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Heavy vector-like quarks (VLQs) appear in many models of beyond the Standard Model physics.
Direct experimental searches require these new quarks to be heavy, & 800−1000 GeV. We perform a
global fit of the parameters of simple VLQ models in minimal representations of SU(2)L to precision
data and Higgs rates. An interesting connection between anomalous Zbb interactions and Higgs
physics in VLQmodels is discussed. Finally, we present our analysis in an effective field theory (EFT)
framework and show that the parameters of VLQ models are already highly constrained. Exact and
approximate analytical formulas for the S and T parameters in the VLQ models we consider are
posted at https://quark.phy.bnl.gov/Digital_Data_Archive/dawson/vlq_17/ as Mathematica
files.
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I. INTRODUCTION

The Standard Model (SM) has been remarkably successful at explaining both precision measurements and LHC data
and so the possibilities for heavy, as yet unobserved particles are highly restricted by the experimental results. Here, we
focus on new heavy quarks and their impact on electroweak scale physics. Heavy SM-like chiral fermions are excluded
by the measured Higgs production rates [1, 2]. Therefore, we consider heavy vector-like quarks (VLQs), which are
typically compatible with Higgs measurements. Motivated by the excellent agreement of Higgs measurements with SM
predictions [3], we assume that the observed Higgs boson is part of an SU(2)L doublet, H , and consider VLQs which
can couple to H . This class of VLQs occurs in many composite Higgs models [4–9] and little Higgs models [10–12] and
hence is well motivated phenomenologically. The phenomenology of VLQs has been considered in some detail in the
literature [13–24] and direct experimental searches [25–38] require them to be heavy, with M & O(800− 1000) GeV.
We update previous fits [18–20] to the parameters of VLQ models by performing a joint fit to the oblique parameters

and asymmetries in the b quark sector. The study is extended to include restrictions from Higgs coupling measurements
with interesting results found in models containing a B VLQ.
We briefly review the set-up of the VLQ models that we study in Section II. Section III reviews the contributions

of VLQs to the oblique parameters and the Zbb coupling. We find that in some regions of parameter space the
leading contributions to the oblique parameters can be quite small even with significant mass splittings between the
VLQ multiplet members, due to numerical cancellations. We discuss the effects of these regions on the global fits
to VLQ parameters. Section IV contains numerical fits and we present some conclusions in Section V. Appendix A
contains a pedagogical description of the triplet models, which should be useful for model builders. The connection
between our results in the full VLQ theories and in an EFT approach for heavy VLQ masses is given in Appendix B.
Exact and approximate analytical formulas for the oblique parameters in the various models can be found at https:
//quark.phy.bnl.gov/Digital_Data_Archive/dawson/vlq_17/.

II. VECTOR-LIKE QUARK BASICS

In this section, we introduce our notation for VLQs. We consider the case where the VLQs interact only with the
third generation quarks, since mixing with the first two generations is highly restricted by kaon and other low energy
physics measurements [16]. We indicate the SM weak eigenstate quarks as,

ψ0
L =

(

t0L
b0L

)

, t0R, b
0
R , (2.1)

and the Higgs doublet as,

H =

(

φ+

φ0

)

, (2.2)

with φ0 = v+h√
2
. The SM Yukawa couplings are,

−LY,SM = λtψ
0

LH̃t
0
R + λbψ

0

LHb
0
R + h.c. , (2.3)

where H̃ = iσ2H
∗.

The models we consider have vector-like quarks in the SU(2)L representations,

Singlets : T 0
s , B0

s ;

Doublets : ψ0
XT = (X0

d , T
0
d ),

ψ0
TB = (T 0

d , B
0
d),

ψ0
BY = (B0

d, Y
0
d ) ;

Triplets : ρ0XTB = (X0
t , T

0
t , B

0
t ),

ρ0TBY = (T 0
t , B

0
t , Y

0
t ) . (2.4)

This is a complete set of VLQ representations that have renormalizable couplings to the SM Higgs doublet. The
quarks have electric charge QT = 2

3 , QB = − 1
3 , QX = 5

3 , and QY = − 4
3 . If there is only one VLQ representation,

it is simple to write the most general CP conserving couplings between the SM fermions, the VLQs, and the Higgs
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boson,1

Singlets : −LTs
= λ1ψ

0

LH̃T
0
(s),R +MTs

T
0

(s),LT
0
(s),R

+ h.c.

−LBs
= λ2ψ

0

LHB
0
(s),R +MBs

B
0

(s),LB
0
(s),R + h.c.

Doublets : −LXT = λ3ψ
0

(XT ),LHt
0
R +MXTψ

0

(XT ),Lψ
0
(XT ),R + h.c.

−LTB = λ4ψ
0

(TB),LH̃t
0
R + λ5ψ

0

(TB),LHb
0
R +MTBψ

0

(TB),Lψ
0
(TB),R + h.c.

−LBY = λ6ψ
0

(BY ),LH̃b
0
R +MBY ψ

0

(BY ),Lψ
0
(BY ),R + h.c.

Triplets : −LXTB = λ7ψ̄
0
Lσ

aρ0,aXTBH̃ +MXTB ρ̄
0
XTBρ

0
XTB + h.c.

−LTBY = λ8ψ̄Lσ
aρ0,aTBYH +MTBY ρ̄

0
TBY ρ

0
TBY + h.c. (2.5)

Note that we do not include mixing between SM fermions and VLQs with identical quantum numbers since these terms
can be rotated away by redefinitions of the fields. The singlet and doublet models have been extensively discussed in
the literature [13–21], and we include a useful discussion of the details of the triplet model in Appendix A.
The gauge eigenstate fields can be written in general as,

T 0
L,R =

(

t0L,R
T 0
L,R

)

B0
L,R =

(

b0L,R
B0
L,R

)

(2.6)

where T 0 = T 0
s , T

0
d or T 0

t and B0 = B0
s , B

0
d or B0

t (the X and Y fields do not mix with the other fermions and are
therefore also mass eigenstates). The terms contributing to the mass matrices are found from Eq. 2.5 and we write
them as,

−LM = T 0

LM
tT 0
R + B0

LM
bB0

R +MY Y t,LYt,R +MXXt,LXt,R . (2.7)

We denote the mass eigenstate fields as (t, T ) and (b, B) and they are found through bi-unitary transformations,

TL,R =

(

tL,R
TL,R

)

= V tL,R

(

t0L,R
T 0
L,R

)

BL,R =

(

bL,R
BL,R

)

= V bL,R

(

b0L,R
B0
L,R

)

, (2.8)

where

V t,bL,R =

(

cos θt,bL,R − sin θt,bL,R
sin θt,bL,R cos θt,bL,R

)

, (2.9)

For simplicity of notation we abbreviate cos θtL ≡ ctL, etc. Through these rotations we obtain the diagonal mass
matrices

M t
diag = V tLM

t(V tR)
† =

(

mt 0
0 MT

)

, M b
diag = V bLM

b(V bR)
† =

(

mb 0
0 MB

)

. (2.10)

There are relationships between the angles and mass eigenstates that depend on the representation (see for exam-

1 This can be straightforwardly generalized to models with more than one VLQ representation [20, 21, 39].
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Model AL
tb AL

tB AL
TB AL

Tb AL
XT AL

Xt AL
BY AL

bY

Ts ctL stL
Bs cbL sbL
ψXT ctL stL ctL −stL
ψTB ctLc

b
L + stLs

b
L ctLs

b
L − stLc

b
L ctLc

b
L + stLs

b
L stLc

b
L − ctLs

b
L

ψBY cbL sbL cbL −sbL
ψXTB ctLc

b
L +

√
2stLs

b
L ctLs

b
L −

√
2stLc

b
L stLs

b
L +

√
2ctLc

b
L stLc

b
L −

√
2ctLs

b
L

√
2ctL −

√
2stL

ψTBY ctLc
b
L +

√
2stLs

b
L ctLs

b
L −

√
2stLc

b
L stLs

b
L +

√
2ctLc

b
L stLc

b
L −

√
2ctLs

b
L

√
2cbL −

√
2sbL

TABLE I: Left-handed fermion –W couplings as defined in Eq. (2.14). We assume all couplings are real, and neglect the SM
CKM angles.

ple [19]),

Doublets (XT ) : M2
X =M2

T (c
t
R)

2 +m2
t (s

t
R)

2

(TB) : M2
T (c

t
R)

2 +m2
t (s

t
R)

2 =M2
B(c

b
R)

2 +m2
b(s

b
R)

2

(BY ) : M2
Y =M2

B(c
b
R)

2 +m2
b(s

b
R)

2

Triplets (XTB) : M2
X =M2

T (c
t
L)

2 +m2
t (s

t
L)

2

=M2
B(c

b
L)

2 +m2
b(s

b
L)

2

sin(2θbL) =
√
2
M2
T −m2

t

(M2
B −m2

b)
sin(2θtL)

(TBY ) : M2
Y =M2

B(c
b
L)

2 +m2
b(s

b
L)

2

=M2
T (c

t
L)

2 +m2
t (s

t
L)

2

sin(2θbL) =
M2
T −m2

t√
2(M2

B −m2
b)

sin(2θtL) (2.11)

and

MT,B tan θt,bR = mt,b tan θ
t,b
L singlets, triplets

MT,B tan θt,bL = mt,b tan θ
t,b
R doublets . (2.12)

Examples of the derivation of these relations are given in Appendix A for the case of vector triplets.
Except for the (TB) doublet model, there are sufficient relationships that the results can always be expressed in

terms of two parameters. For our numerical fits, we take as input parameters,

B singlet : sbL,MB

T singlet : stL,MT

(XT ) doublet : stR,MT

(TB) doublet : stR, s
b
R,MT

(BY ) doublet : sbR,MB

(XTB) triplet : stL,MT

(TBY ) triplet : stL,MT . (2.13)

The couplings to the W boson are,

LW =
g√
2

(

qiLγµA
L
ijq

j
L + qiRγµA

R
ijq

j
R

)

W+
µ + h.c. (2.14)

where qi, qj are any two quarks in the model for which Q(qi)−Q(qj) = 1. The values of AL,Rij in the VLQ models we
consider are reported in Tabs. I and II.
The neutral current couplings to the Z boson are also modified. The couplings for fi,j = t, b, T, B,X, Y are,

LZ =
g

2cW
Zµf iγ

µ

[

XL
ijPL +XR

ijPR − 2Qiδijs
2
W

]

fj , (2.15)
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Model AR
tb AR

tB AR
TB AR

Tb AR
XT AR

Xt AR
BY AR

bY

Ts

Bs

ψXT ctR −stL
ψTB stRs

b
R −stRcbR ctRc

b
R −ctRsbR

ψBY cbR −sbR
ψXTB

√
2stRs

b
R −

√
2stRc

b
R

√
2ctRc

b
R −

√
2ctRs

b
R

√
2ctR −

√
2stR

ψTBY

√
2stRs

b
R −

√
2stRc

b
R

√
2ctRc

b
R −

√
2ctRs

b
R

√
2cbR −

√
2sbR

TABLE II: Right-handed fermion –W couplings as defined in Eq. (2.14). We assume all couplings are real.

where sW = sin θW is the weak mixing angle. The SM couplings are normalized such that XL
ij = δij for i = t and

XL
ij = −δij for i = b , with all other X equal to 0. For multiplets containing a heavy charge − 1

3 quark with isospin

IB3 that mixes with the SM-like b quark or a heavy charge 2
3 quark with isospin IT3 that mixes with the SM-like t

quark, the diagonal fermion couplings to the Z are2,

XL
ii = Ii3(1− δiT )(1− δiB) + δXL

ii XR
ii = δXR

ii , (2.16)

where the I3i term in the left-handed couplings survive only for the top and bottom quarks, and

δXL
bb = (sbL)

2(IB3 + 1) δXR
bb = (sbR)

2IB3
δXL

tt = (stL)
2(IT3 − 1) δXR

tt = (stR)
2IT3

δXL
BB = −1 + (cbL)

2(IB3 + 1) δXR
BB = (cbR)

2IB3
δXL

TT = 1 + (ctL)
2(IT3 − 1) δXR

TT = (ctR)
2IT3

δXL
XX = δXR

XX = IX3 δXL
Y Y = δXR

Y Y = IY3 .

(2.17)

The off-diagonal couplings to the Z boson are,

XL
ij = δXL

ij(1− δij) XR
ij = δXR

ij (1− δij) , (2.18)

where

δXL
bB = −sbLcbL(IB3 + 1) δXR

bB = −sbRcbRIB3
δXL

tT = −stLctL(IT3 − 1) δXR
tT = −stRctRIT3 . (2.19)

Finally, the couplings to the Higgs boson can be parameterized as,

L = −h
v
f
i

Lcijf
j
R + h.c. . (2.20)

The flavor non-diagonal fermion-Higgs couplings are important for double Higgs production [8, 40] and can be found
in Ref. [19]. For models with a singlet or triplet VLQ,

cij = VLFV †
LMdiag (2.21)

and for models with a doublet VLQ,

cij =MdiagVRFV †
R, (2.22)

where

F ≡
(

1 0
0 0

)

. (2.23)

These formulae hold for both the charge 2
3 and charge − 1

3 sectors. The X and Y fermions do not couple to the Higgs.
The diagonal Higgs couplings are given in Table III.

2 I3 = (2, 0,−2) for triplets, (1,−1) for doublets, 0 for singlets.



6

Model cbb cBB ctt cTT

Ts mb - mt(c
t
L)

2 MT (s
t
L)

2

Bs mb(c
b
L)

2 MB(sbL)
2 mt -

ψXT mb - mt(c
t
R)

2 MT (s
t
R)

2

ψTB mb(c
b
R)

2 MB(sbR)
2 mt(c

t
R)

2 MT (s
t
R)

2

ψBY mb(c
b
R)

2 MB(sbR)
2 mt -

ψXTB mb(c
b
L)

2 MB(sbL)
2 mt(c

t
L)

2 MT (s
t
L)

2

ψTBY mb(c
b
L)

2 MB(sbL)
2 mt(c

t
L)

2 MT (s
t
L)

2

TABLE III: Diagonal Higgs couplings to fermions.

III. VLQ CONTRIBUTIONS TO PRECISION MEASUREMENTS

Electroweak precision data place strong restrictions on the parameters of models with VLQs. In this section, we
review the contributions to the oblique parameters and the Zbb couplings in the VLQ models introduced in the
previous section.

A. Oblique Parameters

The general expression for the contribution to the T parameter from fermions is [4, 13, 41]

T =
Nc

16πs2W c
2
W

∑

i.j

{(

| ALij |2 + | ARij |2
)

θ+(yi, yj) + 2Re

(

ALijA
R∗
ij

)

θ−(yi, yj)

−1

2

[(

| XL
ij |2 + | XR

ij |2
)

θ+(yi, yj) + 2Re

(

XL
ijX

R∗
ij

)

θ−(yi, yj)

]}

, (3.1)

where Nc = 3, yi ≡ M2
Fi

M2
Z

, MFi
are the fermion masses, and AL,Rij , XL,R

ij are defined in Eqs. 2.14 and 2.15 respectively.

For the input parameters we use [42] mt = 173.5 GeV, mb = 4.2 GeV, mZ = 91.1876 GeV,mW = 80.385 GeV and
define the weak angle through cW = mW

mZ
.

The functions θ±(yi, yj) are,

θ+(y1, y2) = y1 + y2 −
2y1y2
y1 − y2

log

(

y1
y2

)

(3.2)

θ−(y1, y2) = 2
√
y1y2

[

y1 + y2
y1 − y2

ln

(

y1
y2

)

− 2

]

. (3.3)

We note that θ+(y, y) = θ−(y, y) = 0. When y1 >> y2, θ+(y1, y2)
y1>>y2−−−−−→ y1 and θ−(y1, y2)

y1>>y2−−−−−→ 0. We will make
use of these properties as we compute all electroweak parameters in the limit mb << mt.
As customary, we subtract the SM top-bottom contribution,

∆T = T − TSM (3.4)

where

TSM =
Nc

16πs2W c
2
W

θ+(yt, yb) =
Nc

16πs2W

m2
t

m2
W

. (3.5)

For the top and bottom singlet partner models, the exact results are simple [13, 18]

T singlet : ∆T Ts =
Ncm

2
t

16πs2WM
2
W

(stL)
2

[

−
(

1 + (ctL)
2
)

+ 2(ctL)
2 rT
rT − 1

log(rT ) + (stL)
2rT

]

(3.6)

B singlet : ∆TBs =
Ncm

2
t

16πs2WM
2
W

(sbL)
2rB

[

2

1− rB
log(rB) + (sbL)

2

]

, (3.7)
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where rF ≡ M2
F

m2
t

. The contribution to the T parameter in the (BY ) doublet model also has a simple expression:

(BY ) doublet : ∆TBY = − Ncm
2
t

128πs2WM
2
W

rB

{

32
(cbR)

2

sbR
log(cbR)

[

(cbR)
2 + 1

]

+8sbR
[

4(cbR)
2 − (sbR)

4
]

}

. (3.8)

In the large VLQ mass and small mixing angle limits, we obtain simple approximate expressions for the T parameter
for all the VLQ representations3,4

T singlet : ∆T Ts ∼ Ncm
2
t

8πs2WM
2
W

(stL)
2 [log(rT )− 1] +O

(

(stL)
4,

1

rT

)

B singlet : ∆TBs ∼ − Ncm
2
t

8πs2WM
2
W

(sbL)
2 log(rB) +O

(

(sbL)
4,

1

rB

)

(TB) doublet : ∆T TB ∼ Ncm
2
t (s

t
R)

2

8πs2WM
2
W

[

−3 + 2 log(rT )

]

+

O
(

(stR)
4, (stR)

2(sbR)
2, (sbR)

4,
1

rT

)

(XT ) doublet : ∆TXT ∼ Ncm
2
t (s

t
R)

2

8πs2WM
2
W

[

3− 2 log(rT )

]

+O
(

(stR)
4,

1

rT

)

(BY ) doublet : ∆TBY ∼ Ncm
2
t (s

b
R)

5rB
12πs2WM

2
W

+O
(

(sbR)
7,

1

rB

)

(XTB) triplet : ∆TXTB ∼ Ncm
2
t

8πs2WM
2
W

(stL)
2

[

3 log(rT )− 5

]

+O
(

(stL)
4,

1

rT

)

(TBY ) triplet : ∆T TBY ∼ − Ncm
2
t

16πs2WM
2
W

3(stL)
2

[

log(rT )− 2

]

+O
(

(stL)
4,

1

rT

)

.

(3.9)

The contributions to ∆T in the various VLQ models are shown in Fig. 1 (Fig. 2 for the (TB) doublet, which has
two mixing angles as free parameters). Here we use the exact expressions for the T parameter. For small mixing, the
contribution to ∆T is positive in the T singlet and (XTB) triplet models, negative in the B singlet, (XT ) doublet
and (TBY ) triplet models, and extremely small in the (BY ) doublet model (RHS of Fig. 1), as one could expect
from the approximate results in Eq. 3.9. In all the models where the T parameter is negative for small mixing ∆T
changes sign at an intermediate value of sin θ and therefore vanishes again for non-small mixing. In the case of the
(XT ) doublet, ∆TXT ∼ 0 even for stR ∼ 1, due to a numerical cancellation. Therefore, in these models there could
be regions of parameter space with quite sizeable mixing that are allowed by precision tests. We will explore this
possibility in Sec. IV.
The mass splitting between the VLQ multiplet components, δQ1Q2 ≡ MQ1 −MQ2 , is fixed by the mixing angles

(Eq. 2.11). In the large VLQ mass and small mixing angle approximation, and in the limit for massless bottom quark,

Doublets : δTB

MT
∼ 1

2

[

(stR)
2

(

1− m2
t

M2
T

)

− (sbR)
2

]

δXT

MT
∼ − (stR)

2

2

(

1− m2
t

M2
T

)

< 0

δBY

MB
∼ (stR)

2

2
<

1

2
(3.10)

3 Exact results are posted at https://quark.phy.bnl.gov/Digital_Data_Archive/dawson/vlq_17/ as a mathematica notebook.
4 In all our studies we will use the exact expressions for the Peskin-Takeuchi parameters, retaining the full dependence on the VLQs
masses and on the mixing angles.
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0.2 0.4 0.6 0.8 1

sinθ
-2

0

2

4

6

8

10

∆T
T singlet
B singlet
(BY) doublet
(XT) doublet
(XTB) triplet
(TBY) triplet

∆ T
M = 1 TeV

0.05 0.1 0.15 0.2 0.25

sinθ
-1

-0.5

0

0.5

1

∆T

T singlet
B singlet
(BY) doublet
(XT) doublet
(XTB) triplet
(TBY) triplet

∆ T
M = 1 TeV

FIG. 1: Exact results for ∆T for M = 1 TeV in the VLQ models. sin θ and M are identified in Eq. 2.13.

0 0.1 0.2 0.3 0.4 0.5

sinθ
R

t

0

0.5

1

1.5

2

2.5

3

∆T sinθ
R

b
=0.0

sinθ
R

b
=0.1

sinθ
R

b
=0.3

sinθ
R

b
=0.4

(TB) Doublet Model
M

T
=1 TeV

FIG. 2: Exact results for ∆T for MT = 1 TeV in the (TB) doublet model.

Triplets : δTB

MT
∼ 1

2

[

(stL)
2

(

1− m2
t

M2
T

)

− (sbL)
2

]

δXT

MT
∼ − (stL)

2

2

(

1− m2
t

M2
T

)

< 0

δBY

MB
∼ (sbL)

2

2
<

1

2
. (3.11)

From Eq. 3.11, in all cases δ
M

∼ sin2 θi, so for small angles ∆T grows with the mixing between the SM fermions and
the VLQs. For large masses, the mixing goes to zero for fixed Yukawa couplings (see Table III), and decoupling is
recovered [18].
The expression for the contributions to the S parameter from fermions is [13, 41, 43]

S =
Nc
2π

∑

i,j

{(

| ALij |2 + | ARij |2
)

ψ+(yi, yj) + 2Re

(

ALijA
R∗
ij

)

ψ−(yi, yj)

−1

2

[(

| XL
ij |2 + | XR

ij |2
)

χ+(yi, yj) + 2Re

(

XL
ijX

R∗
ij

)

χ−(yi, yj)

]}

, (3.12)
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where we subtract the SM top-bottom contribution,

∆S = S − SSM (3.13)

SSM =
Nc
6π

[

1− 1

3
log

(

m2
t

m2
b

)]

. (3.14)

The functions appearing in S are [13],

ψ+(y1, y2) =
1

3
− 1

9
log

y1
y2

ψ−(y1, y2) = − y1 + y2
6
√
y1y2

χ+(y1, y2) =
5(y21 + y22)− 22y1y2

9(y1 − y2)2
+

3y1y2(y1 + y2)− y31 − y32
3(y1 − y2)3

log
y1
y2

χ−(y1, y2) = −√
y1y2

[

y1 + y2
6y1y2

− y1 + y2
(y1 − y2)2

+
2y1y2

(y1 − y2)3
log

y1
y2

]

(3.15)

where χ+(y, y) = χ−(y, y) = 0 and in the limit y1 >> y2,

ψ+(y1, y2)
y1>>y2−−−−−→ 1

3 − 1
9 log

(

y1
y2

)

, ψ−(y1, y2)
y1>>y2−−−−−→ −1

6

√

y1
y2

χ+(y1, y2)
y1>>y2−−−−−→ 5

9 − 1
3 log

(

y1
y2

)

, χ−(y1, y2)
y1>>y2−−−−−→ −1

6

√

y1
y2

(3.16)

For the singlet bottom and top VLQ models, the exact results (full mass and angle dependence) are

T singlet : ∆STs = − Nc
18π

(stL)
2

[

log(rT ) + (ctL)
2

(

5(r2T + 1)− 22rT
(rT − 1)2

(3.17)

+
3(rT + 1)(r2T − 4rT + 1)

(1− rT )3
log(rT )

)]

,

B singlet : ∆SBs =
Nc
18π

(sbL)
2

[

−5(cbL)
2 +

(

4− 3(sbL)
2
)

log
rB
rb

]

. (3.18)

As in the case of the T parameter, the (BY ) doublet model also has a simple exact expression for S,

(BY ) doublet : ∆SBY =
Nc
18π

{

4(cbR)
2 log(cbR) + (sbR)

2

[

1 + 5(sbR)
2 +

(

2− 3(sbR)
2
)

log
rB
rb

]}

.

(3.19)

The contributions to ∆S are shown in Figs. 3 and 4 using the exact results (full mass and angle dependence) in all
the models.
In the heavy VLQ mass limit (and assuming small mixings between the doublet and triplet components),5

T singlet : ∆STs ∼ Nc
18π

(stL)
2 [−5 + 2 log(rT )] +O

(

(stL)
4,

1

rT

)

B singlet : ∆SBs ∼ Nc
18π

(sbL)
2

[

−5 + 4 log
rB
rb

]

+O
(

(sbL)
4,

1

rB

)

5 Exact results are posted at https://quark.phy.bnl.gov/Digital_Data_Archive/dawson/vlq_17/ as a mathematica notebook.
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FIG. 3: Exact results for ∆S for M = 1 TeV in the VLQ models. The parameters sin θ and M are identified in Eq. 2.13.
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FIG. 4: Exact results for ∆S for M = 1 TeV in the (TB) doublet model.

(TB) doublet : ∆STB ∼ − Nc
18π

{

(sbR)
2

[

3 + 2 log

(

rb
rT

)]

+ (stR)
2 [7− 4 log(rT )]

}

+

O
(

(stR)
4, (stR)

2(sbR)
2, (sbR)

4,
1

rT

)

(XT ) doublet : ∆SXT ∼ Nc
18π

(stR)
2

[

3 + 2 log(rT )

]

+O
(

(stR)
4,

1

rT

)

(BY ) doublet : ∆SBY ∼ Nc(s
b
R)

2

18π

[

−1 + 2 log

(

rB
rb

)]

+O
(

(sbR)
4,

1

rB

)

(XTB) triplet : ∆SXTB ∼ − Nc
18π

(stL)
2

[

7 + 4 log(rb)− 6 log(rT )

]

+O
(

(stL)
4,

1

rT

)

(TBY ) triplet : ∆STBY ∼ Nc
36π

(stL)
2

[

1 + 8 log(rT )

]

+O
(

(stL)
4,

1

rT

)

. (3.20)

The B singlet, (XT ) doublet, and (TBY ) triplet models have the interesting feature that ∆T vanishes for particular
fine-tuned choices of the parameters with non-zero mass splittings between the members of the VLQ multiplets. In
the left panel of Fig. 5 we show the VLQ mass and mixing angle for which ∆T = 0 and in the right panel we show
∆S for these parameters.
The oblique fit, ignoring correlations, requires ∆S < 0.3 at 95 % confidence level [44, 45], so there are regions

where both ∆T and ∆S can escape the oblique constraints in these models. These fined-tuned regions will have
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FIG. 5: Left panel: fine-tuned parameter points where ∆T = 0 in the B singlet, (XT ) doublet and (TBY ) triplet models. The
parameters sin θ and M are identified in Eq. 2.13. Right panel: values of the S parameter corresponding to the points on the
LHS.
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FIG. 6: VLQ multiplet mass splittings for parameter points where ∆T = 0. Below and to the right of the yellow (orange) line,
all VLQs have masses larger than 800 GeV (1 TeV).

important impacts on the global fits in the next section and we note that the mass splittings between VLQ multiplet
members can be significant for these choices of parameters. Fig. 6 shows the mass difference for the points where ∆T
is fine-tuned to be zero, corresponding to the mixing angles of Fig. 5.

B. Contributions to Zbb

In the VLQ models where δXL
bb vanishes at tree level, we will use the one-loop contributions to the left-handed Zbb

coupling for our fit to electroweak precision data. This occurs in the (TB) doublet model (Eq. 2.17), as well as in the
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T singlet and (XT ) doublet models. The one-loop corrections from t− T mixing to δXL
bb are [4, 14],

δXL
bb =

g2

32π2
(sL)

2

(

f1(x, x
′) + (ctL)

2f2(x, x
′)

)

, (3.21)

where x = m2
t/M

2
W , x′ =M2

T /M
2
W and the SM contribution has been subtracted. In the limit x, x′ >> 1,

f1(x, x
′) = x′ − x+ 3 log

(

x′

x

)

f2(x, x
′) = −x− x′ +

2xx′

x′ − x
log

(

x′

x

)

. (3.22)

IV. NUMERICAL RESTRICTIONS ON VLQS

The properties of VLQ models are restricted by Zbb, oblique parameter, and Higgs coupling measurements. In this
section, we perform global fits to Zbb and oblique parameter data and demonstrate that Higgs coupling measurements
are not competitive with the limits from the electroweak parameters.
The experimental constraints from the right-handed Zbb coupling are considerably weaker than those from the

left-handed coupling, so we consider only right-handed couplings, δXR
bb, that arise at tree level. On the other hand,

if the left-handed coupling is zero at tree level, we include the loop corrections from t − T mixing using the 1−loop
results of Refs. [4, 14] reported in Eq. 3.21. In the VLQ models where δXR

bb = 0 at tree level, (T and B singlet, (XT )
doublet, (TBY ) triplet), we use the 3−parameter fit to ∆S, ∆T and δXL

bb from Ref. [44]6. In addition, δXR
bb ∼ 0 at

tree level also in the (XTB) triplet model in the limit mb << MB (Eq. 2.12), and it vanishes in the (TB) doublet
model when we fix sbR = 0. In all these cases we use the 3−parameter fit,

∆S = 0.10± 0.09

∆T = 0.12± 0.07

δXL
bb = −0.0002± 0.0012 (4.1)

with the correlation matrix,

ρ =





1.0 0.85 0.07
0.85 1.0 0.13
0.07 0.13 1.0



 . (4.2)

In the (BY ) model we have non-zero values for ∆S, ∆T and δXR
bb. In the small bottom-mass limit δXL

bb will be
extremely suppressed and one can neglect it. Indeed, for mb → 0 the left-handed Zbb̄ coupling is zero at tree level.
The one-loop contributions vanish as well, since all the electroweak couplings of the bottom quark are proportional
to sbL, which in this limit goes to zero (Eq. 2.12). The 3−parameter fit we use in this case is,

∆S = 0.08± 0.09

∆T = 0.10± 0.07

δXR
bb = 0.008± 0.006 (4.3)

with the correlation matrix,

ρ =





1.0 0.86 −0.19
0.86 1.0 −0.21
−0.19 −0.21 1.0



 . (4.4)

When both δXL
bb and δX

R
bb are non-zero, we use the 4−parameter fit of Ref. [44] to ∆S, ∆T , δXR

bb and δX
L
bb. For a

massless b quark, this case only occurs in the (TB) doublet model, where δXL
bb arises at one loop. The 4−parameter

6 δXL
bb

= 2δgbL in the notation of Ref. [44].
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FIG. 7: 95% confidence level allowed regions in the various VLQ models models, where the meanings of sin θ andM are defined
in Eq. 2.13. The regions below the curves are allowed.

fit is,

∆S = 0.04± 0.09

∆T = 0.08± 0.07

δXL
bb = 0.006± 0.002

δXR
bb = 0.034± 0.016 (4.5)

with the correlation matrix,

ρ =







1.0 0.86 −0.24 −0.29
0.86 1.0 −0.15 −0.22
−0.24 −0.15 1.0 0.91
−0.29 −0.22 0.92 1.0






. (4.6)

We perform a χ2 fit,

∆χ2 = Σij(Oi −Ofiti )(σ2)−1
ij (Oj −Ofitj ) , (4.7)

where Oi are the measured observables (∆S, ∆T , δXL
bb, δX

R
bb), O

fit
i are their predicted values in the different VLQ

models, and σ2
ij = σiρijσj , where σi are the uncertainties in Eqs. 4.1, 4.3 and 4.5. The correlation matrices are given

in Eqs. 4.2, 4.4 and 4.6. In each model, we scan over the parameters to obtain the 95% confidence level limits. All
the models but the (TB) doublet have two independent degrees of freedom (see Eq. 2.13). Also in the (TB) model
we will analyse two specific scenarios, one with sbR fixed, and one with MT fixed. Therefore, in all cases the number
of degrees of freedom is two, and we require ∆χ2 < 5.99.
Our results for the regions of parameter space allowed by the electroweak precision observables are shown in Figs. 7, 8

and 9, where we use the exact results for the oblique parameters7.
Ref. [19] showed limits from the oblique parameters and the Zbb couplings separately, and our fit results are roughly

consistent with theirs, although the experimental constraints have tightened somewhat. For the T , B singlet models,
the (BY ) doublet model and the triplet models, the limits on the mixing angles are quite stringent and for large VLQ
masses relatively independent of the VLQ mass itself (Fig. 7).
The (XT ) doublet model has an interesting region seen in Fig. 8 (black dotted area), where the contribution to

∆T vanishes, allowing relatively large values of the mixing angle. This region is consistent with the ∆T ∼ 0 region of

7 The exact result for ∆S in the (XT ) doublet model shows numerical instabilities in the small angle region. Hence, we have used an
expansion up to O

(

(st
R
)16

)

for st
R

< 0.2. At the matching point, the exact result is stable and the difference with the expanded one is
below the percent level.
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Fig. 1 for MT = 1 TeV.
Also in the (TB) doublet model (Fig. 9) we find an interesting region with non-zero mixings both in the top and
bottom sectors allowed by the fit. On the RHS of Fig. 9, we see the allowed region when both stR and sbR are non-zero
for fixed VLQ mass. The maximum value of sbR ∼ 0.15 is relatively independent of MT , while the maximum value
of stR decreases with increasing VLQ mass. On the LHS of Fig. 9, the dependence of the maximum value of stR on
sbR can be seen to be very slight, for fixed MT . Doing a global fit strengthens the bounds in the (TB) and (XTB)
models relative to those of Ref. [19]. Models with B VLQs [46] are allowed by the fits, with a relatively large mixing
angle permitted in the (BY ) doublet model. The strongest limit on models with B VLQs occurs in the B singlet
case, where for all MB, the global fit requires sbL < 0.04 due to the strong dependence of δXL

bb on the mixing angle
(Eq. 2.17). We note that for large VLQ masses, the fits asymptote to an approximately constant mixing angle in each
case. This suggests that the value of the VLQ mass is not critical and that an effective field theory (EFT) approach
is warranted. We discuss the EFT approach for heavy VLQs in Appendix B.
We have presented our results in terms of the masses and mixing angles given in Eq. 2.13. Using Eq. 3.11, we

redisplay our fit results in terms of the allowed mass differences between members of the VLQ multiplets. In Fig. 10,
we demonstrate that the maximum allowed mass differences are of O(1 − 3 GeV), except for the (BY ) and (TB)
doublet models. For M ∼ 1 TeV, the maximum allowed mass splitting for the (BY ) model is ∼ 10 GeV, increasing
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FIG. 10: Maximum allowed mass splitting between the members of a VLQ multiplet using the results of Fig. 7.

to ∼ 25 GeV for M ∼ 2 TeV. For the (TB) model, the maximum mass splitting is ∼ 5 GeV, independent of the VLQ
masses.
The mixing of SM and vector-like quarks changes the tbW couplings, AL,Rtb . The limits from 7 and 8 TeV data

from t−channel single top production [19, 47] are however not yet competitive with the precision electroweak limits.
Limits on the mixing angles in VLQ models can also be determined from direct searches for single production of a
heavy VLQ. These limits are model dependent, but tend to be weaker than those from our precision electroweak fits,
especially as M is increased. For example, in the T singlet model the search for single T production in the T → Wb
channel requires stR < 0.32 (0.69) for MT = 1 (1.5) TeV [38]. In the (BY ) doublet model, the same analysis requires
stR < 0.23 (0.56) for MT = 1(1.5) TeV.
Finally, in the VLQ models Higgs production and decay rates are modified. The Higgs signal strengths for the

gluon fusion production channel using the 95% confidence level results at 8 TeV are [3],

µγγF = 1.13+0.24
−0.21

µWW
F = 1.08+0.22

−0.19

µZZF = 1.29+0.29
−0.25

µbbF = 0.65+0.37
−0.28

µττF = 1.07+0.35
−0.28 . (4.8)

The production rate gg → h and the decays h→ gg and h→ γγ are affected by the VLQ contributions through loops
of heavy quarks and changes in the SM quarks Yukawa couplings, while the h→ bb̄ decay is modified at tree level.
The contribution to the Higgs signal strength from colored fermions is well known. At leading order [48],

µggF ≡ σ(gg → h)

σ(gg → h) |SM
=

|
∑

f=t,b,T,B
cff

mf
FF (τf ) |2

|
∑

f=t,b

cSM
ff

mf
FF (τf ) |2

, (4.9)

where cff are the Higgs-fermion couplings defined in Eq. 2.20, mf is the mass of the corresponding quark, cSMff = mf ,
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τf =
m2

h

4M2
f

, and

FF (x) =
2

x2

[

x+ (x− 1)f(x)

]

f(x) =















[

sin−1(
√
x)

]2

x < 1

− 1
4

[

ln(x+/x−)− iπ

]2

x > 1

x± = 1±
√

1− 1

x
. (4.10)

In the heavy fermion mass limit FF (x) → 4
3 , while for light quarks FF (τb) → 0. Therefore in the limit of massless

b quark and infinitely heavy (t, T, B) quarks, the leading order Higgs production rate is independent of the fermion
masses,

µggF =
σ(gg → h)

σ(gg → h) |SM
→|Σf=(t,T,B)

cff
mf

|2 . (4.11)

The deviations of the gluon fusion production rate, µggF , are directly related to deviations in the b couplings,

T, (XT ) : µggF → 1

B, (TBY ) : µggF → 1 + 2(sbL)
2 = 1 + δXL

bb

(XTB) : µggF → 1 + 2(sbL)
2 = 1− δXL

bb

(TB) : µggF → 1 + 2(sbR)
2 = 1− δXR

bb

(BY ) : µggF → 1 + 2(sbR)
2 = 1 + δXR

bb . (4.12)

We observe that in all cases the presence of heavy B VLQs increases the Higgs signal strength.
For the decay width to photons we have,

µγγ ≡ Γ(h→ γγ)

Γ(h→ γγ) |SM

=
| Σf=fSM ,T,BNcQ

2
f (cff/mf )FF (τf ) + FW (τW ) |2

| Σf=fSM
NcQ2

fFF (τf ) + FW (τW ) |2 , (4.13)

where fSM includes all SM fermions, Qf and Nc are charge and color of the fermion, FF (x) is defined in Eq. 4.10 and

FW (x) = − 1

x2

[

2x2 + 3x+ 3(2x− 1)f(x)

]

, with

FW (0) → −7 . (4.14)

Modifications of Higgs signal strength for the various VLQs are shown in Figs. 11, 12, 13 and 14, where we define,

µXXggF ≡ σ(gg → h)BR(h → XX)

[σ(gg → h)BR(h→ XX)]SM
. (4.15)

The B and T singlet and XT doublet models are so highly constrained by the electroweak fits, that the deviations
in Higgs production are too small to be observed. In the (XT ) doublet model, there is a fine-tuned region (around
stR ∼ 0.5 for MT ∼ 1 TeV) where ∆T = 0. In this region, the γγ signal strength is reduced by ∼ 1 %, while the
WW,ZZ and bb signal strengths are reduced by ∼ 2%. In the (BY ) model, the shift in the gluon fusion WW and
ZZ signal strengths can be ∼ 10 % for the maximum allowed mixing, sbR ∼ 0.15, while the increase in the bb signal
strength can be as large as ∼ 7 % (see Fig. 12). The (TB) doublet model can have modest increases in Higgs signal
strengths when the mixing in the right-handed b sector is allowed to be significant (RHS of Fig. 13). In the (XTB)
triplet triplet model, the Higgs decay channels are constrained to be within about 4% of the SM predictions.
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FIG. 11: Higgs branching ratios in VLQ models with a (T ) singlet or an (XT ) doublet normalized to the Standard Model
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FIG. 12: Higgs branching ratios in VLQ models normalized to the SM predictions. The vertical yellow lines are the maximum
mixing allowed by the electroweak fits for the B singlet (LHS) and (BY ) doublet (RHS) models shown in Fig. 7.

V. CONCLUSIONS

We have considered restrictions on the parameters of models with vector-like quarks and updated electroweak fits
to the parameters of these models. The constraints on VLQ masses and mixings are strengthened from previous fits.
Mixing in the B VLQ sector is highly constrained due to the tree-level effect on the Zbb̄ coupling, while mixings up
to stR ∼ 0.2 are allowed in the T singlet case. In the doublet models mixings up to sR ∼ 0.1 − 0.15 are allowed,
with an interesting region of 0.3 . stR . 0.6 in the (XT ) doublet scenario and non-zero mixing allowed in both the
top and bottom sectors in the (TB) doublet model. In the triplet models the mixing is somewhat more constrained,
stL . 0.07. Finally, we show that in order for Higgs coupling measurements to probe regions beyond those excluded
by precision fits, measurements of a few % will be required.
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Appendix A: VLQ Triplet Lagrangian

In the following, the fields are the current eigenstates, but for simplicity of notation we shall omit the superscript
“0”.
To establish our normalization convention, we shall use

L(SM) = ψLγ
µi
(

∂µ − igWµ(x) − ig′11(2)Bµ(x)
)

ψL + qRγ
µi
(

∂µ − ig′11(1)Bµ(x)
)

qR , (A.1)

where ψL is the top-bottom left-handed doublet, qR = {tR, bR} are the right-handed singlets, Wµ = W a
µ
σa

2 (a =
{1, 2, 3}) and σa are the Pauli matrices. They satisfy

[

σa, σb
]

= 2iǫabcσc , Tr[σaσb] = 2δab . (A.2)
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The gauge boson interactions therefore read

L(SM)
g.b. = eAµ



t̄L,Rγ
µ

(

I
3(SM)
tL,R

2
+ Y

(SM)
tL,R

)

tL,R + b̄L,Rγ
µ





I
3(SM)
bL,R

2
+ Y

(SM)
bL,R



 bL,R



+

g

2cW
Zµ

[

t̄L,Rγ
µ
(

I
3(SM)
tL,R

− 2Q
(SM)
t s2W

)

tL,R + b̄L,Rγ
µ
(

I
3(SM)
bL,R

− 2Q
(SM)
b s2W

)

bL,R

]

+

g√
2
W+
µ t̄Lγ

µbL +
g√
2
W−
µ b̄Lγ

µtL , (A.3)

where I
3(SM)
q , Y

(SM)
q are the eigenvalues of the quark q = {tL,R, bL,R} under σ3 and the U(1)Y generator respectively,

I
3(SM)
tR

= I
3(SM)
bR

= 0 , I
3(SM)
tL

= −I3(SM)
bR

= 1

Y
(SM)
tR

=
2

3
, Y

(SM)
bR

= −1

3
, Y

(SM)
ψL

=
1

6
. (A.4)

This yields the correct charges for the top and bottom quarks (first line of eq. (A.3)). In the second line we replaced
the hypercharge quantum number with the corresponding charge of the quark as derived from the first line.
As a reminder, the physical gauge bosons are defined by

W± =
W 1 ∓ iW 2

√
2

, W 3
µ = cWZµ + sWAµ , Bµ = cWAµ − sWZµ , (A.5)

and e = gsW = g′cW .

1. Vector Triplets

Introducing the fields

Let ρ0 be a fermionic field that transforms as a triplet under SU(2)L, i.e.
8

ρ0 → U(x)ρ0U−1(x) , U(x) = eiα
a(x)τa

. (A.6)

Here αa(x) are the gauge transformation parameters and τa = σa

2 . For simplicity of notation, from now on we will
omit the subscript“0” in the fermionic fields and use U ≡ U(x).
Note that we can decompose fermions in a SU(2)L triplet on the basis of Pauli matrices as

ρ = ρiτ i (Wµ =W i
µτ

i) . (A.7)

As for the charged gauge bosons, we introduce

ρ± =
ρ1 ∓ iρ2√

2
, (A.8)

and we can use that

ρ1τ1 + ρ2τ2 = ρ+
τ1 + iτ2√

2
+ ρ−

τ1 − iτ2√
2

. (A.9)

Let us remind ourselves that the charges of τ1 ± iτ2 (i.e. ρ± and W±) are ±1 respectively,

[τ3, τ1 ± iτ2] = ±(τ1 ± iτ2) . (A.10)

8 Recall that the triplet vector field Wµ transforms as

Wµ → U

(

Wµ +
i

g
∂µ

)

U−1 .

A triplet fermionic field has a similar transformation law, up to the shift term.
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Guage invariance and the Lagrangian

From the transformation laws of the gauge and fermion fields, the gauge-invariant covariant derivative must be
defined as9

Dµρ = ∂µρ− i [Wµ, ρ] . (A.11)

The Lagrangian, imposing also the correct normalization of the kinetic term and adding the U(1)Y part, is then

L = 2Tr {ρ̄ iγµDµ ρ}+ 2Tr {g′Y ρ̄γµBµρ} (A.12)

=
1

2
Tr
{

σaσb
}

iρ̄aγµ(∂µρ
b) +

1

2
Tr
{

σa
[

σb, σc
]}

(g

2
ρ̄aγµW c

µρ
c
)

+
1

2
Tr
{

σaσb
} (

g′Y ρ̄aγµBµρ
b
)

= ρ̄aγµ(∂µρ
a) + igρ̄aγµW c

µρ
cǫabc + g′Y ρ̄aγµBµρ

a .

Couplings of the fermions to the EW gauge bosons

Let us recall that in the normalization we chose the {X,T,B} triplet has isospin I3ρXTB
= {2, 0,−2}, YρXTB

= 2
3 ,

and the {T,B, Y } triplet has I3ρTBY
= {2, 0,−2}, YρTBY

= − 1
3 . The couplings to the electroweak gauge bosons are

easily derived from eq. (A.12) via the replacements

f1 =
f+ + f−

√
2

, f2 = i
f+ − f−

√
2

, f = {ρ,Wµ} . (A.13)

Neutral couplings: the photon

The photon couplings allow us to determine the electric charge of the three quarks. From the Lagrangian (A.12),
with the definition of the gauge boson fields of the Standard Model, one gets

Lγ = eAµ

[

ρ̄+γµρ+

(

Y +
I3
ρ+

2

)

+ ρ̄3γµρ3 (Y ) + ρ̄−γµρ−

(

Y +
I3
ρ−

2

)]

. (A.14)

Hence

• for the triplet of hypercharge Y = 2
3 , ρ

+ ≡ X has charge 5/3, ρ3 ≡ T has charge 2/3, and ρ− ≡ B has charge
-1/3;

• for the triplet of hypercharge Y = − 1
3 , ρ

+ ≡ T has charge 2/3, ρ3 ≡ B has charge -1/3, and ρ− ≡ Y has charge
-4/3,

as we expect.

Neutral couplings: the Z boson

The couplings of the quarks in the vector triplet to the Z boson are

LXTBZ =
g

2cW
Zµ
[

XγµX
(

I3q − 2s2WQX
)

+ TγµT
(

−2s2WQT
)

+BγµB
(

−Iq3 − 2s2WQB
)]

=
g

2cW
Zµ

[

XγµX

(

2− 10

3
s2W

)

+ TγµT

(

−4

3
s2W

)

+BγµB

(

−2 +
2

3
s2W

)]

;

LTBYZ =
g

2cW
Zµ
[

TγµT
(

I3q − 2s2WQT
)

+BγµB
(

−2s2WQB
)

+ Y γµY
(

−Iq3 − 2s2WQY
)]

=
g

2cW
Zµ

[

TγµT

(

2− 4

3
s2W

)

+BγµB

(

2

3
s2W

)

+ Y γµT

(

−2 +
8

3
s2W

)]

. (A.15)

9 We want Dµρ → U (Dµρ)U−1, and we need to pick the same normalization conventions as those for the Standard Model.
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This is perfectly consistent with what one expects from the Standard Model case (hypercharge minus twice the electric
charge).

Charged couplings

The couplings to the charged gauge bosons are

LXTBW = gW+
µ

(

TγµB −XγµT
)

+ gW−
µ

(

BγµT − TγµX
)

,

LTBYW = gW+
µ

(

TγµB −XγµT
)

+ gW−
µ

(

BγµT − TγµX
)

(A.16)

and similarly for the Y = − 1
3 triplet. Notice that these couplings are a factor

√
2 larger than the Standard Model

couplings (eq. (A.3)).

2. Physical couplings

To obtain the physical fields we follow the procedure described in eqs. (2.6 - 2.9)

Y = 2

3
triplet (X,T,B)

The physical couplings to the electroweak gauge bosons read (cfr. eqs. (A.3), (A.15), (A.16))

XXX,L =
(

2
)

, XXX,R =
(

2
)

,

Xtt,L =

(

(ctL)
2 ctLs

t
L

ctLs
t
L (stL)

2

)

, Xtt,R =

(

0 0
0 0

)

,

Xbb,L =

(

−1− (sbL)
2 cbLs

b
L

cbLs
b
L −1− (cbL)

2

)

, Xbb,R =

(

−2(sbR)
2 2cbRs

b
R

2cbRs
b
R −2(cbR)

2

)

,

AXt,L =
(

−
√
2stL

√
2ctL
)

, AXt,R =
(

−
√
2stR

√
2ctR

)

,

Atb,L =

(

cbLc
t
L +

√
2sbLs

t
L ctLs

b
L −

√
2cbLs

t
L

cbLs
t
L −

√
2ctLs

b
L sbLs

t
L +

√
2cbLc

t
L

)

, Atb,R =

( √
2sbRs

t
R −

√
2cbRs

t
R

−
√
2ctRs

b
R

√
2cbRc

t
R

)

.

This is in agreement with the results of Ref. [19].
We also show here how one derives the relations among masses and angles of eq. (2.11) for the (X,T,B) triplet.

Starting from the Lagrangian (2.5), the bare mass matrices are

M t =

(

λt
v√
2

λ7
v√
2

0 MXTB

)

, M b =

(

λb
v√
2

λ7v

0 MXTB

)

. (A.17)

Let us notice that

(

M q
diag

)2

= V qLM
qM q†V q,†L = V qRM

q†M qV q†R (q = t, b) . (A.18)

The condition

(

M q
diag

)2

(1,1)
= m2

q

yields

tan θqR =
mq

MQ

tan θqL . (A.19)

Next, one can “reconstruct” the square bare mass matrix, both in the top and bottom sector, inverting eq. (A.18).
Imposing that the entry (2, 2) is the same and equals M2

XTB =M2
X , we get

M2
X = (cbL,R)

2M2
B + (sbL,R)

2m2
b = (ctL,R)

2M2
T + (stL,R)

2m2
t . (A.20)
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Finally, using

V q†L (M q
diag)

2V qL =M qM q† (q = t, b) , (A.21)

and noticing that the entries (1, 2) of these matrices are related,

[

M bM b†]
(1,2)

= λ7MXTB =
√
2
[

M tM t†]
(1,2)

(A.22)

yields

(M2
B −m2

b) sin 2θ
b
L =

√
2(M2

T −m2
t ) sin 2θ

t
L . (A.23)

Y = − 1

3
triplet (T,B, Y )

The physical couplings to the electroweak gauge bosons read (cfr. eqs. (A.3), (A.15), (A.16))

Xtt,L =

(

1 + (stL)
2 −ctLstL

−ctLstL 1 + (ctL)
2

)

, Xtt,R =

(

2(stR)
2 −2ctRs

t
R

−2ctRs
t
R 2(ctR)

2

)

,

Xbb,L =

(

−(cbL)
2 −cbLsbL

−cbLsbL −(sbL)
2

)

, Xbb,R =

(

0 0
0 0

)

,

XY Y,L =
(

−2
)

, XY Y,R =
(

−2
)

,

Atb,L =

(

cbLc
t
L +

√
2sbLs

t
L ctLs

b
L −

√
2cbLs

t
L

cbLs
t
L −

√
2ctLs

b
L sbLs

t
L +

√
2cbLc

t
L

)

, Atb,R =

( √
2sbRs

t
R −

√
2cbRs

t
R

−
√
2ctRs

b
R

√
2cbRc

t
R

)

,

AbY,L =

(

−
√
2sbL√
2cbL

)

, AbY,R =

(

−
√
2sbR√
2cbR

)

.

The top and bottom mass matrices are (eq. (2.5))

M t =

(

λt
v√
2

λ8v

0 MTBY

)

, M b =

(

λb
v√
2

λ8
v√
2

0 MTBY

)

. (A.24)

Following the same proof that lead to eqs. (A.19) and (A.20), we obtain

tan θqR =
mq

MQ

tan θqL ,

M2
Y = (cbL,R)

2M2
B + (sbL,R)

2m2
b

= (ctL,R)
2M2

T + (stL,R)
2m2

t . (A.25)

Similarly, the equivalent of eq. (A.23) is

(M2
T −m2

t ) sin 2θ
t
L =

√
2(M2

B −m2
b) sin 2θ

b
L . (A.26)

Appendix B: EFT Coefficients and limits from b and Higgs Couplings

Searches for VLQs at the LHC suggest that the masses are relatively heavy,M & O(800− 1000) GeV [25–37]. This
means that we are always in the regime,

mt

M
<< 1,

mb

M
∼ 0, (B.1)

where an effective field theory approach is warranted. The Lagrangian involving third generation SM quarks and
VLQs can be written as,

L = LY,SM + LKE + LQ (B.2)

where LY,SM is defined in Eq. 2.3, LQ contains the VLQ interactions given in Eq. 2.5 and LKE is the kinetic energy
term. At tree level, the heavy VLQs can be integrated out using the equations of motion [49–51], generating an
effective low-energy Lagrangian that only contains SM fields,

Leff = LY,SM + L′
KE + LqH (B.3)



23

CHt CHb CHq Cs
Hq Cb

HY Ct
HY CHtb

T 0 0
λ2
1

4M2
T

− λ2
1

4M2
T

0
λtλ

2
1

2M2
T

0

B 0 0 − λ2
2

4M2
B

− λ2
2

4M2
B

λbλ
2
2

2M2
B

0 0

(T,B) − λ2
4

2M2
T

λ2
5

2M2
T

0 0
λbλ

2
5

2M2
T

λtλ
2
4

2M2
T

λ4λ5

M2
T

(X,T )
λ2
3

2M2
X

0 0 0 0
λtλ

2
3

2M2
X

0

(B,Y ) 0 − λ2
6

2M2
B

0 0
λbλ

2
6

2M2
B

0 0

(X,T,B) 0 0
3λ2

7

4M2
T

λ2
7

4M2
T

λ2
7λb

M2
T

λ2
7λt

2M2
T

0

(T,B, Y ) 0 0 − 3λ2
8

4M2
B

− λ2
8

4M2
B

λ2
8λb

2M2
B

λ2
8λt

M2
B

0

TABLE IV: EFT coefficients for VLQ models in the large VLQ mass limit.

where L′
KE now includes only the SM quarks and

LqH = ΣiCiOi + h.c. (B.4)

contains the effective interactions of the SM quarks with the gauge and Higgs boson through higher dimensional
operators (we restrict to dimension-6 operators). We have normalized the coefficients of these operators to be O

(

1
M2

)

.
The new Higgs-fermion dimension-6 operators are [52]:

OHt = i(H†DµH)(tRγ
µtR)

OHb = i(H†DµH)(bRγ
µbR)

OHq = i(H†DµH)(ψLγ
µψL)

OsHq = i(H†σaDµH)(ψLσ
aγµψL)

ObHY = (H†H)(ψLHbR)

OtHY = (H†H)(ψLH̃tR)

OHtb = (H̃†iDµH)(tRγ
µbR) . (B.5)

To O( 1
M2 ), the coefficients of Eq. B.4 are given in Table IV in terms of the Yukawa couplings and we assume the

splitting between the VLQ masses in a given representation are small, corresponding to small mixing angles. The
different VLQ representations have quite different patterns for the coefficients [50, 52, 53].
These operators generate non-SM interactions of the fermions with the gauge and Higgs bosons. The interactions

with the W boson defined in Eq. 2.14 become in the EFT limit,

ALtb = 1 + v2CsHq

ARtb =
v2

2
CHtb , (B.6)

and the couplings to the Z boson defined in Eq. 2.15 are,

δXL
tt = −v

2

2
(CHq − CsHq)

δXR
tt = −v

2

2
CHt

δXL
bb = −v

2

2
(CHq + CsHq)

δXR
bb = −v

2

2
CHb . (B.7)

From Table IV, we see that right-handed W couplings are only generated in the (TB) model, while non-standardWL

couplings arise in the singlet and triplet models. In a similar fashion, the doublet VLQ models have SM couplings of
the Z boson to the top and bottom quarks. Measuring the gauge boson fermion couplings puts strong constraints on
the possible VLQ representations.
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Finally, the t, b couplings to the Higgs boson are also modified,

LY,SM → Lh ≡ −Yfffh

Yf =
1√
2

(

λf −
3v2

2
CfHY

)

, (B.8)

corresponding to,

mf

v
= Yf +

v2√
2
CfHY . (B.9)

For the singlet and triplet models, we have the interesting relation between the Zff couplings and the Higgs Yukawa
coupling,

λf (δX
L
ff − 2If3 δX

R
ff ) = −v

2

2
CfHY singlet, triplet VLQs . (B.10)

For non-zero CfHY , the Yukawa coupling is no longer proportional to the mass, leading to flavor non-diagonal Higgs-
fermion interactions [54, 55].
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