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Abstract
We study the Polyakov loop correlator in the weak coupling expansion and show how the per-
turbative series re-exponentiates into singlet and adjoint contributions. We calculate the order g*
correction to the Polyakov loop correlator in the short distance limit. We show how the singlet
and adjoint free energies arising from the re-exponentiation formula of the Polyakov loop correlator
are related to the gauge invariant singlet and octet free energies that can be defined in pNRQCD,
namely we find that the two definitions agree at leading order in the multipole expansion, but differ

at first order in the quark-antiquark distance.

PACS numbers: 12.38.-t, 12.38.Bx, 12.38.Mh



I. INTRODUCTION

The Polyakov loop correlator defines the free energy of a static quark-antiquark (QQ)
pair and is an important quantity for the understanding of deconfinement and screening
in the quark gluon plasma [1]. It has been extensively studied on the lattice both in pure
SU(N) gauge theories [2-4] as well as in QCD [5-7]. However, the behavior of the Polyakov

loop correlator in the weak coupling expansion is still poorly understood.

The leading order result has been known for several decades now [1], both for small and
large separation between the static quark and antiquark. The next-to-leading order (NLO)
and next-to-next-to-leading order (NNLO) calculation of the Polyakov loop correlator in the
short distance regime has been performed relatively recently [8]. This calculation provided
qualitatively new insight into the behavior of the Polyakov loop correlator, showing the
exponentiation into singlet and adjoint contributions as well as showing how the free energy
of the static QQ pair goes over into the zero temperature static energy. The use of the
potential Non-Relativistic QCD (pNRQCD) at finite temperature approach was essential in

obtaining this result.

At short distances, the calculation of the Polyakov loop correlator in perturbation theory
is important if one wants to establish a connection to lattice QCD calculations. For distances
of the order of the inverse Debye mass, the Polyakov loop correlator was calculated by
Nadkarni 9], while for distances much larger than the inverse Debye mass, the behavior
of the Polyakov loop correlator was discussed by Braaten and Nieto [10] and by Laine and

Vepséldinen [11]. These studies are based on dimensionally reduced effective field theories.

Also the singlet free energy, defined in terms of the correlator of two Polyakov loop
operators inside a single trace in Coulomb gauge, is a useful quantity for understanding
color screening in the deconfined medium. This is due to the fact that it is more closely
related to the static QQ energy and, unlike Wilson loops, has only divergences associated
with self-energy contributions [12, [13], which are identical to those in the vacuum energy
of a static QQ pair [3]. Furthermore, the singlet free energy is used in modeling the in-
medium properties of quarkonia (see, e.g., Ref. |[14] for a review). The singlet free energy
was studied at NLO in Ref. [12], where also a comparison with lattice QCD calculations was
performed. However, no contact of the weak coupling calculations of the singlet free energy

and pNRQCD has been made.



In this paper, we discuss the re-exponentiation of the Polyakov loop correlator into sin-
glet and adjoint contributions on general grounds using techniques developed for the re-
exponentiation of Wilson lines [15, [16]. Then, we calculate the next-to-next-to-next-to-
leading order (NNNLO) contribution to the Polyakov loop correlator at short distances.
Furthermore, we analyze the short distance behavior of the singlet free energy in terms of
pNRQCD and also calculate the corresponding NNLO contribution. We also give an NLO
result for intermediate distances.

The rest of the paper is organized as follows. In Sec. Il we describe the general framework
used to calculate the Polyakov loop correlator. The actual calculation of the Polyakov loop
correlator using Coulomb gauge is presented in Sec. [[TIl In Sec. IVl the relation of the singlet
and adjoint contributions, which appear in the perturbative expression of the Polyakov loop
correlator, to the gauge invariant definition of singlet and octet free energies in pNRQCD is
discussed. Finally, in Sec.[V] we present our conclusions. Technical details of the calculations

are presented in the Appendices.

II. FREE ENERGIES

The free energies of static quarks are related to the Polyakov loop or correlators thereof

in the following way. The Polyakov loop operator is defined in the imaginary time formalism

1/T
z'g/o dr Ao(T, 'r)] , (1)

where P denotes path ordering, T is the temperature, ¢ is the coupling constant, and Ay is

as

L(r) = Pexp

the matrix valued temporal gauge field.
The thermal expectation value of the trace of a single Polyakov loop operator gives the

free energy of a static quark, Fi:

F 1
oxp |- 2| = Tz, )
where NN is the number of colors. This quantity is what we will usually understand in this
paper by Polyakov loop, unless we explicitly refer to the operator. Because of translational
invariance, it does not depend on the position 7.

The free energy of a static quark-antiquark pair, Fyg, is correspondingly given by the
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Polyakov loop correlator:

exp [T ) - (me e 0] ®

The dagger on the second Polyakov loop, which corresponds to the antiquark contribution,

turns the fundamental into the antifundamental representation. This quantity depends
only on the absolute value of the relative distance r as opposed to its direction because of
rotational invariance. Translational invariance also excludes a dependence on the center of
mass coordinate, so we have set it to r/2 in the above expression for simplicity.

In both the single quark and the QQ cases, the free energies are defined with respect to
the medium, i.e., Fy is the difference between the free energy of the medium in the presence
of one static quark and the free energy of the medium without static quarks, and analogously
for Fyg (see discussions in Ref. [1]).

In the weak coupling regime (i.e., for large temperatures) these quantities can be calcu-
lated in perturbation theory. For the Polyakov loop there exists an exponentiation formula,
which makes it possible to express the free energy directly through a set of Feynman diagrams
(cf. [17]). For the correlator, a similar expression has been obtained in [18], however, while
that calculation is correct, a more useful expression can be found by a slight modification
of that approach.

The method we use is the replica trick for Wilson lines |15, 16], which we will outline
here. First, consider the Polyakov loop correlator in terms of an amplitude with uncontracted

indices, (M) ki

Fog(r) 030k . 00k
Q| 2 (L) 10) = 8 M) (@)

where i and k are the color indices of the Polyakov loop operator at imaginary time 7 = 1/T,

exp [—

while j and [ are at 7 = 0. Since the uncontracted amplitude is gauge dependent, (M), i
requires evaluation in a gauge fixed theory. Then, we define a multiplication of amplitudes
.A and B as Aij’,kl’Bj’j,l’

to this multiplication. In order to find the exponentiated expression of the thermal average

. Exponentiation is to be understood as a power series with respect

of the amplitude (M), we have to determine an amplitude that can be interpreted as the

logarithm of (M).

! Note that herein lies the difference to the approach in [18], where the multiplication was defined as
Aijr 1B k. Since the Polyakov loop correlator itself does not depend on this multiplication, both

definitions are valid and lead to different but equivalent exponentiations.



Now consider the nth power of this amplitude and expand in n:
<M>Z’,kl = exp[n 1n<./\/l>],-j,kl = 5ij5kl + nln(/\/l),-j,kl + @ (n2) . (5)

In order to find the logarithm of (M), we have to calculate the linear term in an expansion
of M"™ in n. There is an alternative way of doing this. We can define a theory that contains
n exact copies (or replicas) of the QCD fields, which interact like in QCD for each replica,
but there is no interaction between different replica fields. In this theory, we can write the
nth power of the thermal average of the amplitude as the thermal average of n replicas of

the amplitude:
<M>Z] kl — <M(/ kk’M 21500 k’k” tee Mg}]{ l’l> ) (6)

where the upper indices label the different replicas.

The Feynman diagrams in this replica theory are almost the same as in QCD, except that
now there is replica path ordering: all color matrices associated to gluons of a higher replica
index are to be placed to the left of those associated to a lower index. Therefore, it makes
sense to split the calculation of the Feynman diagrams D into a color and a kinematic part,
where the color part C contains all color matrices and structure constants and the kinematic
part I contains everything else:

D, =l (D)K(D), (7)

Z]7

where {p} denotes the set of all replica indices, while the absence of such an index denotes
the corresponding expression in QCD without replicas. In this way, diagrams that differ
only in the replica indices of the fields have the same kinematic part, which is the same as
in QCD, so the sum over different replica indices and the expansion in n can be performed
exclusively in the color part. Consequently, the amplitude (M) and its logarithm can be
written as a sum over the same Feynman diagrams, but the color parts for each diagram

have to be modified in the following way:

M)ij = chmkl (D) = exp [ln(./\/lﬂij’ L = €XD [Z C(D)/C(D)] , (8)

D

where

> (D) = nCij (D) + O (n?) . (9)
{r}



We will present an explicit example of such a determination of the coefficients C(D) in the
following section and appendix [Al

Here, we will show how the exponential can be evaluated once the coefficients have been
determined. In principle, this requires computing the exponential of an N? x N? matrix,
however, in this case it will turn out to be much simpler. We may use the Fierz identity

1

010k = 77001y + 2T5.T)5 = (Ps)ir(Ps) + (Pa)ix(Pa) (10)

il o
where the first part can be understood as a projector on the color singlet space with

(Ps)ix = 0i/v/N and the second part as a projector on the color adjoint space with
(Pp)% = \/2T%. As projectors they satisfy

(Pr)& (Pr)be = Ormri 0™, (11)

where the representation indices R and R’ can stand for either singlet S or adjoint A, and
the color indices a and b are absent for the singlet or run from 1 to N? — 1 for the adjoint
projector.

With these projectors we can split any amplitude A like

Aijt = (Pr)i (Pr)§ i Ay e (Pr ) (PR = (Pr)§ AR (PR (12)

and because of the orthogonality of the projectors the exponential of A can be expressed as
exp[Alij, it = exp[PrARp Prrlij i = (Pr)§, explAlfp (Pr)ji - (13)

This amounts to a basis transformation for the amplitudes; the matrix exponential with the
new indices R, R’ and a, b still has N? x N? elements. But through the specific nature of
the Feynman diagrams the exponential in this basis will be greatly simplified.

All color coefficients C can be expressed as linear combinations of products of color
matrices with all color indices contracted. We can use the Fierz identity (I0) to show that
any two fundamental color matrices with their color indices contracted can be expressed

entirely through Kronecker deltas, hence we can write any color coefficient as:

Cij, il = €100k + C20i1051 - (14)

With this and the other properties of the fundamental color matrices, Tr[7%] = 0 and
Tr[TT?) = 6% /2, it is straightforward to see that the projected color coefficients satisfy

Cr = (Pr)&:Cij1a(Pr)% = Crogr ™. (15)
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Note that, contrary to our usual convention of summing over all repeated indices, in the last
expression of this equation there is no summation over R implied.

This means that In(M) is diagonal in this projection and exponentiation is trivial:

Fog| _ 0ijom 5kz
o | 2] = S e | S l@@)]

= D04y exp [; eoKo)| (Pu

RR/

= 2 (oo | S E@E®)| R
+ (Pa)oxp {; COKD)| (P )

- % exp {; é}(D)IC(D)] L j\; L exp [; @(D)K(D)]

1 { Fs} N?—1 FA:|'

N2 exp |:— ?

(16)

In this way, we have split the free energy of a static quark-antiquark pair into a singlet and

an adjoint free energy, which can also be defined directly as

exp {—%} = %(Tr [L(r)L'(0)]) , (17)
exp {—%] = N22— l (Tr [L(r)T*LT(0)T"]) . (18)

This procedure can be easily generalized to similar correlators of Polyakov loops in dif-
ferent representations or with more than two loops. For example, in a diquark Polyakov
loop correlator (i.e., a correlator of two Polyakov loops without complex conjugation) one
has antitriplet and sextet projectors [or rather N(N — 1)/2 and N(N + 1)/2 projectors for
general N], which add up to a unit operator in a similar fashion as in Eq. (I0), and the pro-
jected color coefficients are still diagonal as in Eq. ([I5]). This gives an analogous definition
of antitriplet and sextet free energies.

In the case of a baryonic Polyakov loop correlator (consisting of three Polyakov loops
with N = 3), one has one singlet, two octet, and one decuplet projector, but the projected
color coefficients are no longer fully diagonal, for the two octet representations can mix. As

a consequence, Eq. (I5) has to be modified into

cab, = CRR'5d Ra(r)0™ (19)
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where d(R) is the dimension of the representation R. The reason for this is that the baryonic
projectors with mixed symmetries are only orthogonal to each other, if the indices are
contracted in the right order: (Pg)%" (Py)b.,, = 0, but, e.g., (Ps)%: (Py)’ . o 6. The
exponentiated color factors contain terms that change the order in which the indices of
the projectors are contracted, so they are no longer diagonal in the two octet channels.
The singlet or decuplet projectors are fully (anti)symmetric in their indices, so a different
order of the contracted indices does not matter and the projections are still diagonal. In
fact, this generalization of Eq. (IH]) also applies to the diquark or quark-antiquark Polyakov
loop correlators, therefore it may be true for any combination of representations and loops,
although we will not attempt a proof in this paper.

In any case, this projection of the amplitudes in the baryonic Polyakov loop correlator

then defines a singlet and a decuplet free energy through simple exponentials and two octet

free energies through the trace of the exponential of a 2 x 2 matrix:

F’;},Q 1 Fl 8 1 F’88 F188’ 10 Fl()
- - = — I - — - I . 20
exp l ] o7 exp l ] + o7 [r ¢ exp e Fug + o7 exp (20)

The same structure, in particular the mixing of the two octet channels, has also been found
in the context of a direct NLO calculation of the static potentials in a baryonic configuration
in Ref. [19].

There are, however, two major problems related to the definition of singlet, adjoint, or
other free energies such as these. First, the definition is gauge dependent, and second, each
of these free energies contains ultraviolet divergences, which cancel in the full expression of
the Polyakov loop correlator.

We will discuss the divergences in more detail (and return to the quark-antiquark case).
There are two types of divergences, the first is a linear divergence proportional to the length
of a Wilson line, in this case 1/T, and can be understood as a mass correction to the
(infinite) mass of the static quark. It factorizes (cf. |18]), which means that it affects singlet
and adjoint free energies in the same way, and can be removed by multiplication with
exp|—2Ar/T], where Ar is a divergent constant and the index F' refers to the fundamental
representation. In dimensional regularization such a divergence is absent.

The second kind of divergence is logarithmic and comes from gluons clustering around

the endpoints of a Polyakov loop [20-22]. All gluons contributing to this divergence have to
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be contained in an infinitesimal area around the endpoints, which means that the divergence
does not depend on any characteristics of the Wilson line like length or curvature, except
for when two or more endpoints coincide (i.e., at cusps or intersections), in which case
the divergence also depends on the angles at this point. Such a divergent cluster can be
added to any Feynman diagram and will factorize from the sum over all diagrams (before
taking any traces), hence the divergence of the correlator is proportional to the correlator
itself. Keeping in mind that the divergences at the endpoints of the two Polyakov loops are

unrelated, we can write
Div(M)j k1 = Diir, i (Mg er A (M igre D e — Dair 0 (M) irjr e A ke (21)

where we have used the fact that both Polyakov loops have exactly the same configuration
at their endpoints, since a Wilson line with final endpoint k& and initial endpoint [ in the
antifundamental representation is equivalent to a Wilson line with final endpoint [ and initial
endpoint k in the fundamental representation. Accordingly the divergences A have to be
identical. The last term is there to remove a double counting of terms with divergences at
both Polyakov loops.

Then we define the renormalized correlator through the subtraction of the divergent part:

<M>£f;€l - <M>ij,kl - DlV(M)Z%kl - ((S“/(S]j/ — Aii’,jj’)<M>i’j’,k’l’(5ll’5kk’ — All’,kk’)
= Ziir ji AM)irjr v Zu e - (22)

Again, we can use the Fierz identity (I0) to argue that
Zii’,jj’ = Zléiiléjj’ —I— 2252'_]'52"]" . (23)

Of course, we can multiply the renormalization tensors Z;; ;;» by some finite tensor, which
corresponds to a different renormalization scheme. If we take the traces over the Polyakov
loops, then the contour is smooth at their endpoints, which means that there are no loga-
rithmic divergences |20, 21]. Therefore we can partially fix the renormalization scheme by
requiring the renormalized Polyakov loop correlator to be identical to the unrenormalized

one with respect to the logarithmic divergences: 0;;Z; j; = 0;7j. From this it follows that

21+ Nz =1. (24)



If we now use the same projectors for the renormalized singlet and adjoint free energies

as for the unrenormalized ones, then we have:

(R)
exp —% = (PSﬁIf(M)z('f;cl(PS)ﬂ = (Ps)ixZir, jj {\Mirjr 1w Zur i (Ps ) ji
* F *
= (Ps)inZiv,jj <(P5)i’k' exp {—%} (Ps)j
a FA a *
+ (Pa)jip €xp T (Pa)jn | Zuw wr(Ps) ji
14 (N2 - 1)22 Fs]  (N2—1)(1—22) Fa
- N? i N? =P
F F
=(1—Zg)exp {—?S] + Zgexp {—?A} ; (25)
Ff(‘R) 1 a*x (R) a 1 a *x a
R e 1(PA>ik (M)iju(Pa)j = W(PA)M Ziir i {AMirge wv Zr ke (Pa)y
1 a * FS *
=~z 1 (LPaik Ziv sy ((Ps)z"k' exp {—?} (Ps)j

F
+ (PA)?/k/ exp [——A] (PA)S:;/) le’,kk’(PA)?l

T
1—2% FS +N2—1—|—Z% FA
Nz P |TT Nz PITT
F F
= Zaexp l—?s] + (1 —Z4)exp [—?A} : (26)

where we have introduced the renormalization constants

Zs=(N*—1)Zy =~ (1), (27)

such that Zg, Z4 = O(ag). We see, therefore, that the singlet and adjoint free energies mix

under renormalization. These relations can also be inverted as

. B (R) _ F(R)

exp [__} N (1 N ZS) OXp | =g | Asexp | = (28)

N Ja) _ [ )]

exp {——} = Z€exp [—L + (1 - ZA) €Xp —% ) (29)
with

— ~ 1—Zg N2 —122-1

ZS — (N2 _ ]_)ZA — N2 — N2 1z% . (30)

N2_1(1—ZS)—1
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FIG. 1. All unconnected two-gluon diagrams. Some diagrams can be flipped to give in total four
other diagrams that are not explicitly displayed. The line with the right arrow (omitted in the
last two diagrams) is the Polyakov loop contour for the quark, and the line with the left arrow

corresponds to the antiquark.

We also see that we can construct a multiplicatively renormalizable quantity through

e (R) P P
exp [—%] — exp —% =(1—Zs— Za) (exp [—?S] — exp [—%])

(o[- 2] e[ 2]) -

III. CALCULATION OF THE NORMALIZED POLYAKOV LOOP CORRELA-
TOR

The great advantage of exponentiated formulas, such as those that were derived in the
previous section, is that they reduce the number of Feynman diagrams that one has to
calculate at a given order in perturbation theory, since many of the color coefficients in the
exponent are zero. We will show this explicitly for the two-gluon diagrams.

First, all diagrams where no gluons are exchanged between the two loops have color
coefficients that are proportional to the identity 0;;0x;, therefore they trivially factorize
out of the exponentiation. They give a contribution that corresponds to the individual
contributions of each Polyakov loop, i.e., exp[—2Fy/T]. Hence, it makes sense to divide
the Polyakov loop correlator by these two Polyakov loops, which corresponds to calculating
Foo—2Fq and can be interpreted as the interaction part of the correlator, because it contains
only those diagrams where gluons are exchanged between the loops. We call this ratio the
normalized Polyakov loop.

For connected diagrams, i.e., diagrams where every gluon is connected to every other

gluon through vertices or propagators, the color coefficient in the exponent is the same as
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the standard coefficient in QCD. The first diagrams for which the modification of the color
coefficients obtained from the replica trick becomes relevant are the two-gluon diagrams
shown in Fig.[Il For each diagram we have to sum over every possible assignment of replica

indices and perform the corresponding replica path ordering:

S e Eg nin—1)C

{r}

Z cir}

{r}

X)-
e (17 = ”_1c< ) ”_1)C<E>+nc<€>,
T

{r}

Z cirl

{r}

where the first term counts the possibilities of having two gluons with different replica indices
and the second term counts the possibilities of them having the same replica index. For the
latter two diagrams, the first term is split into the possibilities of one gluon having a higher
or a lower index than the other gluon, a distinction that is in fact unnecessary, because both

orderings have the same standard color coefficient.

We see that for the first diagram the terms linear in n cancel trivially, as a consequence
this diagram does not contribute to the logarithm of the Polyakov loop correlator. For the
third diagram it is straightforward to see that both standard color coefficients are equal,
since the gluon attached only to the top Polyakov loop contributes with a unit matrix to the
color coefficient, because (T*T);; = &;;(N? — 1)/2N, therefore also here the linear order of

n cancels.

These two diagrams are the first examples of a more general statement: whenever one
can draw a line cutting the upper and lower Polyakov loop such that there are gluons on
both sides of it but no gluon crosses the line, then this diagram does not contribute to
the logarithm of the correlator. This can be shown in the following way. Whenever it is
possible to draw such a line, then the color coefficient C can be written as a product of two
coefficients A and B, one for the left and one for the right part. The statement that each

color coefficient can be written through Kronecker deltas applies to both parts separately,
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SO we can write

Cijoi = Aijr ki Bijrg i = (010505 + a26i6651) (019100 + badjnidp)
= 101061 + (102 + a2by + agbaN)0ii 051 = (b16i/ 0k + b20i0;01) (@160 + a2010051)
= Bij Ay, (33)

which means that the two parts (and in fact any two color coefficients) commute. But then

the replica path ordering and counting of replica indices can be done for each part separately:

D Clfk =D A Y B (34)

{r} {p1} {p2}
Since each part is at least of order n, the sum over every replica index combination for the
whole color coefficient will be at least of order n?.
Using the replica method, it is also straightforward to calculate the projected color coeffi-
cients for each of the diagrams that contribute to the logarithm of the correlator. This calcu-
lation is presented in Appendix [Al Putting together all the diagrams and the corresponding

color factors for the singlet and adjoint contributions to the Polyakov loop correlator, we

(36)

where the dots include four-gluon diagrams and higher, and K denotes that all diagrams

13



contribute with their kinematic part only, since the color factors are already written explic-
itly.

We have not drawn explicitly diagrams that differ from those shown above only by gluon
self-energy insertions. Nevertheless, they are understood and contribute to the free energies.
Their contributions will be computed by simply adding to the gluons in Eqgs. (35) and (34])
self energies whenever necessary to reach the desired accuracy: a first example is in Sec. [TTAl

We have also neglected the several diagrams that vanish trivially in gauges where the
gluon propagator is diagonal with respect to temporal and spatial components, such as
Coulomb gauge, static gauge, or Feynman gauge. At the present order, there are 22 of such
diagrams that vanish because a three-gluon vertex with three temporal indices gives zero,
and 3 of such diagrams that vanish because a four-gluon vertex with four temporal indices
gives zero.

The re-exponentiation of the singlet contribution is analogous to the re-exponentiation
of the Wilson loop, while the re-exponentiation of the adjoint contribution is a new result.
From Eqgs. (35]) and (36]), we see that Casimir scaling for the singlet and adjoint free energies,

i.e., the relation e o
Fj—iﬂi = —(N?-1), (37)
is broken at the order a3.
We are interested in calculating the Polyakov loop correlator in the regime ag/(rT) < 1.
In this regime, the exponentials of the singlet and adjoint contributions can be expanded
and one finds that the contributions of many diagrams cancel out. As the result for the

normalized Polyakov loop correlator, we get:

- N2 T

: (N2 = 1) (N
K <E) + 1SN

QFQ—FQQ:| 1 exp |:2FQ—FS:| +N2_1
T

2F, — FA]

exp { T

exp { e

(38)

In order to obtain the weak coupling expansion of the Polyakov loop correlator, we need to

evaluate the kinematic part of the diagrams entering the above equation. As we will see
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below, the evaluation of the kinematic parts becomes particularly simple in Coulomb gauge.

We will perform the calculations assuming two different scale hierarchies:

1 s
;>>7rT>>mD>>a7, (39)
or
! (40)
—~m
r D
where

mo(n) =\ 5 + L g(u)T (41)

is the leading order Debye mass. We consider QCD with n; massless quarks.

We start the discussion with the case 1/r > 7T > mp. Here, the sum of the unconnected
two-gluon diagrams in the last line of Eq. (38]), which we denote as Dx + 2D, as well as
the sum of all unconnected gluon diagrams appearing in the previous line of Eq. (B8]), which
we denote by Ds,, vanish in Coulomb gauge if the gluon propagators are taken without
self energy insertions. This is discussed in Appendix [Bl Therefore, in order to calculate the
Polyakov loop correlator, we have to calculate the one-gluon exchange diagram D; and the
last two H-shaped diagrams in the third line of Eq. (38]), which we denote by Dy.

The tree level result for Dy is of order g2, so the first nontrivial contribution (i.e., different
from 1) to the Polyakov loop correlator is of order g*, which is what we will call the leading
order (LO). Since the Debye mass introduces odd powers of g in the perturbative expansion,
the NLO and NNLO contributions are of orders g° and ¢°® respectively. Accordingly, the
order g7, which we calculate here for the first time, will be counted as NNNLO.

The kinematic parts of the diagrams will be determined through the method of integration
by regions. This means that the integration over each gluon momentum is split into regions
where the momentum scales as one of the relevant physical scales of the system. In this
case, we have the inverse distance 1/r between the two Polyakov loops, the temperature scale
7T, and the Debye mass scale mp. In each region, the integrand is expanded according to
the hierarchy (B9). Depending on the scale of the gluon momentum, the propagator can
either be free or resummed. In the following subsection, we will discuss the evaluation of
the diagrams D; and Dy using this method.

The magnetic mass scale my; ~ ¢*>7T is also present, but does not enter the calculation at

this order. It has been shown in the context of the effective field theories (EFTs) EQCD and
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MQCD, which systematically incorporate the scale separation between nT’, mp, and m,y,
that the magnetic scale enters the Polyakov loop only at order g7 [10], even though it appears
already at orders ¢g° and ¢% in individual diagrams but gives canceling contributions [17].
Since the dynamics of the magnetic scale take place at length scales much larger than those
associated with the energy scales in Eq. (89), we can expect a similar EFT argument to
apply for the singlet and adjoint correlators, excluding the magnetic scale from entering the
free energies until order ¢g”. For the Polyakov loop correlator itself, we expect the magnetic
scale to be absent until order ¢°, as it should enter through D;, which contributes only
quadratically and therefore raises the nonperturbative order by g2. We have checked this
explicitly in Appendix [F] showing that all magnetic scale contributions cancel up to order

¢® indeed in both hierarchies.

A. Calculation of Dy for 1/r > nT > mp

We will start with the calculation of Dy:
1/T 0 4 4 9 '
D[ = (29)2/ dTl/ d7'2 6Zk0(7—1_7—2)+lk.7ﬂD00(/€0, k) = — /6Zk'TD00(0, k) . (42)
0 T T J

Splitting the integration into the different momentum regions, we have for k ~ 1/r:

g* etk (1 0,k > 7T)

Diyy = T sy K2 2 +0 (94))

2 ik-r 2
g e g 31 10 I
=L 1+ -2— |=N-= 26pIn &
T/;M/r 5 (+(4W)2[9 9nf+ ﬁonk
Ng? T? 44 7 y o1 ) 6 4
2 —=N+4+— — T/k
+18 I (225 —l—45nf)g7rk4+(’)(g(/),g)

Qg as |31 10
=T <1 + e [5]\7 — 9 +260(VE —I—ln,ur)])
N 22 7
2|7 — | =N+ — T)?3 2(rrT)%, ) . 4
o | =gl (2N ghny ) 7T+ 0 (adeT ) ) (13)

Here we have used the (charge-renormalized) temporal gluon self energy in Coulomb gauge,
expanded for momenta much larger than the temperature scale; By = (11N — 2ns)/3 is
the first coefficient of the beta function. The second line corresponds to the vacuum part,
while the third line corresponds to the matter part. Accordingly, the first part of the result
gives the static potential in the vacuum (without the color factor) and the second part gives

thermal corrections as a series in r77.
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The next contribution comes from the region k ~ 7T, where we have to expand the

numerator explik - | for small r:

2 1 2

g 1—=zs(k-7)*+... I1(0, k ~ wT)

Diar =77 T - m T0(d)
k~mT

2

= o? [N (—2% —1+vs+n TT) +npln2 + <§N+nf) g(3)(rT)2] +0 () .
(44)

The first term in the expansion of the numerator does not depend on r and is exactly the
same as —2 times the scale 77" contribution to a single Polyakov loop (without the color
factor), which can be found in [§]. The second order term in this expansion can be calculated
by the same methods. The integrals without the self energy are all scaleless and vanish in
dimensional regularization. Furthermore, we have checked that higher powers in r all vanish
in the integral with the one-loop self energy (cf. Appendix [El), so there are no (raT)?

higher thermal corrections at order a?.

The last contribution comes from the region k& ~ mp, where again the numerator is

expanded, but now the expansion of the denominator in terms of the self energy is different:

ORI
Dty = =
I,mp /NmD k2+m

- 00,k ~mp) —m3,  (I(0,k ~mp) —m3)*
k2_|_m2D (/€2—|—m%)2

asmp [ 1 1 T (N2 — 1)n; 3T
- Na S g4l
T [2 T3 7E+an]+ AN mp
305 [an 4 201 — 4n2) + 25 (v +m£2)
81T 3" O\TET T
N2a3T [89 w2 11 asm?
S [ — 02 DT 4+0(ad) . 45
L. [24+ 6 6 ] s 1)+ 0 () (4)

Again, the terms coming from the zeroth order expansion of the numerator are equal to —2
times the scale mp contribution to a single Polyakov loop. The second order term in this
expansion is a standard integral in dimensional regularization. Higher terms in r also come
with higher powers of mp by dimensional analysis, and therefore they are suppressed by

additional powers of g.
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Combining the contributions from the different scales, we have:

s 31 10
Dr = & (1 +— . l N — —ns +26y(vE —i—ln,ur)})

T 9 9
_ & +a? [N (—} +1nT—2> +nfln2}
T 2 mD
_3admp o 2 (1 dln) 42 -
87T { gl Il)*‘*%<7E+'n4 T)}
JW%[% ﬁ_214 (N2 = 1)n; 3T
mo 6 6 AN mp
3
er4—a (4A7+7q) x¢7)2—‘§;§erf
— ( 22 N+ — ) (rrT)* + O (aZ(rrT)°, o) (46)
675 270 !

where the terms are ordered with increasing power of r and g. The scale of a4 is i everywhere.
The logarithms of 1 can be absorbed in g if evaluated at two different scales, which leads to

an expression identical to the previous one up to terms of higher order:

_os(l/r) | a3 [31, 10
D, = T +47rrT 5 —N — 9 —ng + 2B0VE
AxT)ymp(4nT L,
_os(@rT)mp(4r )+a§ [N( _+1n_)+nfln2}
T 2 mi,
3aZmp 2
- =T {3]\7 + §nf(1 —4In2) + 2B0’7E:|
23 2 2 — J
NagT @+W__Eln2 (N~ L)y o
o Y 6 6 4N mp
_ Na? 4 i
gl + o <§Aﬁ+”f)C090072_(E;gerf
~a? (N4 Long ) (7Y 4+ O (o2 T) o) )
675 ' 270/

The choice of the scales is somewhat arbitrary, since, e.g., also the Syyg terms could be
included by an extra factor exp[—yg] in the scale of g, but this ambiguity is a higher order
effect.

Note that the r-independent part of the above expression is equal to twice the free energy
of a single static quark, Fg, calculated to NNLO [17] [up to the factor Cp = (N2 —1)/(2N)]:

Fy _(Aﬂ——Da44wTﬁnDMﬂT)%_UV2—])a§{A7<_1_%hk21)_+nfm2}

T ANT 4N 2 m2,

3(N% —1)a?mp 2
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Sl Py

* 9% 24 24

+0(a). (48)

16N2 mp °

N(N2 — 1)a§’T [89 72 11 ] n (N2 — 1)2nf ozg’T
mp

For the Polyakov loop correlator we need the square and cubic powers of this expression

up to O (g"):

a2(1/r)  as(l/r)a? [31 10

N - —ny 42
272 2m?T? |9 9W+5”4

 2a5(1/r)as(4rT)mp(4nT) N alag(4nT)mp(47T) {31 10

Dj =

N g 42
rT? 2mrT? 9 9 ny +2607m

205(1/r)a? 1 T2 (N? = Dnyag(1/r)ad
— = 2 IN|(—=+In— In2 =
L g T ) T Ty rmp
3as(1/r)amp 2
— s N+ -ny(1l—4In2)+2
e [PV gl = 4in2)+ 2007
N 2N%a,(1/r)a? 89 N 7T_2 11 mal _ 21 Nag(1/r)a? N a2(4nT)ym% (47T
rMmp 24 6
202, (47 T)ymp (47T
T

1 T2
N <—— +In —2) +ny ln2}
2 mi

) ctar - o, rNodoirDyplant),

4
2 p—
+ 2a5(1 /1) (3N+nf Ve oT

22
—2mag(1/7)a? <%N+ %nf) (raT)?

2o nTynalint) (1 ) oy

N aZag( 7rT)mD( 7T) <%N+ 2—;0%”) (TWT)3+O(043(7‘7TT)4,OK§) 7 (49)

ag(1/r)  3af(1/r)as(4nT)mp(4nT)
7373 7273

D} = +0 (o) . (50)

We have explicitly kept the same scale dependence of ag as in Dj.

B. Calculation of Dy for 1/r > «T > mp

Now we discuss the contribution of the H-shaped diagrams to the Polyakov loop, i.e.,
the one that comes from the last two diagrams in the next-to-last line of Eq. (38]). The
sum of those, which we call Dy, is much simpler to calculate than the individual diagrams,
because in this case the contour integrations can be combined in such a way that they yield
the condition that all Matsubara frequencies in the gluon propagators have to be zero. It
turns out that Dy is given by ¢*/2T times the spatial momentum integrals for the gluon

propagators and vertices, which we will call DY;.
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This can be shown in the following way. We label the gluon momenta in the two diagrams
in the same way, so that they are easier to combine. In the H-shaped diagram proper, the
momentum k flows from the antiquark loop to the quark loop along the temporal gluons
on the left side, the momentum p flows from the antiquark loop to the quark loop along
the temporal gluons on the right side, and the momentum ¢ flows through the spatial gluon
connecting the two temporal gluon legs from left to right, starting and ending on the quark
loop. If we use labels 7 to 74 for the imaginary time coordinates in counterclockwise order
starting from the antiquark loop, then 7, connects to a propagator with momentum k, 7 to
p, 73 to p+ ¢, and 74 to kK — ¢. In the case of the second diagram, the lower two temporal

gluon legs are crossed, so 71 and 75 change their roles.

Denoting the integral over the momenta by D', (ko, po, qo), we get as a result of the contour

integrations:

Dy = (ig) / dT1/ dTg/ dT3/ dry
/T 1T

—ikoT1 —Z;DOTQ —ipoT1 ,—tkoT2) ,i(Po+qo0)Ts Li(ko—qo)Ta 1)/
(6 te e )e ( el 17 D'y (Ko, o, Qo)

k0,P0,90

=g (/ dﬁ/ d7'2+/ d7‘1/ d’Tg)/ d7‘3/ dTy
/T /T /T T1

> E ¢~ tkoT1 o —ipoT2 Z(p0+40)‘r362 (ko—qo)7a 1y (ko,po,QO)

k0,P0,90

1T
/ d7‘3/ dry Z 5’% PO ¢! (Po+40)73 i(ko—qo)a [y (k‘o,po,QO)

k0,p0,90

1/T T3 '
= g4/ dTg/ d7'4 Z elqO(Tg_M)D}{(O, 0, qO)
0 0 9

0, — dgo
4 q0 /

4

T or

2_D/(0,0,0), (51)

where in the second step we exchanged the integration variables 7, with 7, and rewrote the
boundaries of the integrations, d, means a Kronecker delta that selects the zero mode (so
dky = Oon,, for kg = 2nTny), and the second term in the next-to-last line vanishes because

it is odd in o while D/, is even. Up to this point, the calculation does not depend on the
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chosen gauge. For Coulomb gauge we have

T (k-p)g*— (k-q)(p-q))c*mePT
9) //p/q k2(k — q)% (q2)° (p + q)2p> ' (52)

The calculation of D', using the integration by region method is presented in Appendix

and the result reads:

2

D};(0,0,0) = _Miﬁ <3 - %) +0(g") . (53)

This result can also be obtained by comparison to the O (a?) result for the Polyakov loop
correlator from [8] (where static gauge was used instead of Coulomb gauge); we will see when
we collect the different contributions to the final result for the Polyakov loop correlator that

with this value for D', the two calculations agree.

C. NNNLO result for the Polyakov loop correlator at short distances

We can now put all the different contributions together to get the final perturbative result
for the Polyakov loop correlator in the case 1/r > nT > mp > ag/r. We will first collect

all terms up to O (a?) and compare with the result from [g]:

2F, — Fog N2 =1, (N>-D(N*-2) , N> -1
T Lp o 4 TN i 48N 4N
N2 -1 042(1/7“) Oés(l/’f’) 31 10
s |V A — 2
8N?2 { r27? * 2rr2T? ( 9 9 " BOFYE)
204(1 ArTYmp(4rT)  204(1/7)0 1 7
B as(1/r)as(AnT)mp(47T) n as(1/r)ag N +ln— | +nyn2
TT2 TT 2 mD
2rNag(1/r)a?  aZ(4nT)m3,(47T)

S

4
s D 2
2a4(1 =N T
S DR 4 a(afriad (33 -+r) 6o

N2 —2a3(1/r)
6N 373

Dy

e |

up to g6

=1+

675 270
Nog m 6 4
+ o (3_Z }+O(g (roT) )
N2 —1 [a?(1)r) _ 205(1/r)as(AnT)mp(4nT)
8N?2 r21? r1?
N2 —2a3(1/r)  as(1/r)a? (31 10

oN 15 T amere \g g T WE)

2 1 2 2 T2
+M [N (1 T +ln—) +nfln2]

rT B m?,

—orau(1/r)a? [ 22N 4 - ) (rrT)? +

=1+
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B 21 Nag(1/r)a? N a2(4rT)ym% (4xT)

+ 20.(1/r)a? (%N + nf) C(3)rT

9 T2
— 2mas(1/7) (62725N + % ) (T?TT)z} + O (¢°(rnT)*) . (54)

The result agrees with the one in [8], except that we have added a few more powers of r7T,
and that we could also fix the scale of g in some more terms through the relation to the

one-gluon exchange diagram.

The next order is then:

T 8N?2 2N r2T3
20205 (47T)mp(47T) (31 )

l2FQ — FQQ} N2 -1 { N2 —2a2(1/r)as(4nT)mp(47T)
exp | ————=| = —
g7

N—— 2
ArrT? 9 nf 20076

3as(1/r)a’mp
4mrT?
2 3 2 2
(N? = D)ngas(1/r)ad N 2N%a,(1/r)a? [89 LT Elnz}
2N rmp rmp

2
{BN—l— an(l —41In2) 4+ 26pve

N m
24 6 6

202a (4T AT 1 T?
_ 205a,(4nT)mp(dnT) N({—-+4+In— | +nsln2
T 2 m3
as(1/r)asm3, T4 21 Na2ag(4nT)mp(47T)
373 9T

. 2asas<4ﬂ;>mD<4ﬂT> (4n+ nf) (36T

rT

3

202054 T)mp (47T [ 22 7 3
s LN T
+ T o5y T oggns ) ()

+ 0O (g"(raT)") . (55)

D. The singlet and adjoint free energies in Coulomb gauge at short distances

Using the above analysis, it is straightforward to obtain the order g® result for the singlet
and adjoint free energies for rmT" < 1. As discussed before, the sum of unconnected diagrams
appearing at order g vanishes apart from higher order loop corrections: Dx+2Dp = O (g°).

Therefore we write

Fy N2 —1 Fy F, 1 Fy
LA D; +2-9 A _ ___p,4ot@
T oN 1t eT T —aNIteTr
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Using Eq. ([@6]) for D; and Eq. ([@8]) for Fi/T', we obtain

% - N;; 1 asilT/r) [1 * Z_; <3_91N - %”f + 2ﬁ07E>} + 1—18 (N? = 1) afraT
-t (g ) e St eeer
Lo (N + s ) a2(rmT)* +.0 (anDsa) 57
% - N21_ 1% - NQS(ZLWJ;?DMWT) + N;§ {N (—% + In 77];—22[)) +ny 1n2]
a 3]\1](?% [3]\[ + gnf(l —4In2) + 2ﬁ0’YE] + NoolT B_Z + 7{—; — %1112}
L if Lo . 59

The result for Fg agrees with the calculations by Laine and Burnier [12] up to order g*,
if the latter is Taylor expanded in 77T. This is shown in Appendix [El The ¢° term in Fy
as well as the expression for Iy are new results. It is interesting to note that the ¢° term in

Eq. (B7) can be guessed from the leading order result derived for 1/r ~ mp:

2 _
N"—lag

Fs—2Fy| =—
o “lLo 2N r ’

(59)

by expanding the exponent and keeping the term proportional to m3,. In the next subsection,

we will discuss Fg for 1/r ~ mp in more details.

E. The free energies in the screening regime

Let us now consider the singlet free energy for 1/r ~ mp. In this regime, there are only
two separate scales larger than «ag/r: 77 and mp. The exponentials in the propagators are
no longer expanded for momenta of the order of the Debye mass, since their argument is
now of order 1. In contrast, for momenta of the order of the temperature, the propagators of
gluons exchanged between the two Polyakov loops are exponentially suppressed in coordinate
space and do not contribute to the expansion.

The power counting of the different contributions also changes, since now each power of
1/r adds a power of g. Accordingly, the leading order contribution no longer counts as g%, but
as g3. We will give the free energies up to order g*, which is given only by D;. One can show

with simple power counting arguments that the two-gluon diagrams only start to contribute

23



at higher orders: Dy ~ D? ~ g*exp(—=2rmp)/(rT)* ~ ¢% and Dy ~ D;g*mp/T ~ ¢°
within this hierarchy. The calculations for D; at one-loop level are presented at the end of

Appendix Dl we get

FS—QFQ N2—1Oés —rmp
= — —C
T 2N T
NZ -1

5 aZe”" [2 —In(2rmp) — yp + P Ey (2rmp)] + O (¢°) . (60)
This result agrees with that of Ref. [12] up to terms O (¢°) [cf. Eq. (3.22) of Ref. [12]].

Note that in our power counting scheme, the first term is of order ¢ and the second one of

order g*.

In Eq. (€0), there is no term that fixes the scale of g, not even in the leading contribution
of order g®. Such a term will appear at order g°. However, in order to get the full result
at order ¢°, we would also need the calculation of D; with the two-loop self-energy at the
scale mp, which is not available at present. Nevertheless, all other contributions have been
computed in Appendix Since they include all contributions of order ¢g° proportional to
the number of light quarks and to the logarithm of the temperature, they are enough to fix
the scale of g at least in the leading order contribution of Eq. (60). They read

0Fg N? —1 oy Crmp mp
= ey (12 70) 0% (61)
where
a [11. 2 n
67 =2 | 2N+ 21— 4m2 2 ( 1—) . 2
1 1 3 +3( n )nf+ 5o YE + n47TT ] (6 )

The logarithm in this term is proportional to the first coefficient of the beta function and
determines the scale of g in the leading order term of Fg to be 47T, both in oy and in mp
in the exponent. (Remember that mp ~ ,/as, which explains the factor 1/2 in the mp term
of 0Fg.) The expression of §Z; agrees with an analogous finding in [12] [cf. Eq. (3.19) of
Ref. [12]].

At this order, we have already seen in Eq. (37)) that Casimir scaling still holds, hence the

adjoint free energy is given by

Fa—2F;  Fs—2Fg

T (N2—1)T" (63)
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F. The free energy of a QQ pair in the screening regime

We can also calculate the Polyakov loop correlator for 1/r ~ mp. In Coulomb gauge, it
is easy to see that the unconnected two-gluon and three-gluon diagrams appearing in the
last two lines of Eq. (38)) give rise to contributions that are of order ¢°. Therefore, we need
to consider only the contributions from D; and Dy for 1/r ~ mp. These calculations are

discussed in Appendix [Dl Using the results of these calculations, we obtain

QFQ—FQQ N2 -1 ) N2 _1
T 14— mpr e D+ O (o
T { vz Pi— =y Pu+O(9)
N2 1 as(47TT)6—rmD(47rT) 2 . N2 -1 age—%mp ——
8N? rT SN T Tmp = VE
2
_ e4TmD El (4rmD) —+ (62T’mD E1(27"mD) + g+ In 27”mD)
rmp
00 6—27‘me T+ 2
a 1 O (¢° 64
+/o ! r+1 " x ] * (g) ’ (64)

where we have fixed the scale in the leading term in the same way as for Fg. This result
agrees with the one obtained by Nadkarni [9], except for the fixing of the scale, which is

new. The leading order term now scales as g%, while the first correction is of order g”.

IV. FREE ENERGIES IN PNRQCD

The Polyakov loop correlator can be written as the correlator of static color sources 1

and x located at a distance r and at imaginary times 0 and 1/7" [§]:

oxp |12 = i T T N (/T,0) (0.0 0) . (9

The delta functions in the denominator are necessary for a correct normalization. Due to
the equal-time anticommutators of the static sources: {@D,-(T, x), @D}(T, y)} = 6;;00) (x — y)
and {XI(T, x), x;(T, y)} = 0;;6®)(z—1vy), the operators in the correlator (65)), which have the
same spatial arguments, would lead to diverging delta functions. Exactly those are canceled
through the normalization. The contraction of the indices of the Kronecker deltas requires

the normalization factor 1/N2.
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Accordingly, the singlet and adjoint free energies are given by:
Is 1 f f
o) <Tr[ (1/T,7)x"(1/T,0)] Tr [x(0,0)(0,7)]) , (66)

exp {_%} _ m (T [T%6(1/T, ) (1/T,0)] Tr [T°x(0,001(0,7)]) . (67)

exp [—

The dynamics of the static sources are described by the Lagrangian:

£ [ @2 [0iDw 4D + i + Z Dt (68)

This is the QCD Lagrangian for a static quark field ¢, a static antiquark field y, and ny
massless quark fields ¢;.

If we assume the hierarchy 1/r > «T > mp, we may use an EFT where the expansion for
small 7 is systematically incorporated: pNRQCD [23-25] (pNRQCD at finite temperature
has been discussed in [26] in real time and in [§] in imaginary time). In this EFT, the effective
degrees of freedom are quark-antiquark fields in color singlet or octet configurations: S and
O Up until this point we have always kept the number of colors N general, however,
pNRQCD is usually defined for N = 3, hence the name octet for the adjoint field. But
since the generalization to arbitrary N is straightforward, we will keep N general while still
calling the adjoint field “octet” out of convention.

In Euclidean space-time, the pNRQCD Lagrangian density for static fields up to linear

order in r is given by [&]:
£pNRQCD == / dg’l“ [ST(ﬁo + V;)S + OTG (ng + V;)(Sab) O } + ngng + Z ql /ﬂu%
- /d3 Va_ (ST('I’* igE*)O* + O'(r - igE")S) + Ed“bCOT“(r -igE")O°
/ 2 Y
(69)

where the singlet and octet fields S and O* depend on both the relative coordinate r» and
the center of mass coordinate R, while gluons and light quarks depend only on R. The

Wilson coefficients at next-to-leading order are given by

Vi) =~ () - oL e (BY O g5,

2N T 9 9
Va(r) =Vg(r)=1. (70)

26



In pNRQCD one can also define singlet and octet (adjoint) free energies in a gauge

invariant way:

% = —In 5610) (S(1)T,R,7)S'(0, R, 7))
— N;; 1 asf}T/T) {1 4 % (% — 109ﬂ + 2B07E)} + % (N2 = 1) a2rnT
- N;]; ! <% + nf) C(3)alr*T? + (N212—]\})as n;??r2T2 + O (a2(raT)% a2) , (71)
% = - ln(N2_1W (0*(1/T,R,7)0*'(0, R, 7))
_ N21_ 1% B Nozs(llﬂ];)TmD(éle) N N;g [N (_% i Z;—;) i an}
- % {3]\[ + %nf(l —4In2) + 250%5] + N;QET B—Z + 71T—; — %an}
+ (N2 = Dy 0T +0 (af(rﬁT)?’, ag’) . (72)

8 mp
We have taken these results from [§] and added the information from [17] about the O (g°)
Polyakov loop in the adjoint representation. The value of the center of mass coordinate is
irrelevant because of translational invariance, however, for comparison with the expressions
in the QCD correlator (GH) we set it to R = r/2. We can also express the Polyakov loop

correlator with these free energies |§]:

- 2 _
ol 15] - o 4] ol Aot oo

If we compare f, and f, with the singlet and adjoint free energies, Fs and F, given in
Coulomb gauge by Egs. (57) and (58]) we see that they almost agree, but there is a difference
of a factor 2 in the linear term in r«7". This is not surprising since f,, f, and Fg, F4 do
not describe exactly the same quantities: Fg and F4 depend on the choice of gauge while
fs and f, do not. In addition, fs and f, give the Polyakov loop correlator up to corrections
of order a2(rmT)*. Still we can quantify the difference by a proper matching calculation.

More specifically, we will match the operator ¥(r)x'(0). It transforms as N, x N
under gauge transformations (here N and N refer to fundamental and anti-fundamental
representations, transforming locally at the points 7 and 0 respectively). Hence, also the
matching pNRQCD operators have to transform in the same way. This requires that they are
of the form ¢(r,r/2)(...)#'(0,7/2), where the dots stand for the most general expression

made of gauge covariant pNRQCD operators located at the center of mass coordinate that
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are consistent with the discrete symmetries, P, C' and T', of the QCD operatOIH. These
operators will be made in general by combinations of chromoelectric or chromomagnetic
fields with one color singlet field S or one color octet field O¢, this last requirement following
from the heavy quark number conservation. The operator ¢(xy, x5) stands for the spatial

Wilson line connecting the points x; and xs:
1
¢(x1,9) = Pexp {zg/ ds(xy — x3) - A(sxy + (1 — s)xs)| (74)
0

where we suppressed the imaginary time argument. The Wilson lines guarantee that the
matching pNRQCD operators transform as the QCD operator also under gauge transforma-
tions.

At O (r?) in the multipole expansion, the matching condition therefore reads
Y(r)x'(0) = o(r,7/2) jSNSIL +V2Z,0°T" +V2Zg,r (r-igE®) ST"
(r-igE") 0L + V2Z}, d™ r (r - igE*) O'T° + O (r*) | ¢(0,7/2) .

ZEO’/’

VN

(75)

All the fields inside the square brackets are located at the center of mass coordinate R = r/2.
The factors Z are the matching coefficients. They have been chosen such that Z; and Z,
are 1 at leading order.

The Wilson lines in the right-hand side of Eq. (78) can be multipole expanded. In
particular, if the Wilson lines go from R to R 4 7 /2 their expansion is

1
qu(R:I:r/Q,R):]L:I:E/ dsr-igA(R+ sr/2)
2.Jo

+ i /0 ds; /081 dsz (1 -igA(R* s17/2))(r - igA(R £ 5o7/2)) + ...

— 1 roigA(R) + %(r V) (r-igA(R)) + %(r LigA(R)?+ ..., (76)

where 1 is the unit matrix in color space, and the dots contain cubic terms and higher in

the multipole expansion.

2 Note that in imaginary time 7 = it KN (—i)(—=t) = 7, and thus Ay L _4,AL A andED —E.
This means that the imaginary time version of the T" symmetry involves replacing the gauge fields by their

negative, while keeping the static quark fields invariant and complex conjugating the coefficients.
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Different projections of the matching condition ([5]) are required to generate Fg and Fy:

\/LNTr [vx'] = Z,S + \/Z;_N (r-igA*) O + ZLZN (r-igA®) (r-igA®) S
+ jﬁdabe (r-igA®) (r-igA®) O° + Zg,r (v - igE*) 0" + O (1*)
(77)
V2Tr [TYx'] — Z,0" + Z (r-igA®) S+ Zo gate (r-igA®) O°
V2N 2
Z aoc C Z a
4\/_d “(r-igA®) (r-igA%) S+ IN (r-igA®) (r-igA®) O

+ %dabed“d (r-igA®) (r-igA®) O + goifabc [(r- V), (r-igA®)] O°
+ Zgsr (r-igE") S + Zp, d™r (r-igE") 0° + O (%), (78)

where we have multipole expanded the Wilson lines according to Eq. (76)). As it will turn
out, the matching conditions (77) and (78] are sufficient to match the free energies. One
reason is that the singlet and adjoint free energies Fs and F4 in Coulomb gauge are finite
and therefore do not mix under renormalization. We recall that this is a specific feature of
the Coulomb gauge, for in general Fs and F4 do mix as discussed at the end of Sec. [

We can now compute Fg and F4 in pNRQCD by inserting the matching conditions (1)

and ([78) into the respective correlators:

exp [—%} Néi <Tr [ (1/T)x (1/T)} Tr [X(O)Q/)T(O)D
|Z |2 z:Z,
)+ A
Z;‘ZS . eas Aa
~ 2N (0) (S(1/T) (r-igA®) 0*1(0))

i zz@(m ((r-igA®) (r-igA®) S(1/T)S'(0))

_2]|VZ(506|(20)<(7° igA”) (r -igA%) 0*(1/T)0"1(0)) + O (af(raT)’)

<S (1/7)S'(0 r-igA®) O*(1/T)57(0))

(79)
Fy

R )

[To¢(1/T)x'(1/T)] Tr [Tx(0)w'(0)])

|Z |2 . . ZiZo 0 ge o T
= 550 )<O (1/T)0*(0)) — VaNs (0 )<( gA?) 0*(1/T)5%(0))
- ZZ,

r-igA®) 0°1(0))
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|Z,|?
2N 89(0)

|Z,/?
2N 85(0)

((r-igA®) (r-igA®) S(1/T)S'(0))

+ {(r-igA®) (r-igA") O*(1/T)0"(0)) + O (aZ(rnT)?) .

(80)
We have suppressed the time arguments of the gauge fields: since they obey periodic bound-
ary conditions, it does not matter if they are evaluated at imaginary time 0 or 1/7". Some
terms have been neglected, because they do not contribute at this order in r, and several
terms cancel. We see that the corrections to the pNRQCD free energies are gauge depen-
dent, for they involve the gauge fields A instead of gauge invariant combinations of E and
B fields.
The calculation of the correlators for the leading order corrections can be done in the

following way. The quark-antiquark fields can be replaced by the leading order propagators:

{(r-igA®) (r-igA®) S(1/T)S(0)) = 35(0)e /T ((r - igA®) (r - igA™)) + ..., (81)
{(r-igA®) (r-igA) O*(1/T)O"1(0)) = 6°(0)e /T ((r - igA®) (r - igA")) + ..., (82)

where the dots contain additional vertex insertions or higher order expansion terms of the
adjoint Polyakov loop appearing in the octet propagator. When both singlet and octet fields

appear, then the insertion of a vertex is necessary:

((r-igA") O*(1/T)S%(0))
V465(0)
~ VAN
((r-igA®) S(1/T)0*1(0))
V465(0)
~ V2N

The leading contribution from the electric fields comes from the —0,A® term, and we can

1/T
/ dr e Ve(/T=7)=Vsr ((r-igE*(1)) (r-igA®)) + ..., (83)
0

1T
/0 dr e V=W T=)=VeT (g g B(T)) (1 - igA®)) + ... . (84)

use the imaginary time derivative to integrate by parts:
1T
/ dr e VoW T=1=VT (0 g BY(T)) (7 - ig AY))
0
= (e_v"/T — e_VS/T) ((r-igA®) (r-igA")) + O (a?) , (85)
1T
[ e (g (o)) (1 g A7)
0
= (/T —e /M) ((r-igA®) (r-igA")) + O (af) . (86)
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We may replace V4 by 1, because higher order corrections to this coefficient, which start
at order o [27], are beyond the accuracy of this calculation. For the same reason, we may
also replace Z, and Z, by 1 in subleading terms. The corrections to the free energies then

simplify to:

o~VolT _ o=Vs/T
+ 5N (r-igA®) (r-igA")) + O (af(rﬂT)?’, ozg’) , (87)
exp {—%} = |Z,[” exp { f”}
e Vol — e VIT . aa . sa 2 3 3
IN(NEZT) ((r-igA®) (r-igA )>+O(as(r7rT) ,as) ) (88)

For the calculation of the gauge field correlator at tree level, we need to use the same

gauge as for Fg and Fly, i.e., Coulomb gauge:

((r-igA®) (r-igA®)) = — ¢* g : ka—(k(grj-lel)) et ; : % ko : k>

B g2(N2 _ 1)7“2Td_1,u3_d d—1

= o T (1-9)¢(2—a)
=3 _ %”( N? — 1)aer®T?. (89)

When we insert this into the expression above, then we also expand the exponentials of
the potentials, since they are of O(as). Comparing both sides, we see that the matching
coefficients Z, and Z, have to be 1 up to corrections of order o?. Finally, the leading order

corrections read:

FS fs 1
exp {—?] = exp {—T} + 1_8(N2 —1Da2rrT + O (ag(rﬂT)g,ag) , (90)
FA fo 1

This exactly reproduces the difference between the free energies in QCD and pNRQCD at

the given order.

V. CONCLUSIONS

In this paper, we have studied the Polyakov loop correlator in perturbation theory. We

showed, based on general considerations, how the perturbative expansion of the Polyakov
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loop correlator re-exponentiates into singlet and adjoint contributions. The definition of
the singlet and adjoint contributions depends on the renormalization scheme and gauge,
however. Using the re-exponentiation formulas, the MS-scheme, and Coulomb gauge, we
have calculated the Polyakov loop correlator up to order g7 in the case 1/r > 7T > mp >
/7, and reproduced the previous order g° result, which was obtained using static gauge [§].
Using Coulomb gauge has the advantage that the contributions of many diagrams vanish
and the calculation is reduced to only three diagrams. The order ¢’ contribution to the
Polyakov loop correlator is given in Eq. (B3) and is the main result of this paper. As a
byproduct of this calculation, we obtain the singlet free energy in Coulomb gauge at order
¢°. Furthermore, we have considered the singlet free energy and the Polyakov loop correlator
in the regime 71" > 1/r ~ mp. We have discussed the power counting in this regime and
reproduced an earlier result for the singlet free energy [12]. We have also reproduced the
NLO result for the Polyakov loop correlator by Nadkarni [9], and extended it with a partial
NNLO calculation that fixes the scale of the running coupling in the leading order expression.

We have also investigated the relation of the singlet and adjoint free energies in Coulomb
gauge with the gauge invariant definition of singlet and octet free energies in pNRQCD.
We found that the two definitions agree at leading order in the multipole expansion, but
disagree by a term proportional to o?rnT, cf. Egs. ([@0) and (@1)). This may explain why the
singlet correlator in Coulomb gauge and the cyclic Wilson loops calculated on the lattice
agree quite well at short distances [2§].

Finally, we mention that the re-exponentiation of the Polyakov loop correlator and the
singlet correlator was also discussed in Ref. [29]. There, only the contribution of diagrams
made of tree level propagators has been resummed, in SU(2) or in the large-N limit. The
authors of Ref. [29] did not reproduce the leading order perturbative result for the singlet
contribution contrary to our analysis. As shown in Appendix [G], this is due to the fact that
the contributions of certain diagrams have been omitted. There we also show that, once
the contributions of the missing diagrams are included, the correct result for the singlet
correlator is reproduced.

The work presented in this paper can be extended in at least two ways. First, it will be
interesting to compare the weak coupling results for the singlet free energy and Polyakov
loop correlators to the lattice results in the high temperature region and see to which extent

the two agree. This will clarify the question whether the onset of color screening can be
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understood in perturbation theory. Second, the re-exponentiation formula (B5) and the
results obtained in this paper set the stage for a future calculation of the order g% expression

of the singlet free energy, which appears to be in reach.
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Appendix A: Calculation of the projected color factors

In this appendix, we compute the color factors of the diagrams contributing to the
Polyakov loop correlator in detail. First, we clarify the conventions related to the com-
plex conjugation of the antiquark Polyakov loop. There is a minus sign from the ig factor
in the exponent, which we will use to revert the direction of the contour integration in the
kinematic parts of the diagrams (indicated as an arrow to the left in Fig. ), so for the cal-
culation of the color coefficients, we will only use charge conjugated color matrices without

this minus sign. Then we have

o(1)-s(1)- S

- %Tr [T°T°] = %(]\ﬂ —1), (A1)
¢, (E) _¢, (E) 2 s

= 5 N[ TTT) = —%, (A2)
Cs (g) =Cs <g) —Cs (E@)

= % [(TT)iy (TP T ) g = (TT°) i (T T )]

— %Tr [TeTt T Tt — TOTPTNT] = —%(N2 ~1), (A3)
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(x)-s(x)-<(1)

B Nzk—Jll [(TT")i i (T"*T** ) — (T“T") 35 (T**T"*)
2 arpbrperparpbrc arpbrperpbrparpc 1
= N7 [T = T T = 7 (Ad)
o 5Zk5]l TaTbTa Tb* TaTbTb Ta*
_T[( )i Te™ — ( )i T’
1 1
= T[T T — TT"T'T"] = —(N* — 1), (A5)
Qﬂc]f*Tcl a a * a a *
=17 T'T)y Ty — (TT°T") T’
2 arpbrparpepbrc arpbrpbrpcrpanc 1
:N2_1Tr[TTTTTT—TTTTTT}:Z. (A6)

Appendix B: Calculation of unconnected diagrams

In this appendix, we compute the unconnected diagrams in Eq. ([B8) at short distances.
First, we note that the contributions from the scales 1/r and 7T vanish for unconnected
diagrams without loop insertions. This can be seen by calculating the free propagator for

the temporal gluons in position space:

eikor+ik-r r d _ 1 n
Dyo(7,7) = g 2 = 47(r2%rd—2) Z(S (7‘ — T) . (B1)
nez

For all practical purposes, only the §(7) term is relevant, since the argument of the propaga-

tor will always lie inside (—1/7,1/T), and the boundaries do not contribute to the integral.
This delta function requires the propagators to have the same imaginary time arguments
at both ends, hence any two- or three-gluon diagram in Eq. (B8]) with crossed propagators
vanishes when the free propagator is used, which happens for & ~ 1/r and k ~ 7T. For
k ~ mp one has to use a resummed propagator, which depends on kg, and this relation
cannot be used.

Next, we compute the contribution from the diagrams in the last line of Eq. (38)). This is a

product of two diagrams. Since the first is at least of O(as), the others need to be calculated
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at O (g°), hence we do not have to consider higher order diagrams with loop insertions. All
these diagrams have crossed gluons, hence in Coulomb gauge they all vanish except for the
scale mp contribution. But since gluons with a momentum of order mp increase the order
of the diagram by g, only one gluon is allowed to have such a momentum, otherwise the

diagram would be O (a?).

In the two Dp diagrams, if the gluon connecting the two Polyakov loops carries a mo-
mentum either of order mp or of order 77", then we obtain a scaleless integral that vanishes
in dimensional regularization. Therefore, the only contribution to D7 comes when the gluon
connecting the Polyakov loops carries a momentum of order 1/r and the other of order mp.
Also in Dy, one gluon momentum needs to be of order 1/r and the other of order mp, but

here there are two possible distributions of these momenta.

We will now show that at leading order the sum of Dx and 2Dy vanishes. This can
be seen in the following way: for the gluon with momentum of order mp, the separation r
between the two Polyakov loops vanishes at leading order, and the time arguments of the
other gluon are identical because of the delta function in the Coulomb gauge propagator.
Hence the scale mp gluon in Dy has the same contour integration as in D (one endpoint
to the left and one to the right of the other gluon), but there is a relative minus sign because
of the opposite orientation of the two loops. In Dy there is also a factor 2 because of the
different possibilities to distribute the momenta. In the multipole expansion of Dy there

2

are higher terms m%r? etc., which are not canceled by 2D, but those are suppressed by

higher powers in g and can be neglected.

We will now show this with an explicit calculation. We can use the Coulomb gauge
propagator (BIl) with d = 3 (there are no divergences at this point), and the d-dimensional

integral of (k% +m2)~" gives —mp /4w for d — 3. Then we have

= (ig)* / L / L / dry / dr, <T5 ) Ta(”‘u)) / k:lQimD
o[ oo L] ) (e
e (o) ) o)

S O, (97) . (B2)
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0 T 2 i T6(m — 73) 1
Dr=(ig) [ an [ s [ [ =
T = (ig) r 71 72 3 4 4d7r i k2 +m%
1T Tm a’m
— g / drs / drs / dr4< fr) == Tf, (B3)

where we labeled the imaginary time coordinates in clockwise order starting from the anti-

quark loop. The combination Dx + 2Dz is O (¢7) and, therefore, the last line of Eq. (38)

does not contribute to the Polyakov loop correlator until O (¢?).

A similar mechanism is at work for the unconnected diagrams of the next-to-last line of
Eq. (38) (i.e., all except for the last two). We need to calculate these diagrams at O (¢7), so
again no loop insertions are required. If all gluon momenta are larger than mp then each
of these diagrams vanishes in Coulomb gauge because of the crossed propagators, but on
the other hand only one gluon may carry a momentum of order mp, because otherwise it
would be O (¢®) or smaller. For the first two unconnected diagrams and the last one, it
does not matter which gluon carries the scale mp momentum: any choice leaves two other
gluons with higher scale momenta that are crossed and therefore the first two and the last

unconnected three-gluon diagrams in Eq. (88) vanish in Coulomb gauge.

Thus, we are left with only four unconnected three-gluon diagrams, namely the third,
fourth, fifth and sixth diagram in the next-to-last line of Eq. (88). We denote the sum of
these diagrams as Ds,. For each of the four diagrams, there is only one possibility to choose
a gluon carrying a momentum of order mp in such a way that the other gluons are not
crossed. Since the scale 71" does not appear, for the corresponding integrals are scaleless for
unresummed propagators, the remaining gluons each carry a momentum of order 1/r.

Now we show that Ds, vanishes at leading order. The argument is analogous to the one
in the previous case: the scale mp gluon does not distinguish between the two Polyakov
loops, it starts in front of and ends behind the two parallel gluons connecting the two loops
in each case, but for two of them the direction of the integration is the opposite of the other
two. We also give the explicit calculation, where we use the fact, that a diagram turned

upside down is identical to the original diagram for symmetry reasons:

Zg / dTl/ dTg/ dTg/ dT4/ d7'5/ d7'6
/T /T
XT571—7'5 ’7'2—7'4 /
(4mr)? p K2+ m2
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+ 2(ig) / dTl/ dTg/ dTg/ / d7'5/ dTg
/T 1/T 1/T
XT ’7‘2—7'6) ’7'3—7'5 /
(47r)? k2+mD
1/T T
= —29 / dTg/ d7'4/ d7'5/ dTﬁ( mD )
T
—Qg / d’Tl/ d’TQ/ dTg/ ( m3D2) +O(99)
yr Jyr JyrJw Am)r

Oé sMp Oé sMp
= 197273~ 19,273 +O( ) o (g ) : (B4)

In summary, we have shown that the contribution of all unconnected diagrams to the

Polyakov loop correlator vanishes at order ¢”.

Appendix C: The H-shaped diagrams at short distances

In this appendix, we discuss the calculation of the H-shaped diagrams at leading order.
First, we will show that there are no contributions from scales 77 and mp to D, (see
Sec. for the definition), where the absence of the latter ensures that corrections to DY,
are of order g*. The absence of scale 71 contributions is immediately apparent: we have
already seen that the contour integrations combine such that all Matsubara frequencies are
zero [see Eq. (BI))], hence the scale 7T is in fact not present in the calculation.

For the scale mp contributions, we first consider the case when one of the four temporal
gluon legs carries a momentum of order mp, with all the others of order 1/r. We will discuss
the case k ~ mp and p ~ ¢ ~ 1/r, all other cases are analogous (we use the same labels
for the momenta as in the main section). The top-left propagator as well as the exp|ik - 7|
factor need to be expanded in k; since all higher order terms in this expansion are beyond
O (g%), we may just insert k¥ = 0 in these terms. The left vertex factor is proportional to
2k — q, but also here we may neglect the k-term at O (¢®). The k-integral is then only over a
single scale mp propagator and gives the known result. But for the remaining integrals, the
momentum from the vertex factor multiplies the spatial gluon, ¢;D;;(0, q), which vanishes
because of the transverse projector in the spatial Coulomb gauge propagator.

There is another option when two of the gluon momenta are of scale mp. Again we will
only discuss the case k ~ g ~ mp and p ~ 1/r, all others are analogous. Now the top-right

propagator has to be expanded in ¢, while the explik - | factor needs to be expanded in k,
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but still only the leading order terms are relevant at O (g3). Also in the term —(2p + q) in
the numerator from the right vertex, only p needs to be kept. Consequently, the integrand
of the k and ¢ integrations is odd under the transformation k — —k and q — —q and
vanishes.

This leaves only the case when all gluon momenta scale like mp and both exponentials

need to be expanded:

(i 4((k-p)q2—(k-q)(p-q))+...
9) //p/q k? +m3) ((k — q)? +m}) (q2)2 ((p+q)* +m%) (p> +m%) '

(C1)

Dy (0,

The k and p integrations both have a vector k or p in the numerator, and the only other
momentum in their denominators is g, so the results of both these integrals have to be
proportional to g for symmetry reasons. When these are contracted with the transverse
projector from the spatial gluon propagator, then they vanish. Therefore there are no
contributions to D}, at all from the scale mp at O (g3).

Now we will calculate the first contribution to D}, from the scale 1/r. The integral itself
is finite in 3 dimensions, however, some of the operations we are going to perform are only
allowed in the framework of dimensional regularization, hence for the moment we will assume
general d dimensions. First, we shift the momenta kK — k — p and ¢ — q — p. Then, the

integral contains only one momentum in the exponential:

/// (k — p qu ) — (¢ = p)ila—p);) pie™" (2)
pJq p)*(k — q)? ((q — p)*)* ¢*p?

The p and ¢ integrations can be put into the form of general k-dependent integrals:
1 =/ 1

n 7n 7n 7n ?n = n n n, n. n *

T T T L ) (B =) (k= @)™ (P — 2™ ()" ()

Through redefinitions of the integration momenta, one can show the following identities:

(C3)

Ii(n1,n2, 13, g, 5) = Ii(ng, n1, ng, M5, 1) = Ii(ng, 05, N3, M1, o) = Ii(ns, ng, N3, N2, 1)
(C4)
Re-expressing the numerator through terms that can be canceled against terms in the de-

nominator and using these identities, we get:

6

. 1
Dy = 9? /e”” []k(l,o, 2,1,0) — I,(1,0,2,0,1) + 51}‘3(1, 1,0,1,1)
k

—21,:(1,0,1,1,1) + k*I,(1,1,1,1,1) (C5)
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In the first integral of this expression, the ¢ integration is scaleless, so I;(1,0,2,1,0) = 0.
The other integrals, except for the last one, can all be calculated with standard methods.
The last integral can be simplified by using integration-by-parts relations. In order to obtain
these, we insert V,-p or V,-q into the general expression for I;(nq, ng, ns, n4, ns). Because it
is an integral over a total derivative, each of these expressions vanishes, but if one calculates
the derivatives explicitly, then one can also express it through other integrals of this type.

Other relations may also be obtained, but in this case these two are sufficient.

1
0= //V P n1 n n n ns
vle T T ((k=p)2)" (k—a@)?)" (p—q@)?)™ (p*)™ (¢*)™
= - nllk(nl + 1,77,2, ns,ng — 1,77,5) + n1k2]k(n1 + 17 N2, N3, Ny, n5)
— nglp(ny,no,ng + 1,04 — 1,n5) + nsli(ng, ne,ng + 1,n4,n5 — 1)

+ (d—n1 — N3 —2n4)Ik(n1,n2,n3,n4,n5) s (06)
1
" /p/qu =) (k- )™ (- 2" )" (@"

= —nylg(ny +1,n0 — 1, n3,n4,m5) + n1lx(ng + 1, n9,n3 — 1,04, 15)

(
—nLp(ng + 1,n9,n3, 14 — 1,05) + n1k> L (ng + 1, ng, ng, ny, n5)

—ngli(ny, na,ng + 1,04 — 1,n5) + nsli(ny, ne, ng + 1,04, n5 — 1)
+ nglr(ny,no,ng — 1,ng + 1,n5) — ngly(ng, no,n3, ngy + 1,5 — 1)

+ (n3 — na) I (n1, na, 3, na, ms) - (C7)
Subtracting the second relation from the first, we obtain

0= (d —ny — 2ng — ny)Ix(n1, no, N3, na, N5)
+nyl(n + 1, n0 — 1,n3,n4,15) — ndi(ng + 1,n9, 13 — 1,14, 115)

—nglp(ny,ng,m3 — 1,ng + 1,n5) + nglp(ng, ne,ng,ng + 1,ms — 1) (C8)

This relation can be used repeatedly to lower either the index nq, ng, or ns to 0, at which
point the integral is straightforward to calculate. In the case of I (1,1,1,1, 1), one iteration

is sufficient:

2 2
1.(2,0,1,1,1) —
dk( 707 5 L ) 4

I(1,1,1,1,1) = 4 S1k(1,2,0,1,1), (C9)

where we have used the symmetry relations again.
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We now give the results of the integrals when one index is 0. Because of the symmetry

relations we only need to consider two cases:

1 1
(1,0, ma, g, ms) = /p (k—p)?)™ (P*)™ /q (p—q)?)™ (¢*)"
_/ 1 T (ns +ms5 — §) T (5§ —na) T (5 — 15)
~ Jp (k—p)

2" (D)™ (47)4/2 (p2)" 552 T (ng)T(ns)T(d — ng — ns)
(k)T 62T (9 — ) T (§ — ms) T (§ — ms)
(4m)d ['(n1)L(n3)L(n5)
F(n3+n5 — —) I'(d —ng —ng —ns)['(ny + ng +nyg +ns — d)
F(d—ng—n5)f‘(n3+n4+n5—Q)F(ﬁ—nl—ng—n4—n5) ’

(C10)

1
st = [ e | g
I (e — 5) T (5 —ma) T (5 — )
(4m) /2 (k2)" T2 D (0 )0 (ng)D(d — g — )
P (o + 5 = §) T (5 —m2) T (§ — ms)
(47) /2 (K2)"4"5 2 D (ny)T (n5)D(d — ny — ns)
(k2) s y6-d (4 YT (4 —ny) T (4 —ny) T (4 — ns)
(4m)d ['(ny)T(n2)T(n4)T(n5)
F(n1+n4—g)F(n2+n5—g)
I(d—ny —n)0(d—ny —ns)

(C11)

Then we have:

Dy = %G/ke““' {—Ik(1,0,2,0,1) + %Ik(1,1,0,1, 1) — 21(1,0,1,1,1)
+ 42]_“2d1k(2,o,1,1,1) — szdlk(Q,l,O,l,l)
[t [_v(g—l)r(%—z)m—@+r4<g— )r*(2-9)
T Ji (47)e (k2)* 1 I (% —4) 2I'2(d — 2)
203 (4 -1 (2—4)I(d—3)I'(4 - d)
[(d-2r(3-4)T (% -4)
+2F2(g— DL (¢-2)T(2-4)T(d-3)I'(5—d)
(A4=dT(d=2)r (3 -5) I (F -5)
L Aw(E-L(E-2)T 25T (3—5)
(4—d)I'(d—2)I'(d - 3)
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_ O (5 —4) | 2dI° (5-1)T(4—d) N (3d—8)r* (¢4 —-1)I?(2-9)
AA3d2pT T(4 — d) (4 — )20 (34 — 4) 2(4 —d)I*(d —2)

_ ag(lw)g_gd . 2d 3 (g . 1) + I (%d — 3) I (2 1) I (2 %l) (C12)
Am3d2=3¢T | (4 —d)2 \2 T'(5—d)T2(d—2) ‘

For d = 3 this gives:
al 3 7T2>
Dyp=—=(-+—). 1
" rT( SRS (C13)

The result is consistent with a similar finding in Ref. [30].

Appendix D: Calculations of massive diagrams

In this appendix, we consider the calculations of Dy and D; for the case 77 > 1/r ~
mp. The temperature scale does not contribute, because momenta of this scale lead to
exponentially suppressed terms that do not appear in the expansions, or to scaleless integrals.
Therefore all momenta are of the order of the Debye mass mp, which means that all temporal
gluons have massive propagators.

We begin with the H-shaped diagrams, which give a leading contribution of O (¢7) in this

/ / / (k—p)i (6;;(p— @)* — (p — Qilp — @);) pse™™ ‘
pJq (k—p)2+m3) (k—q)*+m3) ((p—q)?)* (p*+m3) (q2+m%2m)

regime:

We will proceed in the same fashion as in the previous appendix; large portions of the
calculation remain the same, we just have to introduce mass terms in the k-dependent

integrals:

Jk(n17n27n37n47n5>
-]/ 1
pJq (k=) +m})" ((k—q)* +mp)™ ((p — @)*)" (p> + mp)™ (¢ +mp)"™
(D2)

The identities are still valid, since none of them exchange the indices of a massive with the

ones of a massless denominator:

Jk(n17n27n37n4,n5) = Jk(n27n17n37n57n4) = Jk(n47n57n37n1,n2) = Jk(n5,n4,n37n27n1)-

(D3)

41



Again, we cancel the terms in the denominator and simplify the resulting expression through
the identities; the result is almost unchanged:

6
Dy = ‘% /e“” {Jk(l,O,Q, 1,0) — Jx(1,0,2,0,1) — 2J,(1,0,1,1,1)
k

1
+ §Jk(1, 1,0,1,1) + (K* + 2m3) Ji(1,1,1,1,1) | . (D4)

The integration-by-parts relations change as follows:

1
/p/q " ((k=p)2+mp)" ((k—q)? +mb)™ (p—q)?)™ (p* +mp)™ (g% +mp)"™
= —nle(nl + 1, No, N3, Ny — 1, n5) —+ Ny (]{72 + szD) Jk(nl + 1,n2, n3,n4,n5)
—n3Ji(ny,ng,n3 + 1,ny — 1,n5) + ngJr(ni, ne, ng + 1,n4,n5 — 1)

+ 2n4m2DJk(n1,n2,n3,n4 —+ 1,n5) + (d — Ny —nNg — 2n4)Jk(n1,n2,n3,n4,n5) = 0, (D5)

1
//Vp'q 2 2 \71 2 2 \"z 273 (2 2\7 (2 2 \75
pJq (k=p)*+mp)" ((k—q)*+mp)” ((p—q)*)" (P> +mp)™ (¢* + mp)

= —nyJi(n1 + 1,n0 — 1, n3,n4,n5) + n1Jg(ng + 1,12, n3 — 1,14, n5)

)
— nyJe(n + 1,n2,n3,n4 — 1,n5) +ny (K° + 2m3) Jp(ng + 1, na, ng, ny, ns)
— ngJr(n1,ng,n3 + 1,04 — 1,n5) + ngJi(ny, no,n3 + 1,04, n5 — 1)
+ ngJp(ny, no,ng — 1,ng + 1,n5) — nyJy(ny, no,nz,ng + 1,n5 — 1)

+ 2n4m2DJk(n1, No, N3, TNy + 1,n5) + (n3 — n4)Jk(n1, No, N3, Ny, n5) =0. (D6)

Now there are a few more terms due to the Debye mass appearing in the numerators when
terms are canceled with the denominators; however, when we take the difference between

both expressions, those terms cancel again and the relation is identical to the massless case:

0= (d—ny — 2n3 — nyg)Jr(n1, n2, n3, Ny, n5)
+nyJi(n + 1,ng — 1,03, 14, 15) — myJi(ng + 1,19, n3 — 1, ng, n5)

— ngJi(ny,no,ny — 1Lng + 1,n5) + ngJi(ng,ne,ng,ng + 1,05 — 1) (D7)

This means that we also obtain the same reduction for the most complicated integral:

2 2
4—dJk(2’0’1’1’1)_ 1 d

Je(1,1,1,1,1) = Je(1,2,0,1,1). (D8)

In order to calculate the integrals appearing in the H-shaped diagrams, we are no longer

able to give a general formula for the integrals with one index equal to zero in d dimensions.

42



Instead, we will calculate them explicitly in d = 3. The first integral Ji(1,0,2,1,0) still has
a scaleless ¢ integration and would vanish in dimensional regularization, but for d = 3 it is
needed to cancel an infrared divergence in Ji (1,0, 2,0, 1), so we have to keep it. The following
two integrals Ji(1,0,1,1,1) and Ji(2,0,1,1,1) both have canceling infrared divergences in
the massless case, but now those are separately removed through the mass term. Then we

have:

6

' 1
Dy — g? /ek {Jk@’o,z’ 1,0) = Je(1,0,2,0,1) = 2J(1,0,1, 1, 1) + 5. Ji(1,1,0,1,1)
k

+2 (K +2m3) Ju(2,0,1,1,1) — 2 (k* + 2m3) Ji(2,1,0,1, 1)} (D9)

We will now calculate these one by one:

B 1 q2_p2
Jk“’o’?’l’())‘J’f“’o’z’o’”‘/ (k- pP +mD><p2+m%>/q (q— )2 (g2 + md)

_/ 1 > QdQ/ 9> —p
p» (kK =p)>+mp) (p*+mp) Jy 4r? q — 2pqx + p2)° (g2 +m3)

-/ ; [ %
» (k=p)24+m}) (P2 +m3) Jo 272 (¢ —p)(q +m3)

Mp 1 __ Mmp 1
dn /((k P2 +md) (P2 +md)°  Am /p(pz—l—m%)((k—p)?—}—m%)z

B /oo 2dp/ 1
(p? +m%) (k? — 2kpx + p? + m%)2

_ p’d !

Arm /0 27T2 (p* +mp) ((k —p)? +m3) ((k +p)? +m3p)
mp 1 1

— = D1
4 8mmp (k2 +4m%) 3272 (k? + 4m?%)’ (D10)

where we have taken the principal value for the ¢ = p pole in the ¢ integral. In the original
expression for Dy, there was also a contribution where the roles of p and ¢ were reversed,
which we have eliminated through the redefinition p <+ q. If this were kept without changes,
then the pole would cancel between the two expressions, showing that the principal value is
the right prescription to treat this artificial pole. We can also see that if we take mp — 0
then the result agrees with the massless calculation for d = 3.

The corresponding contribution to Dy is then:

6

T [ e (14(1,0,2,1,0) — J(1,0,2,0,1 s Ty
T/k‘e ( k( 707 9 70) k( 0 0 )) 327T2T/];k2+4m2D o 2TT ) ( )
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For the next integral, it is more convenient to include the k integration from the beginning;:

JLem 011 // == p)? +i:><p ) /<p e (1,, T )

zk'r epr
_/kk:2+m%/p +mD/ /q—l—x z)p? + xm?3)?

e~ ™MD / 62p r /
= dx
dmr ), p24+m3, Jo 8/ x( 1—:c)p + xm?
e~ TMmD eip~'r 1 P
= / 5 3 arctan —
dmr ), p* + mip dmp mp
_eTmp /°° dp sin(pr)
0

arctan —
4y 8m3r p? + m3, mp

e~ [ dp  —iePr P
~ 4 / 167371 p? + m? arctan mp (D12)
00 D D

We could replace the sine function by the exponential in the last step, because the cosine
term gives an odd integrand and vanishes. The remaining p-integration can be put into the
form of more standard integrals by deforming the contour in the complex plane. We can
connect real —oo to +00 by a semicircle of infinite radius in the upper half plane. However,
the arctangent has a discontinuity along the imaginary axis starting from the pole at imp,
so we have to integrate around that.

The contributions from the circle segments at complex infinity vanish because of the
exponential, so only the integrations along the imaginary axis and around the pole remain.
For the first segment, we choose p = ik — 9 with k from oo to mp +¢; for the second segment
we take p = i (mp + €e¥) with ¢ from arctan(d/e€) to 2r —arctan(d/e); for the third segment
we take p = ik + 0 with k from mp + € to oo; for the infinitesimal parameters ¢ and e we
first take 0 — 0 and then € — 0 (an illustration of this contour can be found in Fig. 3 of [9]).

Then we have:

/ < dp —ie?" P
arctan —

2
o 167371 p? + m7, mp
mp-+e d/ﬁ 6—/-@7‘—@'57‘ ik — 6
= lim - arctan
5.e—0 J 16731 m2, — k2 — 2iK6 + 62 mp

. _ ip
' 2 EdQO ie%e T’mD(l—i-ee ) i€ .
— lim o . 550 arctan i+ —e?
—0 Jo 167°r 2impe e¥ + e2e?¥ mp
o0 dk g hrtidr ik+0

+ lim - arctan
8,620 Jp o e 16731 m3, — K2 + 21K6 4 62 mp

, ©  dk e T odp eTmpT iy
= —lim 55 5 T 3 In
mpte 10T K2 —m7, o 16mr dmp 2mp

e—0
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:—lim{

e—0

0 dk e rr e rr 1 e r(mpte €
5 — + 5 In
mpte 2T rmp \K —mp K+ mp 1674r 2mp +€  2mp

| g (e = halrtn— mp)e ™ )+ 22
= —rln(r(k —mp))e ———In2rm
5 32m2rmp \ K +mp b 327m2rmp b

e~ TmD 00 e—x+27’mD o]
= —— / dp—— —/ dr e ™ lnx+ln27‘mD
327T2TmD 2 x 0

rmp

—rm
e D

— E TS (ezrmDF(O, 2rmp) +ve + In 27‘mD) , (D13)

where I'(0, 2rmp) is the upper incomplete gamma function:

[(s,z) = / dtt*te . (D14)

The resulting contribution to Dy is:

—2—96/““'?7(10111)— M(2’“’“Dr(02m)4r +In2rmp) . (D15)
T ke E\L, YUy Ly by - (T’T)('f’mD) € y 4T p YE Tmp) .
The next integral we need is:

Je(1,1,0,1,1) —/ / !

e (k= p)?+m}) (p> +md) Jy (k- q)? + m}) (@® + m})

- / /p +x1_1’)k52+mD)>
_ /dx/oozf = +$(1_x)k2+mp)>

/ dx ! ( ! arctan b )2 (D16)
= = —— ar .
0 8m/x(1 — 2)k* + m? Ak 2mp

For the contribution to Dy, we use the same contour in the complex plane as in the previous

calculation, except that the branch cut starts at 2emp instead of imp. We may also neglect

the circle around this point, since the singularity is only logarithmic. Therefore we have:
6

0o : 2
g o K*dksinkr [ 1 k
—— Jp(1,1,0,1,1) = —=— tan ——
2T /ke k(1 1,0,1,1) 2T Jo  2w2  kr \4rk aretat 2mp

6 00 i ikr 2
g —ie k
=7 dk t
12874rT /_oo k (arc o 2mD)

3 o] —KT 2
_ o / dne lnli-i- mp

2rT K K — 2mp
0436_2TmD o] 6—27"me T+ 2
= - d 1 . D17
2rT /0 v r+1 " x ( )
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Finally, we have:

1 1
52011, 1) = /p (k —p)2+m3)* (P2 +m3) /q (p—q)* (¢* +mi)

1
= arctan —
/ ((k—p)2+m3)* (p? +m3) 4mp mp

/oo 2dp/ 1 P
3 arctan —
dm k2 — 2kpx + p? +m3)” (p? + m3) 47p mp

/°° p2dp 1 1 ; P
= arctan —
o 2m% (pP+m%) ((k— p2+m ) (kK +p)2 +m%) dmp mp

1 1
= t
3272 [l{:? (k2 4+ 4m%) < 4m ) * kmp ( 1{52 +4m3) arctan 2mp

(D18)

In the k integration over this last term, there would be an ultraviolet divergence, because
the coefficient compensates the 1/(k? + 4m?%) denominator, hence this has to be canceled

by the other integral with n; = 2:

1 1
J’f@’l’o’l’”:/ (k—p) +m2) (P +mD>/<<k—q>2+m%><q2+m%>

1 k
= arctan ——
/ /p+x1—xk2+m)><4ﬁk 2mD)
= / /OO dp 2p < 1 arctan k )
47'('2 p +x ]_—1’)]{;2—|—m ) drk 2mp

x 1 k
= / dx 373 ( arctan )
o 167 (x(1 — 2)k2 +m3) Ak 2mp

1 1 1 k
= tan —— | . D1
(87TmD k2 + 4m2D) (47rk arctan 2mD) (D19)

Together, they contribute to Dy (using again the same contour with the branch cut

starting at 2imp, but this time including the circle) as:

6
2%/6““' (K* +2m3) [J,(2,0,1,1,1) — J(2,1,0,1,1)]
k

24" /OO dk smkrk:2+2le 2

T ), 64nt kr k24 4m 4m2D

= o lim [/OO d_'% 2e"" (K — 2m3) /27T iee?dp 2m* e 2D | eei(éo—ﬂ)}
2 0

n
2 _ 42
K k* —4m7,

mp-be 2impm  4dmpee® mp

3 00 1 1 1 2m d i(p—m)
=% i [/ dre™ ™" (— + + ) +/ &P o-2rmp |y €€ }
T =0 | Jomp te Kk 2(k—2mp) 2(k+2mp) o 4w mp
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3 2rmp

o * re™ . K—2mp
= —=|I'(0, 2 I'0,4 d 1
S |1020mp) + S0 armp) + [ a2
3 _,—2rmp 4rmp 1
= LQTT [eszDF(O, 2rmp) + ¢ 5 [0, 4rmp) — 7715 5 In Tmp} . (D20)

Combining all these results, we get the full expression for Dy in the 1/r ~ mp regime:

a3e—2rmD 2 00 6—27‘me T+ 2
Dy=—""—""|1-— (e2™PE(2 In 2 — d 1
n=—5= [ p— (e 1 (2rmp) + e + In2rmp) /0 T
+2e¥™P B (2rmp) + €™ By (4rmp) — g — In rmD] , (D21)
where we used that I'(0,z) = Ey(z) = [~ dte™" /t.

To obtain Dy for 1/r ~ mp at O (g ), we need the temporal gluon self energy at one-loop

order for momenta k ~ mp < T. We have
oo (k) = m% — 82,k + 115 (k) + O (ak'/T?) (D22)

where (after charge renormalization)

1. 2 i
571 = 47T 3N+§(1—41n2)nf+2ﬁ0(7E+1nﬁ)] (D23)

and Hgf))(/f) is the static part (i.e., only involving zero modes) of the self energy (see, e.g.,
Ref. [8]: note that the static part of the gluon propagator in static gauge for the gauge
parameter £ = 0 coincides with the static part of the gluon propagator in Coulomb gauge).
The contribution to the self energy coming from loop momenta of the order of the temper-
ature scale appears as a power series in k, of which we have kept the first two terms: mp
and —0Z,k%. In fact, the latter scales as ¢g* and is already beyond the accuracy of our cal-
culation in this regime; we have kept it in order to obtain the logarithm that fixes the scale
of the running coupling at leading order (see the discussion in the main section, Secs. [ITEl
and [ITF). Higher order terms are even more suppressed since k ~ ¢gT" and can be neglected.

The contribution to Dy from the quadratic term is given by:

2 2 ik-r
g k-e _ 1 mp
0D =071 | ————— = a0, P D24
= / (k2 +m2)? a0me (rT 2T ) (D24)

The static one-loop self energy gives the following contribution:

Dﬁsz/(em")/ um2—@am2

k2 +mi)" Jg (k+q)* +mb) (¢%)
:g4N/ zk'r / / /{32 1—1’)
(k2 + m2) k2+2kqx+q +m3,
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B 4N/ eik-r /1 d_:L’ (1 - 1’2) ]{22
P e Jo T Tk
ik-r 1 k2 _ m2 k
= 4N/67— (m + 7Darctan—)
I e myyon P k mo

= g4N/O dk___ sinkr 5 (kmD + (k* = m}) arctani)

17 (2 5 ) mo
©  dk ikr o k2 2 ikr k
= 4N/ rmpe’ i mD)2 arctan —
m3r k2+mD) (]q;2—|—m2) mp
* dre T 1 1
T =y .
e=0 mp+e T (k —=mp)*  (k+mp)?
N 1 1 Crmp
€r 2mD 2rmp ©
& 1 1
= 2N [26 "MD 1+ Jim < ( + ) + 7P In L)]
=0 D+E kK—mp K-+mp 2mp
= aNe "™ [P By (2rmp) + 2 — 5 — In2rmp) . (D25)

Using Eqgs. (D21)), (D24)), and (D25)), we reproduce the results for the singlet free energy and
Polyakov loop correlators published in Refs. [12] and [9], respectively.

Appendix E: Small r expansion of Fg

A calculation of the contributions to Fg from the scales 1/r and 7T was presented in
Ref. [12] without relying on an expansion in 777, which means that it is valid for any
hierarchy between those two scales. The contribution from the zero mode has not been
explicitly included in that calculation, therefore we add it here (the calculation is given at

the end of this appendix). The result of [12] reads

% o - N;; 1?—; {1 . {131N+ § (1—-4In2)ns+ 206, (7E+1nﬁ>}}
+ N2 - 10z§ (;N—l— énf) rol — N22_ 1043 (2% - g +E +1n47r,u2r2)
— 24?23T2 7’7T§T /°° da < bt i B %) tn (1 - e_MTZ)}
)”f i / dz (%—%) 1n%. (E1)

The 1/€ pole corresponds to an infrared divergence in Fy when evaluated without the con-

tribution from the scale mp [8;12]. We can expand the above expression in 77" as a check
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of our calculation of Fg at short distances.

The tricky part in the small r expansion of this result lies in the x integrations. If one
expands straightforwardly in 77T, then the higher order terms lead to diverging z integrals.
In order to obtain an expansion of finite terms, we will integrate by parts until the integral
in x from 0 to 1 converges, then calculate the integral from 0 to infinity exactly and subtract
from that the integral from 0 to 1. This last part can then be expanded in r7T without
problems, because x is no longer integrated to oo.

We will only show this explicitly for the first term. The calculation for all other terms
works in exactly the same fashion, only it requires more steps of integration by parts and

thus becomes rather lengthy, therefore we will give just the results. We obtain:

dralx

/1 dz In (1 — 6_4T7TT$) = —In (1 — e“””T) — /1 dx T —

1
drnT ¢(2) +/ i drr Tz

= —IndraT + 1In 1

_ e—47"7rT - AraT e4r7rTx 1
2 4
= —IndraT + 2rnT — g(’/‘ﬂ'T)2 I —(rr )+ — 2477T"T

! 4 16
+ / dr (1 —2raTx + —(raT)*2® — —(raT)*a* ) + ...
; 3 45

2 4
S —IndraT + 1+ 77T — Z(raT)? + —(r7T)* +.

24rT 9 225 ’
(E2)
= da —4rnTa 2 g, 4 4
—In(l—e ) =IndraT+1—2raT(1 — v —In2rT) — Z(raT)* + —(rxT)
. 22 3 135
+..., (E3)
< d 1 1 2 8 4
/1 :c_f In (1— 6_4T7TT$) =3 IndrnT + 9 rol + g(’/’ﬂ'T)2 - g((B)rsTs + E(MTT)4
+.. (E4)

If we add those up, we get the full expansion for the integral appearing in the gluonic

contribution:

>~ 1 1 —4nrTx
T 11 1 5 47

= —IndrnT — — +2rnT [ == n2rT | + — 373
24TT+6nr7r 18+ rT < 4+7E+nr)+3g(3)r

1 C(1—2k) 2%
drmT E

+Z< @2 —1) 4k(2k—3)) or =1y ) (E5)
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T 11 1 ) 7
= —IndraT — — +2r7T | —= n2rT | — =(rrT)?
247“T+ o ndrm 18+ T ( 4+7E+ n2r ) 9(r7r )
4 22
—I—%C(B)T?’T?’—ﬁ(rﬂT)4+O((r7rT)6), (E6)

where the intermediate expression gives the full series. We see that after the cubic term
only even powers of 7T’ appear.

For the fermionic integrals, we obtain:

© 1 —2rnTx 1 7
/1 x—f lnljiw =—IlnraT —14+2Wn(2)raT — g(T’ﬂ'T)2 + ﬁ(TWT)4 +..., (E7)
X dr 14 e 2T 1 11 ) ss T A

Accordingly, the combination appearing in the fermionic contribution of Fg is given by

/oo y 1 1 | 1 + e—2r7rT:c
T\ — — — n——X——
1 LE‘2 LU4 1— 6—27"7rTm

s 2k _ _
S M g +2In(2) raT + 20¢(3)r T + ) k(%@ 2) U= 26)
k=1

—1)(2k — 3) (2k — 1)

2 (2r7T)*

(E9)

2 2
=3 InreT — S +21In(2) raT — g(T’ﬂ'T)2 + 27 (3)r*T? — 1—;5(7’7TT)4 + O ((rrT)°%) .

(E10)
The expansions all have the same structure: there is a logarithmic term, a few odd powers
of r7T" at low orders, while for higher orders only even powers remain. The coefficients are
rational numbers except for the terms where the power of 7T is one less than the power of
x in the denominator of the integral.

If we insert all these expansions into the initial expression, we get

e~ 4Ss _ os [ os[81 10 , 1
T 1/rT 2N rT { * A { 9 9 + 26o(vE + n,ur)] }
N2 —1 9 1 7_(_#2
N? -1, N?—-1 /4
- T —N 2 2T2
13 orml + N ( +nf) ((3)asr

3
N2 _—1 /22 7
— N+ — 2(rnT)3 7)%) . Ell
5N (675 —l—270nf) aZ(rnT) —I—O((mr )) (E11)

Notice how the argument of the logarithm in the first line is now pr instead of u/(47T).

This is because in the unexpanded result there was no scale associated with the ultraviolet
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divergence, since we did not specify if 1/r or 7T was supposed to be larger. Now that
we have expanded in r7T, we have set 1/r to be the largest scale and accordingly the
logarithms associated with the ultraviolet divergence include that scale. Also the logarithm
in the second line has changed its argument from ur to /T for the same reason, because
this logarithm is associated with the infrared divergence that gets cured by the contribution
from the scale mp, and the next higher scale is now 71". We see that the infrared divergence
is the same as we got from the scale 77" contribution in the calculation of Dj.
We conclude this appendix with the calculation of the zero mode contribution. The
O (a?) zero mode contribution to Fg coming from the gluon loop for mp = 0 is given by
syt [ [Pk (E12)
k(K27 Jg (%) (g + k)2

The tadpole diagram is scaleless for gy = 0 and there is no zero mode in the fermion loop.

We calculate this with the help of the following elementary integrals:
ik-r T d _
/ e _ (5—n) i (E13)
i (k2) 22nﬂ.d/2r(n)
d d d
q

(@)" (g+k)?)"  @Am)2C(m)C(n)0(d —m — n) ’
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/ e g - (d—l)l—‘(m—|—n_1_%l)1"(%l_m+1)r(%_n+1)kd_2m_2n+4
@) (@t ) 24y (m) D (m)E(d —m —n 1 2) ’

(E17)
where the third and fourth relation can be obtained from the previous one by taking the
derivative with respect to k, and the last relation is a combination of the second and the
fourth.

The zero mode contribution is then given by
ik-r k2 2 _ k- 2
2(N2—1)g4/ ‘ 2/ 7 (k- 9)
R (K2) g (@) (g + k)
ik-r d d d
:2(]\72—1)94/ 6'; d2(d—1)1“(2—§)1“(§—1)1“(§)
K (k2)*Y 2(4m)42T(d — 1)
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Appendix F: Cancellation of the magnetic scale contributions

In this appendix, we will show that all appearances of the magnetic scale in the Polyakov
loop correlator cancel up to order ¢® in both hierarchies. First, the magnetic scale can only
appear in spatial gluon propagators, which are not directly emitted from the Polyakov lines,
so they have to emerge from temporal gluons. The only diagrams where this happens at
the present order are one-loop D; and Dy. The momenta of the temporal gluons may be of
order 1/r or mp (again, the temperature scale contributes at this order only with scaleless
integrals or exponentially suppressed terms, depending on the hierarchy).

In the case where the momenta scale as mp, and assuming the hierarchy 1/r > 7T >
mp, we have already seen that the leading term in the small r expansion of D; is identical
to —2 times the Polyakov loop, where the cancellation of the scale mj; contributions has
already been shown for orders ¢g° and ¢® in [17]. In the case of Dy, the magnetic scale
contribution for temporal gluon momenta of order mp is beyond order g®.

We now show the cancellation at order ¢® in the case when the temporal gluon momenta
are of order 1/r for both hierarchies. We will show the calculation explicitly for 1/r ~ mp,
the case for the other hierarchy follows straightforwardly by setting mp = 0. The leading

contribution to D; with a one-loop self energy of momentum m,, is given by:
ik-r
Dy :N94/ 212 ( 2 j2 _51")/ Dij(q>

) k.
— Ng4/ RV | ———L—— / D;j(q
k~1/r ; (k2 + m%)2 q~mpg j( )

Ng* / o 1
= — e Vk,ivk7'7/ Dl(q)
2 k~1/7 ’ k? + 7nzD q~mpyg ’

Ng4 / eik:-r /
=2 [ Dy
2 ! k~1/7 k? + m%) q~mpg !

Ng*e=rmp
=9 Di(q), F1
9 471_7, TT] /quM J(q) ( )
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where the second term in the first line comes from the tadpole.

The contribution from Dy can be found in analogous fashion:

6 ik-r ip-r
g 2k;e 2p;e'P
Dy = ﬁ ﬁ/ 5 22 Dij(Q)
L/rma ket fr (K2 +mi)” Jperfr (7 + M) Jomma
96 ik-?‘v 1 / ip~'r'v 1 / D ( )
= 0= Vit e i ii(q
2T k~1/r k2 + sz p~1/r pjpz + m%) q~mapg ’
6 ik-r ip-'r'
= L o
S Ly L L
2T ’ k~1/r k* + m2D p~1/r p2 + m%) g~mps ’

96 (6_7’7”D)2 /
= - —— ) 7r; Dij(q) - (F2)
27\ A4nr ! g !

These two contributions are of different order in g, but they contribute at the same order
to the Polyakov loop correlator, because the one-loop Dy has to be multiplied with its leading

order result:

N2 -1

2F — Foq NZ—1
@ =% - - _ O 9
eXp |i T :|m 4N?2 ! 1/r ! 1/rmps AN H 1/rmaps + (g )
_ _N2 _ 1g2e—rmD Ng4€—rmD N2 _ 19_6 e~ TmD 2
AN2  AnrT 87r AN 2T \ 4nr
X 7’1'7’3'/ Dij(q) + O (9°)
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=0(g") - (F3)

Note that the leading order of D; is either of order g2 or g%, depending on the hierarchy, but
the product with the scale my; contribution from Dj is of order ¢® in both cases (the integral
over the spatial gluon propagator is of dimension one, hence proportional to my; ~ ¢*T).
This cancellation is independent of the actual form of the resummed magnetic scale gluon
propagator, and it is valid in general d dimensions [where one just has to replace the Yukawa

potential e="™P /47y with the d-dimensional integral over ¢?*7/ (k2 4+ m%) in each case].

Appendix G: Relation to other forms of resummation

The results of this paper relate to a calculation published in [29], which we will discuss
here. The authors of |29] performed a partial resummation of the perturbative series for the
Polyakov loop correlator and the singlet free energy correlator (which they call Wilson loop,

but since they neglect any contributions involving the spatial Wilson lines, both functions are

23



identical), and they find an unexpected behavior at short distances. While the calculation

itself appears to be correct, some of their conclusions may not be.

The resummation includes all diagrams where gluons of momentum ~ 1/r without any
loop insertions are exchanged between the two Polyakov lines; any other contribution is
neglected. As such it is well-defined, but gauge dependent. They choose static gauge (SG)
JoAg = 0 and we believe this to be the source of their unexpected results. Performing the

same kind of resummation in Coulomb gauge (CG) leads to a different result.

We may use the exponentiated expression of Eq. (35]). In the corresponding discussion,
we have already argued that all diagrams where gluons can be separated into a left and
a right part by a line cutting the two Polyakov loops such that no gluon crosses this line
do not contribute to the exponent. In other words, for diagrams made of unresummed
gluon propagators a necessary condition to appear in the exponent is that the gluons cross.
However, for such diagrams in Coulomb gauge the delta function in the propagator makes
all diagrams with more than one gluon vanish. Hence the result of this resummation in

Coulomb gauge is simply the exponential of Dj.

Comparing this result with the one in static gauge from [29] for SU(2), we have

3
Wsa = (1 + z) cosh(z) 4+ (2 + z) sinh(z) = 1+ 32z + §z2 +..., (G1)
9
Wea = exp(3z) =1+ 32z + 522 +..., (G2)

where z = ¢?/167rT and we have expanded for small 2. We see that the first order term
is the same, but the second order is not. This confirms our previous statement that this
resummation is gauge dependent. However, since the Wilson loop is gauge invariant (if the
spatial Wilson lines are included), the difference between both gauges must be contained
in terms that were neglected in this resummation. A gauge invariant expression could be
obtained from a resummation of all terms of order 2", however, in static gauge not all such

terms come from ladder diagrams without loop insertions. We will show this at O (2?).

There are two sources for the discrepancy between both gauges, the first comes from the
singular part in the static gauge gluon self energy. At one-loop order this is given by (see,
e.g., Ref. [8])

NG|k

HOO(Oa k > 71-T‘)sing - 1927

(G3)
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FIG. 2. Additional diagrams in the Wilson loop that contribute with terms of order 2.

If we include this contribution in the one-gluon exchange, we get in SU(2)

392 6ik:-r 392 g4 2’2
29 - =3 e ). G4
AT /k K2+ T 16mT | (1672272 Py (G4)

Therefore instead of z one should insert z = z + 22/3 + ... into the resummed expression
for Wsq in order not to neglect any contribution of order z" from the singular part of the
self energy.

The second source of the discrepancy comes from the neglected contributions of the spatial
Wilson lines. There are three diagrams with one gluon between the two Polyakov lines and
one gluon connected to the spatial Wilson lines (cf. Fig. 2]). The first diagram has a color
factor —(N? —1)/4N? and the other two have (N? — 1)?/4N? and it is straightforward to
show that the sum of the three diagrams is equivalent to the first diagram with a coefficient
—(N%?—-1) /4.

The spatial gluon propagator for large momenta has a term of order 1/7:

D (ko # 0, k) = :2];2 L0 (132) | (G5)

With this, the crossed diagram gives a contribution of order 2? (again with N = 2):

3 g2 zk:r b j
5W:—1 (T/k ) Zg / dSl’f’Z/ d527"]¥ e’ r(s1—52) kaQ

_ 3 9 9 6.2
-y (47TTT) ( 247rrT) =2 (G6)

Coulomb gauge has neither a singular part in the one-loop self energy nor a term of

order 1/T? in the spatial gluon propagator, hence the tree-level one-gluon exchange diagram
already contains all terms of order z". If we put all contributions in static gauge together,

we indeed get the same result as in Coulomb gauge for the SU(2) Wilson loop:

2 3 9
WSGz1+3<z—|—%) +§z2+2z2+0(zas,z3) :1—|—3z+§z2+0(zas,23) . (GT)
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There are, in fact, different versions of static gauge, which differ in the gauge fixing of the
spatial gluons; here we used the one of Ref. [§]. A different version of static gauge might give
different expressions for Ilg,, and D;;, but also in this case the two contributions described
above will be necessary to get the full result for W at O (22).

The other part of [29] deals with the large N limit. The result they obtain in this case

for the Wilson loop is given by a Bessel function:
2

WSG=10(2\/Z):1+z+ZZ+..., (G8)

where now z = g?N/8nrT. For Coulomb gauge in the planar limit, the resummation works

in the same way as before and we have

2

chzexpz:1+z+%+.... (G9)

Taking the planar limit for the other two results we get z2/12 from the singular part of the
self energy and 2?/6 from the diagrams involving the spatial Wilson lines. We see also here
that if we add these two contributions to the tree-level one-gluon exchange result in static
gauge, then both gauges agree up to O (2?).

So far, we have only considered small z expansions. In [29] there is also a discussion on
the large z limit, which corresponds to rT" < ag or rT" < asN. We disagree with their
conclusions. In order to take the limit z — oo one really has to include all terms of order
2" in the resummation, and, as we just saw, this has not been done in [29]. There will also
be higher powers of z from multiple gluon exchanges between the spatial Wilson lines and
higher powers in the expansion of the propagators in the singular self energy. Since those
terms were not included in the resummations, there is no reason to trust the results for large
z. The authors have commented on a strange behavior of the Wilson loop for large z and
interpreted it as a side effect of the planar limit, while in our view it is due to an incomplete
resummation and gauge dependence. In Coulomb gauge, there are no contributions of order
2™ from gluon exchanges between the spatial Wilson lines and there are also no singular
terms in the self energy up to one-loop order. We do not know if at a higher loop order
a singular term may appear in the self energy, but assuming that it does not, then the
resummed result of the Wilson loop is also valid in the large z limit and shows exactly the
Coulombic behavior that is expected.

Apart from the Wilson loop, Ref. [29] also discusses the Polyakov loop correlator. There

the picture is similar, the leading term in the small z expansion of their resummed result

o6



reproduces the known expression, but the next order term is missing the contribution from

the singular part of the self energy [cf. the 1/(rT)3 term in Eq. (57) of Ref. [§]]. Then the

large z limit does not reproduce the right behavior, because the resummation is incomplete.

Assuming that the Coulomb gauge does not have singular contributions from the self

energy at higher orders, we may take the z — oo limit in Eq. (B8) without problems.

The contribution from the adjoint self energy becomes exponentially suppressed, and the

Polyakov loop correlator is given by the exponential of the singlet free energy alone.
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