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ABSTRACT

Exploiting certain robust topological inputs from the skyrmion description of compressed
baryonic matter with a scale-chiral symmetric Lagrangian, we predict the equation of state
that is consistent with the properties of nuclear matter at the equilibrium density, supports
the maximum mass of massive compact star ∼ 2M⊙ and surprisingly gives the sound velocity
close to the “conformal velocity” 1/

√
3 at densities ∼> 3n0. At the core of this result is the

observation that parity-doubling occurs in the nucleon structure as density goes above ∼ 2n0

with a chiral-singlet mass m0 ∼ (0.6− 0.9)mN , hinting at a possible up-to-date unsuspected
source of proton mass and an emergence at high density of scale symmetry and flavor local
symmetry, both hidden in the QCD vacuum.

1 Objective

As to whether certain fundamental symmetries of QCD, invisible or hidden in matter-free
space, can emerge at high baryonic density such as in massive compact stars is an extremely
interesting but difficult question to address. A variety of emergent symmetries are being
discovered in condensed matter systems, and are being discussed in particle physics, including
the possibility of emergent gravity and dark matter. In previous papers by the authors [1, 2],
it was proposed that both hidden local symmetry(HLS) and hidden scale symmetry could
emerge at densities relevant to ∼ 2 solar-mass neutron stars. In this paper, we further
sharpen the analysis made in [1] and explore possible consequences on the phase structure,
up to densities hitherto unexplored.
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We improve on what was treated in [1] and arrive at a fairly clear resolution of the
problem on how the emergent symmetries could manifest in massive compact stars. We
should stress that our aim here is basically different from what is being pursued in the astro-
nuclear community, which is to obtain with a battery of unknown parameters an equation of
state (EoS) that accommodates the astrophysical observations. Our objective, instead, is to
exploit the information provided by astrophysics to zero in on the totally unknown quantity,
namely what may be presumed to be highly correlated interactions that enter in dense matter
that go beyond what’s understood from conventional nuclear systems. What we find is that
at the core of the problem is the origin of the proton mass, more than 90% of which arise
out of “nothing,” and the emergence of both the scale and flavor local symmetries that are
not visible in the vacuum and baryonic matter at low densities. We admit that our point of
view is highly unorthodox in that it deviates, even drastically at least in appearance, from
the currently accepted paradigm in nuclear physics, namely that anchored on chiral effective
field theories involving nucleons and pseudo-Nambu-Goldstone (pNG) bosons.

What we find in a refined analysis of what’s in [1] is that in the same renormalization
group (RG) treatment with Vlowk adopted in [1], referred to in what follows as “Vlowk-RG,”
the compact star of mass Mmax ≃ 2.05M⊙ and radius R ≃ 12.19 km with the maximum
central density nmax ≃ 5.1n0 supports the sound velocity close to the conformal limit

v2s/c
2 ≃ 1/3. (1)

We suggest this to be a precursor signal for an emergent scale symmetry in dense medium.
This result seems to be in strong contrast with what’s found in conventional hadronic models
belonging to the class of “energy density functional (EDF),” v2c/c

2 > 1/3.

2 The Effective Lagrangian

As in [3], we consider ρ and ω mesons as the gauge bosons of [SU(2)V × U(1)V ]local HLS
with the gauge couplings gρ,ω and π meson as the pNG boson of [SU(2)L × SU(2)R]global
chiral symmetry with the nucleon N . There is a strong indication in both mean-field [3] and
renormalization-group [1] analyses that global U(2) symmetry for the vector mesons is badly
broken at high density. We introduce the Lorentz scalar and iso-scalar field σ – referred
to as “dilaton” – as the Nambu Goldstone boson of the scale symmetry. The fields we are
concerned with transform as

ξL,R → uh ξL,R g†L,R , (2)

gρ~ρµ · ~τ
2

→ λh gρ~ρµ · ~τ
2
h† − i∂µh · h† , (3)

gω
ωµ

2
→ λu gω

ωµ

2
u† − i∂µu · u† , (4)

χ → λχ , (5)

N → λ
3

2 uhN (6)

under the scale transformation, x → λ−1x, where gL,R ∈ [SU(2)L,R]global, h ∈ [SU(2)V ]local
and u ∈ [U(1)V ]local. We can parameterize the conformal compensator field χ and the chiral
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field U = ξ†LξR as

χ

fσ
= exp

(

− σ

fσ

)

, (7)

ξL,R = exp

(

iσω
2fσω

)

exp

(

i~σρ · ~τ
2fσρ

)

exp

(

∓ i~π · ~τ
2fπ

)

, (8)

where σω and σρ are would-be Nambu Goldstone bosons of HLS that will be Higgsed away
and fσ, fπ, fσω and fσρ are the decay constants of the associated fields.

Then, the effective Lagrangian we shall use, which is the same as in [1], referred to as
bsHLS Lagrangian, consists of the scale-invariant hidden local symmetric term Linv plus
symmetry breaking term LSB

1

L = Linv + LSB (9)

where

Linv = LN + LM , (10)

LN = N̄i

(

∂µ − igρ~ρµ · ~τ
2
− igω

ωµ

2

)

N −mN
χ

fσ
N̄N + gAN̄γµα⊥µγ5N

+ gV ρN̄γµ
(

α‖µ − gρ~ρµ · ~τ
2

)

N + gV ωN̄γµ
(

∂µσω
2fσω

− gω
ωµ

2

)

N , (11)

LM =
1

2
∂µχ · ∂µχ+ f2

π

(

χ

fσ

)2

tr
[

α⊥µα
µ
⊥

]

+ f2
σρ

(

χ

fσ

)2

tr

[

(

α‖µ − gρ~ρµ · ~τ
2

)2
]

+
f2
σω

2

(

χ

fσ

)2(∂µσω
fσω

− gωωµ

)2

− 1

2
tr [ρµνρ

µν ] − 1

2
tr [ωµνω

µν ] , (12)

LSB = −V (χ) +
f2
π

4
Tr
(

MU † + h.c.
)

(

χ

fσ

)3

, (13)

where V (χ) is the scale symmetry breaking potential to be specified below and M is the
mass matrix which to be consistent with the symmetry we are concerned with, i.e., chiral-
scale symmetry, should be of 3 flavors but we will focus on the SU(2) sector.

ρµν = ∂µ~ρ ν · ~τ
2
− ∂ν~ρµ · ~τ

2
− igρ

[

~ρµ · ~τ
2
, ~ρ ν · ~τ

2

]

, (14)

ωµν = ∂µω
ν

2
− ∂ν ω

µ

2
(15)

1There are a large number of papers published in the past where either vector mesons alone or vector
mesons together with a dilaton were taken into account in the skyrmion structure of both elementary baryon
and multibaryons systems. To quote one example, one such paper [4] addresses the properties of hadrons at
nuclear matter density. Now HLS Lagrangian is gauge-equivalent to non-linear sigma model at low energy(and
also low density), hence what’s treated in [4] is essentially the same as standard chiral perturbation approach.
We should emphasize that our interest is in high density for which a totally new aspect of scale-invariant
hidden local symmetry enters with the possibility of the VM(involving local gauge symmetry) and DL(involving
conformal symmetry) fixed points, none of which has been addressed by any authors up to now.
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and

αµ
⊥ =

1

2i

[

∂µξR · ξ†R − ∂µξL · ξ†L
]

, (16)

αµ
‖ =

1

2i

[

∂µξR · ξ†R + ∂µξL · ξ†L
]

− ∂µσω
2fσω

. (17)

The potential V (χ) is to encode the trace anomaly of QCD2,

θµµ =
β(αs)

4αs
Ga

µνG
aµν +

∑

q=u,d,s

mq q̄q (18)

with the gluon G and the quark q, and the trace of the energy-momentum tensor (TEMT)
is given by3

θµµ = 4V (χ)− χ
∂V (χ)

∂χ
+

f2
π

4
Tr
(

MU † + h.c.
)

(

χ

fσ

)3

. (19)

How this simplified Lagrangian is arrived at from a scale-invariant baryonic hidden local
symmetric Lagrangian [5] goes as follows. For illustration it suffices to consider (mesonic)
nonlinear sigma model as done by Crewther and Tunstall [6].4 Including baryon fields is
straightforward. Expanded from below, near an IR fixed point β(αIR), scale-symmetric
sigma model Lagrangian to the leading chira-scale order O(p2) takes the form

L = Linv + Lanom + V (χ), (20)

Linv = c1
f2
π

4

(

χ

fσ

)2

Tr
(

∂µU∂µU †
)

+ c2
1

2
f2
σ∂µχ∂

µχ, (21)

Lanom =

{

(1− c1)
f2
π

4

(

χ

fσ

)2

Tr
(

∂µU∂µU †
)

+ (1− c2)
1

2
f2
σ∂µχ∂

µχ

}

(

χ

fσ

)β′

, (22)

V (χ) =

(

χ

fσ

)4
[

c3 + c4

(

χ

fσ

)β′
]

. (23)

Following [6], we set, in the chiral limit, c1 = c2 = 1 + O(p2) which can be arrived at
by setting the dilaton field equal to zero for processes that do not involve scalar excitations.
The best way to understand this relation is that there is hidden scale symmetry in Standard
Higgs-type Lagrangian that yields both the scale-symmetric form and the nonlinear sigma
model form that can be reached when one dials a constant, respectively, to weak coupling

2We ignore the anomalous dimension of the quark mass operator.
3We are being cavalier here. In order to get this result, one would have to first make Linv scale invariant

using the conformal compensator field and accounting for explicit symmetry breaking. This procedure will be
explained below with pertinent references.

4A similar procedure with the possible existence of an IR fixed point was proposed by Golterman and
Shamir [7]. The relation between the two at the leading scale-chiral order is discussed in [8].
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limit and to strong-coupling limit [9]. Keeping to O(p2) in the leading-order Lagrangian, we
have

Linv =
f2
π

4

(

χ

fσ

)2

Tr
(

∂µU∂µU †
)

+
1

2
f2
σ∂µχ∂

µχ+O(p4). (24)

Hidden-local-symmetrizing this, we have sHLS Lagrangian[8],

LsHLS = f2
π

(

χ

fσ

)2

Tr
[

â⊥µâ
µ
⊥

]

+ af2
π

(

χ

fσ

)2

Tr
[

â‖µâ
µ
‖

]

− 1

2g2
Tr [VµνV

µν ] +
1

2
∂µχ∂

µχ+O(p4). (25)

We have written this Lagrangian in U(2) symmetric way for notational simplicity. It will be
broken to SU(2) × U(1) at high density.

In the presence of the vector mesons, there is an anomalous-parity term called homo-
geneous Wess-Zumino term (hWZ) which is left out in the above. It does not figure when
baryons are present but it needs to be treated in the skyrmion approach and will be com-
mented on at the conclusion section. The dilaton potential can be written to the leading
order in scale-chiral symmetry as [5]

V (χ) ≈ m2
σf

2
σ

4

(

χ

fσ

)4 [

ln

(

χ

fσ

)

− 1

4

]

, (26)

which is the dilaton potential familiar in the literature valid in the limit β′ ≪ 15. In the
derivation of (26), the mass formula valid in the chiral limit, i.e., m2

σf
2
σ = 4β′(4+β′)c ≃ 16β′c

– which is the dilaton analog to the Gell-Mann-Oakes-Renner relation for the pion – is used.
Now decomposing U(2) → SU(2)×U(1) and coupling baryons in HLS way to the Lagrangian
(25) leads to the bsHLS Lagrangian (9).

3 From Skyrmions to Effective Field Theory

Our principal thesis is that one can map certain robust properties dependent on topological
structure encoded in the skyrmion approach – with sHLS – to the effective field theory ap-
proach –with bsHLS – in accessing dense baryonic matter. Let us denote the former approach
as SkyrmionsHLS and the latter as EFTbsHLS. Our strategy is to establish a connection be-
tween the two, and exploit the power of both approaches to explore the EoS of compact-star
matter.

Since the essential ideas are developed in detail elsewhere, we merely summarize them
here in a concise way and then focus on sharpening the arguments made previously ([1]) on
what and how they will be correlated.

5There is an intriguing indication that β′ ∼ 2 in dense nuclear matter [8]. This would imply that this
approximation may be untenable.
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3.1 Effective field theory with bsHLS Laragian

We assume that the Lagrangian (9) is defined at a scale ΛM , matched to QCD via current
correlators [10, 11]. The matching endows the “bare” parameters of the effective Lagrangian
with nontrivial dependence on both perturbative and non-perturbative properties of QCD.
In particular, it allows the EFT Lagrangian to track the vacuum change in terms of various
condensates, i.e., quark condensate Σ ≡ 〈q̄q〉, gluon condensate G ≡ 〈G2〉 etc. Suppose
the Lagrangian is embedded in dense medium. The vacuum change caused by density will
then reflect on the change in the condensates involved and hence on the parameters of the
EFT Lagrangian. The resulting density dependence, intrinsic of QCD from the QCD-EFT
matching, will be referred to as “intrinsic density dependence” (IDD for short). The definition
of IDD – and how it enters in nuclear dynamics – will depend on how the theory is formulated.
This inevitably brings in certain non-uniqueness in the procedure. In this paper, it will be
defined with the bsHLS Lagrangian for EFTbsHLS along the line fully described in [1]. If
the massive degrees of freedom are integrated out, as in the standard ChPT (sChPT for
short) the IDDs that figure can effectively contain certain density-dependent higher-order
interactions that are integrated out such as short-range n-body forces with n > 2. Thus the
IDDs entering into the sChPT could differ from the IDDs of bare bsHLS. This point should
be kept in mind in following the reasoning developed in this paper.

3.2 Skyrmions on crystal lattice with sHLS Lagrangian

Given the framework of EFTbsHLS, IDDs can be more or less determined up to nuclear
matter density n0 ≃ 0.16 fm−3 either from experiments or theoretically in sChPT or in the
future, perhaps by lattice calculations. It will however be extremely difficult to track them at
higher densities going beyond n0. Here we rely on certain topological structure present in the
skyrmion approach, recently reviewed with extensive references in [12]. Given the daunting
mathematical difficulty in fully quantizing skyrmion matter, one can extract only limited
information from the skyrmion approach. Fortunately there are certain robust topological
properties that can be exploited. In particular, an extremely important observation in the
skyrmion approach is the changeover from skyrmions to half-skyrmions at a density n > n0.
Involving topology, it is robust even though the effect is present in skyrmions put on crystal
lattice, which can be justified only at large Nc. In fact a hint for the existence of a half-
skyrmion structure is already present, although invisible, in light nuclei such as the α particle.
It is found to provide the most important tool to enable one to access compact-star density.
The strategy we shall rely on is the skyrmion crystal structure obtained with sHLS, i.e.,
“SkyrmionsHLS.”

When the topology change is translated into the bare parameters of EFTbsHLS, it makes
a drastic – and novel – change in the IDDs across the transition density denoted n1/2. Specif-
ically it gives the prediction that going into the half-skyrmion phase, the in-medium pion
(dilaton) decay constant f∗

π (f∗
σ) and the in-medium nucleon mass m∗

N go over to a constant

f∗
π/fπ ≈ f∗

σ/fσ ≈ m∗
N/mN → κ (27)

where κ is a (nearly) density-independent constant κ ∼ (0.6−0.9). We will see that this result
is the key ingredient in making the sound velocity of massive compact stars approach the
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“conformality” (vs/c)
2 = 1/3. This differs from the predictions given by phenomenological

nuclear models, typically 0.6 − 0.8 [13].

The skyrmion crystal prediction (27) that the effective nucleon mass goes to a constant
of order O(mN ) is reminiscent of the parity-doublet nucleon model [14] in which the nucleon
mass contains a chiral-invariant mass m0

m∗
N = m0 +∆(Σ) (28)

where ∆(Σ) → 0 as Σ → 0. Unlike in the parity-doublet model where m0 is injected ab initio,
however, here it emerges for n > n1/2. In the half-skyrmion phase, the quark condensate Σ

vanishes when space-averaged, i.e., Σ → 0, but it is non-vanishing locally and hence supporting
chiral density waves with a non-vanishing pion decay constant. Therefore chiral symmetry
is not really restored as in the case of the parity-doublet structure. The changeover from
skyrmions to half-skyrmions, strictly speaking, is not a bona-fide phase transition with a
local order parameter although it behaves very much like one as one also sees in heavy-light
hadrons [15]. Since the pion is present, chiral symmetry is still spontaneously broken.

3.3 Mapping SkyrmionsHLS to EFTbsHLS

One of the characteristics of the SkyrmionsHLS approach to dense matter, i.e., on crystal
lattice, is that the solitonic background impacts on – or “warps” – the properties of the
degrees of freedom that are involved in the strong interactions. This then makes the param-
eters involved – such as the pion decay constant, the axial-vector coupling constant etc. –
background-dependent. Now the background depends on density, so those parameters will
inevitably slide with density. One may be able to formulate this phenomenon in terms of
what is known as “Klein-Kaluza metric (warping) effect” due to the background as suggested
in [16]. At very low density and energy, the background effect will be small and hence the
Skyrme model – with pions only – (consider it simplified from sHLS) should be equivalent
to chiral perturbation theory, say, sChPT – with nucleons and pions only (which can be
considered as simplified from bsHLS). However as density goes up high, the metric warping,
particularly with the massive degrees of freedom, could become highly nonlinear, and hence
could not be captured by higher order calculations in sChPT. We are proposing that this
warping is mostly, if not wholly, captured in the IDDs in bsHLS.

Making a realistic connection between the two – which we claim must exist – would require
working out quantum theories. Accessing the skyrmion matter quantum mechanically is still,
however, far from feasible whereas given the IDDs across n1/2, accessing the latter is feasible.
We will therefore extract from the skyrmion approach the properties based on topology
discussed above that we deem robust and incorporate them in the EFTbsHLS approach. More
specifically the relations (27) and (28) will be imported into doing the first decimation of the
Vlowk RG.

4 Analysis in the Mean-Field Approximation

We first apply the bsHLS Lagrangian (9) to dense matter in the mean-field approximation.
Relativistic mean-field (RMF) approach has been extensively used in nuclear physics for both
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finite and infinite systems. Its overall success for finite and infinite systems up to nuclear
matter density can be understood as an indication that doing RMF calculation is equivalent to
doing Landau Ferrmi-liquid fixed point theory [17]. Stated in terms of effective field theory
with Fermi surface, the approximation would become more accurate as density increases.
This is because in Wilsonian RG approach, the Fermi-liquid fixed point is approached as
Λ̃/kF → 0 where Λ̃ = Λ − kF (Λ being the cutoff scale on top of the Fermi surface from
which the decimation is done), provided of course, as we assume, the Fermi-liquid structure
continues to hold.

The thermodynamic potential Ω = E − TS − µN divided by the volume V at zero
temperature in mean-field with (9) for symmetric nuclear matter is

Ω(T = 0)

V

∣

∣

∣

∣

ω0=〈ω0〉, χ=〈χ〉

=
1

4π2

[

2E3
F kF −m∗ 2

N EF kF −m∗ 4
N ln

(

EF + kF
m∗

N

)]

+ V (〈χ〉)

+ [gω (gV ω − 1) 〈ω0〉 − µ]
2

3π2
k3F − 1

2
f2
σωg

2
ω

〈χ〉2
f2
σ

〈ω0〉2 (29)

where 〈ω0〉 and 〈χ〉 are the vacuum expectation value(VEV) of ωµ=0 and χ, m∗
N = 〈χ〉

fσ
mN

and EF =
√

k2F +m∗ 2
N . The nucleon number density is

n ≡ N/V = −∂(Ω/V )

∂µ
=

2

3π2
k3F (30)

and the chemical potential µ given by the condition ∂(Ω/V )
∂n = 0 is

µ = EF + gω (gV ω − 1) 〈ω0〉 . (31)

The energy density ǫ and the pressure P at T = 0 are given by

ǫ =
1

4π2

[

2E3
F kF −m∗ 2

N EF kF −m∗ 4
N ln

(

EF + kF
m∗

N

)]

+gω (gV ω − 1) 〈ω0〉n− 1

2
f2
σωg

2
ω

〈χ〉2
f2
σ

〈ω0〉2 + V (〈χ〉) (32)

and

P = − Ω

V

∣

∣

∣

∣

ω0=〈ω0〉, χ=〈χ〉

(33)

=
1

4π2

[

2

3
EF k

3
F −m∗ 2

N EF kF +m∗ 4
N ln

(

EF + kF
m∗

N

)]

+
1

2
f2
σωg

2
ω

〈χ〉2
f2
σ

〈ω0〉2 − V (〈χ〉) . (34)

Before proceeding, a side remark is in order here regarding the thermodynamic consistency
and IDDs.

Given the IDD in (9) embedded in medium, the parameters gV ω, gω, fσω and the hadron
masses are density dependent. In obtaining the above thermodynamics relations, we have
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cavalierly ignored dependence on density in those parameters in taking partial derivatives
with respect to density. For thermodynamic consistency, however, it is necessary to take
into account the density dependence in terms of local baryon field operators as was discussed
in [18]. A naive manipulation of density as a c-number in writing down the equations of
motion would bring inconsistency to thermodynamics relations. This has to do with what’s
known in nuclear theory as “rearrangement terms.” They are associated in nuclear theory
with many-body correlations. What this implies is that there is an ambiguity in defining
IDDs. How the IDDs are defined depends on at what scale the “matching” between EFT and
QCD is done and what the relevant degrees of freedom in EFT are at that matching scale
and how higher-order (e.g., loop) corrections are incorporated. An example is the effect of
n–body forces for n > 2 in EFT.

Suppose that the RG decimation is done from the scale Λ picked below the ω mass,
say ∼ 400− 500 MeV as in standard chiral perturbation (sChPT) approaches (see e.g. [19]).
Then the IDDs figuring in sChPT Lagrangian defined at ΛEFT with the n-body potentials for
n > 2 “integrated out” will contain not only the effects inherited from QCD at the matching
scale ΛM > Λ but also those effects decimated out from ΛM to Λ. The latter will involve
effects of n-body forces that involve mass scales of vector mesons. For instance, short-range
three-body-force effects could enter into the effective IDDs of sChPT Lagrangians. This is
one way to understand how the famous C14 dating process can be explained more or less
equally well (i) with IDDs but without three-body forces and (ii) with three-body forces
and without IDDs [20]. In [18], this problem was resolved by treating the density as the
VEV of the bilinear nucleon field operator N †N , and the field operator explicitly taken into
account in writing down equations of motion. This reflects on that what’s involved is higher-
dimension effective field operators in the Lagrangian that in the mean field are given in terms
of the VEV of density operator. The upshot of this somewhat intricate and fuzzy relation is,
however, that when done correctly, it should turn out that at the Fermi-liquid fixed point,
the parameters should depend on the Fermi-momentum.

Returning to the main flow of the discussion, we look at the stationarity conditions that
give the gap equations for χ and ω

∂ Ω

∂χ

∣

∣

∣

∣

ω0=〈ω0〉, χ=〈χ〉

= 0 ,
∂ Ω

∂ω0

∣

∣

∣

∣

ω0=〈ω0〉, χ=〈χ〉

= 0 . (35)

They lead to

m2

N 〈χ〉

π2f2
σ

[

kFEF −m∗ 2
N ln

(

kF+EF
m∗

N

)]

− f2
σω
f2
σ
g2ω〈ω0〉2〈χ〉+ ∂ V (χ)

∂χ

∣

∣

∣

χ=〈χ〉
= 0 , (36)

gω (gV ω − 1)n− f2
σωg

2
ω
〈χ〉2

f2
σ
〈ω0〉 = 0 . (37)

One obtains6 from (36) and (37) the VEV of the trace of energy-momentum tensor θµµ

〈θµµ〉 = 〈θ00〉 −
∑

i

〈θii〉 = ǫ− 3P

= 4V (〈χ〉) − 〈χ〉 ∂V (χ)

∂χ

∣

∣

∣

∣

χ=〈χ〉

. (38)

6Unless otherwise stated, we will work in the chiral limit.
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This is just what one gets by taking the mean-field value of (19). This shows that the
Fermi surface does not spoil scale symmetry. In fact we will arrive at the conclusion that
strongly-correlated hadronic interactions do not modify the dilaton potential. This feature
will account for the emergent scale symmetry in compact-star matter.

5 Renormalization Group Treatment with Vlowk

The treatment given in the mean field in Section 4 corresponds, albeit approximately but
surprisingly efficiently, to Landau-Fermi liquid fixed point theory. It would be more reliable –
provided there is no phase change – as density increases beyond n0. To go beyond the Fermi-
liquid approximation, the renormailzation-group appraoch with Vlowk (Vlowk-RG) proves to
be most powerful with the scheme developed as in [21, 1]. Arriving at the Fermi-liquid fixed
point corresponds to doing what is identified as the “first decimation” in [22] in terms of
the Vlowk-RG [23]. Going beyond the fixed point structure, i.e., the “second decimation,”
involves sophisticated high order correlation calculations. In what follows, we will simply
follow the procedure used in [21, 1] to do the two-decimation calculation. There will be
nothing new in formalism here. What’s new is in the way the IDDs are implemented in the
effective (bsHLS) Lagrangian (9).

Our basic premise is that when embedded in the medium characterized by density n, for-
mally interpreted in terms of baryon field operators as described above, the Lagrangian pre-

serves the same symmetry structure – apart from the non-Lorentz covariance – as in the

medium-free vacuum and as stated in Section 3.3, the effect of changes in the vacuum struc-

ture caused by density, including the topology change, is entirely encoded in the way the

parameters of the Lagrangian behave as density changes. Needless to say, should there be

phase transitions along the way, this scheme will break down. We will assume that this does

not happen in the density domain relevant in compact stars.

How the IDDs are defined in terms of the properties of scale symmetry involving the
dilaton χ and chiral symmetry involving π and V is spelled out in detail in [1]. We will follow
what’s done there. The first thing to do is then to incorporate the IDD structure of the “bare
parameters” of the Lagrangian7. The Lagrangian that gives both nucleon and meson masses
in (9) is

Lmass = −mN

fσ
χN̄N +

f2
σρ

2f2
σ

χ2
(

gρρ
a
µ

)2
+

f2
σω

2f2
σ

χ2 (gωωµ)
2 + LSB (39)

with the iso-spin index a. When embedded in medium, after shifting σ → 〈σ〉 + σ with

〈χ〉 ≡ fσ exp
(

− 〈σ〉
fσ

)

, the masses are given – with the ∗ denoting density dependence – as

Lmass = −m∗
NN̄N +

m∗ 2
ρ

2

(

ρaµ
)2

+
m∗ 2

ω

2
(ωµ)

2 − m∗ 2
σ

2
σ2 − m∗ 2

π

2
πa 2 , (40)

where σ and π are redefined as σ ≡ 〈χ〉∗

fσ
σ and πa ≡ 〈χ〉∗

fσ
πa to get the kinetic term in the

7We recall that since the RG (first) decimation is done from Λ < ΛM , certain many-body induced effects
will go into the “effective” IDDs. This will make the effective IDDs most likely different from the IDDs given
by the matching at ΛM .
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form as

Lscalar =
1

2
∂µσ∂

µσ +
1

2
∂µπ

a∂µπa . (41)

Then, the masses are related to 〈χ〉, gρ and gω – all of which are carrying IDDs – as

m∗
N

mN
≈ gV

g∗V

m∗
V

mV
≈ m∗

σ

mσ
≈
(

m∗
π

mπ

)2

≈ f∗
π

fπ
≈ 〈χ〉∗

fσ
≡ Φ∗ , (42)

where

m∗ 2
σ ≡ − ∂2V (σ)

∂ σ2

∣

∣

∣

∣

σ=0

. (43)

This result, first obtained in [1], is the principal element in our approach with the crucial
input on how the various parameters related in the specific way given in (42) flow as density
increases in compact-star matter. In (42), we used ‘≈’ to indicate (inevitable) small differences
between various different degrees of freedom depending on the choice of the cutoff from which
the decimations for Vlow k are made. Specifically, the cutoff values for the nucleon and mesons
are taken differently to account for differences that come from higher-order correlations as
mentioned above for, e.g., three-body forces.

5.1 The intrinsic density dependence (IDD)

Figure 1: E0/A for α = 0(left) and α = 1(right) matter, where α = (Nn − Np)/A and
A = Nn +Np with the proton/neutron number Np/n. The dots are from the Vlowk RG and

the solid lines are fit by Eq. (45). The saturation density is estimated as nsat = 0.154fm−3.

The only element of the present treatment that differs from what’s done in [1] is the
refinement of the behavior of the IDD in the Vlowk RG treatment. Based on the skyrmion
matter treatment as discussed above, we have an important change in the density dependence
in IDD at a density near n1/2 ∼ 2n0 at which the skyrmion-half-skyrmion changeover takes
place. It is this changeover that will be fine-tuned in this analysis. For convenience, we recall
the properties of IDDs from [1]:
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1. For n ≤ n1/2, the only scaling parameter is Φ∗. Its precise density dependence is
unknown. However there is information available from sChPT calculations backed by
date from deeply bound pionic nuclear systems available up to ∼ n0. In the absence of
precise analytical form, we adhere to simplicity and parameterize it as

Φ∗ =
1

1 + cI (n/n0)
for n ≤ n1/2 (44)

and extrapolate it from n0 up to n1/2 with a cI determined at n0. The coupling constants
gφNN for φ = σ, ρ, ω do not scale as argued in [1]. The constant cI will be fine-tuned
between 0.13 and 0.20 as explained in [1] so as to give the ground-state properties of
nuclear matter.8 It turns out that the results of the Vlowk calculation for n ∼< n1/2 can
be extremely well fit for both the symmetric nuclear matter and neutron matter by the
fitting functions

E0/A = AI

(

n

n0

)

+BI

(

n

n0

)DI

. (45)

They are shown in Fig. 1.9 For completeness, we give the predictions for the symmetric
nuclear matter at n0: Equilibrium density n0 = 0.154 fm−3, binding energy BE = 15.5
MeV, compression modulus K = 215.2 MeV.

Figure 2: The symmetry energy vs. the density

The symmetry energy, an extremely important quantity for compact stars, defined by

Esym = E0(n, α = 1)/A− E0(n, α = 0)/A , (46)

8cI ≃ 0.20 at n0 reproduces the empirical value for the pion decay constant f∗
π/fπ ≃ 0.8 extracted from

deeply bound pionic nuclei. We should stress that within the highly limited number of the free parameters,
one can obtain a remarkable description of nuclear matter in this formalism. This is of course not the objective
of this paper.

9These are obtained – with high precision – with the constants (AI , BI , DI) = (−45.5 MeV, 30.1 MeV, 1.54)
for α = 0 (symmetric nuclear matter) and (AI , BI , DI) = (9.11 MeV, 2.14 MeV, 4.08) for α = 1 (pure neutron
matter).
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can also be fairly accurately calculated. The result is given in Fig. 2 . Often cited
in the literature as “constraints” for the EoS for compact stars are Esym|n=n0

, L =

3n
dEsym

dn |n=n0
, and Ksym = 9n2 d2Esym

dn2 |n=n0
: Esym/MeV = 32 ± 2 and L/MeV = 50 ±

15.10 The predicted values are Esym ≈ 26 MeV and L ≈ 49 MeV. The former is a bit
smaller than, while the latter is consistent with, what’s quoted in the literature. The
Ksym cannot be calculated reliably because being a double derivative it is extremely
sensitive to the fitting function. In fact in the literature, various different models give
Ksym between - 136 MeV and + 73 MeV [13]. We consider it futile to attempt to pin
it down with our scheme that focuses on high-density matter.

2. In the density regime n > n1/2, there is a topology change in SkyrmionsHLS that dras-
tically affects the IDDs at n = n1/2. The existence of such a topology change is one of
the most robust inputs from skyrmion matter. From (27), we have

Φ∗ ≈ κ ≈ 1

1 + cI
(

n1/2/n0

) for n > n1/2. (47)

It is a density-independent constant related to the chiral invariant mass m0 of the
nucleon and more significantly to the dilaton condensate 〈χ〉∗.
Among other IDDs, the most crucial in our approach is the hidden gauge coupling
gρ that governs the IDD of the ρ mass by the low-energy theorem mρ ∝ fπgρ with
fπ ≈ fσ in medium. The skyrmion description of the cusp form of the symmetry
energy at n = n1/2, which is reproduced by the change in the nuclear tensor forces [24],
combined with the vector manifestation(VM) fixed-point structure of HLS leads to
that for n > n1/2 the coupling gρ should drop to zero toward the putative VM fixed
point nVM. In [21, 1], this feature was approximately represented by the linear form
g∗ρ/gρ ≈ 1 − n/nVM. Below we will modify this scaling in such a way to reproduce
the behavior of the trace of the energy-momentum tensor (TEMT) tending toward a
density-independent constant for n > n1/2.

As for other parameters, we take them to be as given in [1] for n > n1/2,

m∗
i

mi

∣

∣

∣

∣

i=N, σ, ρ, ω

=

(

0.71, 0.75,
g∗ρNN

gρNN
, 0.73

√

a∗ω
aω

g∗ωNN

gωNN

)

, (48)

where

a∗ω
aω

=
1

2

(

1 +
1

1 + 0.011(n − n1/2)/n0

)

,

g∗ωNN

gωNN
=

1

1 + 0.075(n − n1/2)/n0
(49)

which are slightly different from the scalings of a∗ω
aω

and
g∗ωNN
gωNN

in [1] and compared with
those in [1] in Fig. 3.

Notable in the analysis there as well as in this paper was that the U(2) symmetry for
ρ and ω which holds fairly well in the vacuum – and most likely in low-density regime

10What’s given here is a rough set of data. In our view, these “constraints” given at n = n0 are not the
necessity for getting the EoS at densities relevant to massive compact stars. This point is made in the text.
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below n1/2 – must break down at higher density. This breakdown requires some small
minor modifications from what’s taken in [1]. We will explain how this U(2) breakdown
can be understood with an emerging scale symmetry in dense medium.

Figure 3: The density dependence of the masses(left) and couplings(right) of vector mesons
are compared with each other in PKLR[1] and PKLMR(the present work).

5.2 Going from R-I (n ∼< n1/2) to R-II (n > n1/2)

Of the parameters that undergo changes as density goes across the topology change density,
the most striking quantity is the effective hidden gauge coupling g∗ρ. What the effective

HLS coupling means in the calculation of EoS depends upon how the Lagrangian bsHLS is
treated.

In the mean-field approach adopted in [3], it represents g(gV ρ − 1) where g is the hidden
gauge coupling defined by the matching to QCD at the matching scale and (gV ρ−1) is an in-
duced factor that is meant to take into account the effect involved in the scale change from the
matching scale to the scale from which the mean field is taken. In the spirit of Walecka-type
relativistic mean field (RMF) approach implemented with scaling parameters [25], corrections
to the mean field should be suppressed in the sense that Λ̃ ≡ Λ − kF → 0 as in Landau-
Fermi liquid fixed point theory. In other words, it corresponds to the single-decimation RG
procedure.

As for the VlowkRG that involves the double-decimation strategy, we start with the as-
sumption that the nuclear matter at equilibrium can be described in terms of Wilsonian
RG [26]. There the quasiparticle interactions are to have vanishing β functions in the limit
N ≡ kF /(Λ − kF ) → ∞ (where Λ is the cutoff for decimation). With the vector mesons
and the dilaton of bsHLS Lagrangian, considered heavy compared with the Fermi sea scale,
integrated out to give the marginal four-point quasiparticle interactions, nuclear matter can
be considered to be at its Fermi-liquid fixed point [25]. In going beyond the equilibrium
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density, we continue to assume the Fermi-liquid structure applies. In Appendix, we will
present an admittedly simplistic argument based on skyrmion-crystal matter how a mean-
field structure arises in the half-skyrmion phase, which leads – in the premise that we have
adopted – to a Fermi-liquid structure. Now consider the parameter space of bsHLS on top
of the Fermi-liquid fixed point. Approaching the IR fixed point with the scale parameter
Λ̃ ≡ Λ− kF → 0, the parameters of the EFT Lagrangian should scale such that the β func-
tion for the quasiparticle interactions tends towards zero at a given Fermi-momentum kF .
Suppose the density is changed from kF1 to kF2, then certain parameters should change, say
the quasiparticle mass as an example, from m∗(kF1, Λ̃ = 0) to m∗(kF2, Λ̃ = 0) to preserve
β(kF1, Λ̃ = 0) = β(kF2, Λ̃ = 0) = 0. This means that the Fermi-liquid fixed point quan-
tities are closely related to each other at a given density so that g∗V (kF , Λ̃ = 0) as well as
m∗(kF , Λ̃ = 0) should be dependent on 〈χ〉∗ and kF to have β(kF , Λ̃ = 0) = 0. Thus in the
density regime n ∼< n1/2 (R-I), the condensate 〈χ〉∗ given in the mean field [3], locked to the
quark condensate 〈q̄q〉, decreases as observed in experiments [27]. The hidden gauge coupling
remains unscaling in this density regime.

Now going to n > n1/2, the dilaton condensate 〈χ〉∗ should stay constant as predicted by

the theory, i.e., (47). This requires that g∗ρ,ω(kF , Λ̃ = 0) scale to preserve β(kF , Λ̃ = 0) = 0
as density increases. Then the flow to the VM fixed point for the vector mesons and the
dilaton-limit fixed point for the scalar, involving an intricate interplay between their couplings
to baryons to preserve the Fermi-liquid fixed point structure, leads to the change in density
dependence of g∗ρ from g∗ρ ≈ gρ near n = n0 to g∗ρ → 0 near the VM fixed point. This
changeover is summarized in Fig. 3. We admit that although consistent with what we find in
the applications reported below, it is non-rigorous and requires a more transparent analytic
demonstration.

5.3 Toward 〈θµµ〉 ∝ κ4 for n > n1/2

Following the argument given in Section 3.3, we take the results of the skyrmion crystal using
sHLS Lagrangian, i.e., SkyrmionsHLS, to be equivalent to the mean-field results of bsHLS with

the IDDs properly taken into account. Now from (27) of SkyrmionsHLS, we have for n > n1/2

〈χ〉∗ ∝ κ (50)

which is independent of density. Then, it follows from (38) that

〈θµµ〉 ∝ κ4 (51)

also independent of density. As will be explained explicitly, the constant TEMT implies
that the sound velocity of the dense medium is v2s/c

2 = 1/3. This sound velocity is usually
associated with the conformal limit, which is arrived at when the TEMT is equal to zero.
Here the same velocity is given by a system where TEMT is not equal to zero. Note that
κ → 0 corresponds to the dilaton-limit fixed point (DLFP). We will discuss how this limit
can be arrived at in the framework of EFTbsHLS.

The question is: Can the Vlowk RG treatment give the same sound velocity 1/
√
3?

To address this question, we recall that the bsHLS at the mean field corresponds to
Landau Fermi-liquid fixed point with the vanishing β functions for the Landau quasi-particle
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interactions and effective quasiparticle mass m∗ for fixed kF . In our terminology, this is
precisely the first RG decimation in the Vlowk RG. Now with our main assumption that
the β functions remain 0 as (Λ− kF )/kF → 0, we should expect that the second decimation
going beyond the Fermi-liquid fixed point – with loop corrections, e.g, ring diagrams – should
leave the TEMT unmodified. This means, following from the skyrmion-crystal result, that
the TEMT should be a constant independent of density in the leading order in chiral-scale
symmetry [5]. The caveat is that in Nature, both symmetries, intricately locked to each
other, are explicitly broken. Therefore we cannot expect that the TEMT will be exactly
density-independent.

What we aim then is to adjust the only IDD property in the region n > n1/2 that is
unconstrained in SkyrmionsHLS, namely the approach to the VM fixed point of the hidden
gauge coupling g∗ρ. It turns out that what is needed is to have the effective g∗ρ drop less rapidly
than in [1] slightly after n1/2 and have the VM fixed point reach at a higher density, say,
n > 25n0 than ∼ 7n0, which was taken in [1]. This postponement to higher density for a phase
transition, be that chiral restoration coinciding with the VM fixed point or deconfinement,
the precise value of which is unknown in the given theoretical framework and also in QCD
proper – so it is totally arbitrary – simply implies that there will be no phase transitions in
the range of densities relevant to compact stars.

Figure 4: −ǫ(n) + 3P (n) vs. density for α = 0 and α = 1

The required adjustment for the IDD for the g∗ρ to get a constant density-independent
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TEMT for n > n1/2 is summarized in Fig. 3. The density dependence of
g∗ρNN

gρNN
is given by11

g∗ρNN

gρNN
=

{

1− 0.15 n
n0

for n1/2 < n < 2.88n0

0.568 − 0.025 (n−2.88n0)
n0

for 2.88n0 < n < nc
(52)

which gives
m∗

ρ

mρ
=

g∗ρNN

gρNN
= 0 at n = 25.6n0. The resulting TEMT is plotted in Fig. 4. It

turns out, quite surprisingly, that this result can be captured very well by the simple formula
for n ≥ n1/2

E0/A = −mN +B

(

n

n0

)1/3

+D

(

n

n0

)−1

(53)

which is an analytic solution of dP
dn = 1

3
d ǫ
dn which assumes the density independent TEMT in

n > n1/2. To confirm that it is a good parameterization, it is checked with the energy per
particle E0/A and the pressure P of both the symmetric nuclear matter and pure neutron
matter as well as the symmetry energy Esym computed in our VlowkRG. The fit is plotted in
Fig. 5. The fit parameters are

Bα=(0,1) = (570 MeV, 686 MeV), (54)

Dα=(0,1) = (440 MeV, 253 MeV). (55)

It is seen that the results of the Vlow k-RG with bsHLS are well reproduced for both the
neutron matter(α = 1) and the symmetric nuclear matter(α = 0) by the formula (53). There
are small deviations at high density, for instance in Esym in Fig. 6, but these could be
ameliorated by a refined form for the IDD in the bare parameters. What transpires is that
the simple form is good enough to confirm that our scenario is well captured in Vlow kRG
with bsHLS and to correctly give the scaling property of the bsHLS parameters essential for
the TEMT in the high-density regime n > n1/2. As we see in Fig. 5, the EoS’s for both the
α = 1 and α = 0 matter are stiff in n > n1/2. This feature is consistent with the available
heavy ion data. The dotted and dashed lines in Fig. 5 and 6 depicting the pressure and the
symmetry energy represent the empirical constraints for the EoS coming from heavy-ion data
given by Danielewicz[29] for the pressure, Li et al[30] and Tsang et al[31] for the symmetry
energy respectively. Note that the cusp seen in the skyrmion crystal simulation is smoothed
in the Vlowk RG into a soft-to-hard EoS at n1/2 as observed, e.g.,in [1].

5.4 Predictions for massive compact stars

Given the EoS described above, it is a standard procedure to use the Tolman-Oppenheimer-
Volkoff(TOV) equation to calculate the properties of compact stars. The leptons that par-
ticipate in beta stability need to be taken into account as they determine the proton fraction

11The precise form of the scaling has no significance. What matters is the two changes in slope seen in
Fig. 3, one at n1/2 ∼ 2n0 and another at ∼ 3n0. They could be smoothed and modified with refinement in
the renormalization group treatment, which would alleviate the flattening in the scaling. In fact it has been
shown that in a simple chiral model of interacting mesons and nucleons, a functional renormalization group
(FRG) method – which is nonperturbative improvement over standard chiral perturbation theory and mean-
field approximations – flattens appreciably the dropping in density of the chiral order parameter at densities
exceeding n0 [28]. It is not unlikely that this method contains more than what’s included in our Fermi-liquid
approach via VlowkRG and could modify the effective IDDs for the hidden gauge couplings.
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Figure 5: E0/A(left) and P (pressure) (right) for α = 1 and α = 0 matter. The empirical
values(named “Exp”) for the pressure are taken from Danielewicz[29].

x ≡ np/n = Np/(Nn + Np). Beta equilibrium involving leptons, i.e., electrons and muons,
n ↔ p+ e− + ν̄e and n ↔ p+ µ− + ν̄µ and charge neutrality imply

np = ne + nµ, µn = µp + µe, µe = µµ (56)

where

µn,p =
( ∂ǫ

∂nn,p

)

V
. (57)

It is a good approximation to assume µl to be the chemical potentials of those of free Fermi
gas of electrons and muons. The proton fraction x ≡ np/n for matter in beta equilibrium is
then determined by minimizing, for a given nucleon density n, the total energy per particle
E0/A (in Fig. 5) plus the contributions from leptons and from the rest mass of the nucleons.
Here, we take µn − µp ≈ 4Esym(n)α. The resulting proton fraction is given in Fig. 7. It
is appropriate to mention at this point that the predicted proton fraction is such that at
n ∼ 2.5n0, it exceeds the threshold density for the direct URCA process for star cooling,
xdURCA ≈ 0.14. It also affects significantly the maximum star mass, say, about 10% in
comparison with the EoS of pure neutron matter. We will comment on this matter in Section
6.

The same EoS that gives the constant TEMT, Fig. 4, with the beta equilibration suitably
included, gives the star mass vs. radius and the star mass vs. central density, as shown in
Fig. 8. The result is consistent with the well-measured value M = 2.01 ± 0.04M⊙[32]. The
radius for this mass object is not yet pinned down but what we get is in the ranges discussed
in the literature. It is reasonable to conclude that we have here an evidently respectable EoS
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Figure 6: The symmetry energy Esym vs. the density is shown. The empirical values(named
“Exp”) for the symmetry energy are taken from Li et al[30] and Tsang et al[31].

for massive compact stars. Up to the predicted central density ∼ 5.1n0, there are no other
degrees of freedom than the pNG bosons (π and σ) and vector mesons (with or without explicit
baryons). There are neither hyperons nor quarks. There is no de-confinement intervening in
the structure.

Now what about the sound velocity for the ∼ 2 solar mass neutron star? Here is a
surprising result.

The trace of energy-momentum tensor and the sound velocity are related by

∂

∂n
〈θµµ〉 =

∂ǫ(n)

∂n

(

1− 3
v2s
c2

)

(58)

with v2s/c
2 = ∂P (n)

∂n /∂ǫ(n)
∂n . Since from Fig. 4, we have the TEMT (nearly) independent of

density, the left-hand side of (58) is (nearly) zero. Assuming that there is no extremum in

the energy density in compact star matter, then ∂ǫ(n)
∂n 6= 0. It therefore follows that

v2s/c
2 ≈ 1/3. (59)

The prediction of our approach is given in Fig. 9. Our EoS, while it gives quite different
sound velocities at densities below n ∼ 3n0 for the α = 0 and α = 1 matters, makes both
of their velocities approach rapidly

√

1/3 for n ∼> 3n0. Note that in the range of densities
considered here, 〈θµµ〉 6= 0, so scale symmetry is not restored. We identify this phenomenon
as a precursor to the emergence of scale symmetry in dense medium.

This is one of our principal findings, which could be considered as a unique prediction of
the theory. What this implies vis-à-vis with the EoS is discussed in the discussion section.

19



Figure 7: The proton fraction x ≡ np/n in neutron star matter with beta equilibrium. “npe
matter” and “npeµ matter” are composed of neutron, proton, electron and neutron, proton,
electron, muon respectively.

5.5 Gravity wave and tidal deformability

Our Vlowk-RG approach makes certain predictions that differ from the phenomenological
approaches found in the literature, in some cases, rather strikingly such as the sound velocity,
the density-independent trace of energy momentum tensor and emerging symmetries invisible
in QCD in the vacuum. One asks whether these predictions can be distinguishable from
other models and can be seen in measurable quantities. Phenomenological models with a
large number of parameters can be adjusted to fit most, if not all, of what’s available from
astrophysical observables, so what is needed is a pristine signal for the unorthodox predictions
made in the present approach. For this purpose, we look at what could be seen in gravity
waves emitted in the coalescing of neutron stars. We discuss as a specific case the tidal
deformability predicted by the EoS given by Vlowk-RG and compare it with what’s available
in the literature.

With the EoS given by bsHLS above, we could calculate the tidal deformability λD as

shown in the left panel of Fig. 10 and also the dimensionless quantity ΛD = λDG
(

c2

GM⊙

)5 (
M⊙

M

)5

with the gravitational constant G.

The most interesting mass range is 1.3−1.5M⊙, for which most of neutron star masses so
far discovered are populated. One may expect more abundant gravitational wave emissions
from binary collapses with this mass range than from the binaries with different masses. The
deformation parameters λD and dimensionless parameters ΛD for mass ranges 1.1−1.5M⊙ are
calculated in Table 1 with the corresponding radii and central densities. The deformability
parameter for ∼ 1.4M⊙ is found to be 4.44 in unit of 1036gcm2s2, which can be compared
with those of different EoS’s: For example, the EoS’s of SLy[33], AP3[34] and MPA1[35] for
the same mass give λD = 1.70, 2.22 and 2.79 respectively [36].
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Figure 8: Mass M vs. radius R and M vs. central density ncent.

Table 1: Tidal deformabilities

M/M⊙ nc/n0 λD/(10
36gcm2s2) ΛD/100 R/km

1.10 1.8 4.59 26.5 12.7
1.25 1.9 4.56 14.1 12.9
1.39 2.0 4.44 8.15 13.0
1.45 2.1 4.35 6.44 13.0
1.51 2.2 4.22 5.06 13.1

On the other hand, in the higher mass range near to ∼ 2M⊙, the deformability parameter
in this work is found to be not much different from those EoS above mentioned.

For the measurability analysis of deformability from gravitational waves, it is better to
use the dimensionless form of deformability parameter, since the deviation due to the neutron
star deformation from point particle approximation turns out to be expressed by ΛD rather
than λD itself. From Table 1, one can see that the dimensionless parameter ΛD = 815 for
M = 1.4M⊙ predicted in our approach is much larger than ΛD = 312, 408, 512 for those
EoS of SLy[33], AP3[34] and MPA1[35] respectively. The differences between those and this
work are δΛD = 503, 407, 303. It is interesting to note that recent numerical analysis[37,
38] demonstrated the measurability of tidal deformations determined by the change of late
inspiral wave forms for δΛD > 100. This implies that the differences between this work
and those above mentioned, which are larger than the distinguishability criteria [38], are
expected to be measurable in the forthcoming observations at aLIGO and aVirgo. It should be
mentioned that the central densities of these neutron stars, 1.1−1.5M⊙, are not high enough
to probe the half-skyrmion phase, nc ∼< n1/2(= 2n0). Most of these neutron star interiors up
to the central core is governed by the EoS for n < 2n0: E/A(MeV ) = 9.11 u + 2.14 u4.08

for a neutron matter and E/A(MeV ) = −45.5 u+30.1 u1.54 for a symmetric nuclear matter
with u = n/n0. The major characteristics of this work is the Vlowk-RG approach, which is
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Figure 9: Sound velocity vs. density.

quite different from others in this density region, such as giving much bigger deformation
parameters than others.

For large mass neutron stars, the central density is higher than the threshold for the half
skyrmion phase, in which TEMT becomes independent of density with sound velocity v2s/c

2 =
1/3: E/A(MeV ) = −940+253/u+686 u0.33 and E/A(MeV ) = −940+440/u+570 u0.33 for
a neutron matter and symmetric nuclear matter respectively. In this mass range, as the mass
is increasing the deformation parameter decreases and near 2M⊙ the deformation parameter
becomes not much different from others as seen in [39]. The distinguishability of EoS by
the tidal deformation using gravitational waves does not seem to be effective for these high
mass binaries. Hence there may be scant possibility for the tidal deformability to determine
whether our scenario with the sound velocity 1/3 is distinguishable from other garden-variety
models in the gravitational wave forms from the higher mass neutron star binaries. However
our scenario is quite different from that of others of phenomenological approaches where the
sound velocity is typically > 0.5 which would make them in tension with the conformality
bound of Bedaque and Steiner[40].

Another possibility of probing EoS at higher density is the gravitational waves emitted
just after merger. When they start merging after inspiral and the density of the merger
remnant of the colliding matter becomes much higher than the core of the original stars.
That is, at the intermediate stage before becoming a black hole, 1.5 solar mass binaries(even
though the core density is not higher than 2n0 ) can make a merger remnant of higher density
up to ∼ 5.5n0 [41]. The gravitational wave forms during merger of course are then expected
to carry the information of EoS at the higher density. From the numerical simulations, it is
known that the relevant frequency range of GW during merger is much higher than inspiral
period, more than kilo Herz. Recent analysis[41] demonstrates that the EoS softening at
higher density encoded in gravitational wave amplitudes can be detectable up to distances of
∼ 20 Mpc with advanced detectors(aLIGO and aVirgo) and ∼ 150 Mpc with third generation
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Figure 10: The deformability λD(ΛD) vs. the neutron star masses are shown.

detectors(for example, Einstein Telescope(ET)). This shows an additional interesting window
in gravitational wave observations where the high density hadronic matter can be probed to
be able to distinguish our scenario from others.

5.6 Going to the DLFP

As emphasized, there is no reason to adhere to the possibility that the sound velocity of
compact stars is exactly 1/

√
3. This is because the TEMT cannot be exactly constant of

density in the density range of compact stars in nature, not exceeding much beyond the
central density ∼ 5n0. Among others, there is explicit symmetry breaking, chiral as well
as scale, that needs to be accounted for. However at some higher density, say, ∼> 7n0, the
dilaton-limit fixed point with 〈χ〉∗ → 0 may be approached if not reached exactly on top. In
this case then the sound velocity will approach nearly exactly 1/

√
3. This would correspond

to the emergence of scale symmetry in dense medium even though β′ is not equal to zero.

We have no rigorous argument for the existence of such a phenomenon. However we can
entertain a conjecture that could be validated with better understanding of the structure of
the theory.

Given the “walking” dilaton condensate for n > n1/2, the question is how one can induce
〈χ〉∗ → 0 to reach the DLFP in dense matter. This may appear difficult to answer in an
affirmative way. However if one accepts the density dependence of g∗ω as prescribed in our
theory, with a change after n = n1/2, the following is a possible scenario for the transition to
the DLFP.

When g∗ω decreases, albeit slowly, as density increases in the density regime n ∼> n1/2,
the ω-repulsion will get reduced but if it still counter-balances the σ-attraction enough as
density goes above n1/2, then the matter will remain stable. But, if the g∗ω becomes further
suppressed so that the ω-repulsion becomes comparable with or weaker than the σ-attraction,
then the matter will become unstable at increasing density unless the parameters in bsHLS
are modified. Approaching the dilaton-limit fixed-point density nDLFP , the matter could
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be stabilized by intricate parameter changes such that 〈χ〉∗ → 0 with the quasiparticles
decoupled from the ρ and ω and the dilaton becoming massless m∗

σ ∝ 〈χ〉∗ → 0.

We can offer a heuristic mean-field argument that supports the scenario discussed above,
namely that the walking 〈χ〉∗ ∼ constant induces the system to go to DLFP. In the mean-
field approximation with bsHLS, the ω-NN interaction could be reinterpreted to include the
ω-exchange force between the nucleons given by loop contributions to the ω-NN vertex, such
as Fock terms. If g∗ω drops at increasing density, then the ω-repulsion will get reduced. This
density dependence of the ωNN -repulsion should be taken into account in doing the mean-
field calculation. For simplicity, we include the effects from the ω exchange and higher order
terms of bsHLS for the ωNN repulsion into the density dependence of g∗V ω following [25, 3].
Then the thermodynamic potential with a density-dependent g∗V ω and g∗ω for bsHLS can be
written as

Ω(χ, n) =
1

4π2

[

2E3
F kF −m∗2

NEF kF −m∗4
N ln

(

EF + kF
m∗

N

)]

+
(g∗V ω − 1)2

2f2
σω〈χ〉∗ 2/f2

σ

n2

+ V (〈χ〉∗)− µ(n)n , (60)

where EF =
√

k2F +m∗ 2
N and the chemical potential is given as a function of density n by

µ(n) = EF (n) +
(g∗V ω − 1)2

f2
σω〈χ〉∗ 2/f2

σ

n+
(g∗V ω − 1)

f2
σω〈χ〉∗ 2/f2

σ

n2∂ (g
∗
V ω − 1)

∂n
(61)

including the rearrangement term
(g∗V ω−1)

f2
σω〈χ〉

∗ 2/f2
σ
n2 ∂(g

∗
V ω−1)
∂n . As shown in [3], if g∗ωNN ∼ n− 1

2 so

that 〈χ〉∗ ∼ constant, the thermodynamic potential (60) becomes

Ω(n)walking 〈χ〉 ≈ − 1

4π2

[

2

3
EFk

3
F −m∗ 2

N EFkF +m∗ 4
N ln

(

EF + kF
m∗

N

)]

+ V (〈χ〉∗) (62)

which gives 〈θµµ〉 ≈ constant. This can be well fitted by Ω(n)walking 〈χ〉 ≈ −A × k4F − B <

Ω(n)DLFP = − 1
6π2 k

4
F at low density, where 0 < A < 1

6π2 , 0 < B12. Thus we find that
Ω(n)walking 〈χ〉 becomes greater than Ω(n)DLFP as density increases above some density. This
means that the baryonic matter with g∗ωNN = 〈χ〉∗ = 0 at DLFP becomes more favorable
energetically than the matter with a walking 〈χ〉∗. This will trigger a (first-order) transition
to DLFP. We recall that gωNN = 0 is required in RG analyses of the bsHLS parameters to
arrive at the DLFP as an IR fixed point [3] and also for the skyrmion matter simulated on
lattice [42, 43] to arrive at 〈χ〉∗ → 0 which makes the energy density be E/B/V ∝ 1

L4 ∝ n4/3

so that 〈θµµ〉 = 0 and 〈χ〉∗ = 0. These results support that the density dependence of g∗ωNN

related to the behavior of 〈χ〉∗ is important for going to the DLFP. How the ω-nucleon
interaction is related to the emergence of the scale symmetry could be studied in the scale-
chiral Lagrangian approach formulated in [8].

Furthermore if nDLFP ∼ nVM , the vector manifestation could set in with f∗
σρ → f∗

π and
m∗

ρ(∼ g∗ρ) → m∗
π → 0 approaching the VM fixed point, together with the GL satisfied by

f∗
σ → f∗

π and m∗
σ → m∗

π → 0 approaching the DLFP. Note that in this scenario the sound

12By doing the mean-field calculation with bsHLS, it is shown that 〈χ〉∗ = 0 if gV ω = 1 so that Ω(n)DLFP =
− 1

6π2 k
4

F .
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velocity vs/c ≃ 1/3 will have no discontinuity as 〈χ〉∗ changes from “walking” to “running”
toward zero. It may be that the DLFP and the VM fixed point coincide, in which case π,
σ, ρ and a1 could come together into Weinberg’s “mended symmetry” [44]. Whether this
state of matter can be reached in Nature will require a treatment in the half-skyrmion phase
which in sHLS sets in for n > n1/2 which we believe must overlap with the quarkyonic phase
in which quark degrees of freedom are to figure [45].

We admit that the scenario described in this section is highly speculative.

6 Remarks

It is shown in this paper that an EoS constructed with an EFT Lagrangian whose intrinsic
density dependence is inherited from QCD combined with what one can extract from a
skyrmion structure of dense matter, that give a satisfactory description of currently measured
massive compact-star properties, predicts the sound velocity approaching the conformal limit
1/
√
3. The essential ingredient was that the trace of the energy-momentum tensor in the

chiral limit of QCD approaches, at density n ∼> 2n0, a density independent constant κ4 where
κ is given by the dilaton condensate 〈χ〉∗. This result comes essentially from the fact that as
pointed out by Yamawaki [9], there is hidden scale symmetry in the strong interactions that
also involve hidden local symmetry. How this comes out in the present paper hangs crucially
on what comes out of skyrmion descriptions of dense baryonic matter with the vector mesons
and the dilaton present as relevant degrees of freedom.

The behavior of the sound velocity v2s/c
2 for pure neutron matter predicted by our ap-

proach in Fig. 9 has a peculiar feature in the vicinity of n ∼ 2n0 where the topology change
takes place. It starts with v2s/c

2 < 1/3 at low density n < 2n0, goes up to v2s/c
2 > 1/3

at n ∼ 2n0, drops below 1/3 and then climbs to and asymptotes at 1/3 at higher density
n ∼> 3n0. This feature closely resembles the scenario arrived at by Bedaque and Steiner [40]
in the study of the sound velocity based on their analysis of neutron stars with mass around
two solar masses with various phenomenological equations of state. In our theory, there is
a rather abrupt changeover of the bsHLS Lagrangian parameters due to a topology change
(such as the cusp in the skyrmion crystal description), so one might imagine that such a be-
havior could be an artifact of the sharp transition. One of the characteristic features arising
from the topology change is the stiffening of the symmetry energy at higher density n > 2n0.
It is responsible for the relatively high proton fraction of nuclear matter in beta equilibrium.
It might render the direct URCA process to set in precociously and trigger too rapid a star
cooling which might be at odds with observation. If it turns out to be serious, then that
would indicate within our formalism that we need to improve on how the vector manifesta-
tion property of the ρ meson sets in at high density. This matter may be related to what’s
mentioned in footnote 10 regarding the effective IDD of the gauge coupling constant. On the
other hand, the fact that the dense baryonic matter in our description is in the precursor
state to an emerging scale invariance and hence manifesting a conformal-type sound velocity
as we are proposing is highly suggestive of the intricate mechanism of the Bedaque-Steiner
scenario. What is surprising in our description is, however, that the “conformal” sound ve-
locity v2s/c

2 = 1/3 sets in so “precociously” in density and for θµµ 6= 0. In [40], in contrast,
the matter with v2s/c

2 > 1/3 should prevail up to density n ∼ 5n0, the maximum central
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density of ∼ 2-solar mass objects because of the strong hadronic interactions intervening in
the phenomenological models they relied on. The conformal velocity should of course appear
at very high density.

In the presence of vector mesons, the Lagrangian from which skyrmions arise contains
an anomalous term which is present in the Lagrangian even for two flavors and that is
the homogeneous Wess-Zumino (hWZ) term [10]. This term does not figure directly in the
structure of baryonic matter when the baryon fields are explicitly present: The Vlowk RG
treatment made above is not affected by this term. However when baryons are generated
as skyrmions for dense matter, the hWZ term plays a crucial role because it is through this
term that the ω meson enters in nuclear dynamics. Without it the ω does not figure in the
nuclear interactions. That would be disastrous for the stability of nuclear matter and for the
EoS of dense matter.

The hWZ term consists of three terms with three independent parameters [10]. All three
terms need to be included for reliable calculations. For simplicity in notation, let us just
take one combination of them in the form LhWZ ∝ ωµB

µ where Bµ is the topological baryon
current. This term is of scale dimension 4, so classically it is scale invariant. However the
quantum anomaly introduces β′ for the anomalous dimension of the gluon G in the form
LhWZ → (hhWZ + (1 − hhWZ)(χ/fσ)

β′
)LhWZ where h is an unknown parameter [8]. If there

were no explicit symmetry breaking of scale symmetry, that is β′ = 0, then there would be no
dilaton coupling to the matter fields in the Lagrangian. However it turns out that if β′ = 0,
the skyrmion matter would diverge [43], so the skyrmion matter would make no sense. In
order to make the skyrmion structure sensible, it was found to be required that 1 ∼< β′ ∼< 3
[46, 8]. This means that in order for the ω meson to figure in the skyrmion matter and assure
that κ be density-independent, the explicit scale symmetry must intervene in the hWZ term
with a given β′. This poses a puzzle as to how this hWZ-term effect is encoded in the IDDs
of EFTbsHLS. It is possible that the β′ is buried in the parameters of the bsHLS Lagrangian,
without making explicit breaking of scale symmetry in the Lagrangian. This may be related
to that if one sets σ = 0 in scale-chiral perturbation theory (χPTσ), one would effectively
get the results of three-flavor chiral perturbation theory, χPT3, which work very well for
processes that do not involve scalar channels, with the effects of the trace anomaly hidden in
the parameters.
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Note added

In this paper, we rely on the IDD scaling obtained in Ref. [1], apart from the vector
manifestation scaling in the hidden gauge coupling in R-II from that listed in Ref. [1] that
we adjusted so as to have the sound velocity reach the conformal sound velocity 1/

√
3. We

point out an error in the scaling of gA and gπNN listed in Table 1 of Ref. [1]. Contrary to
what’s given there, those constants do not IDD-scale in both R-I and R-II. There is of course
the effect of the Landau parameter g′0 in the ∆N channel contributing to gA mentioned in the
footnote. It should of course be included. But this effect is not of IDD. It is a correlation effect
involving the ∆(33) resonance that arises when the baryon configuration space is extended
to ∆-hole exciations. How significant such an effect is in nuclear processes has been studied
in nuclear giant Gamow-Teller resonances and the indication is that the Landau g′0 effect is
small if not absent. Furthermore that channel does not affect the EoS we are concerned with.
Hence our results given in this paper are unaffected by the error.
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APPENDIX

The Mean-Field Structure of the Half-Skyrmion Phase

In this Appendix, we show that the half-skyrmion phase in the skyrmion-crystal simulation
of dense baryonic matter is in a state that can be described entirely by mean fields, largely
undistorted by strong interactions. This resembles Landau-Fermi liquid fixed point theory
where the β function for the quasiparticle interactions is suppressed. This striking feature
was first found in the Skyrme model with the Atiyah-Manton ansatz in [47]. Here we will
show the phenomenon using the HLS Lagrangian[48]13.

We write the chiral field U as U(~x) = φ0(x, y, z)+iφj
π(x, y, z)τ j with the Pauli matrix τ j

and j = 1, 2, 3. Including ρ and ω, we write the fields placed in the lattice size L as φη, L(~x )
with η = 0, π, ρ, ω and normalize them with respect to their maximum values denoted
φη,L,max for given L. It can be shown, as in [47], with HLS that in the half-skyrmion phase14

with L ∼< L1/2 where L1/2 ≃ 2.9 fm, the field configurations are invariant under scaling in
density as the lattice is scaled from L1 to L2

φη, L1
(L1~t )

φη, L1,max
=

φη, L2
(L2~t )

φη, L2,max
. (A.1)

Since other fields are quite similar, we only show in Fig. 11 the case of φ0,π for φ0,π(t, 0, 0)
vs. t with t ≡ x/L. What is seen there is that denisty-scale invariance sets in for L ∼< L1/2.
One can see that the field is independent of density in the half-skyrmion phase with L ∼< L1/2

whereas for the skyrmion phase with lower density with L > L1/2, it is appreciably dependent
on density.

What does this imply for the energy density?

The energy density for the skyrmion matter put on the lattice of lattice size L can be
written as

ǫ = E/A/V (= L3) =
1

L3

∫ L

0
d3x

∑

n,m

cn,m fn,m

(

~∇x, φη, L(~x )
)

, (A.2)

where cn,m is the coefficient of fn,m which is the function of ~∇x and φη, L(~x ) having nth

power of ~∇x and mth power φη, L(~x ) with ∇x, j =
∂

∂ xj . One can reduce it to

ǫ =
∑

n,m

(

1

L

)n

(φη, L,max)
m
∫ L

0

d3x

L3
cn,m fn,m

(

L~∇x,
φη, L(~x )

φη, L,max

)

(A.3)

=
∑

n,m

(

1

L

)n

(φη, L,max)
m
∫ 1

0
d3t cn,m fn,m

(

~∇t,
φη, L(L~t )

φη, L,max

)

(A.4)

=
∑

n,m

(

1

L

)n

(φη, L,max)
mAn,m , (A.5)

13Since what matters as in the structure of the tensor forces is the topology and symmetry involved, largely
independent of strong interactions mediated by non-topological fields, the same argument should apply to the
dialton in the half-skrymion phase in sHLS.

14The precise value of the half-skyrmion density which depends on the parameters is not important for our
discussions.
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Figure 11: The field configurations φ0 and φ1
π as a function of t = x/L along the y = z =

0 line. The maximum values for η = 0, π are φ0, L,max = φπ, L,max = 1. The half-skyrmion
phase sets in when L = L1/2 ∼< 2.9 fm.

where An,m is a constant independent of the lattice size L.

Calculating the energy density (A.5) in skyrmion-crystal simulations involves field con-
figurations satisfying their equations of motion. Hence (A.5) is a mean field expression. It
captures all essential dynamics in terms of the mean fields of each degrees of freedom in-
volved, with residual interactions suppressed. The density dependence lies, apart from the
(1/L)n factor, in the maximum field configuration (φη, L,max)

m. This implies that in the
half-skyrmion phase, considered to set in at high density, the mean-field structure dominates.
This agrees with the lore that at high density – and in the large Nc limit, the skyrmion
crystal picture becomes valid in QCD. In clear contrast, however, as one can see in Fig. 11,
the mean-filed structure breaks down in the lower-density phase with L > L1/2. Taking the
RMF approximation to be more or less equivalent to Fermi-liquid fixed point theory at high
density, one can take the breakdown of the mean-field structure as a signal for non-Fermi
liquid structure. This also agrees with the understanding that the property of low-density
baryonic matter – including nuclear matter – may be poorly captured in crystal.
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