angle between
the CP -even Higgs bosons. The mixing angle analogous to α in (12) for the charged states is γ = −β,

and similarly for the CP -odd states we have tan δ = −
√

3 tanβ. The quartic couplings are

4λ′ =
(
2m2

A + 3
(
m2
h +m2

H

))
c−2β − 2

(
m2
A +m2

h +m2
H

)
+
(
m2
h −m2

H

)
c2α

(
3c−2β − 2

)
,

√
3λ′1 = 2m2

Atβ , (B23)

2λ′α1 = 6
(
2m2

H+ (2− c2β)−m2
A

)
+
√

3
(
m2
H −m2

h

)
(2− c2β) s−1β c−1β s2α,

λ′α2 = 6
(
m2
A −m2

H+ (2− c2β)
)
,

4

3
λ′β1 = 2

(
m2
h +m2

H − 2m2
A + 6m2

H++ − 6m2
H+c2β

)
+
(
4m2

A +m2
h +m2

H − 12m2
H+ + 6m2

H++

)
s−2β − 3

(
m2
h −m2

H

)
c2α

(
2 + s−2β

)
,

2λ′β2 = 9
(
m2
A + 2m2

H+c2β − 2m2
H++ +

(
2m2

H+ −m2
H++ −m2

A

)
s−2β

)
.

Finally, the mass of the triply-charged Higgs boson is

m2
H3+ =

3

2
m2
H++ +

1

4
m2
A (1− 3ρ) . (B24)

In terms of mass parameters, c6 is

c6m
2
h =

32m4
Asβt

2
β

3 (2− c2β)
2 [

(m2
h +m2

H + (m2
H −m2

h) c2α) sβ +
√

3 (m2
H −m2

h) s2αcβ
] . (B25)

The cubic couplings are

λ′hhh = 3m2
h

(
c3α

(
3c−1β − 2cβ

)
−
√

3s3α (2− c2β) s−1β

)
(B26)

+m2
A

(
cα (4− 5c2α) cβ + c3αc

−1
β + 3

√
3sα

(
c2α + s−2β s2α

)
sβ

)
,

4λ′hhH = 2
(
2m2

h +m2
H

)
(2− c2β)

(
cαc
−1
β +

√
3sαs

−1
β

)
s2α

+m2
A

(√
3cα

(
(8− 12c2α) sβ − 3s−1β

)
+ c−1β

(
3
√

3c3αt
−1
β + (2 + c2β) sα − (4 + 5c2β) s3α

))
.
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