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Abstract

In this paper, we explore the discriminatory power of the matrix element method (MEM) in

constraining the Lµ−Lτ model at the LHC. The Z ′ boson associated with the spontaneously broken

U(1)Lµ−Lτ symmetry only interacts with the second and third generation of leptons at tree level,

and is thus difficult to produce at the LHC. We argue that the best channels for discovering this

Z ′ are in Z → 4µ and 2µ+ /ET . Both these channels have a large number of kinematic observables,

which strongly motivates the usage of a multivariate technique. The MEM is a multivariate analysis

that uses the squared matrix element |M|2 to quantify the likelihood of the testing hypotheses. As

the computation of the |M|2 requires knowing the initial and final state momenta and the model

parameters, it is not commonly used in new physics searches. Conventionally, new parameters are

estimated by maximizing the likelihood of the signal with respect to the background, and we outline

scenarios in which this procedure is (in)effective. We illustrate that the new parameters can also be

estimated by studying the |M|2 distributions, and, even if our parameter estimation is off, we can

gain better sensitivity than cut-and-count methods. Additionally, unlike the conventional MEM,

where one integrates over all unknown momenta in processes with ET/ , we show an example scenario

where these momenta can be estimated using the process topology. This procedure, which we refer

to as the “modified squared matrix element”, is computationally much faster than the canonical

matrix element method and maintains signal-background discrimination. Bringing the MEM and

the aforementioned modifications to bear on the Lµ − Lτ model, we find that with 300 fb−1 of

integrated luminosity, we are sensitive to the couplings of gZ′ & 0.002 g1 and MZ′ < 20 GeV, and

gZ′ & 0.005 g1 and 20 GeV < MZ′ < 40 GeV, which is about an order of magnitude improvement

over the cut-and-count method for the same amount of data.
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I. INTRODUCTION

The highest priority of LHC– run II is to find physics beyond the standard model (BSM).

In the pursuit of optimal sensitivity to BSM physics, it is important to develop a diverse

set of techniques that improve our sensitivity to BSM signal against the SM background.

The most straightforward technique is the cut-and-count method, where one determines the

suitable region of phase space by studying the kinematic distributions of the simulated events

(e.g. the invariant mass of two detected particles, or the angle difference between them) and

look for an excess over the SM expectation. While simple, this method can miss correlations

among kinematic variables. To improve our discriminatory power, one can select events

based on more complicated variables that take into account correlations. These complicated

variables can be a linear or a non-linear combination of the kinematic variables used in the

cut-count method. The techniques that consider combinations of kinematic variables are

generally called “Multivariate Analysis” (MVA) [1]. Some of the main methods developed

in this category are “Neural Network” [2–6] and “Boosted Decision Tree” [7, 8]. However,

these MVA methods usually require a phase of computer training and techniques that are

not transparent to theorists. Another example of MVA that is calculated based on the

theoretical assumptions for a given process is the Matrix Element Method (MEM) [9–15].

The MEM was originally developed in the Tevatron experiment and was successfully

applied to measurement of the top quark mass and single top electroweak production [9,

13, 16–29]. In the MEM, given a reconstructed event and a theoretical hypothesis, the

probability that the event matches the hypothesis is quantified based on the value of the

partonic matrix element for the hypothesis processes evaluated using the final state four

momenta. Repeating this procedure using multiple hypothesis processes, e.g. a background

process and a signal process, and comparing the results, one can quantify how ‘signal-like’ or

‘background-like’ a given ensemble of events is. By definition, the MEM contains all of the

kinematic information of the hypothesis process so it captures all correlations. Moreover, the

MEM has a clear physical meaning and there is a transparent link between the theoretical

assumptions and event reconstruction.

Despite the successes of the MEM in the SM measurements, this method has not been

applied extensively in BSM searches. Some of the main difficulties of the MEM are the

following [9, 14]:

• The squared matrix element depends on all of the momenta – both initial and final – in

the event. In circumstances where one or more momenta is not determined uniquely, we

must integrate over all possible values. The more integrations required for each event,

the more time and computational resources required. Events with missing energy, a

hallmark of many new physics scenarios, automatically fall into this category of events

with unconstrained momenta.

• BSM hypotheses necessarily introduce new parameters (α = masses, couplings of new

particles), which need to be determined before we can calculate the matrix element.

Without a separate experiment telling us what α to use, our best option is to choose

the α such that they maximize our reach for detecting the signal given the background.
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However, finding the best-suited values for these parameters can be difficult, as shown

in Section IV A.

Ideally, we would like to develop techniques to overcome the aforementioned challenges

for any BSM hypothesis. However, as a first step, we focus on dealing with some of these

challenging for a specific model. The BSM hypothesis we will consider in this paper is one

of the simplest extensions of the SM, the Lµ − Lτ model [30]. In the Lµ − Lτ model, the

difference between muon number and tau number – an accidental symmetry of the SM –

is gauged and spontaneously broken, generating a massive Z ′ that interacts only with the

second and third generation of leptons at tree level [30]. As the Lµ − Lτ Z ′ is hadrophobic

and does not interact with electrons at tree level, it is difficult to produce at conventional

experiments and therefore is challenging to constrain [31]. In fact, tree-level Z ′ production

at the LHC always involves four second/third generation lepton (either charged or neutral)

final states: the initial partons create a pair of leptons via W±/Z/γ exchange, one of which

radiates a Z ′ that subsequently decays to a second lepton pair. At the LHC, identifying

muons is much easier and more accurate than identifying taus, thus in this work, we will

only consider combinations of muons and ET/ (due to νµ or ντ ) as potential final states. In

particular, we will study the two processes of i) four muons (4µ), and ii) two muons and

missing energy (2µ + /ET ). Of course, as all of the final state particles are SM particles,

there will be interference between the four muon events produced via Z ′ and SM four muon

events. We will put this interference to use in sections IV A and IV B.

The four muon final state is fully reconstructable, and it has 12 independent observables.

The existence of this many kinematic variables begs for using an MVA. The MEM is a suit-

able choice because it optimally [9] uses all of the available kinematic variables to distinguish

signal from the background. Applying MEM to the process 2µ + /ET with 6 observables is

also more lucrative, however, the existence of ET/ makes its computation more challenging.

Fortunately, the main SM background to this process (pp → ττ → 2µ /ET ) has a very spe-

cific topology, and thus the missing momenta for this process can be estimated from the

momenta of muons. In section IV B, we show that by using the squared matrix element

of the τ+τ−|dimuon background as a discriminatory variable (as opposed to the conventional

likelihood function) with the guessed missing momenta derived from its topology (i.e. with-

out having to integrate over missing momenta), we are able to sufficiently differentiate our

signal from the remaining SM backgrounds as well. Due to the deviation from the canonical

MEM procedure, we will refer to this approach as the “modified MEM”.

The organization of the rest of the paper is as follows. In the next section, we explain the

Matrix Element method and how it is used to discriminate the signal from the background.

In section III, we introduce the model and discuss some of the constraints on its parameters

from LHC and other experiments. In section IV, we explore how the bounds can be improved

at the LHC. Finally, a discussion about the results and concluding remarks are made in

section V.
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II. MATRIX ELEMENT METHOD

At the LHC, we are searching for BSM physics against the SM background. Although

we could look for generic departure from the SM, our sensitivity is greater if we look for a

particular BSM physics hypothesis. Therefore, we are usually dealing with two hypotheses:

a specific new physics model (signal) and the null hypothesis (the SM background). To

statistically analyze these two test hypotheses, the MEM uses their likelihood ratio, where

the likelihoods are calculated based on the squared matrix element (|M|2) of a process at

tree level1, and evaluated using the final state momenta of individual events. Since all the

kinematic information of a process is contained in the matrix element, |M|2 is a powerful

variable to discriminate between the two test hypotheses. If the empirical LHC events are

inconsistent with either of the conjectures, |M|2 should also favor neither of them.

The function |M|2, depends on the momentum of initial and final state partons (ppar).

The squared matrix element of the signal |M|2signal will additionally depend on the new

model parameters (α): |M|2signal = |M(ppar;α)|2, and |M|2SM = |M(ppar)|2. In the special

case where the final states of the signal exactly match the SM background (e.g, no BSM

particles in the final state), |M|2signal must include the interference term with the SM as well.

If the LHC could detect the ppar of all of the final state particles, the likelihood (P ) that

an observed event is due to a particular hypothesis would be defined as

P (ppar|α) =
1

σ

∫
dx1dx2

f(x1)f(x2)

2sx1x2

|M(ppar;α)|2δ4(ppar
initial − ppar

final), (1)

where xi and ppar
initial are intimately related: ppar

initial,i ≡
√
s

2
(xi, 0, 0,±xi). The factors f(xi)

are the parton distribution functions (PDF) of the initial states, the collider center of mass

energy of collision is represented by
√
s, and σ is the total cross section with which P (ppar|α)

is normalized to ensure
∫
P (ppar|α)dppar = 1. The factor δ4(ppar

initial − ppar
final) ensures the

conservation of energy and momentum in the process. If we know the final state four-

momenta, we can use this delta function to infer information about the initial state momenta.

More specifically, the delta function involving the ppar
initial can be translated to a delta function

on xi’s, uniquely defining the xi’s and collapsing the integrals:

δ4(ppar
initial − ppar

final) =δ(

√
s

2
(x1 + x2)− ppar, Energy

final )×
δ2(ppar, transverse

final )×

δ(

√
s

2
(x1 − x2)− ppar, longitudinal

final ). (2)

The events at the LHC, however, are defined according to reconstructed momenta (prec)

at the detector which may not equal the ppar. Hence, we must modify the likelihood (P ) to

be a function of detector level momenta:

1 Some papers have studied the MEM at NLO as well [32–35].
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P (prec|α) =
1

σ

∫
dΦ(ppar

final)dx1dx2

f(x1)f(x2)

2sx1x2

|M(ppar;α)|2δ4(ppar
initial − ppar

final)W (prec, ppar),

(3)

with an integration over the possible values of partonic momenta given the reconstructed

momenta (represented by
∫
dΦ(ppar

final)dx1dx2). When there is missing energy (e.g, neutrino)

in the event, we integrate over all unconstrained momenta. However, if the particle is de-

tected, we use the transfer functions W (prec, ppar) to translate between the partonic momenta

and reconstructed momenta. These functions are usually gaussian (or bi-gaussian), where

the arguments are estimated according to Monte Carlo (MC) simulations2 [10–12]. If the

detected particle is a lepton or a photon, the transfer function are well approximated by a

delta function (δ(ppar− prec)), while for colored objects, the reconstructed momenta may be

significantly different from the partonic momenta.

After calculating the likelihood function (P ) of the signal and the SM, we need to de-

termine whether a given event is more likely to be due to the signal hypothesis or the

background. Therefore, we study the likelihood ratio:

L(prec
i ;α) =

P (prec
i |new phyiscs (α))

P (prec
i |null hypothesis)

, (4)

where the i subscript refers to the i-th event. If the value of α were known, we could

plot the distribution of L for given events, just like any usual kinematic distribution that

uses the reconstructed momenta. In the L distribution, larger values would indicate the

signal hypothesis is favored and lower values meant the data is more consistent with the null

hypothesis. Hence, with a cut on the larger values of L, we could find the phase space that

increases the signal fraction.

Having said that, in the case of new physics, we do not know the value of α. Since we

want to optimize our reach for the signal hypothesis, we want to choose α that maximizes

L(prec
i ;α) (or equivalently log [L(α)]). Therefore, we plot log [L(α)] with respect to α and

look for maxima in the plot. This process can be done for each event. For multiple events,

we simply sum over i:

∑

i

log[L(prec
i ;α)] =

∑

i

log

[
P (prec

i |new phyiscs (α))

P (prec
i |null hypothesis)

]
. (5)

We denote α∗ for the value of α that maximizes Eq. (5). As it will be important later

on, we emphasize that Eq. (5) only yields one number for an entire set of events. Previous

studies have shown that if α is the mass of a particle, the α∗ returned by maximizing Eq. (5)

is actually the same as the true value of α; in fact, the current most precise measurement

of the top quark mass is obtained with this process of maximizing the likelihood ratio with

respect to top mass [9, 13]. This procedure is used only to determine α∗, and it gives

no information on the prospect of discovering the signal. Once the optimal value α∗ is

2 In the matrix element technique, the theoretical assumptions (the |M|2) and the assumptions about the

experiment and detectors (the transfer functions) factorize and are independent of each other. Therefore,

the improvement in any of these assumptions can easily be implemented in the matrix element method.
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determined, the sensitivity to the signal is determined by selecting a region of the L(α∗)

(with α = α∗ in Eq. (4)) distribution that optimizes the signal over background ratio.

Despite the power of the MEM in discriminating signal against the null hypothesis, due

to its computational difficulties, it is not commonly used in BSM searches. One reason may

be the number of phase space integrations in the calculation of P (prec|α). If the process of

interest has multiple sources of missing energy or contains colored objects, the number of

integrals can be high and may over-consume computational resources. Another reason is that

the maximization of likelihood ratio with respect to α can be challenging depending on the

nature of parameters. As we will see in Section 3.A, the maximization of log likelihood works

if α is the mass of a new particle, but this approach breaks down if α is a coupling. That is

because log [L(α)] only increases with respect to α and has no local maxima. Although one

naively might expect that larger values of α results in greater sensitivity to BSM hypothesis,

in section IV A, we will show that is not correct.

In this paper, we will study a simple model to give a working example of how some of the

challenges in MEM for BSM can be overcome. The example we will consider is the gauged

U(1)Lµ−Lτ symmetry, summarized in the next section. This model contains a massive Z ′

gauge boson that only interacts with the second and third generation of leptons. We will

show that the LHC sensitivity can be improved by an order of magnitude compared with

the cut-and-count method if we apply MEM.

III. Lµ − Lτ MODEL

The difference between muon number and tau number Lµ − Lτ is one of the accidental

global symmetries present in the SM. This U(1)Lµ−Lτ symmetry is anomaly free and therefore

can be gauged. However, from the oscillation of tau or muon neutrinos to electron neutrinos,

we know this symmetry is not respected in nature and needs to be broken. The consequence

of the breaking is a neutral, color singlet, massive Z ′ that couples only to muon number and

tau number at tree level. The interactions of Z ′ are described by the Lagrangian below:

L 3 −1

4
(Z ′)αβ(Z ′)αβ +

1

2
M2

Z′Z
′αZ ′α − εg1Z

′
α

(
¯̀
2γ

α`2 + µ̄γαµ− ¯̀
3γ

α`3 − τ̄ γατ
)
, (6)

where Z ′αβ = ∂αZ
′
β − ∂βZ ′α is the field strength tensor, and `2 = (νµ, µ)T , `3 = (ντ , τ)T . As

shown in the Lagrangian, the Z ′ has the same coupling to left handed and right-handed

muon (tau), with a relative minus sign between the coupling of muons and taus [30]. The

new parameters in the model are α = (MZ′ , ε), where εg1 is the coupling of Z ′ to muons and

taus.

Studying this model is important because some region of its parameter space can explain

the long persisting discrepancy in the SM prediction and experimental measurement of muon

anomalous magnetic moment (g − 2)µ [36–44]. Some anomalies observed in B physics and

flavor changing Higgs coupling [45–47] can also be explained by gauged Lµ−Lτ , which further

motivates studying this model. In particular, the anomalies recently observed in RK =

Br(B → Kµ+µ−)/Br(B → Ke+e−) ' 0.745 with 2.6σ discrepancy between theoretical

expectations, and in RK∗ = Br(B → K∗µ+µ−)/Br(B → K∗e+e−) ' 0.7 with ∼ 2.5σ, by
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LHCb [48] can be explained by the Lµ − Lτ model, assuming MZ′ ∼ O(TeV) and gZ′ ∼
O(1) [45, 46, 49].

Because the Lµ − Lτ Z ′ only interacts with second and third generation leptons at tree

level, it is not very constrained (see Ref. [31] for the quantitative estimation of the con-

straints on such leptophilic Z ′). One constraint comes from Z − Z ′ mixing that arises from

loops of muons and taus (and their respective neutrinos), inducing a coupling of O(10−3 ε)

between the Z ′ and all fermions [50–52]. The factor of 10−3 is a rough estimate based on the

loop suppression and the couplings of Z ′ and Z with muon and tau. Precision measurements

of Z−electron coupling at the BaBar and Belle II experiment [53–58] requires the coupling

of Z ′ to electrons to be . 10−3 for 10 MeV < MZ′ < 10 GeV, which translates to ε . 1 in

the Lµ − Lτ model.

The strongest current bound on Lµ−Lτ for MZ′ < 10 GeV is from fixed target neutrino

beam experiments. In particular, CHARMII [59] and CCFR [60, 61] tightly constrain Lµ −
Lτ Z

′ via the trident process: N + νµ → N + νµ + µµ [62]. This process occurs through the

exchange of off-shell W±/Z bosons in the SM. However, in the Lµ−Lτ model, the exchange

of Z ′ can significantly contribute to the rate of the process, especially if the Z ′ is produced

on-shell [59, 60, 62, 63]. Neutrino trident experiment excludes a Lµ−Lτ Z ′ with ε & 0.005

and MZ′ . 1 GeV. The bounds loosen for heavier Z ′ to ε ∼ 0.05 for MZ′ = 20 GeV.

LHC bounds on this model come from from recasting the pp→ Z → 4µ searches by CMS

and ATLAS [64, 65]. This bound surpasses the trident bound for 10 GeV < MZ′ . 45 GeV,

excluding ε & 0.04 for MZ′ = 10 GeV, and a looser bound of ε & 0.5 for MZ′ ∼ 45 GeV

[62]. In Ref. [66], we discussed the potential LHC reach using a dedicated cut-and-count Z ′

analysis in the pp→ Z → 4µ (forMZ′ > 2mµ) and pp→ µ+µ− /ET (forMZ′ < 2mµ) channels.

These channels were proposed for their cleanliness. Additionally, since the contribution of

Z ′ is greatest when it is produced on-shell, the mass ranges of the channels were chosen such

that an on-shell Z ′ can decay to muons (pp → 4µ) or neutrinos (pp → 2µ/ET ). Although

in [66] a large region of parameter space could be uncovered with the cut-and-count method

after the full 3 ab−1 of HL-LHC run, in this paper we will show that our sensitivity can be

enhanced further if we use the matrix element technique.

IV. LHC BOUNDS ON Lµ −Lτ MODEL USING MATRIX ELEMENT METHOD

A. Looking for Z ′ with mass range 2mµ < MZ′ < MZ in pp→ Z → 4µ

The rare process Z → 4µ occurs through Z boson decay into two muons, one of which

radiates a neutral boson V that subsequently splits into a second pair of muons. In the SM,

V can be an off-shell Z or photon, while in the Lµ−Lτ model, the on-shell/off-shell Z ′ will

also contribute (see Fig. 1).

Four muons reconstructing an on-shell Z boson is a clean process that has been studied

extensively. Therefore, it is an ideal channel for constraining Lµ − Lτ model. Moreover,

the related channels pp → Z → 4e and pp → Z → 2e 2µ can be used as a background

control sample to suppress the experimental uncertainties of this channel. Within the SM

the cross section of Z → 4µ is the same as the Z → 4e and Z → 2e 2µ processes up to
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Figure 1. The Feynman diagram for Z → 4µ in the SM as well as the Z ′ contribution.

O(m2
e/m

2
µ) ∼ 10−4, hence by measuring Z → 4e and Z → 2e 2µ, we can obtain a precise

prediction of (pp → Z → 4µ)SM . As such, in the following, we will assume that the

systematic uncertainties of (pp→ Z → 4µ)SM are sub-percent.

To study the Lµ−Lτ Z ′, we generated a Universal FeynRules Output (UFO) model [67]

using Feynrules [68]. We then fed the model to MadGraph [69, 70] to generate our events

at leading-order. The background sample only contains the SM contributions to the four

muon production (pp → 4µ)SM , while the signal event sample include both the Z ′ as an

intermediate state (where its width is calculated using MadGraph), and the SM gauge

bosons (pp → 4µ)SM+Z′ to capture the interference among processes. The signal events

were generated for various values of αgen = (Mgen
Z′ , ε

gen) between 2mµ ≤Mgen
Z′ ≤ 40 GeV and

0.001 ≤ εgen ≤ 0.1.

Before applying MEM, we impose some preliminary cuts to ensure the events have been

triggered upon. Specifically, we impose a di-lepton trigger used in LHC-13 [71] that selects

events with pT (µ1) > 17 GeV and pT (µ2) > 8 GeV, where µ1 is the leading muon and

µ2 is the sub-leading one. We also require pT > 4 GeV for all muons and the separation

∆Rµµ > 0.05 [64, 65, 71]. To ensure
√
ŝ ∼ MZ , we impose 76 GeV < m4µ < 106 GeV and

veto extra jets in the event, since they would hurt the cleanliness of the process.

As lepton momenta are accurately measured at the detector, we can be confident that

the detected momenta very closely represents the partonic level momenta; stated in terms

of transfer functions introduced in Eq. (3), we will assume W (prec, ppar) = δ(prec − ppar).

Furthermore, because the final states are fully reconstructable and we have vetoed jets3 ,

we can find the initial state energies (or equivalently the xis in Eq. (1)) from conservation

of energy and momentum, as shown in Eq. (2). As a result, all of the integrations collapse

due to delta functions, and the likelihood ratio becomes

L(prec;MZ′ , ε) =

1
σ

f(x1 )f(x2 )

2sx1x2
|M(prec;MZ′ , ε)q(x1 )q(x2 )→4µ)|2

1
σ

f(x1 )f(x2 )

2sx1x2
|M(prec;SM)q(x1 )q(x2 )→4µ)|2

.

Because the initial state quarks (with energies parameterized by x1 and x2) are the same

for both the signal and the background at leading order, the PDF and xi factors cancel in

3 we have done our analysis at parton level, but given m4µ ∼ MZ , it is reasonable to assume jet contami-

nation is negligible.
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the ratio. Hence, the likelihood ratio for a single event can be simplified to

L(prec;MZ′ , ε) =
|M(prec;MZ′ , ε)|2
|M(prec; SM)|2 (7)

The analytical calculation of |M|2 can be simplified if we just consider the process Z →
4µ, where Z is the vector sum of the four muons. Although the events could also be

due to the processes qq → γ∗ → 4µ or the interference of γ∗ and Z mediators, requiring

76 GeV < m4` < 106 GeV assures us |MZ→4µ|2 is a reasonably accurate description of the

events. For the analytic evaluation of |M|2, we use the form given in MCFM [72–74], which

is easily modified to include Z ′ intermediate states (for the case of the signal).

Even when all final states particles are reconstructed, there are complications in evalu-

ating |M|2. Specifically, at the detector level, we do not know the ‘right’ pair of muons

that reconstruct the V = γ/Z/Z ′, leading to a combinatorics problem. The most naive way

we can account for this problem is by summing over all four possible |M|2 with different

combinations of muon pairs originating from V . With a better algorithm, the sensitivity to

signal may be further improved, but we do not attempt that here.

The likelihood ratio, as shown in Eq. (7) can be calculated for each event as a function of

MZ′ , and ε. Before proceeding, we need to differentiate between the analysis α = (MZ′ , ε)

values used in the signal matrix element hypothesis (M(prec,MZ′ , ε)) and the “truth” values

– the values of MZ′ and ε used to generate the signal events (which, in actual data, would

be unknown). To avoid confusion, we will use αa = (Ma
Z′ , ε

a) for the analysis values and

αgen = (Mgen
Z′ , ε

gen) which were used for event generation.

Our goal is to determine the values of Ma
Z′ and εa that maximize our sensitivity to the

signal hypothesis. Keeping this task in mind, it is worth looking at how the αa parameters

enter into the matrix element:

M(prec;Ma
Z′ , ε

a) =MSM +
(εa)2

M2
µµ − (Ma

Z′)
2 − iΓaZ′Ma

Z′
(· · · ), (8)

where ΓaZ′ = ΓZ′(M
a
Z′ , ε

a) and the ellipses represent the part of the matrix element that is

independent of Ma
Z′ , ε

a. Knowing the dependence ofM on αa can help us better understand

the behavior of the likelihood ratio for various αa values. For example, the appearance

of Ma
Z′ only in the denominator suggests that the likelihood ratio is very sensitive to the

value of Ma
Z′ (e.g, the possibility of resonance). With εa in the numerator, we suspect the

likelihood ratio to not be as sensitive to a particular value of εa, because regardless of which

testing hypotheses the events belongs to, their likelihood ratio will increase by increasing

εa. Although ΓaZ′ in the denominator also depends on εa, its contribution is suspected to be

much smaller than the εa in the numerator.

To examine these conjectures and hunt for the αa that maximize the likelihood ratio, we

will proceed by plotting
∑

i log[L(pi, α
a)] defined in Eq. (5) as a function of αa. Thereby, for

each αa we can compare the relative sizes of the summed log likelihood ratio of the signal

sample events with that of background sample, and look for the values of αa that maximize

the likelihood of the signal with respect to the background. As we have two new parameters

(αa = Ma
Z′ , ε

a), for simplicity we will fix one of the parameters and plot Eq. (5)) as a function

of only one parameter.

9



First, we assume a non-zero value for εa and plot Eq. (5) for a range of Ma
Z′ values. The

value of εa can be any arbitrary non-zero value, and varying εa does not alter our results.

For every event, the reconstructed invariant mass of two muons (Mµµ) will produce a spike

at Ma
Z′ = Mµµ, which is not necessarily equal to the Mgen

Z′ . In fact, because we are summing

over all four possible combinations of muon pairs, we have four spikes in Ma
Z′ for each event.

Therefore, summing over all events, the net distribution (in our case, 50000 events) has

spikes at all values of Ma
Z′ . MZ as shown in the left plot of Fig. 2. In the signal sample,

due to the higher number of events with Mµµ = Mgen
Z′ , the spike at Mgen

Z′ is more noticeable

(see Fig. 2, right plots). The maximum likelihood ratio of the signal events is consistently

at Ma
Z′ = Mgen

Z′ for any arbitrary value of εa 6= 0, while the pure background events show no

interesting behavior at Ma
Z′ = Mgen

Z′ .

The height of the peak at Ma
Z′ = Mgen

Z′ relative to the other spikes depends on εgen

(regardless of εa). The peak is more visible for larger values of εgen, but becomes less

distinguishable from other spikes for smaller values of εgen. As one example, for εgen .
0.01 for Mgen

Z′ & 10 GeV, we could not distinguish the peak at Ma
Z′ = Mgen

Z′ from other

spikes). Given that our analysis highly depends on whether we are able to find Mgen
Z′ by

plotting
∑

i log[L(pi,M
a
Z′ , ε

a
arbitrary 6= 0)] as a function of Ma

Z′ , our strategy needs to bifurcate

depending on the value of εgen:

• large εgen: we determine the value of Ma
Z′ by observing the peak at Ma

Z′ = Mgen
Z′ ;

• small εgen: we need to chose an arbitrary value of Ma
Z′ .

However, as the choice of the strategies depends on whether we are able to observe the peak

at Ma
Z′ = Mgen

Z′ , rather than trying to quantify what it takes to observe a peak, we will

study both strategies for all values of εgen. More specifically, we will first assume that we

can find Ma
Z′ = Mgen

Z′ even for small values of εgen, then we will fix an arbitrary value for

Ma
Z′ and study the signal assuming we cannot find Mgen

Z′ even for large values of εgen. The

first method represents the best we can do with the MEM, while the second represents a

more realistic reach for ε . 0.01.

Now that we have discussed how to find the optimal value of Ma
Z′ , we follow the same

procedure to determine εa. For simplicity, we fix Ma
Z′ = Mgen

Z′ and let εa be a free parameter.

The
∑

i log[L(pi,M
a
Z′ = Mgen

Z′ , ε
a)], where the sum is over 50000 MC generated events for

each sample, are plotted in Fig. 3 below as a function of εa. Both the signal and background

MC events increase as a function of εa. Such behavior is anticipated, because as we can see

in Eq. (8), larger ε results in larger |M(prec;MZ′ , ε)|2 and thus larger likelihood ratio for

any event. Stated another way, fixing Ma
Z′ and studying the likelihood ratio with respect to

εa is not useful because the simulated signal and background events behave the same way

as a function of εa. Thus, for the remainder of this section, we will explore an alternative

different technique for estimating the optimal αa.

The problem with the approach of L maximization is that, for a given αa, it compares

only two numbers: the summed log likelihood ratio of the simulated signal events vs. that

of background events. With this approach, we are throwing away a lot of information about

each event. We can get a better handle on the signal vs. the background, if we look at

their distributions for a given αa and how those distributions evolve as we vary αa. The

10



Figure 2. The plot of log likelihood ratio, summed over 50000 events is shown above. The left plot

is the distribution of SM events, where there is a spike at every reconstructed Mµµ. The peak at

Ma
Z′ ∼ 0 GeV is due to the photon propagator. For larger values of Ma

Z′ , there are fewer events with

Mµµ = Ma
Z′ , and the function looks smoother, which is the result of our basic cuts. In the right

plot, the distribution of the signal events compared to the simulated background events are shown.

In the signal events, which include both SM and Z ′ contributions, there is a peak at Ma
Z′ = Mgen

Z′

because of the contribution from the on-shell Z ′. It is important to mention the optimal value of

Ma
Z′ is obtained by comparing the relative shapes of the signal plot with the background one. The

scale on the y-axis is irrelevant because it is highly sensitive to the number of events in our sample,

and by increasing the sample size the numerical values on the y-axis of the plots becomes more

comparable. For our analysis, we manually brought the plots to similar y-axis values, to compare

their shapes.

distribution will illustrate to us the behavior of events for a given αa, rather than just their

sum. We can use this distribution to find αa that results in best discrimination of the signal

from the background, even if the sum over events is similar. The signal usually resides in

high values of the likelihood ratio, as expected according to the definition of the likelihood

ratio (Eq. (4)). So, we distribute the events in the inverse likelihood ratio (L−1) to be able

to see the excess of the signal spread over a narrower window [0, 1].4

As an example of αa distribution method, in Fig. 4 below we show the distribution of the

MC generated events for the signal and the background for different choices of εa, assuming

Ma
Z′ = Mgen

Z′ . We can see that as we increase εa, the resonance region – defined as events

with Mµµ ∼ Mgen
Z′ – is more separated from the background. However for very large εa (for

example εa = 0.5 in the Fig. 4), the background distribution also becomes more spread. This

is again consistent with Eq. (8), because no matter whether the events are at resonance or

not, increasing εa increases their likelihood ratio.

The optimal value of εa depends on the distribution of the signal with respect to the

background. For a fixed sample size of signal and background simulated events, optimal is

4 not all of the background will fall in this [0, 1] region, however we only care about how the background is

distributed in the region where the signal resides.
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Figure 3. The distribution of log likelihood ratio for the signal and background events summed

over 50000 sample events. We have fixed Ma
Z′ = Mgen

Z′ = 10 GeV while εgen = 0.01. The signal and

the background MC sample events increase as εa increases, providing us with no special εa value

that optimizes the signal likelihood ratio. The numerical value on the y-axis of the two plots as

explained earlier is irrelevant and thus not shown.

defined as maximization of

number of signal events√
number of background events

.

After examining a few values5 of εa, we find εa = 0.05 to give the best discrimination,

regardless of the εgen. This result is consistent for all values of Mgen
Z′ that we studied.

Thus far, we have seen that with the assumption that we know Mgen
Z′ , the optimal values

for αa are Ma
Z′ = Mgen

Z′ and εa = 0.05. However, if we cannot find the value of Mgen
Z′

by maximizing
∑

i log[L(pi, α
a)] with respect to Ma

Z′ , we must explore how our sensitivity

changes if Ma
Z′ is fixed to an arbitrary value 6= Mgen

Z′ . Because the Z ′ mass for the generated

events is no longer the same as the Z ′ mass used in the analysis matrix element, the events

with Mµµ ∼Mgen
Z′ are no longer at resonance in the matrix elementM(prec;MZ′ , ε) (Eq. (8)).

Therefore, when we go to search for the optimal εa using distributions, the signal, and

background are less separated than in the previous case. To increase the separation, we

need to increase εa. Consequently, the optimal εa is no longer fixed at 0.05 and will depend

on the difference between Ma
Z′ and Mgen

Z′ . For example, in Fig. 5, the distribution of the

signal and the background MC generated events for Ma
Z′ = 25 GeV and Mgen

Z′ = 10 GeV,

with εa = 0.05, 0.5, 1 are shown. In this example, we see εa = 0.05 does not give a good

discrimination of the signal from the background, and we have to use larger values of εa.

Furthermore, as the plot illustrates, although large εa increases the separation between the

signal region and the background, it will broaden the signal region. Because we are interested

in distinguishing the region where the signal to background ratio is maximized, having a

5 The benchmark points εa we studied are εa ∈ [0.01, 0.5] with increments of 0.01. With a larger sample of

εa, the best value of εa may slightly vary.
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Figure 4. The distribution of L−1 = |MSM|2/|MZ′+SM|2 for Mgen
Z′ = 10 GeV, and εgen = 0.05.

This plot shows that for Ma
Z′ = 10 GeV, if we have εa = 0.03, the resonance region is not very

well-separated from background region. If εa = 0.5, although the signal is far from 1, but the

background also spreads more. The middle value εa = 0.05 is the optimal one.

broad signal region is not ideal. Hence, we expect our reach for Ma
Z′ 6= Mgen

Z′ to be more

limited that the previous case, even with the most optimal εa.

Table I recapitulates the value εa depending on whether or not plotting
∑

i log[L(pi, α
a)]

as a function of Ma
Z′ can tell us Mgen

Z .

Ma
Z′ = Mgen

Z′ εa = 0.05

using likelihood maximization

Ma
Z′ arbitrary εa > 0.05

likelihood maximization fails, because of small εgen

Table I. Determining αa = (Ma
Z′ , ε

a) using a combination of likelihood maximization and the L−1

distribution.

To quantify the reach of the strategy proposed here, let us define the following variables:

S = Luminosity× (σ(pp→ 4µ)SM+Z′ − σ(pp→ 4µ)SM)

B = Luminosity× (σ(pp→ 4µ)SM),

The cuts on L−1 are imposed such that we get the maximum S/
√
B with integrated lumi-

nosity of 300 fb−1. We also require S > 10 to avoid confusion of signal events for statistical
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Z′ = 10 GeV, and and εgen = 0.05

is shown, where we are assuming Ma
Z = 25 GeV, and we vary εa. Here, a relatively large εa is

needed to separate the signal from background. However, with increasing εa, we also get broader

peaks and therefore our sensitivity is not good as when Ma
Z′ = Mgen

Z′ . In this particular example

εa = 0.5 is the optimal choice.

fluctuations. We find that, by using the MEM approach we are able to get S/
√
B ≥ 3 up

to εgen ∼ 0.002 and MZ′ . 20 GeV, and up to εgen ∼ 0.005 for 20 GeV < Mgen
Z′ . 40 GeV,

provided that we can determine the true value of Mgen
Z′ by conventional MEM means. This

best case scenario is indicated with the dashed red line in Fig. 6. The dashed-dotted brown

line in Fig. 6 shows our reach assuming Ma
Z′ = 2 GeV while optimizing εa. Similarly, the

dashed brown line is for Ma
Z′ = 10 GeV, and the dotted green line is for Ma

Z′ = 25 GeV. As

expected, the lines with arbitrary Ma
Z′ touch the dashed red line for Ma

Z′ = Mgen
Z′ , and have

a relatively good sensitivity when Ma
Z′ ∼ Mgen

Z′ , but their sensitivity declines as Ma
Z′ moves

away from Mgen
Z′ . The current constraints from BaBar [75], CCFR [60, 61] experiments

and LHC-8 are also shown in Fig. 6 in black and purple solid lines, respectively. The ex-

pected exclusion bound (3 σ) from LHC-14, with 300 fb−1 integrated luminosity, using the

cut-and-count method that is explored in Ref. [66] is the dashed blue line in Fig. 6. With

the assumption that we know Ma
Z′ = Mgen

Z′ , our reach with MEM is about a factor of 10

greater than the canonical cut-and-count method, and even with Ma
Z′ fixed to an arbitrary

value, we have an improved sensitivity for some range of Mgen
Z′ compared with the cut-and-

count method. By trying several values of Ma
Z′ and choosing εa ∼ 0.05, one can achieve a

sensitivity near the red curve shown in Fig. 6 at the LHC.
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Figure 6. The bound on Lµ−Lτ from different experiments. The purple line is the LHC-8 bounds,

the black line is CCFR bound, and the solid gray line is the bound from the BaBar experiment [75].

The dashed blue line is the bound from LHC-14 with luminosity 300 fb−1 up to 3σ with cut and

count method [66]. The red dashed line in the figure shows the reach with MEM, but assuming

we know the mass of Z ′, and with εa = 0.05. This is the best sensitivity we could get using MEM.

The dotted green line is assuming Ma
Z′ = 25 GeV, the dashed brown line is Ma

Z′ = 10 GeV, the

dotted-dashed dark brown line is Ma
Z′ = 2 GeV while choosing the optimal value for εa. The MEM

bounds are also with luminosity 300 fb−1 up to 3σ.

B. Looking for Z ′ with mass range MZ′ < 2mµ in pp→ µ+µ− ET/

If MZ′ < 2mµ, the decay of on-shell Z ′ to muons is kinematically forbidden. In fact, for

this mass range, on-shell Lµ − Lτ Z
′ can only go to neutrinos. While we could hunt for

off-shell Z ′ in this mass range using the 4µ final state (as in the previous section), off-shell

Z ′ production is suppressed relative to on-shell production by two additional powers of ε.

Therefore, as proposed in [66], we will give up the benefits of a completely visible final

state in favor of larger rate and hunt for Z ′ in pp → µ+µ− /ET . The signal contribution to

pp → µ+µ− + /ET comes from the production of a pair of muons, one of which radiates an

on-shell Z ′ that decays to a pair of neutrinos 6: pp→ µ+µ−Z ′ → µ+µ−ν`ν̄` .

Due to the presence of missing energy, we can no longer impose an invariant mass cut on

6 The signal also captures the diagram where the neutrinos and muons are produced in opposite order: a

pair of neutrinos are first produced, and then one of the neutrinos emits a Z ′ which splits to two muons.

In this topology, the Z ′ must be off-shell, so the cross section is suppressed by more powers of ε and is,

therefore, negligible in the parameter space of interest.
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Figure 7. The main Feynman diagram that contributes to the signal. The sources of missing energy

are shown in red.

the final state. As a consequence, some new, important backgrounds emerge:

pp→ τ+τ−
∣∣
dimuon decay

,

pp→V V =

{
W+W−|dimuon decay ,

Z (Z/γ) ,

pp→µ+µ− + jets. (9)

The last background arises as a result jet mis-measurements and pileup, and so peaks at

low values of ET/ . The Feynman diagrams of the rest of the processes are shown in Fig. 8.

Di-tau production is the largest irreducible background, followed by diboson production.

Technically, we include both resonant and non-resonant contributions in this category, as

the latter can be non-negligible. Thus, the V V background is more accurately described

as (pp → µ+µ−ν`ν̄`)SM . Similarly, the ‘signal’ in this section is defined as pp → µ+µ−ν`ν̄`
including Z ′ as a possible intermediate state: (pp → µ+µ−ν`ν̄`)SM+Z′ . As in the previous

section, the signal is defined including SM contributions to incorporate interference.
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Figure 8. The main irreducible backgrounds to the dimuon+ MET process. The sources of missing

energy are shown in red. The left-most diagram is the τ+τ−|dimuon, which is the main background

to our signal. If the neutrinos are the same (e.g, ν` = νµ), the right three diagrams will interfere,

and thus, we must use (pp → µ+µ−ν`ν̄`)SM to describe them. The diagram with Z ′ (shown in

Fig. 7) may also interfere with the right three diagrams and thereby, the signal is described by

(pp→ µ+µ−ν`ν̄`)SM+Z′ .

To study this channel in more detail, we generated events for pp→ τ+τ− → µ+µ−+ /ET ,

(pp→ µ+µ−ν`ν̄`)SM , and (pp→ µ+µ−ν`ν̄`)SM+Z′ via the MC chain MadGraph5-aMC@NLO [70]

16



plus Pythia 6.4 [76], where the latter step is used here to decay the taus.7 Before any

MEM analyses, we require all events to pass the same dilepton trigger requirement used in

Sec. IV A (pT (µ1) > 17 GeV and pT (µ2) > 8 GeV, where µ1 is the leading muon and

µ2), veto any jets with pT > 20 GeV, η < 2.5, and impose a minimum missing energy cut of
/ET > 20 GeV. The last cut is imposed to suppress the pp→ µ+µ− + jets background.

After the initial set of cuts, muonic tau production pp → τ+τ− → µ+µ− /ET is our main

irreducible background. The cross section of the τ+τ−|dimuon background is roughly two

orders of magnitude larger than σ(pp → µ+µ−ν`ν̄`)SM . Therefore, if we want to have any

chance to be sensitive to a Z ′ signal, we need to first make the τ+τ−|dimuon background

more manageable. So, instead of trying to discriminate Z ′ signal against background, we

will focus on distinguishing τ+τ−|dimuon from other processes.

The most efficient way to eliminate the τ+τ−|dimuon background is by using a variable

that is most faithful to τ+τ−|dimuon background and thus localizes its simulated events to a

small region. Motivated by the benefits of the MEM discussed previously, we will use the

|Mττ |2, the squared matrix element of the muonic di-tau production, as the discriminating

variable. For each event we will calculate |Mττ |2 using the observed final state momenta,

then search for and select out regions (using MC) of |Mττ |2 that pp → τ+τ− does not

populate. In doing this, we are not following the traditional MEM in this section, because

we are not using |M|2 of the signal to distinguish that from other processes. Rather, we are

only using the |M|2 of (part of) the background, which makes our approach independent of

the signal (Z ′) model.

As a further deviation from the traditional MEM, we will weight each event by only one

squared matrix element, |Mττ |2, rather than two (a ‘signal’ hypothesis and a ‘background’

hypothesis). We may loose some discriminating power by not calculating the likelihood ratio

as described in section II, but our approach is more time efficient as we do not have to deal

with other squared matrix elements that contain missing energy.

Even after reducing our discriminant to the evaluation of a single |M|2 for each event,

evaluating |Mττ |2 is still a difficult task. In τ+τ−|dimuon production, there are four sources

of missing energy, which translates to 12 unknown momenta. Moreover, because we do not

know the energies of the initial state, we have in total 14 unknowns. Energy-momentum

conservation δ4(pinitial−pfinal) reduces the number of unknowns to 10, but 10 integrations for

each event is still extremely computationally cumbersome. Thankfully, the specific topology

of the τ+τ−|dimuon production can help us approximate the unknowns. The list of our

assumptions to approximate the unknowns are the followings:

I. We will assume that the τs were produced on-shell. We know that the invariant mass

of an on-shell tau decay products is the tau mass. Therefore, we can determine two

unknowns from this assumptions since there are two τs in each process.

II. Instead of calculating τ → ντ ν̄µµ, we replace the two neutrinos with one massive

scalar8 neutrino (νs for the notation), and we calculate τ → µ νs.

7 We restricted the possible τ decays to leptonic channels only within Pythia 6.4 to make event generation

more efficient.
8 Technically we should also consider vector massive neutrinos, though we do not expect this choice affects

our results. For mνs = 0 the vector results are identical to the scalar case, while there is a small shift in

the matrix element if mνs 6= 0. 17



Three body decay has different kinematic distributions compared to two body decays,

but in this approach we can reduce our number of unknowns by 4, leaving 4 remaining.

Because we are no longer dealing with the actual |M|2 and we are calculating pp →
τ+τ− → µ+µ−νs ν̄s, we refer to the matrix element we calculate as the “modified”

|Mττ |2, or |Mmod
ττ |2.

III. The tau pair can be produced from either a photon or a Z boson. However, as a result

of our basic cuts (di-lepton trigger and /ET > 20 GeV), we can be confident that the

production of τ+τ− is dominated by Z exchange. Therefore, we will assume that the

taus are produced from an on-shell Z, and so
√
ŝ = MZ . This assumption eliminates

another unknown.

IV. Based on the previous assumptions, we expect the tau decay products to be nearly

collinear. Consequently, the η and φ of the νsi should be close to η and φ of the

corresponding µi, with the subscript i defined as the following: τi → µiνsi. For our

analysis, we assume η(µi) = η(νsi), and ∆φ(µi, νsi) = εiφ where εφ � 1. Therefore,

we only work to first order in εφ. These assumptions specify two more unknowns and

results in the relationship pτiT = pνsiT + pµiT .

V. We can also assume pτ1T = pτ2T . This is the same as assuming there is no initial or final

state radiation, which is reasonable given that
√
ŝ . MZ , and we have vetoed jets in

our events. This assumption leads to specification of one more unknown.

Making the above approximations 9 , we can determine all of the unknown kinematic

parameters and therefore calculate |Mmod
ττ |2 with no integrations, significantly reducing the

time and computational power needed to do the analysis. The analytical expression of

|Mmod
ττ |2 is given in Appendix A.

We emphasize that these assumptions are only reasonable in the context of the τ+τ−|dimuon

production. For the rest of the processes ((pp → µ+µ−ν`ν̄`)SM background and (pp →
µ+µ−ν`ν̄`)SM+Z′ signal), the approximations I-V are not faithful to the kinematics and we

might get unphysical results, i.e. |Mmod
ττ |2 < 0. To get an idea of how negative matrix

element squared can arise, let us look at the conclusion of assumption IV: pτT = pνsiT + pµiT ,

which means pνsT is calculated based on pτT . We can determine pτT using conservation of

energy and momentum and a combination of assumptions. We get

(pτT )approx =

√
M2

Z

2(1 + cosh(∆η(µ+, µ−)))
−m2

τ . (10)

Consequently, the pT of the vector sum of the two neutrinos coming from a tau can be

deduced from these approximations: pνsiT = (pτT )approx − pµiT . These approximations were

reasonable in the framework of τ+τ−|dimuon. However, for (pp → µ+µ−ν`ν̄`) we can have

(pτT )approx < pµiT and therefore a negative (unphysical) magnitude for the transverse trans-

verse momentum, which may lead to negative |Mmod
ττ |2. The weights (area normalized)

9 Although we have defined “modified” specifically for the second approximation, we generalize it definition

to encompass all of the aforementioned approximations.
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of |Mmod
ττ |2 for MC generaed (pp → τ+τ− → µ+µ− /ET ), (pp → µ+µ−ν`ν̄`)SM and (pp →

µ+µ−ν`ν̄`)SM+Z′ are shown below in Fig. 9. As expected, the τ+τ−|dimuon distribution is more

localized and all of its events have |Mmod
ττ |2 > 0. Therefore, if we restrict ourselves to events

with |Mmod
ττ |2 < 0, we can safely assume that ττ background is negligible. We have generated

10 million τ+τ−|dimuon events, and 1 million events for each of the (pp→ µ+µ−ν`ν̄`)SM and

(pp→ µ+µ−ν`ν̄`)SM+Z′ processes, to make sure we have captured the tail of the τ+τ−|dimuon

distribution correctly.
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Figure 9. The weights |Mmod
ττ |2 for various MC sample events. The dotted purple line shows

the weights for MC generated τ+τ−|dimuon (10 million generated events). The solid red line

shows the MC (pp → µ+µ−ν`ν̄`) background (1 million events), and the dashed blue line is MC

(pp→ µ+µ−ν`ν̄`) including Z ′ (1 million events). Because the assumptions were chosen based on

τ+τ−|dimuon topology and were not reasonable in other processes, we have |Mmod
ττ |2 < 0 for part

of the distribution of other processes.

Inspecting Fig. 9, we can see that the signal (pp → µ+µ−ν`ν̄`)SM+Z′ and background

(pp → µ+µ−ν`ν̄`)SM have slightly different weights according to |Mmod
ττ |2. This is not com-

pletely surprising because there are contributions from more diagrams in the signal events.

The difference is most significant at large, negative |Mmod
ττ |2; in particular, (pp→ µ+µ−ν`ν̄`)

including Z ′ intermediate states populates |Mmod
ττ |2 < −4 more than when the Z ′ is excluded.

This |Mmod
ττ |2 region is shown in greater detail in Figure 10.

To comprehend why (pp → µ+µ−ν`ν̄`)SM+Z′ prefers to be in the region |Mmod
ττ |2 < −4,

let us look once again at squared matrix element of the signal

|Msignal|2 = |MSM +MZ′|2 = |MZ′|2 + 2|M∗
SMMZ′ |+ |MSM |2

⊃ |MZ′, on-shell|2 + 2|M∗
WWMZ′ |,
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Figure 10. The weights |Mmod
ττ |2 for (pp→ µ+µ−ν`ν̄`) background (SM only, solid line) and signal

(SM + Z ′, dashed line) in the negative |Mmod
ττ |2 region.

where MWW refers to the portion of the SM matrix element that involves the WW contri-

bution. Obviously, the departure of the signal from the SM background is most ideal for

discrimination when Z ′ is on-shell10. That is because 1) the |M|2 is suppressed by only two

powers of ε – only one powers of ε at the production vertex of Z ′ (amplitude level) and no ε

suppression at the decay vertex, and 2) the topology of process with an on-shell Z ′ mediator

is different from the SM background, and so with some careful cuts we can make the SM

background small. The next most important contribution of the signal is in the Z ′ − SM
interference, also suppressed by only two powers of ε. The interference term is significant

when either the SM piece is sizable or when the portion with Z ′ contribution is big. Each

option requires different kinematics; large Z ′ contribution means the invariant mass of the

neutrinos is small (or equivalently angular separation between the neutrinos is small), while

large contribution of the SM could be when some of the intermediate states are produced on

resonance. The only SM background that can have on-shell resonances and yet have other

kinematics consistent with a (nearly) on-shell Z ′ is the t-channel W+W− background. We

suspect the excess in the signal in the region of |Mmod
ττ |2 < −4 is due to the interference of

Z ′ piece with the WW contribution.

To check this intuition, we study the distributions of the events in the invariant mass

of a muon and the associated neutrino (i.e. Mν` µ+ or Mν̄` µ−), and the separation between

10 The greatest contribution to the signal (only considering the Z ′ contribution) is when on-shell Z ′ comes

from an on-shell Z. On the other hand, because both τ+τ−|dimuon background and signal have
√
ŝ .MZ ,

a significant fraction of the signal (only the Z ′ contribution) removed when removing ττ background.

This is inevitable, and the same challenge was faced with the cut and count method described in [66],

when MT (µµ, /ET ) < 100 GeV was imposed to remove τ+τ−|dimuon. Therefore, it is really important to

use the interference to look for our signal. 20



the two neutrinos (∆R(ν`, ν̄`)) after requiring |Mmod
ττ |2 < −4 in Fig. 11. These are not

kinematic variables that we could actually measure, as neutrinos are not observed at the

detector. However, studying them can help us understand the behavior of the simulated

events for different regions of |Mmod
ττ |2.
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Figure 11. The left plot represents the invariant mass of a muon and the associated neutrino Mνµ,

and the right plot is the separation between the two neutrinos ∆R(ν`, ν̄`). These plots show the

distribution of the events after requiring |Mmod
ττ |2 < −4, and demonstrate the signal events belong

to on-shell W production with Z ′ (near) on-shell as well.

We can see from Fig. 11 that in the region of |Mmod
ττ |2 < −4, all of the signal events

have Mµν ∼MW , and have a small separation between the two neutrinos. This is perfectly

consistent with what we expected from the interference term; the effect of the interference is

enhanced when W s are near resonance, and other kinematic distributions are more consistent

with Z ′ signal. Thereby, we can be confident that the excess at |Mmod
ττ |2 < −4 is due to the

interference between the signal and the W+W− background.

With the basic cuts, /ET > 20 GeV, and modified |Mττ |2 < −4, we get the cross section

of the background σ(pp → µ+µ−ν`ν̄`)SM of 80 ± 3 ab, while σ(pp → µ+µ−ν`ν̄`)SM+Z′ is

133 ± 4 ab. The uncertainties on the cross sections are derived based on the number of

events in our simulation that survive the imposed cuts. Let us define:

S ≡ Luminosity×
(
σ(pp→ µ+µ−ν`ν̄`)SM+Z′ − σ(pp→ µ+µ−ν`ν̄`)SM

)

B ≡ Luminosity×
(
σ(pp→ µ+µ−ν`ν̄`)SM + σ(pp→ τ+τ− → µ+µ−νµν̄µντ ν̄τ )SM

)
.

If we use the significance S/
√
B as a test statistic and assume that pp→ µ+µ−+jets (which

was our reducible background) is zero 11 after imposing the ET/ cut and |Mmod
ττ |2 < −4, we

find that after 300 fb−1 luminosity, we get S/
√
B ≥ 3.

11 This assumption is backed up by a MC study of 500K pp → µ+µ− events of generated at the detector

level (PGS [77]) with the default smearing algorithm. Requiring events pass the dilepton trigger and

contain no jets with pjT > 20 GeV and photons with pγT > 10 GeV, the cross section was 111 pb. After

imposing /ET = pT (dimuon) > 20 GeV, the cross section drops to 0.22 pb. With the further requirement

of |Mmod
ττ |2 < −4, we find the pp→ µ+µ− background can be removed completely.
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Our reach in the region of the parameter space using MEM in contrast with the cut-and-

count method and the (g − 2)µ band is shown in Fig. 12. The MEM and cut-and-count

method bounds are based on the benchmark point of Mgen
Z′ = 0.05 GeV and εgen = 0.001.

We see that with MEM, our sensitivity improves by a factor of 5-10 compared to the cut-

and-count method, and we can explore a greater region of parameter space including the

(g − 2)µ band.

-1
10 1 10

-310

-210

-110

    MEM(g � 2)µ

MZ0(GeV )

✏

cut & count

Figure 12. The new bounds according to our study using MEM compared with the cut and count

method [66]. The (g−2)µ band is also shown in brown. For MZ′ > 2mµ, the MEM bound depends

on whether we know MZ′ or not. The red line shown here is our best bound. For MZ′ < 2mµ,

our analysis is independent of MZ′ . The bounds from MEM and cut and count method are with

luminosity of 300 fb−1 and are up to 3 σ.

V. DISCUSSSION

In this paper, we applied the Matrix Element method (MEM) to the Lµ−Lτ model and

concluded that our sensitivity improves by up to an order of magnitude compared with the

cut-and-count method. The MEM uses the matrix element of a process to distinguish signal

from background, and it has proven to be a powerful tool in several Standard Model (SM)

measurements (e.g, top quark mass) and searches (e.g, Higgs to four lepton and electroweak

single top production). However, it has not been extensively applied to beyond the SM

(BSM) searches. The two main hurdles are that the MEM needs the physical parameters

of the model and the four momenta of all initial and final states as inputs. In the quest of

finding BSM signatures, we do not know the value of the new model parameters and the

processes often contain unknown momenta in the form of missing energy.

To investigate how we can combat these difficulties, as a first small step, we applied
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the MEM to the Lµ − Lτ model. This model, being one of the simplest extensions of the

SM, is already very well motivated because it can explain some of the current observational

anomalies in the (g − 2)µ and B decays. In this model, there is a Z ′ that couples to only

second and third generation leptons at tree level. As a result, any tree-level process at the

LHC involving Z ′ has to include four leptons of second or third generation. We considered

two cases, 4µ and 2µ + /ET . Both of these processes have a large number of kinematic

observables, making them ideal test grounds for the MEM approach. The new parameters

introduced by the Lµ − Lτ model are the Z ′ mass MZ′ and coupling (parameterized by ε:

gZ′ = εg′).

Although the favorite mass region to explain the B decay anomalies is O(TeV), in this

paper, we only focused on light Z ′: MZ′ < MZ . The extension of our analysis to MZ′ ∼
O(TeV) is non-trivial and so we leave it to future works. In the mass range 2mµ < MZ′ <

MZ , we looked at the process pp→ Z → 4µ. This channel is clean and well-understood, and

the presence of Z → 4e and Z → 2e 2µ control samples can be used to mitigate systematic

uncertainties. Therefore, we can be sensitive to percent-level deviations. As the matrix

element of the signal depends on MZ′ and ε, we first discussed how we can find values of

these parameters that best separate signal from background. The optimal value of MZ′ can

be found by maximizing likelihood ratio with respect to MZ′ , depending on the strength

of the Z ′ coupling. However, the likelihood ratio function increases monotonically as a

function of ε regardless of whether events belong to the signal sample or the background

sample. Hence, we had to deviate from the conventional MEM and look for the most optimal

analysis value of ε by studying the distribution of the signal and background MC generated

events as a function of likelihood ratio for various fixed values of ε. In the best case scenario,

Lµ − Lτ model can be explored up to 3σ for ε & 0.002 for 2mµ < MZ′ < 20 GeV and

ε & 0.005 for 20 < MZ′ < 40 GeV with luminosity of 300 fb−1 at the LHC, which is about

an order of magnitude improvement compared with the cut-and-count method.

For lighter Z ′, we studied the process pp → 2µ/ET . Due to the presence of missing

energy, this channel is not as clean as the all muonic final state and is afflicted by several

backgrounds. One significant background is pp → τ+τ− with the taus decaying to muons,

which has a cross section that is orders of magnitude greater than signal. To be sensitive to

the signal, we first work towards eliminating the τ+τ−|dimuon. We use the squared matrix

element of τ+τ−|dimuon for this task. This is a departure from the canonical MEM, as we

weight the events by the squared matrix element of only one process, whereas in MEM we

usually weight the events by the ratio of the squared matrix element of the signal processes

over the background ones. This alternative approach has two main benefits: 1) given that we

have missing energy in the process, calculating the squared matrix elements is challenging;

Hence, focusing our attention to only one can save us time and computational power. 2)

Furthermore, this approach is independent of the model parameters and can be used for any

BSM physics with this signature at the LHC.

Due to the presence of 4 sources of missing energy in the τ+τ−|dimuon process, we have

10 unconstrained momenta in this channel. Traditionally, one would proceed by integrating

over the unknown momenta. In this paper, we instead showed how the unknown momenta

could be estimated by exploiting the topology of the τ+τ−|dimuon. Without the need for any
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integrations, we calculate the (modified) squared matrix element of τ+τ−|dimuon (|Mmod
ττ |2)

and use the resulting weight as a discriminant. With a judicious cut on |Mmod
ττ |2, we find

the τ+τ−|dimuon background can be completely eliminated. We then observe that the signal

reacts differently to the |Mmod
ττ |2 compared to other (non-tau) SM backgrounds, and trace

the difference to interference between Z ′ contributions to the amplitude and contributions

containing two on-shell W ’s. As a result, we can differentiate the signal from all SM back-

grounds using |Mmod
ττ |2 alone. With this method, we find we can reach to 3σ up to ε ∼ 0.001

for MZ′ < 2mµ assuming an integrated luminosity of 300 fb−1, covering the (g − 2)µ band.

This result may be improved if we relax some of the kinematic assumptions and instead

integrate over a subset of the unconstrained momentum, something which may be worth

investigating in the future.

Because we did not use the squared matrix element of the signal in our analysis of pp→
2µ/ET , our procedure can be applied to any BSM searches with leptons and missing energy in

the final states. Scenarios with leptons and missing energy are particularly well-motivated

in many dark matter and dark photon searches at the LHC [78–86]. More generally, we

argue that processes with ET/ that have a specific topology can benefit from MEM, while not

suffering from its computational challenges.

In conclusion, in this paper we provide a working example where, after approximating

unknown momenta using the topology of the process, the MEM yields a superior sensitivity

compared to the cut-and-count method without having to integrate. Consequently, even if

applying the canonical MEM to BSM searches has obstacles and appears to be computation-

ally challenging, we may be able to modify MEM with reasonable assumptions to ease the

computational difficulty and yet gain a better sensitivity than the cut-and-count method.
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Appendix A: The Modified Squared Matrix Element of τ+τ−|dimuon Process (|Mmod
ττ |2)

In this appendix, we detail the calculation of |Mmod
ττ |2. The first step is to define the

four-vector of νs (the vector sum of the two neutrinos coming from each tau) using the

momenta of muons in the framework of assumptions discussed in Section IV B, keeping in

mind the νs are not massless:

pνsi =

(√
(pνsiT )2 +m2

νsi
cosh ηνsi , p

νsi
T cosφνsi , p

νsi
T sinφνsi ,

√
(pνsiT )2 +m2

νsi
sinh ηνsi

)
,
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where the subscript i is defined such that τi → µiνsi. In the following, we will define

pνsiT , mνsi , ηνsi , and φνsi in terms of known or measurable parameters:

pνsiT =

√
M2

Z

2(1 + cosh(∆η(µ+, µ−)))
−m2

τ − pµiT

mνsi =

√
m2
τ + 2(pµiT )2 − 2

√
(pµiT )2(m2

τ + (pµiT )2 + (pνsiT )2)

ηνsi = ηµi

φνsi = φµi + εiφ, where εiφ � 1,

where we have ignored the muon mass (mµ = 0), and εφs are calculated from the conservation

of momenta in the transverse plane.

Furthermore, one of the assumptions (III) in Section IV B is that the taus are produced

from an on-shell Z. Therefore, in calculating |Mmod
ττ |2, we will also assume the process is

Z → τ+τ− → µ1µ2 νs1νs2, where Z is simply the vector sum of the final state products,

shown by pZ . The modified squared matrix element of τ+τ−|dimuon is

|Mmod
ττ |2 =

m2
τ

(m2
τ −m2

νs1
)2(m2

τ −m2
νs2

)2

(
8mνs1mνs2(p

Z · pµ1)(pZ · pµ2)
m2
τM

2
Z

+
4mνs1mνs2(p

µ1 · pµ2)
m2
τ

− 8mνs1 [(p
Z · pµ1)(pZ · pµ2) + 2(pZ · pνs1)(pZ · pµ2)]

mτM2
Z

− 2mνs1 [(p
µ1 · pµ2) + 2(pνs1 · pµ2)]

mτ

− 4mνs2 [(p
Z · pµ1)(pZ · pµ2) + 2(pZ · pµ1)(pZ · pνs2)]

mτM2
Z

− 2mνs2 [(p
µ1 · pµ2) + 2(pµ1 · pνs2)]

mτ

+
1

M2
Z

[4(pZ · pµ1)(pZ · pνs2) + 2(pZ · pµ1)(pZ · pµ2) + 8(pZ · pνs1)(pZ · pνs2)]

4

M2
Z

(pZ · pνs1)(pZ · pµ2) + 2(pµ1 · pνs2) + (pµ1 · pµ2) + 4(pνs1 · pνs2) + 2(pνs1 · pµ2)
)

The numerical coefficient in front of |Mmod
ττ |2 is irrelevant and thus can be ignored. This

is because it does not matter whether the plots are with respect to |Mmod
ττ |2 or 16π|Mmod

ττ |2.
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