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Abstract

In this paper, we consider the Standard Model (SM) with one family of vector-

like (VL) leptons, which couple to all three families of the SM leptons. We

study the constraints on this model coming from the heavy charged lepton mass

bound, electroweak precision data, the muon anomalous magnetic moment, lep-

ton flavor violation, Higgs decay constraints, and a recently measured lepton non-

universality observable, RK∗0 , along with RK . We find that the strongest con-

straints are coming from the muon g− 2, Rµµ = Γ(h→ µµ)/Γ(h→ µµ)SM, Rγγ

and BR(µ → eγ). Although VL leptons couple to all three families of the

SM leptons, the ratio of electron-VL to muon-VL coupling is constrained to

be 〈λe/λµ〉 . 10−4. We also find that this model cannot fit the lepton non-

universality discrepancies.
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1 INTRODUCTION

The Standard Model (SM) is a highly successful theory in predicting and fitting many ex-

perimental measurements, with few exceptions. One of the discrepancies between the SM

prediction and experimental measurement that has been known for a long time, is the muon

anomalous magnetic moment. The experimentally measured muon anomalous magnetic mo-

ment and the SM prediction are given by [1]

aexp
µ = 11659209.1(5.4)(3.3)× 10−10 ,

aSM
µ = 11659180.3(0.1)(4.2)(2.6)× 10−10 .

(1)

The discrepancy between the experimental and theoretical values is [1]

∆aµ = aexp
µ − aSM

µ = 288(63)(49)× 10−11 . (2)

A simple extension of the SM that is able to explain this discrepancy is the SM with one

family of VL leptons. Dermı́̌sek et. al. showed that such a model with VL leptons coupling

exclusively to the muon is sufficient to explain this discrepancy [2]. In a more natural theory,

however, the VL leptons would couple to all three families of the SM leptons, which have

been studied extensively in the literature [3–6]. Due to the lepton flavor violating nature of

this model, the SM-VL couplings are known to be highly constrained.

In this paper, we try to provide a holistic point of view of the model in which the

SM is extended by one family of VL leptons and the VL leptons have non-zero couplings

to all three families of the SM leptons. We are interested in the constraints on this model

coming from satisfying the heavy charged lepton mass bound, electroweak precision data, the

muon g− 2, lepton flavor violation (LFV), Higgs decay constraints, and a recently measured

lepton non-universality observable, RK∗0 , along with RK . We find that this model cannot

simultaneously satisfy electroweak precision measurements and the lepton non-universality

discrepancies. As for the other observables, we find that the most constraining observables

are the muon g − 2, Rµµ = Γ(h→ µµ)/Γ(h→ µµ)SM, Rγγ and BR(µ→ eγ).

2 MODEL

The model that we study is the SM with one generation of VL leptons. The particles in

the leptonic sector and their corresponding quantum numbers are given in Table 1 and the

leptonic sector Lagrangian is given by

L ⊃− ¯̀
Liy

e
iieRiH − ¯̀

Liλ
E
i ERH − L̄LλLi eRiH − L̄LλERH − ĒLλ̄LRH†

−MLL̄LLR −MEĒLER + h.c. ,
(3)

where i = 1, 2, 3 is the SM family index.
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SM VL

`Li =

(
νLi

eLi

)
eRi H =

(
φ+

v + (h+ iφ0)/
√

2

)
LL,R =

(
L0
L,R

L−L,R

)
EL,R

SU(2)L 2 1 2 2 1

U(1)Y -1 -2 1 -1 -2

Table 1: The quantum numbers of leptonic sector particles. i = 1, 2, 3 is SM family index.

The electric charge is given by Q = T3 + Y/2 and the Higgs vacuum expectation value is

174 GeV. The fields h, φ+, and φ0 are the physical Higgs boson and the would-be Nambu-

Goldstone bosons, respectively, which give the W± boson and Z boson mass.

Lepton Mass Matrix

Without loss of generality, we assume that the SM lepton Yukawa matrix, ye, is already

diagonalized. Thus, the lepton mass matrix is

(
ēLi L̄−L ĒL

)yeiiv 0 λEi v

λLi v ML λv

0 λ̄v ME


eRiL−R
ER

 ≡ ēLaMeRa , (4)

where a = 1, . . . , 5. Let UL and UR be unitary matrices that diagonalize the charged lepton

mass matrix,

U †LMUR =

Mei 0 0

0 Me4 0

0 0 Me5

 ≡Mdiag . (5)

and the mass bases are

[êL,R]a = [U †L,R]a,a′ [eL,R]a′ . (6)

In this model, neutrinos are assumed to only obtain a VL mass term, ML.

Z-lepton Couplings

The Z-lepton couplings are

L ⊃ g

cW
Zµ
[
ēLaγ

µ(T 3
a + s2

W )eLa + ēRaγ
µ(T 3

a + s2
W )eRa

]
, (7)

where sW = sin θW , cW = cos θW and T 3
a is the SU(2) generator where

T 3
a eLa = −1

2
diag(1, 1, 1, 1, 0)eLa ≡ T 3

LeLa (8)

T 3
a eRa = −1

2
diag(0, 0, 0, 1, 0)eRa ≡ T 3

ReRa . (9)
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Since these matrices are not proportional to the identity matrix, when we rotate to the

lepton mass basis, the Z-lepton couplings are not diagonal,

L ⊃ Zµ
[
¯̂eLaγ

µgZLabêLb + ¯̂eRaγ
µgZRabêRb

]
, (10)

where gZL,R = (g/cW )[U †L,R(T 3
L,R + s2

W )UL,R]. Hence, this model has LFV Z boson decays.

W -lepton Couplings

The W -lepton couplings are

L ⊃ g√
2
W+
µ [ν̄Laγ

µeLa + ν̄RaγµeRa] + h.c. , (11)

where

νLa =

νLiL0
L

0

 , and νRa =

 0i

L0
R

0

 . (12)

Hence, in the charged lepton mass basis, we have

L ⊃ W+
µ

[
ν̄Laγ

µgWLabêLb + ν̄Raγµg
W
RabêRb

]
+ h.c. , (13)

where gWL = (g/
√

2)diag(1, 1, 1, 1, 0)UL and gWR = (g/
√

2)diag(0, 0, 0, 1, 0)UR.

Higgs-lepton Couplings

The couplings between the physical Higgs boson and the leptons are

L ⊃ − 1√
2
hēLaY

e
abeRb + h.c. , (14)

where

Y e =

yeii 0 λEi
λLi 0 λ

0 λ̄ 0

 . (15)

In the mass basis, we have

L ⊃ − 1√
2
h¯̂eLaŶ

e
abêRb + h.c. , (16)

where

Ŷ e = U †LY
eUR . (17)

This Yukawa matrix is non-diagonal because Y ev =M− diag(0, 0, 0,ML,ME). Hence,

Ŷ e =Mdiag/v − U †Ldiag(0, 0, 0,ML,ME)UR/v , (18)

where the second term is non-diagonal.
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Lepton Non-universality

To calculate the effect of this model on lepton non-universality, we consider the following

Hamiltonian [7, 8]

Heff = −4GF√
2
VtbV

∗
ts

e2

16π2

∑
j=9,10

CjOj , (19)

where

O9 = (s̄Lγ
µbL)(¯̂eaγµêa) , (20)

O10 = (s̄Lγ
µbL)(¯̂eaγµγ5êa) . (21)

The new physics (NP) contribution to these two Wilson coefficients are coming from the box

diagrams in Figure 1 (see appendix for calculation [9])

CNP
9 =− 1

s2
W

1

4
[U+

1 (x, y)g1(x, y) + U+
0 (x, y)g0(x, y)] ,

CNP
10 =

1

s2
W

1

4
[U−1 (x, y)g1(x, y) + U−0 (x, y)g0(x, y)] ,

(22)

where x = M2
t /M

2
W , y = M2

L/M
2
W ,

Y νL ≡

yeii 0 λEi
λLi 0 λ

0 0 0

 , (23)

Y νR† ≡

0 0 0

0 0 0

0 λ̄ 0

 , (24)

g1(x, y) =
1

x− y

[
x2

(x− 1)2
log x− y2

(y − 1)2
log y − 1

x− 1
+

1

y − 1

]
, (25)

g0(x, y) =
1

x− y

[
x

(x− 1)2
log x− y

(y − 1)2
log y − 1

x− 1
+

1

y − 1

]
, (26)

and

U±1 (x, y) = |[UL]4a|2 ± |[UR]4a|2 +
1

4

v2

M2
L

xy

(
|[Y νRUL]4a|2 ± |[Y νLUR]4a|2

)
, (27)

U±0 (x, y) = − v

ML

xy

(
[UL]4a[Y

νR∗U∗L]4a + [U∗L]4a[Y
νRUL]4a

± [UR]4a[Y
νL∗U∗R]4a ± [U∗R]4a[Y

νLUR]4a

)
.

(28)
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ν4

u, c, t

W− W+

b s

êaêa

(a)

ν4

u, c, t

φ− W+

b s

êaêa

(b)

ν4

u, c, t

W− φ+

b s

êaêa

(c)

ν4

u, c, t

φ− φ+

b s

êaêa

(d)

Figure 1: Box diagrams contributing to b→ sêaêa.

3 PROCEDURE

The analysis of this paper is similar to that in [2]. A new feature of this paper is that

VL leptons are not assumed to couple exclusively to muons. Instead, VL leptons couple to

all three families of SM leptons and we are interested in the constraints of the 10 model

parameters: VL Masses, ML,E; VL-VL couplings, λ, λ̄; and SM-VL couplings, λL,Ee,µ,τ . ye,µ,τ

are not free parameters because ye,µ,τ are chosen such that me,µ,τ are the central values in

Particle Data Group (PDG) [1]. We considered ML,E ∈ (100, 1000) GeV and λ, λ̄ ∈ (−1, 1).

As for the SM-VL couplings, we considered

λL,Ee,µ,τv

ML,E

∈ (−0.09, 0.09) . (29)

The ranges of the SM-VL couplings are chosen to satisfy the electroweak constraints.1

The constraints that we consider in this paper are from the heavy charged lepton mass

bound, precision electroweak data, the muon g − 2, LFV, Higgs decays, and lepton non-

universality observables. See Table 2 for the complete list of observables. All of the experi-

mental values, other than lepton non-universality observables, are taken from the PDG [1].

1With our upper limit on ML,E = 1000GeV, this implies an upper bound on the dimensionless couplings

λL,Ee,µ,τ . 0.5.
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The experimental value for RK is taken from Reference [10], while RK∗0 is recently measured

by LHCb [11].

The heavy charged lepton mass bound quoted by the PDG, M > 100.8 GeV, is from

the LEP experiment. There are more recent bounds on the mass of VL leptons obtained

from reinterpreting ATLAS and CMS experiments [12–15]. If the lightest VL lepton is

predominantly EL,R, then the bound is similar to the LEP bound. However, if the lightest

VL lepton is predominantly LL,R, then the bound can be more stringent. For example,

Falkowski et. al. showed that if the VL lepton decays only to e and µ, then the bound is

Me4 & 450 GeV [12]. On the other hand, Kumar et. al. showed that if the VL lepton decays

only to τ , then the bound may only be Me4 & 275 GeV [15]. Due to the sampling method

that we explain below, VL leptons in this model can either be predominantly EL,R or LL,R,

depending on model parameters. In addition, VL leptons of this model can decay to all three

SM leptons. Hence, reinterpretations of the ATLAS and CMS analyses are needed to obtain

the bound on this model. To be conservative, we have decided to use the LEP bound in this

paper while keeping in mind that more stringent bounds may exist.

All theoretical calculations are performed at leading order, that is all observables other

than ∆aµ,BR(` → `′γ), Rγγ, RK , RK∗0 are calculated at tree level. The effect of one-loop

calculations are expected to be small. The theoretical calculation of the VL contribution

to the muon g − 2 is taken from Reference [2]. The calculation for BR(` → `′γ) and Rγγ

are performed at one-loop [16, 17]. Since all calculations are performed at leading order, we

have included a 1% theoretical error when ensuring that the calculated observables satisfy

the current experimental bounds. As for the lepton non-universality analysis, we have used

flavio, a very versatile program that calculates b-physics observables written by Straub

et. al. [18]. To calculate the NP effects of the observables implemented in flavio, one only

has to specify the NP contribution to the Wilson coefficients.

In the analysis, we obtain scatter plots by sampling from the parameter space and check-

ing to see if the sampled points satisfy the constraints mentioned above. To ensure that

we cover all regions in this vast parameter space, we divide VL masses into four different

regions: ML,E ∈ [100, 150), [150, 250), [250, 500), [500, 1000) GeV, and the VL-VL couplings

into two different regions2: |λ|, |λ̄| ∈ [0, 0.75), [0.75, 1). As for the muon-VL couplings,

we considered |λL,Eµ v/ML,E| ∈ [0, 0.06), [0.06, 0.09). For each of these regions, we sampled

10,000 points satisfying the heavy charged lepton mass bound and the electroweak precision

observables. The total number of simulated points is 2.56 millions points. The parameters

ML,E, λ, λ̄, λ
L,E
µ are sampled from a uniform distribution while |λL,Ee,τ v/ML,E| ∈ [10−10, 0.09)

are sampled from a log-uniform distribution. The electron-VL and tau-VL couplings are

2These couplings can be positive or negative. The quoted ranges are the magnitude. Similarly for SM-VL

couplings.
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sampled from a log-uniform distribution because we expect these couplings to be highly con-

strained by LFV observables and we are interested in determining the degree of fine-tuning

of these two parameters in order to be consistent with the flavor violation constraints.

Muon g − 2 µ ∆aµ

Heavy Charged Leptons e4 Me4

Electroweak
Precision

Z
Ae,µ,τ , A

(0e),(0µ),(0τ)
FB

BR(Z → ee),BR(Z → µµ),BR(Z → ττ)

W BR(W → eνe),BR(W → µνµ),BR(W → τντ )

µ BR(µ→ eν̄eνµ)

τ BR(τ → eν̄eντ ),BR(τ → µν̄eντ )

Lepton
Flavor

Violation

Z BR(Z → eµ),BR(Z → eτ),BR(Z → µτ)

µ BR(µ→ eγ),BR(µ→ 3e)

τ
BR(τ → eγ),BR(τ → µγ)

BR(τ → 3e),BR(τ → 3µ)

Higgs h Rµµ, Rττ , Rγγ,BR(h→ µτ)

Lepton Non-Universality B meson RK , RK∗0

Table 2: List of observables. ∆aµ is the discrepancy of the measured muon g−2 and the SM

prediction. Ae,µ,τ is the electron, muon, and tau left-right asymmetry in Z decay. A
(0e),(0µ),(0τ)
FB

is the electron, muon, and tau forward-backward asymmetry in Z decay. Rµµ = Γ(h →
µµ)/Γ(h → µµ)SM and similarly for Rττ and Rγγ. RK = Γ(B+ → K+µµ)/Γ(B+ → K+ee)

while RK∗0 = Γ(B0 → K∗0µµ)/Γ(B0 → K∗0ee). Lepton non-universality experimental

values are take from LHCb measurements [10, 11] while the other experimental values are

taken from PDG [1].

4 RESULTS

In this section, we present the results of our numerical analysis. For all plots in this section,

we have classified the simulated points into two groups. This classification is based on

whether a point satisfies all observables listed in Table 2 other than the plotted observables

and the lepton non-universality observables. The lightly shaded points do not satisfy one or

more of these observables while the solid colored points satisfy all these observables.
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Figure 2: Plots of the muon g−2 discrepancy, ∆aµ, versus Rµµ = Γ(h→ µµ)/Γ(h→ µµ)SM.

The four plots have different ranges of ML. The gray points are ruled out. The dashed lines

show the 1σ and 2σ bounds of ∆aµ and the upper bound of Rµµ. The solid lines show the

central value of ∆aµ and Rµµ = 1.

Figure 2 shows plots of ∆aµ versus Rµµ. The four plots have different ranges of ML,

which is a meaningful discriminator because the VL contribution to the muon g−2 from the

W boson loop is due to the SU(2) doublet VL neutrinos, L0
L,R, which have mass ML [2]. The

dashed lines show the 1σ and 2σ bounds of ∆aµ, and the upper bound of Rµµ. The solid

lines show the central value of ∆aµ and Rµµ = 1.3 From this figure, we see that this model

can be ruled out in the future if future measurements of the muon g− 2 and Rµµ have much

smaller uncertainties, and Rµµ is measured to be SM-like while the muon g − 2 is measured

to have a similar central value.

Figure 2 also shows that the there are no points with 250 GeV < ML < 400 GeV that

fit the muon g − 2 within 1σ.4 This observation is further illustrated in Figure 3, which

shows plots of ∆aµ versus ML. The two plots have different ranges of λ̄. This figure shows

that for λ̄ < 0.25, this model requires either ML < 250 GeV or ML > 600 GeV to fit the

muon g − 2 within 1σ. On the other hand, this model requires ML > 400 GeV for λ̄ > 0.25.

This plot also shows that the allowed parameter space for ML . 250 GeV can potentially be

eliminated by the upcoming Fermilab E989 experiment if the muon g− 2 central value stays

3Notice that there is no measurement of Rµµ yet. There is only an upper bound.
4The bounds on parameter space obtained are not strict because the analysis is performed by random

sampling from the vast parameter space. Our sampling method attempts to cover the whole parameter space

but there might still be regions which are missed by the sampling method.
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Figure 3: Plots of ∆aµ versus ML. The two plots have different ranges of λ̄. The gray points

are ruled out. The dashed lines are the 1σ and 2σ bounds of ∆aµ while the solid line is the

central value of ∆aµ.

the same while the uncertainties decrease by a couple factors [19].

In general, as the VL masses increase, the new physics effects should approach zero.

However, Figure 3 seems to violate this fact. The muon g− 2 does not approach zero as ML

increases because other parameters, such as ME, λ̄, and λL,Eµ , are not fixed. In fact, if all the

other parameters are fixed, then the muon g − 2 approaches zero as ML increases.

Figure 4 shows a plot of ∆aµ versus Rγγ. The points in this plot are separated into

different colors based on Me4. As expected, for heavier VL mass eigenstates, Rγγ is clustered

around one. This plot shows that Me4 > 500 GeV is a more robust region than regions with

smaller Me4 because a larger percentage of simulated points are within the experimental

bounds. A very interesting scenario will arise if the central value of Rγγ stays and uncer-

tainties in the measurement decrease as more data are collected. In this scenario, we will

have the potential to place an upper bound on the mass of the lightest VL mass eigenstate

because there are no points with Me4 > 500 GeV and Rγγ & 1.1.

In Figure 5, which shows plots of ∆aµ versus Rγγ, the points are separated into four

different plots based on different values of

||λµ|| ≡
√(

λLµv

ML

)2

+

(
λEµ v

ME

)2

. (30)

||λµ|| is a meaningful variable because muon-VL couplings plays a significant role in fitting

∆aµ and this variable captures the norm of the muon-VL coupling normalized by the VL

masses. From this figure, we see that this model requires ||λµ|| > 0.03 to fit ∆aµ within 1σ

and ||λµ|| < 0.09 to fit Rγγ.

Figure 6 shows a plot of λLµ versus λEµ . The gray points are all simulated points. The red

points satisfy ∆aµ within 1σ while the blue points are consistent with ∆aµ and Rγγ.
5 To

5The square shape in Figure 6 is unphysical and is due to our choice of sampling range.
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Figure 4: Plot of ∆aµ versus Rγγ. The lightly shaded points are ruled out. The dashed lines

show the 1σ and 2σ bounds of ∆aµ, and the 1σ bound of Rγγ. The solid lines show the

central value of ∆aµ and that of Rγγ.
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Figure 5: Plots of ∆aµ versus Rγγ. The gray points are ruled out. The dashed lines show

the 1σ and 2σ bounds of ∆aµ, and the 1σ bound of Rγγ. The solid lines show the central

value of ∆aµ and that of Rγγ. This model requires ||λµ|| > 0.03 to fit ∆µ and ||λµ|| < 0.09

to fit Rγγ.
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Figure 6: Plot of the muon-VL couplings, λEµ v/ME versus λLµv/ML. The solid and dashed

black lines are the approximate empirical bounds on the muon-VL couplings. These bounds

are not exact, but are obtained empirically (see text for more discussions).

satisfy ∆aµ, the muon-VL couplings need to satisfy approximately the following condition,∣∣∣∣∣λEµ vME

λLµv

ML

∣∣∣∣∣ & 7× 10−4 , (31)

which is shown by the solid lines. This bound is not an exact bound, but is an empirically

obtained bound satisfied by most simulated points. On the other hand, to satisfy both ∆aµ

and Rγγ, the muon-VL couplings need to satisfy approximately the following condition,(
λEµ v

ME

)2

+
1

1.08

(
λLµv

ML

)2

. 0.082 , (32)

which is showed by the dashed black lines. Similarly, this is not an exact bound.

Figure 7 shows a plot of ∆aµ versus BR(µ → eγ), which gives the strongest LFV con-

straint. The points in this plot are separated into four colors based on ranges of the ratio of
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Figure 7: Plot of ∆aµ versus BR(µ → eγ), which gives the strongest LFV constraint. The

lightly shaded points are ruled out. The dashed lines show the 1σ and 2σ bounds of ∆aµ,

and the upper bound of BR(µ → eγ). The solid line shows the central value of ∆aµ.

Simultaneously satisfying BR(µ→ eγ) and ∆aµ to within 1σ require 〈λe/λµ〉 . 10−4.

electron-VL to muon-VL couplings,〈
λe
λµ

〉
≡ 1

2

(
λLe
λLµ

+
λEe
λEµ

)
. (33)

The dashed lines show the 1σ and 2σ bounds of ∆aµ, and the upper bound of BR(µ →
eγ). The solid line shows the central value of ∆aµ. This figure shows that simultaneously

satisfying BR(µ → eγ) and ∆aµ to within 1σ require 〈λe/λµ〉 . 10−4.6 This figure shows

that this model requires some level of fine-tuning.

The most stringent constraints for the tau-VL coupling is from electroweak observables.

The sampling range for tau-VL couplings, λL,Eτ v/ML,E ∈ (−0.09, 0.09), is based on elec-

troweak constraints. The next strongest constraint for the tau-VL coupling is BR(τ → µγ).

This constraint, however, does not rule out any value of the tau-VL couplings within the

sampling range. Finally, BR(h → µτ) does not constrain the parameter space at all. This

is in agreement with a previous analysis by Falkowski et. al., which shows that the con-

straint from LFV Higgs decays is at least four orders of magnitude smaller than that from

BR(`→ `′γ) [12].

As for the lepton non-universality measurements, the calculated values of RK and RK∗0

do not deviate from the SM predictions because the Wilson coefficients contain the SM-VL

mixing matrices squared, which are highly constrained by electroweak precision measure-

6Out of all simulated points, four points that violate this bound with the largest violation being 〈λe/λµ〉 =
2× 10−4.
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ments. The ranges of Wilson coefficients in this model are

−3.21× 10−11 ≤ CNP
9 (e) ≤ 7.26× 10−12 ,

−3.21× 10−11 ≤ CNP
10 (e) ≤ 7.26× 10−12 ,

−7.88× 10−3 ≤ CNP
9 (µ) ≤ 2.21× 10−3 ,

−7.86× 10−3 ≤ CNP
10 (µ) ≤ 2.18× 10−3 .

(34)

As a comparison, to fit all the CP-conserving b→ sµ+µ− anomalies along with RK and RK∗0 ,

the Wilson coefficients need to have values CNP
9 (µ) = −1.20± 0.20 and CNP

9 (e) = CNP
10 (e) =

CNP
10 (µ) = 0, or CNP

9 (µ) = −CNP
10 (µ) = −0.68± 0.12 and CNP

9 (e) = CNP
10 (e) = 0 [20].

5 CONCLUSION

In this paper, we considered a very simple extension of the SM in which the SM is extended

with one family of VL leptons; where the VL leptons couple to all three families of SM leptons.

We studied the constraints on this model coming from the heavy charged lepton mass bound,

electroweak precision data, the muon g− 2, lepton flavor violation, Higgs decays and lepton

non-universality observables. See Table 2 for the complete list of observables considered in

this paper. All experimental values, other than lepton non-universality observables, are taken

from the PDG [1]. The experimental value for RK is taken from Reference [10], while RK∗0

is recently measured by LHCb [11]. All theoretical calculations are performed at leading

order while the lepton non-universality observables are calculated using flavio [18].

In this paper, we showed that this model can fit all but the lepton non-universality

measurements. The most constraining observables are the muon g − 2, Rµµ, Rγγ and the

BR(µ → eγ). We find that if Rµµ is measured to be SM-like, then this model cannot

simultaneously fit both the muon g−2 within 1σ and Rµµ (see Figure 2). In addition, we also

find that the SU(2) doublet VL mass is required to satisfy ML . 250 GeV or ML & 400 GeV

in order to fit the muon g − 2 within 1σ (see Figure 3). If the heavy charged lepton mass

bound increases to be above ML & 250 GeV, then the muon g − 2 can produce a stronger

mass bound. Fitting to the muon g − 2 requires ||λµ|| > 0.03 while fitting to Rγγ requires

||λµ|| < 0.09. Hence, the muon-VL coupling is constrained to be within 0.03 < ||λµ|| < 0.09.

Although we allow the VL leptons to couple to all three families of the SM leptons, by

simultaneously fitting the muon g−2 and BR(µ→ eγ), the ratio of the electron-VL coupling

to muon-VL coupling is constrained to be 〈λe/λµ〉 . 10−4. Hence, this model requires some

level of fine-tuning. On the other hand, the strongest constraints on the tau-VL coupling

is coming from electroweak precision observables. The recently measured BR(h → µτ) is

less constraining than the electroweak precision observables. We also find that this model

cannot explain the B physics lepton non-universality measurements.
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A BOX DIAGRAM CALCULATION

In this appendix, we calculate four box diagrams that have NP contributions to the decay

of b → s``. As shown in Figure 1, the NP contributions of these diagrams are due to VL

leptons in the loop. The NP contribution enters via Wilson coefficients C9 and C10. The

calculation in this appendix is done in the ‘t Hooft-Feynman gauge.

A.1 Feynman Rules

To see all the Feynman rules explicitly, we start by rewriting the Lagrangian that is relevant

to our calculation. The definition of the fields and their corresponding quantum numbers

are given in Table 1. The Lagrangian of the leptonic sector is given in Eq. 3.

W -lepton Couplings

From Eq. 13, we have

L ⊃ g√
2

[
W+
µ ν̄aγ

µ([ŨL]abPL + [ŨR]abPR)êb +W−
µ

¯̂ebγ
µ([Ũ∗L]abPL + [Ũ∗R]abPR)νa

]
, (35)

where PL,R are projection operators and

ŨL = diag(1, 1, 1, 1, 0)UL (36)

ŨR = diag(0, 0, 0, 1, 0)UR . (37)

Notice that [UL]4a = [ŨL]4a, where a = 1, . . . , 5. Similarly for UR.

Higgs-lepton Couplings

Rewriting the Lagrangian, Eq. 3, in terms of the physical Higgs and the would-be Nambu-

Goldstone bosons gives

L ⊃−
(
v +

h√
2

)
ēLaY

e
abeRb

− iφ0

√
2
ēLaY

eφ0

ab eRb

− φ+ν̄Lb
Y νL
ba eRa − φ−ēLaY

νR†
ab νRb

+ h.c. .

(38)

where Y e, Y νL , and Y ν†R are given by Eq. 15, Eq. 23, and Eq. 24 respectively, and

Y eφ0 ≡

yeii 0 λEi
λLi 0 λ

0 −λ̄ 0

 . (39)
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In the charged lepton mass basis, we have

L ⊃−
(
v +

h√
2

)
¯̂eLaŶ

e
abêRb

− iφ0

√
2

¯̂eLa [U †LY
eφ0UR]abêRb

− φ+ν̄Lb
[Y νLUR]baêRa − φ− ¯̂eLa [U †LY

νR†]abνRb
+ h.c. .

(40)

So, the Feynman rules for the coupling in diagrams (b)-(d) in Figure 1 involving the charged

would-be Nambu-Goldstone bosons are

φ+ : −i([Y νLUR]4aPR + [Y νRUL]4aPL) , (41)

φ− : −i([Y νL∗U∗R]4aPL + [Y νR∗U∗L]4aPR) . (42)

Since all the calculations are performed in the charged lepton mass basis, to simplify notation,

we will drop ˆ in the rest of this appendix.

A.2 Loop Calculations

Before we start to evaluate the four diagrams in Figure 1, let’s consider two loop integrals

that we will be using. These loop integrals are performed easily with Package-X developed

by Patel [21].

Aαβ(Mi,ML) ≡
∫

d4q

(2π)4

qαqβ
(q2 −M2

W )2(q2 −M2
i )(q2 −M2

L)
= − i

64π2M2
W

g1(xi, y)gαβ , (43)

B(Mi,ML) ≡
∫

d4q

(2π)4

1

(q2 −M2
W )2(q2 −M2

i )(q2 −M2
L)

= − i

16π2M4
W

g0(xi, y) , (44)

where xi = M2
i /M

2
W , y = M2

L/M
2
W and

g1(x, y) =
1

x− y

[
x2

(x− 1)2
log x− y2

(y − 1)2
log y − 1

x− 1
+

1

y − 1

]
, (45)

g0(x, y) =
1

x− y

[
x

(x− 1)2
log x− y

(y − 1)2
log y − 1

x− 1
+

1

y − 1

]
. (46)

Diagram (a)

�(a) =

(
g√
2

)4 ∑
i=u,c,t

VibV
∗
is

∫
d4q

(2π)4

( −i
q2 −M2

W

)2 [
s̄γµPL

i(/q +Mi)

q2 −M2
i

γνPLb

]
[
ēa([U

∗
L]4aγνPL + [U∗R]4aγνPR)

i(/q +ML)

q2 −M2
L

([UL]4aγµPL + [UR]4aγµPR)ea

]
=
g4

4

∑
i=u,c,t

VibV
∗
is

∫
d4q

(2π)4

1

(q2 −M2
W )2(q2 −M2

i )(q2 −M2
L)

[s̄γµPL(/q +Mi)γ
νPLb][

ēa([U
∗
L]4aγνPL + [U∗R]4aγνPR)(/q +ML)([UL]4aγµPL + [UR]4aγµPR)ea

]
.
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The last two square brackets can be written as

qαqβ[s̄γµγαγνPLb][ēaγνγ
βγµ(|[UL]4a|2PL + |[UR]4a|2PR)ea] ,

where we have dropped terms linear in q. Using Eq. 43,

�(a) =
g4

4

∑
i=u,c,t

VibV
∗
isAαβ(Mi,ML)[s̄γµγαγνPLb]

[ēaγνγ
βγµ(|[UL]4a|2PL + |[UR]4a|2PR)ea] .

Using gαβ from Aαβ, the last two square brackets can be written as

[s̄γµγαγνPLb][ēaγνγαγµ(|[UL]4a|2PL + |[UR]4a|2PR)ea] .

Using the following Dirac matrix identity,

γµγαγν = gµαγν + gανγµ − gµνγα − iεβµανγβγ5 ,

we can rewrite the last two square brackets as

4[s̄γµPLb][ēaγµ(|[UL]4a|2PL + |[UR]4a|2PR)ea] .

Putting all these together, we have

�(a) =− i4GF√
2

∑
i=u,c,t

VibV
∗
is

e2

16π2

1

s2
W

1

2
g1(xi, y)

[s̄γµPLb][ēaγµ(|[UL]4a|2PL + |[UR]4a|2PR)ea] .

Hence, the contributions of this diagram to the Wilson coefficients are

C
NP(a)
9 = − 1

s2
W

1

4
(|[UL]4a|2 + |[UR]4a|2)g1(xi, y) ,

C
NP(a)
10 =

1

s2
W

1

4
(|[UL]4a|2 − |[UR]4a|2)g1(xi, y) .

(47)

Diagram (b)

�(b) =

(
g√
2

)4 ∑
i=u,c,t

VibV
∗
is

∫
d4q

(2π)4

( −i
q2 −M2

W

)2 [
s̄γµPL

i(/q +Mi)

q2 −M2
i

Mi

MW

PLb

]
[
ēa
−v([Y νL∗U∗R]4aPL + [Y νR∗U∗L]4aPR)

MW

i(/q +ML)

q2 −M2
L

([UL]4aγµPL + [UR]4aγνPR)ea

]
=
g4

4

∑
i=u,c,t

VibV
∗
is

∫
d4q

(2π)4

1

(q2 −M2
W )2(q2 −M2

i )(q2 −M2
L)[

s̄γµPL(/q +Mi)
Mi

MW

PLb

]
[
ēa
−v([Y νL∗U∗R]4aPL + [Y νR∗U∗L]4aPR)

MW

(/q +ML)([UL]4aγµPL + [UR]4aγµPR)ea

]
.
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The last two square brackets can be written as

−vM
2
iML

M2
W

[s̄γµPLb][ēaγµ([UL]4a[Y
νR∗U∗L]4aPL + [UR]4a[Y

νL∗U∗R]4aPR)ea] ,

where we have dropped terms linear in q. Using Eq. 44,

�(b) =− g4

4

∑
i=u,c,t

VibV
∗
isB(Mi,ML)

vM2
iML

M2
W

[s̄γµPLb]

[ēaγµ([UL]4a[Y
νR∗U∗L]4aPL + [UR]4a[Y

νL∗U∗R]4aPR)ea] .

Putting all these together, we have

�(b) =i
4GF√

2

∑
i=u,c,t

VibV
∗
is

e2

16π2

1

s2
W

1

2

v

ML

xiyg0(xi, y)

[s̄γµPLb][ēaγµ([UL]4a[Y
νR∗U∗L]4aPL + [UR]4a[Y

νL∗U∗R]4aPR)ea] .

Hence, the contributions of this diagram to the Wilson coefficients are

C
NP(b)
9 =

1

s2
W

1

4

v

ML

xiy([UL]4a[Y
νR∗U∗L]4a + [UR]4a[Y

νL∗U∗R]4a)g0(xi, y) ,

C
NP(b)
10 = − 1

s2
W

1

4

v

ML

xiy([UL]4a[Y
νR∗U∗L]4a − [UR]4a[Y

νL∗U∗R]4a)g0(xi, y) .
(48)

Diagram (c)

�(c) =

(
g√
2

)4 ∑
i=u,c,t

VibV
∗
is

∫
d4q

(2π)4

( −i
p2 −M2

W

)2 [
s̄
Mi

MW

PR
i(/q +Mi)

q2 −M2
i

γµPLb

]
[
ēa([U

∗
L]4aγµPL + [U∗R]4aγµPR)

i(/q +ML)

q2 −M2
L

−v([Y νLUR]4aPR + [Y νRUL]4aPL)

MW

ea

]
=
g2

4

∑
i=u,c,t

VibV
∗
is

∫
d4q

(2π)4

1

(q2 −M2
W )2(q2 −M2

i )(q2 −M2
L)[

s̄
Mi

MW

PR(/q +Mi)γ
µPLb

]
[
ēa([U

∗
L]4aγµPL + [U∗R]4aγµPR)(/q +ML)

−v([Y νLUR]4aPR + [Y νRUL]4aPL)

MW

ea

]
.

The last two square brackets can be written as

−vM
2
iML

M2
W

[s̄γµPLb][ēaγµ([U∗L]4a[Y
νRUL]4aPL + [U∗R]4a[Y

νLUR]4aPR)ea] ,
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where we have dropped terms linear in q. Using Eq. 44,

�(c) =− g4

4

∑
i=u,c,t

VibV
∗
isB(Mi,ML)

vM2
iML

M2
W

[s̄γµPLb]

[ēaγµ([U∗L]4a[Y
νRUL]4aPL + [U∗R]4a[Y

νLUR]4aPR)ea] .

Putting all these together, we have

�(c) =i
4GF√

2

∑
i=u,c,t

VibV
∗
is

e2

16π2

1

s2
W

1

2

v

ML

xiyg0(xi, y)

[s̄γµPLb][ēaγµ([U∗L]4a[Y
νRUL]4aPL + [U∗R]4a[Y

νLUR]4aPR)ea] .

Hence, the contributions of this diagram to the Wilson coefficients are

C
NP(c)
9 =

1

s2
W

1

4

v

ML

xiy([U∗L]4a[Y
νRUL]4a + [U∗R]4a[Y

νLUR]4a)g0(xi, y) ,

C
NP(c)
10 = − 1

s2
W

1

4

v

ML

xiy([U∗L]4a[Y
νRUL]4a − [U∗R]4a[Y

νLUR]4a)g0(xi, y) .
(49)

Diagram (d)

�(d) =

(
g√
2

)4 ∑
i=u,c,t

VibV
∗
is

∫
d4q

(2π)4

( −i
q2 −M2

W

)2 [
s̄
Mi

MW

PR
i(/q +Mi)

q2 −M2
i

Mi

MW

PLb

]
[
ēa
v([Y νL∗U∗R]4aPL + [Y νR∗U∗L]4aPR)

MW

i(/q +ML)

q2 −M2
L

v([Y νLUR]4aPR + [Y νRUL]4aPL)

MW

ea

]
=
g4

4

∑
i=u,c,t

VibV
∗
is

∫
d4q

(2π)4

1

(q2 −M2
W )(q2 −M2

i )(q2 −M2
L)[

s̄
Mi

MW

PR(/q +Mi)
Mi

MW

PLb

] [
ēa
v([Y νL∗U∗R]4aPL + [Y νR∗U∗L]4aPR)

MW

(/q +ML)
v([Y νLUR]4aPR + [Y νRUL]4aPL)

MW

ea

]
.

The last two square brackets can be written as

qαqβ
v2M2

i

M4
W

[s̄γαPLb][ēaγ
β(|[Y νRUL]4a|2PL + |[Y νLUR]4a|2PR)ea] ,

where we have dropped terms linear in q. Using Eq. 43,

�(d) =
g4

4

∑
i=u,c,t

VibV
∗
isAαβ(Mi,ML)

v2M2
i

M4
W

[s̄γαPLb]

[ēaγ
β(|[Y νRUL]4a|2PL + |[Y νLUR]4a|2PR)ea] .

20



Putting all these together, we have

�(d) =− i4GF√
2

∑
i=u,c,t

VibV
∗
is

e2

16π2

1

s2
W

1

8

v2

M2
L

xiyg1(xi, y)

[s̄γµPLb][ēaγµ(|[Y νRUL]4a|2PL + |[Y νLUR]4a|2PR)ea] .

Hence, the contributions of this diagram to the Wilson coefficients are

C
NP(d)
9 = − 1

s2
W

1

16

v2

M2
L

xiy(|[Y νRUL]4a|2 + |[Y νLUR]4a|2)g1(xi, y) ,

C
NP(d)
10 =

1

s2
W

1

16

v2

M2
L

xiy(|[Y νRUL]4a|2 − |[Y νLUR]4a|2)g1(xi, y) .

(50)

Total Contributions

The sum of the Wilson coefficients from these four diagrams (Eq. 47 - Eq. 50) is the total

NP Wilson coefficients,

CNP
9 =− 1

s2
W

1

4
[U+

1 (x, y)g1(x, y) + U+
0 (x, y)g0(x, y)] ,

CNP
10 =

1

s2
W

1

4
[U−1 (x, y)g1(x, y) + U−0 (x, y)g0(x, y)] ,

(51)

where x = M2
t /M

2
W , y = M2

L/M
2
W ,

g1(x, y) =
1

x− y

[
x2

(x− 1)2
log x− y2

(y − 1)2
log y − 1

x− 1
+

1

y − 1

]
, (52)

g0(x, y) =
1

x− y

[
x

(x− 1)2
log x− y

(y − 1)2
log y − 1

x− 1
+

1

y − 1

]
, (53)

and

U±1 (x, y) = |[UL]4a|2 ± |[UR]4a|2 +
1

4

v2

M2
L

xy

(
|[Y νRUL]4a|2 ± |[Y νLUR]4a|2

)
, (54)

U±0 (x, y) = − v

ML

xy

(
[UL]4a[Y

νR∗U∗L]4a + [U∗L]4a[Y
νRUL]4a

± [UR]4a[Y
νL∗U∗R]4a ± [U∗R]4a[Y

νLUR]4a

)
.

(55)
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