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In this paper we present a calculation of the γ+j process at next-to-next-to-leading order (NNLO)
in QCD and compare the resulting predictions to 8 TeV CMS data. We find good agreement with
the shape of the photon pT spectrum, particularly after the inclusion of additional electroweak
corrections, but there is a tension between the overall normalization of the theoretical prediction
and the measurement. We use our results to compute the ratio of Z(→ `+`−) + j to γ+ j events as
a function of the vector boson transverse momentum at NNLO, a quantity that is used to normalize
Z(→ νν) + j backgrounds in searches for dark matter and supersymmetry. Our NNLO calculation
significantly reduces the theoretical uncertainty on this ratio, thus boosting its power for future
searches of new physics.

I. INTRODUCTION

One of the primary aims of the LHC’s physics mis-
sion is to search for Beyond the Standard Model (BSM)
physics. A key motivation for BSM physics arises from
the cosmological observations of Dark Matter (DM).
Thus far, multiple observations have inferred the exis-
tence of DM through its gravitational interactions with
baryonic matter (see ref. [1] for a recent review); however
to date no observation of non-gravitational interactions
of DM has been conclusively established. The search for
non-gravitational interactions of DM is hence an ongoing
and exciting area of active research.

At the LHC the putative DM particle, or any similarly
weakly-interacting BSM state, will not be directly ob-
served by the LHC detectors. Instead the particle may be
pair-produced in association with jets, that are observed
in copious amounts at the LHC. If the DM particle cou-
ples to the SM through a heavy mediator then the typical
transverse energy of the DM pair will be large, with the
jets accounting for the corresponding recoil in the trans-
verse plane. This would allow the presence of the DM
to be inferred from an excess of events with large miss-
ing transverse energy (MET). As a result the MET+jets
channel is one of the most exciting and rich channels in
which to search for BSM effects (for a recent overview
see ref. [2]).

Unfortunately, the Standard Model (SM) itself also
provides a substantial source of events with large MET.
The largest source of such events is through the produc-
tion of a Z-boson in association with jets, with the sub-
sequent decay Z → νν. Since the invisible decay forbids
the reconstruction of the invariant mass of the parent
Z-boson, this background cannot be easily suppressed
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by an explicit mass-window cut. This presents a signif-
icant challenge for MET+jet searches. Thankfully the
visible decays of the Z provide a window through which
to study this irreducible background [3, 4]. Decays of
the Z boson to light charged leptons, Z → e+e− and
Z → µ+µ−, are clean experimental signatures with ex-
cellent resolution. By studying the impact of artificially
not taking into account the visible leptons, the effect of
the transition to MET-based observables can be easily
quantified. However, a secondary issue arises when using
the charged leptons as a tool to measure the neutrino
background. Since the branching ratio for Z → `+`−

is significantly smaller than for Z → νν there are con-
siderably less Z → `+`−+jets events than MET+jets
ones. At high vector boson transverse momentum (pVT ),
exactly the region of most interest, the low statistics of
the Z → `+`− mode limits its utility for estimating the
Z → νν background.

In the region of high pVT one must therefore find an
alternate strategy for calibrating the MET+jets back-
ground. One possibility is to make use of the sample
of γ+jet events. The photon and Z boson are similar
enough that a comparison of their production mecha-
nisms is useful and, since one does not have to pay the
price of a branching ratio for the photon, there is a factor
of ∼ 100 more events at high pT . One can therefore mea-
sure the ratio of `+`−+jets and γ+jets events at low pT
and extrapolate into the high pZT region. A good agree-
ment between theory and data for this ratio is crucial;
only once it has been demonstrated at lower values of pVT
can the method be applied with confidence in the region
of limited data at higher values of pVT .

Theoretical predictions for the Z+j and γ+j processes
have been available at NLO for a long time [5, 6]. From
these calculations the theoretical uncertainty associated
with a truncation of the perturbative expansion at this
order may be estimated from the sensitivity of the predic-
tions to the choice of factorization, renormalization and
(in the case of γ+j) fragmentation scales. These are typi-
cally in the range of 10–20%, which has been sufficient for
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testing the SM in these channels in the past. However, as
the LHC accumulates more data of this nature [7–10], the
experimental uncertainties are approaching the level of a
few percent and will only decrease further. In order to
achieve a similar level of theoretical precision it is neces-
sary to include additional perturbative corrections. For
the case of Z+jet production, NNLO QCD corrections
have been extensively studied by now [11–14]. At this
level of accuracy it is also necessary to include the effect
of NLO electroweak corrections, which are also known for
this process [15–18]. For γ+jet production, the closely-
related direct photon process has recently been computed
at NNLO in QCD [19] and the NLO EW corrections are
known as well [20].

In this paper we will provide NNLO predictions for
γ+jet production, thus bringing the theoretical predic-
tion to the same level as for the Z+jet process. To
do so we will make use of the direct photon calculation
of Ref. [19], that has already been implemented in the
Monte Carlo code MCFM, and explicitly demand the
presence of a jet. With this calculation in hand we will
be able to address the main aim of this paper, which is
predicting the `+`−+jet/γ+jet ratio with an accounting
of NNLO QCD and leading EW effects1. To do so we
will also make use of the MCFM implementation of the
NNLO corrections to Z+jet production [12].

II. CALCULATION

A. IR regularization

NNLO calculations require regularization of infrared
singularities that are present in phase spaces with dif-
ferent numbers of final state partons. In our calculations
we use the N -jettiness slicing approach that was outlined
in refs. [22, 23], based on earlier similar applications to
top-quark decay at NNLO [24]. This method follows a
divide-and-conquer approach to regulating the singulari-
ties in the calculation. A cut on the N -jettiness variable
τN [25] is introduced, where N is the number of jets in
the Born phase space. For the case at hand N = 1.
Therefore we introduce the following variable

τ1 =

M∑
k=1

min
i=a,b,1

{
2qi · pk
Qi

}
. (1)

Where {pk} defines the momenta of the parton-level con-
figuration, and {qi} represents the set of momenta that is
obtained after application of a jet-clustering algorithm.
The scale Qi is a measure of the jet or beam hardness,
which we take as Qi = 2Ei. The labels a and b refer to

1 Our work thus expands upon a recent comparison of combined
NLO QCD+EW effects and CMS data that was performed as
part of a Les Houches study [21].

the two beam partons. Note that if τ1 = 0 then the clus-
tered momenta map directly onto the Born phase space
(i.e. a one-jet configuration). Non-zero values of τ1 there-
fore correspond to configurations with a greater number
of partons than the Born phase space. We introduce a
cut choice τ cut1 such that when τ1 > τ cut1 the components
of the calculation contain at most single-unresolved in-
frared singularities. It therefore corresponds to a NLO
calculation with an additional parton, albeit one which
must be integrated with an extremely loose jet require-
ment. The double-unresolved singularities reside in the
region τ1 < τ cut1 , where the application of SCET [26–30]
allows us to write the cross section as follows,

σ(τ1 < τ cut1 ) =

∫
H⊗ B ⊗ B ⊗ S ⊗ J +O(τ cut1 ) . (2)

That is, the cross section factorizes into a convolution of
process-independent beam (B) and jet (J ) functions, a
soft function S (which depends on the number of colored
scatterers) and a (finite) process-specific hard function
H. Expansions accurate to O(α2

s), that are relevant for
our calculation, can be found in refs. [31, 32], [33, 34]
and [35] for the beam, jet and soft functions respectively.
The hard functions for the processes we consider in this
paper are written in terms of the two-loop virtual ma-
trix elements that have been calculated in ref. [36] and
refs. [37, 38] for the γ+jet and Z+jet cases respectively.
Their implementation has been discussed in ref. [12] for
Z + j production and in ref. [19] for direct photon pro-
duction, which shares the same hard function as the
photon+jet case we consider here. A key consideration
within the N -jettiness slicing approach is the choice of
τ cut1 used for the calculation. As indicated in Eq. (2),
the below-cut factorization theorem receives power cor-
rections that vanish in the limit τ cut1 → 0, but they can
have a sizable impact on the cross section for non-zero
values. Therefore it is crucial that τ cut1 be taken as small
as possible, to minimize the impact of these corrections.2

A general discussion of the process-specific parts of the
direct photon and Z+jet calculations in MCFM was pre-
sented in refs [12, 19]. For brevity we will not reproduce
that discussion here, but refer the interested reader to
the original works for further details. Instead, in this pa-
per we will focus on the validation of both calculations
for the specific phase space selection criteria employed by
the CMS analysis that we will follow.

B. Parameter choices

The usual MCFM EW parameter choice is the Gµ
scheme, in which the values of MW , MZ and Gµ (the
Fermi constant) are taken as inputs. In this scheme the

2 For recent work on reducing the dependence on power correc-
tions, see refs. [39, 40].



3

electromagnetic coupling is then defined, at leading or-
der, as

αGµ =
GµM

2
W

√
2

π

(
1− M2

W

M2
Z

)
(3)

This is an appropriate choice for the description of Z+ j
production, a process that is clearly sensitive to the elec-
troweak scale. With the following choice of parameters,

MZ = 91.1876 GeV , ΓZ = 2.4952 GeV ,

MW = 80.385 GeV , sin2 θw = 0.222897 , (4)

the relation in Eq. (3) leads to a value of the electroma-
gentic coupling,

α|Z+j = αGµ = 1/132.232 . (5)

For the calculation of γ+j production, a process that in-
volves a real photon in the final state, it is not clear that
such a choice is the correct one.3 For on-shell photons
a natural alternative is provided by the α(0) scheme in
which the coupling is given by the fine-structure constant.
Since we will later include the effects of NLO electroweak
contributions for the γ + j process that have been com-
puted in this scheme [20] we choose,

α|γ+j = α(0) = 1/137.036 . (6)

We will choose both renormalization (µR) and factor-
ization (µF ) scales equal to HT , which is defined event-
by-event to be the scalar sum of the transverse momenta
of all partons, leptons and photons present. When study-
ing the theoretical uncertainty associated with this choice
of scale we consider a six-point variation corresponding
to,

µR = rHT , µF = fHT , (7)

with r, f ∈ ( 1
2 , 1, 2) and rf 6= 1. We use the NNLO

CT14 set of parton distribution functions [43] for all pre-
dictions, where αs(MZ) = 0.118 is taken from the PDF
set. Studies of the associated PDF uncertainty are per-
formed using the additional 56 eigenvector sets provided
through LHAPDF6 [44] and are quoted at the 68% con-
fidence level.

C. Event selection

Our phase space selection criteria are based on those
used in a recent CMS analysis of 8 TeV data [45]. For
the photon plus jets sample we require that the photon
satisfies the following cuts

pγT > 100 GeV , |ηγ | < 1.4 . (8)

3 See for instance the discussion in Section 4.5.2 of Ref. [41].

Both experimentally and theoretically photons require
isolation from hadronic activity. On the experimental
side this reduces unwanted backgrounds from pion decays
and photons that arise from fragmentation processes.
Theoretically the calculation is simplified if smooth cone
isolation [46] is employed. In that case one requires that
the photon satisfies

∑
phadT (R) < εγp

γ
T

(
1− cosR

1− cosR0

)n
∀R < R0 . (9)

This requirement constrains the sum of the hadronic en-
ergy inside a cone of radius R, for all separations R that
are smaller than a chosen cone size, R0. Cones are de-
fined in terms of the R variable,

R =
√

∆η2 + ∆φ2 , (10)

where η and φ are the pseudorapidity and azimuthal an-
gle of the particle, respectively. Note that arbitrarily soft
radiation will always pass the condition, but collinear
(R → 0) radiation is forbidden. This removes the
collinear splittings associated with fragmentation func-
tions, at the cost of no longer reproducing the form of
isolation applied in experimental analyses. In this pa-
per we set εγ = 0.025, R0 = 0.4 and n = 2 in Eq. (9).
This matches the parameters employed in a similar anal-
ysis by the BlackHat collaboration [3].4 At NLO we can
explicitly quantify the difference between following this
procedure and performing a calculation that includes the
effects of fragmentation. We shall see later that this dif-
ference is small, around a percent in the photon pT spec-
trum.

In addition to the photon requirements described
above, we require the presence of at least one jet in the
event. Jets are defined using the anti-kT [48] algorithm
with R = 0.5 and satisfy,

pjT > 30 GeV , |ηj | < 2.4 . (11)

Additionally we require that photons and jets are sepa-
rated by Rγj > 0.5.

For the Z + j sample we require that the charged lep-
tons are in the following fiducial volume,

p`T > 20 GeV , |η`| < 2.4 . (12)

We require that the lepton pair resides in an invariant
mass window close to the Z mass, 71 < m`` < 111 GeV,
and that the leptons are isolated from jets, R`j > 0.5.
We also require that pZT > 100 GeV and |yZ | < 1.4 to
mimic the photon selection as closely as possible.

4 We note that these parameters are slightly different to those used
in previous MCFM studies of photonic processes at NNLO [19,
47]. We have compared with the alternative choice εγ = 0.1 and
found that the cross section only changes by around 1%.
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Figure 1: The dependence of the NNLO coefficient on the pa-
rameter τ cut

1 for the processes considered in this paper. The
cuts of the CMS analysis [45] have been applied. To aid vis-
ibility, the values of τ cut

1 for the γ + j calculation have been
offset slightly.

D. τ cut
1 dependence

Before providing NNLO predictions for γ+j (and Z+j)
production we first validate our calculation for the phase
space cuts described in the previous section. Since the
N -jettiness slicing method is sensitive to power correc-
tions it is crucial to validate the calculation for a new
phase space selection. At NNLO the cross section can be
written as

σNNLO = σNLO + ∆σNNLO, (13)

where σNLO is the NLO cross section and ∆σNNLO rep-
resents the correction that arises at NNLO. In MCFM,
σNLO is calculated using a traditional Catani-Seymour
dipole subtraction method [49] and only ∆σNNLO is
computed using N -jettiness slicing. Therefore only
∆σNNLO has a dependence on τ cut1 , a sensitivity that
is indicated in Fig. 1. This figure shows the ratio
∆σNNLO(τ cut1 )/∆σNNLO(τ cut1 = 0.06 GeV), for both of
the processes considered in this paper. Since the cuts
have been chosen to emphasize the similarity between
the two processes we see that, as expected, the depen-
dence on τ cut1 is also comparable. Below τ cut1 = 0.1
GeV the predictions are insensitive to the choice of τ cut1

within Monte Carlo uncertainties which, in this region,
are around 5%.5 We will see that ∆σNNLO/σNNLO is
approximately 5–10% for both processes, so that the re-
sulting uncertainty on σNNLO due to power corrections
and Monte Carlo statistics is below 1%. This is perfectly
acceptable for phenomenological purposes and, given the
results in Fig. 1, we choose τ cut1 = 0.08 GeV to compute
the remainder of the results in this paper.

5 We note that the MC uncertainties are all rescaled by the central
value at τcut

1 = 0.06 GeV such that there is no reduction in
uncertainties due to the fact that the plotted quantity is a ratio.

E. Electroweak corrections

Since datasets at the LHC now permit the study of
γ+jet and Z+jet events in which the photon or Z-boson
carries a transverse momentum approaching 1 TeV, it is
imperative to also account for the effect of electroweak
corrections in theoretical predictions for these processes.
Although these are generically expected to be rather
small, at such high transverse momenta they give rise
to Sudakov-enhanced corrections of the order of 10% or
more. These primarily arise from the contribution of loop
diagrams in which a virtual W - or Z-boson is exchanged,
resulting in leading logarithms of the form log2(MV /pT ),
whose effects on these processes have been known for
some time [15, 16, 20]. More recently these effects have
also been computed in the framework of SCET [50, 51].
We note that the effect of photon radiation from leptons
is not captured in any of these calculations.

In this paper we shall make use of the results of
Refs. [16, 20] in order to account for electroweak ef-
fects. The impact of the electroweak corrections can be
captured by expressing their effect on the cross section
(σEW ) as a fraction of the leading order result,

∆EW =
σEW
σLO

. (14)

We will treat the EW corrections as factorizing fully with
respect to the QCD ones and simply multiply our NNLO
QCD predictions by 1 + ∆EW. The calculation of σEW
is performed using expressions that are valid in the high-
energy limit and are NNLL accurate; these are specified
in Section 3.5 of Ref. [16] and Section 3.3 of Ref. [20].
We have checked that this calculation agrees well with
the results presented in Refs. [50, 51], up to numerical
differences that are negligible for γ + j production and
are less than 1% for Z + j.

III. DIFFERENTIAL PREDICTIONS FOR γ + j

Before arriving at the primary interest of this paper,
an analysis of the Z + j/γ + j ratio at NNLO, we first
consider the γ + j process on its own. As discussed in
the introduction, the Z + j process has been extensively
studied at NNLO, including detailed phenomenological
analyses [11–14]. No such studies exist for the γ+ j pro-
cess at this order and a careful analysis is a prerequisite
to studying the ratio in detail. Therefore in this section
we compare the predictions of MCFM for γ + j produc-
tion to CMS data collected at 8 TeV. The fundamental
quantity of interest is the photon transverse momentum
spectrum, which we present in Fig. 2. The correction
from NLO to NNLO is around 10% and the NNLO pre-
diction lies just at the very top of the scale variation band
obtained at NLO. The NNLO/NLO K-factor is reason-
ably flat, with a slight increase at higher pT . The scale
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Figure 2: The photon pT spectrum for γ + j at the 8 TeV
LHC, at various orders in perturbation theory, compared to
CMS data from ref. [45]. The lower panel shows the ratio
of the data and the NLO prediction to the NNLO one. The
bands indicate the scale uncertainty on the NLO and NNLO
predictions.

variation at NNLO is significantly reduced compared to
that obtained at NLO, with a typical variation of 2-3%
compared to 8-10% at NLO. Although the NNLO predic-
tion lies closer to the CMS data than the NLO one, both
predictions are consistently lower than the experimental
measurements.

We now include the effect of electroweak corrections as
discussed above, by rescaling the complete NNLO result
by the change observed in the LO prediction when includ-
ing one-loop electroweak effects. We denote this combi-
nation by the shorthand NNLO(1+∆EW). Fig. 3 shows
the ratio of data and NNLO(1+∆EW) to the pure NNLO
prediction for the photon pT spectrum. The upper panel
shows the raw ratio, while the lower panel normalizes all
predictions to their central value in the pγT ∈ [100, 111]
GeV bin, allowing us to compare the shape of the predic-
tions. We note that this procedure results in an overesti-
mate of the errors on the CMS data, since a normalized
distribution should not be sensitive to the overall lumi-
nosity. However, for the purposes of this comparison this
overestimate can be tolerated. However, a full analysis of
the shape of the distribution measured by the LHC col-
laborations and a comparison to its theory counterparts
is clearly very desirable. The upper panel shows that, by
including the EW corrections, the apparent agreement
between theory and data gets worse. However, the lower
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Figure 3: The ratio of the CMS data from ref. [45] to the
NNLO prediction (with and without including EW effects)
for the photon pT spectrum. The lower panel normalizes this
ratio to the value of the ratio in the [100, 111] bin.

panel shows that the shape of the data and theory pre-
dictions are actually in very good agreement.

We have so far only considered the theoretical uncer-
tainty originating from the choice of scale and demon-
strated that it is significantly reduced at NNLO, by a
factor of two. However there are other origins of theoret-
ical uncertainty, beyond scale variation, that affect our
prediction. We will now consider two other sources of
theoretical uncertainty: the choice of PDFs and the form
of the photon isolation. These may primarily affect the
normalization of the theoretical prediction, or may in-
duce changes in the shape of the distributions. For PDF
uncertainties we will consider the 68% confidence level
uncertainties provided by LHAPDF6 [44] where, for effi-
ciency, these uncertainties are computed from the NLO
prediction (using NNLO CT14 PDFs). We have checked
that the difference in PDF uncertainty obtained from LO
and NLO calculations using this set is very small, so that
we are confident that this provides a reliable estimate of
the PDF uncertainty for our NNLO prediction. In or-
der to quantify the effect of the difference between our
isolation prescription and that of the experimental analy-
sis, we repeat our NLO calculation using the parton-level
version of the experimental isolation procedure:

Ehad
T < 5 GeV ∀R < R0 . (15)

Here, as in the smooth cone version, R0 = 0.4 and
our calculation employs the GdRG fragmentation func-
tions [52]. Since the difference between the methods
of isolating the photon could be affected differently at
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Figure 4: A summary of the theoretical uncertainties dis-
cussed in this paper for the photon transverse momentum
spectrum. In order from the top, uncertainties from: scales,
PDFs, isolation and in the total, as described in the main
text. The total uncertainty is obtained by combining linearly
those from the sources above.

NNLO we should provide a conservative estimate of this
effect. We therefore estimate the isolation uncertainty
by taking the difference between the two isolation proce-
dures, multiplying by an additional factor of two, and al-
lowing excursions from our central result by this amount
on either side.

Our results for the uncertainty in the theoretical pre-
diction for the photon pT spectrum are presented in Fig-
ure 4. The uncertainties are normalized to the central
value of the combined NNLO QCD + NLO EW predic-
tion. We observe that at NNLO the scale variation and
PDF uncertainty are roughly equal and correspond to
a few percent uncertainty. The PDF uncertainty grows
more rapidly as a function of photon transverse momen-
tum and is largest in the highest bins (∼ 5%). The
uncertainty stemming from the isolation procedure is at
the level of 2% for lower values of pγT but is significantly
smaller in the tail. This is in line with previous studies
of the difference between smooth cone isolation and the
forms used in experimental analyses [19, 53]. The total
uncertainty from scales, PDFs and isolation, obtained
by adding the individual uncertainties linearly, ranges
from around 4% at low pγT to 9% in the highest bins.
Clearly the large PDF uncertainty can be reduced in the
future [54, 55], by taking advantage of calculations such

as this one in tandem with the even bigger γ + j data
sets being accumulated at the LHC.

The tension that remains between the data and our
theoretical prediction, displayed in the lower panel of Fig-
ure 4, could have a number of sources. Although we have
endeavored to be thorough, the accounting of theoretical
uncertainty could yet be deficient. On the experimental
side the normalization of the data could be changed by a
host of factors, including a reduction in the overall lumi-
nosity, a change in the photon efficiency, or an issue with
background subtraction.6

A further interesting observable to consider is the ratio
of inclusive γ+2j to γ+j production as a function of the
photon transverse momentum. Fixed-order calculations
of this ratio can be broken down into contributions pro-
portional to the relevant powers of the strong coupling
as follows,

R2/1(pγT ) =
α2
s

∑n2

k=0 α
k
s dσ

(k)
γ+2j/dp

γ
T

αs
∑n1

k=0 α
k
s dσ

(k)
γ+j/dp

γ
T

. (16)

In this expression we have made clear that contributions
to the denominator start with one power of αs and those
to the numerator with two. An inclusive calculation of
γ + j production, such as the one we are considering in
this paper, naturally contains terms in the numerator up
to n2 = n1 − 1. Our NNLO calculation corresponds to
n1 = 2 while the equivalent result from our NLO calcula-
tion is given by n1 = 1. We call these predictions RNNLO2/1

and RNLO2/1 respectively and compare them to the CMS

measurement of the same ratio in Fig. 5. RNLO
2/1 (pγT ) does

a poor job of describing the data because it is a LO cal-
culation for this observable and thus bears all the hall-
marks of such a calculation. This is not only reflected by
a general underestimation of the data, but also by the
rather large scale dependence. The corrections to this
ratio when moving to RNNLO

2/1 (pγT ) are large, around 30%.

The agreement with data is significantly improved and
the scale uncertainty is reduced by a factor of two.

However, from Eq. (16) it is clear that neither of the
predictions presented so far corresponds to a strict ex-
pansion of the ratio to a given power of the strong cou-
pling, due to the fact that the denominator contains an
additional term of one order higher than the numerator.
Instead we can define alternative predictions, correspond-
ing to n2 = n1, with RNLO?2/1 given by n1 = n2 = 1. Note

that the alternative definition RNLO?2/1 can be obtained by

simply taking the ratio of two NLO calculations of γ+2j

6 We note that the CMS paper [45] indicates a flat 2.6% luminosity
uncertainty over the whole pγT range, which is far below the level
of disagreement indicated here.
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Figure 5: The quantities RNLO
2/1 (pγT ) and RNNLO

2/1 (pγT ) compared
to CMS data from ref. [45]. The bands indicate the scale
uncertainty on the theoretical predictions.

and γ + j production. This is the procedure already fol-
lowed by CMS [45] using the results of Ref. [3]. Since the
NNLO corrections to γ + 2j production are unknown,
and likely to remain so for some time, it is useful to es-
timate the potential impact that they could have on the
theoretical prediction for R2/1. We do so by postulating
NNLO corrections given by,

dσ
(2,approx)
γ+2j /dpγT = ±

[
dσ

(1)
γ+2j/dp

γ
T

]2
dσ

(0)
γ+2j/dp

γ
T

, (17)

where, as indicated, the corrections can be of either sign.
In this way the NNLO corrections are of the same size
relative to NLO as the NLO ones are to LO. A compari-
son of the results for RNLO?2/1 and the two bounding esti-

mates of RNNLO?2/1 , with both our calculation of RNNLO2/1

and the CMS data, is shown in Fig. 6. We see that, as
observed already in ref. [45], the prediction RNLO?2/1 is in

good agreement with the data for pγT < 200 GeV but
overshoots it by around 15% at high pγT . The range of
the estimate RNNLO?2/1 brackets both the theory predic-

tions RNLO?2/1 and RNNLO2/1 , as well as the data, and is of a

similar size as the scale uncertainty on RNNLO2/1 shown in

Fig. 5. In addition, the data suggests that NNLO correc-
tions to γ+ 2j production might be expected to be small
at high pγT . In summary, RNNLO2/1 provides a fairly good

description of the data and we believe that the associ-
ated scale uncertainty provides a plausible envelope for
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Figure 6: The quantity RNLO∗
2/1 (pγT ), a range of estimates for

RNNLO∗
2/1 (pγT ) computed as discussed in the text, and the CMS

measurements [45]. All quantities are normalized to the the-
oretical prediction RNNLO

2/1 (pγT ).

the results of a complete NNLO calculation of this ratio
(RNNLO∗2/1 ).

IV. THE Z/γ RATIO AT NNLO

We are now able to address the principal aim of this
paper, which is improving the theoretical prediction for
the ratio of Z + j and γ+ j production. We consider the
case where the Z boson decays to leptons and the two
processes are studied in a similar kinematic regime by
application of the cuts described in section II C. Specifi-
cally, we consider predictions for the quantity,

ROZ/γ(pT ) =
dσO`−`++j+X/dpT

dσOγ+j+X/dpT
, (18)

where pT represents the transverse momentum of the Z-
boson or photon. A simple expectation for the behaviour
of this ratio can be obtained by considering only the effect
of the different Z and photon couplings, together with
the effect of the PDFs, in the LO cross-section. This
neglects the effect of the Z-boson mass, which should be
irrelevant at large pZT , as well as the impact of higher-
order corrections. The ratio is then estimated to be [4],

RZ/γ =

Ru +
Rd −Ru

1 +
Q2
u

Q2
d

〈u〉
〈d〉

[Br(Z → `−`+)×A
]
,

(19)
where Rq is the relevant ratio of quark-boson couplings
squared,

Rq =
v2q + a2q

4 sin2 θw cos2 θwQ2
q

, (20)

and 〈u〉 (〈d〉) is the typical up (down) quark PDF at the
value of x probed by a given pVT , i.e. 〈x〉 = 2pVT /

√
s.

The branching ratio and acceptance factor (A) account
for the Z-boson decay and cuts on the leptons. At high
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transverse momentum, pVT �MZ , x→ 1 and 〈u〉/〈d〉 →
∞, so that RZ/γ should slowly approach an asymptotic
value from above [3, 4]. This argument thus predicts
a plateau at high transverse momentum, which we will
observe shortly in our full prediction. We stress that in
our calculation this ratio is not computed for on-shell
Z bosons but includes the decay into leptons, off-shell
effects and the (small) contribution from virtual photon
exchange. Nevertheless, we will refer to this quantity as
RZ/γ , or the Z/γ ratio, as a matter of convenience.

When computing this ratio a subtlety arises when try-
ing to provide an uncertainty estimate based on scale
variation. If the variation is correlated, i.e. one com-
putes the scale uncertainty using the same scale in both
the numerator and denominator of Eq. (18), then one
obtains essentially no uncertainty on RZ/γ(pT ), even at
NLO. We therefore discard this choice as a useful mea-
sure of the theoretical uncertainty. The alternative that
we use instead is to consider variations of the scale in the
numerator and denominator separately,

dσ
O,{r,f}
`−`++j+X/dpT

dσO,r=f=1
γ+j+X /dpT

and
dσO,r=f=1

`−`++j+X/dpT

dσ
O,{r,f}
γ+j+X/dpT

, (21)

where {r, f} represents the six-point scale variation in-
dicated in Eq. (7). The uncertainty is then defined by
the extremal values of either of these two ratios. In prac-
tice, since the scale-dependence of the two processes is so
similar, this procedure is almost identical to defining the
uncertainty in terms of the variation of either quantity
in Eq. (21) alone. In contrast to the correlated variation,
this approach results in scale uncertainties that, order-
by-order, overlap both the data and the central result of
the next-higher order. Moreover, with this procedure, at
NNLO the resulting uncertainty band is of a size typical
of a NNLO prediction and still smaller than the experi-
mental uncertainties.

Our results for the ratio for the pure QCD NLO and
NNLO calculation are shown in Fig. 7. The most signif-
icant effect of the NNLO calculation is to decrease the
ratio, particularly at lower values of pT . We have al-
ready seen, in Fig. 3, that the shape of the pγT spectrum
is significantly improved by the inclusion of electroweak
effects. We therefore extend our prediction for this ra-
tio by taking such corrections into account, rescaling the
individual pT spectra by (1 + ∆V

EW ) as discussed previ-
ously. Since the electroweak corrections do not affect the
Z+ j and γ+ j processes in the same way [20], this leads
to a modification of the prediction for this ratio that is
shown in Fig. 8. Although the effects are minor in the
low-pT region, as expected, they become more important
in the highest bins. There they decrease the ratio by as
much as 7% and thereby improve the agreement with the
CMS data.

We now consider a full analysis of the theoretical uncer-
tainties associated with the calculation of RNNLO+EW

Z/γ ,
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Figure 7: The quantities RNLO
Z/γ (pγT ) and RNNLO

Z/γ (pγT ), defined
through Eq. (18), compared to CMS data from ref. [45]. The
bands indicate the scale uncertainty on the theoretical pre-
dictions.
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Figure 9: A summary of the theoretical uncertainties dis-
cussed in this paper for the Z/γ ratio, RNNLO+EW

Z/γ . In order

from the top, uncertainties from: scales, PDFs, isolation and
in the total, as described in the main text. The total un-
certainty is obtained by combining linearly those from the
sources above.

using the same procedure as discussed earlier for the pho-
ton pT spectrum. Our results are presented in Figure 9
where, as before, the uncertainties are normalized to the
central value of the combined NNLO QCD + EW pre-
diction. We see that the PDF uncertainties essentially
cancel, as one might expect from the nature of the ra-
tio. The dominant uncertainty results from scale vari-
ation, especially at high pVT . The total uncertainty is
only around 4% in the lowest bins and is slightly higher,
approximately 6%, at high pVT .

As discussed earlier, the asymptotic behavior of our
prediction for RZ/γ is particularly interesting. In order to
quantify this we follow the CMS analysis [45] and define
a ratio in which the high-pT bins are integrated over,

Rdilep =
σ`−`++j+X(pVT > 314 GeV)

σγ+j+X(pVT > 314 GeV)
. (22)

The experimental measurement of this quantity by CMS
is,

RCMS
dilep = 0.0322± 0.0008 (stat)± 0.0020 (syst) .

Our best theoretical prediction is provided by the
NNLO+EW prediction shown in Figure 8, with accom-
panying uncertainties illustrated in Figure 9. We find,

RNNLO+EW
dilep (8 TeV) = 0.0359

+0.0012
−0.0013 (scale) +0.0004

−0.0004 (PDF) +0.0006
−0.0006 (iso) .

Given the level of the residual uncertainties, this result is
in reasonable agreement with the measured value, RCMS

dilep .
The CMS collaboration has not yet performed a simi-

lar analysis of γ+ j production at 13 TeV. Since such an
undertaking will likely involve a change in the cuts that
are applied, or at least in the binning of the final data,
for now we refrain from performing a detailed study of
individual distributions at this energy. However it is es-
pecially important to predict the ratio RZ/γ(pT ) and, in
particular, its value in the high-pT tail. For this reason
we repeat our above analysis at 13 TeV, with no cuts or
input parameters altered apart from the LHC operating
energy.

Our prediction for RZ/γ(pT ) at 13 TeV is shown in
Figure 10, where we compare predictions at NLO, NNLO
and when combining NNLO QCD and EW effects. As
before (c.f. Figures 7 and 8) we see that the ratio is very
similar in all cases, but that the NNLO prediction has
a substantially smaller uncertainty and the inclusion of
EW effects lowers the ratio at high pT . At 13 TeV we are
further from the large-x region, for the same range of pγT ,
so that the 〈u〉/〈d〉 ratio in Eq. (19) is smaller. We thus
expect that the value of Rdilep is higher at 13 TeV than
at 8 TeV, a supposition that is borne out by our explicit
calculations. We find, for the asymptotic ratio defined in
Eq. (22),

RNNLO+EW
dilep (13 TeV) = 0.0387

+0.0013
−0.0011 (scale) +0.0004

−0.0004 (PDF) +0.0006
−0.0006 (iso) .

We conclude this section with a summary of the theo-
retical predictions for Rdilep, computed at various orders
of perturbation theory, shown in Figure 11. The improve-
ment in the precision of the theoretical prediction when
going from NLO to NNLO QCD is clear. It also em-
phasizes that, after the inclusion of electroweak effects,
there is better agreement between the best theoretical
prediction and the measurement of CMS [45]. However
some tension still remains in the overall normalization.
This could perhaps be relieved somewhat by the use of
an alternative electroweak scheme in which the coupling
in the γ + j process is evaluated at a higher scale rather
than using α(0). This would require proper inclusion of
the appropriate counterterms in the one-loop EW calcu-
lation and such a study is beyond the scope of this work.

V. CONCLUSIONS

In this paper we have presented differential predictions
for γ+ j production at NNLO and compared our predic-
tions to data taken by the CMS experiment at 8 TeV. We
have seen that NNLO predictions provide a very good de-
scription of the shape of the CMS data, with the inclusion
of EW effects improving the agreement further still. For
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RNNLO+EW
Z/γ (pγT ), defined through Eq. (18), for the LHC oper-

ating at 13 TeV. The bands indicate the scale uncertainty on
the theoretical predictions.

���

����

����+��

���

� ��� �� ���

���

����

����+��

�����

�����

�����

�����

�
��
��
�

Figure 11: A summary of predictions for, and measurements
of, Rdilep – defined in Eq. (22) – at 8 and 13 TeV.

the pγT distribution there is an apparent disagreement be-
tween the normalization of the theoretical prediction and
the observed data, but again the shapes of the theory and
data are very similar. We have used our results to com-
pute several other quantities, notably the ratio of Z + j
and γ+j production as a function of the boson transverse
momentum, which is useful for estimating backgrounds
to BSM searches. The agreement between the theoretical
prediction and data for this ratio is satisfactory. Finally,
we have made additional predictions at NNLO accuracy

pVT [GeV] RNLO
Z/γ × 100 RNNLO

Z/γ × 100
1+∆ZEW

1+∆
γ
EW

100-111 1.66+0.23
−0.21 1.59+0.05

−0.04 0.99

111-123 1.87+0.27
−0.24 1.81+0.06

−0.05 0.99

123-137 2.09+0.31
−0.28 2.01+0.06

−0.06 0.99

137-152 2.31+0.35
−0.32 2.23+0.07

−0.07 0.99

152-168 2.53+0.4
−0.36 2.45+0.09

−0.08 0.98

168-187 2.74+0.44
−0.39 2.67+0.10

−0.10 0.98

187-207 2.94+0.49
−0.43 2.85+0.12

−0.12 0.98

207-230 3.13+0.53
−0.47 3.05+0.12

−0.12 0.97

230-255 3.30+0.58
−0.5 3.2+0.13

−0.13 0.97

255-283 3.46+0.62
−0.54 3.41+0.16

−0.16 0.96

283-314 3.60+0.67
−0.57 3.46+0.13

−0.12 0.96

314-348 3.68+0.7
−0.6 3.65+0.18

−0.17 0.95

348-386 3.82+0.76
−0.64 3.84+0.25

−0.22 0.94

386-429 3.88+0.77
−0.65 4.01+0.29

−0.26 0.94

429-476 4.00+0.83
−0.69 3.95+0.25

−0.24 0.93

476-528 4.12+0.89
−0.73 3.94+0.27

−0.26 0.92

528-586 3.95+0.86
−0.71 3.92+0.26

−0.25 0.91

586-800 4.11+0.96
−0.78 3.98+0.24

−0.25 0.90

Table I: The values of RNLO
Z/γ and RNNLO

Z/γ at 8 TeV (rescaled
by a factor of 100), together with the additional correction
that corresponds to including EW effects in both processes.
Quoted ranges correspond to the variation in the central scale
by the six-point method described in the text.

for future studies of the Z + j/γ + j ratio at 13 TeV.
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Appendix

Our numerical results for the Z+j to γ+j ratio studied
in this paper, RZ/γ , are presented in Table I (8 TeV) and

Table II (13 TeV). For each bin of pVT we show the value
of the ratio computed to NLO and NNLO accuracy, the
associated uncertainty due to scale variation as described
in the text, and the EW rescaling factor.
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pVT [GeV] RNLO
Z/γ × 100 RNNLO

Z/γ × 100
1+∆ZEW

1+∆
γ
EW

100.-111. 1.72+0.24
−0.22 1.65+0.05

−0.03 0.99

111.-123. 1.94+0.27
−0.25 1.91+0.05

−0.04 0.99

123.-137. 2.17+0.3
−0.27 2.14+0.07

−0.06 0.99

137.-152. 2.41+0.33
−0.3 2.37+0.06

−0.06 0.99

152.-168. 2.65+0.36
−0.33 2.61+0.07

−0.07 0.98

168.-187. 2.88+0.40
−0.36 2.77+0.08

−0.08 0.98

187.-207. 3.11+0.44
−0.40 3.08+0.10

−0.10 0.98

207.-230. 3.32+0.49
−0.43 3.25+0.11

−0.10 0.97

230.-255. 3.53+0.54
−0.47 3.59+0.12

−0.11 0.97

255.-283. 3.7+0.58
−0.51 3.72+0.14

−0.13 0.96

283.-314. 3.84+0.61
−0.54 3.79+0.15

−0.14 0.96

314.-348. 3.97+0.65
−0.56 3.98+0.16

−0.15 0.95

348.-386. 4.10+0.68
−0.59 4.04+0.18

−0.17 0.94

386.-429. 4.22+0.72
−0.62 4.26+0.18

−0.17 0.94

429.-476. 4.27+0.75
−0.64 4.31+0.21

−0.19 0.93

476.-528. 4.37+0.78
−0.66 4.32+0.20

−0.20 0.92

528.-586. 4.38+0.8
−0.68 4.25+0.19

−0.22 0.91

586.-800. 4.40+0.84
−0.71 4.46+0.22

−0.24 0.90

Table II: The values of RNLO
Z/γ and RNNLO

Z/γ at 13 TeV (rescaled
by a factor of 100), together with the additional correction
that corresponds to including EW effects in both processes.
Quoted ranges correspond to the variation in the central scale
by the six-point method described in the text.
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