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Abstract

A hard three-loop correction to parapositronium energy levels of order mα7 is calculated.

This nonlogarithmic contribution is due to the insertions of one-loop photon propagator in

the fermion lines in the diagrams with virtual two-photon annihilation. We obtained ∆E =

0.03297(2)(mα7/π3) for this energy shift.
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I. INTRODUCTION

Positronium, like hydrogen and muonium, is a loosely bound nonrelativistic two-particle

system. Two features make positronium special: masses of the constituents are equal and the

constituents can annihilate. The spectrum of positronium beyond the leading nonrelativistic

approximation is significantly different from the hydrogen spectrum. This happens due to

contributions of the annihilation diagrams and because the fine and hyperfine splittings

have the same magnitude. Theoretical research on positronium started in the second part

of 1940s even before its experimental discovery [1, 2], and was going ever after. As in

other nonrelativistic systems there are two classes of corrections to energy levels, soft (and

ultrasoft) and hard. Soft corrections originate from a wide interval of virtual momenta

below the electron mass, while only the virtual momenta of order of the electron mass

are responsible for the the hard corrections. Soft corrections are usually logarithmically

enhanced and in the case of positronium have the form of a double power series in α and

lnα. Hard corrections can be calculated in the scattering approximation and in the case

of positronium are simple series in powers of α. Both the soft and hard corrections in

positronium receive contributions from scattering and annihilation diagrams.

All corrections to hyperfine splitting (HFS) in positronium up to and including single-

logarithmic terms of order mα7 lnα were calculated before the end or on the brink of the

last millennium, see [3–5] and brief reviews in [6, 7]. A new stage in the theory of positro-

nium was initiated with calculation of the single-photon nonlogarithmic correction of order

mα7 in [6]. The ultrasoft contribution dominates this correction. Other soft and ultrasoft

nonlogarithmic corrections of order mα7 remain unknown.

Many hard nonlogarithmic corrections of order mα7 were calculated recently in a rapid

succession [7–13]. These corrections are generated both by the annihilation and non-

annihilation diagrams. Hard non-annihilation corrections are generated by seven gauge

invariant sets of diagrams and are similar to the radiative and radiative-recoil corrections to

HFS in muonium of orders α2(Zα)EF and α2(Zα)(m/M)EF , respectively, see, e.g., [14, 15].

Corrections due to six gauge invariant sets of diagrams in muonium were calculated some

time ago [16–20]. Contributions of the same six gauge invariant sets of diagrams in positro-

nium were obtained in [7, 8, 11]. These positronium calculations in [8, 11] were facilitated

by our previous experience with the respective contributions in muonium.
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Other hard nonlogarithmic corrections in positronium are generated by the diagrams

with two, three, and four virtual annihilation photons [13]. There is one gauge invariant

set of diagrams with four virtual annihilation photons, and three gauge invariant sets of

diagrams with three virtual annihilation photons. Corrections due to the diagrams with

four annihilation photons are currently unknown. Hard nonlogarithmic contributions of all

diagrams with three annihilation photons were obtained in [12].

+

FIG. 1. Skeleton two-photon annihilation diagrams

Hard corrections due to the diagrams with two annihilation photons are generated by

seven gauge invariant sets of diagrams that are similar to the respective seven gauge in-

variant sets of non-annihilation diagrams in muonium and positronium [8, 11]. All these

diagrams can be obtained by two-loop radiative insertions in the skeleton diagrams with

two annihilation photons in Fig. 1. Contributions of five of these sets of diagrams were

obtained in [9, 10, 13]. Two sets of diagrams are still not calculated. One of them is the

set of diagrams with one-loop polarization insertions in the radiative photon in Fig. 2 (the

diagrams with the crossed annihilation photon lines are not shown explicitly in this figure).

One more set of nineteen topologically different diagrams is obtained from the diagrams

in Fig. 2 by deleting the polarization insertion from the radiative photon propagator and

adding a second radiative photon insertion in the same fermion line. Below we calculate hard

nonlogarithmic correction of order mα7 generated by the gauge invariant set of diagrams in

Fig. 2.

+22 +2+2

FIG. 2. Diagrams with polarization insertions in the radiative photon
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II. CONTRIBUTIONS OF INDIVIDUAL DIAGRAMS

A. Skeleton Diagrams

The skeleton diagrams with two-photon virtual annihilation in Fig. 1 generate hard cor-

rections that contribute only to the shift of the parapositronium energy levels. These cor-

rections were calculated long time ago [21]. We will briefly review the main features of the

skeleton calculations following the recent discussion in [13]. These calculations will serve as a

template for calculations of the contributions of the diagrams in Fig. 2 below. The diagrams

in Fig. 1 should be calculating in the scattering approximation and give contributions only

to the parapositronium (spin zero) states with zero orbital momenta. The external electrons

and positrons are on-shell and have zero spatial momenta. To obtain the contribution to

the energy shift we project the amplitude on the spin zero states and multiply it by the

Coulomb-Schrödinger positronium wave function at the origin squared. The diagrams in

Fig. 1 are both ultraviolet and infrared finite and give identical contributions to the energy

level shift [13]. With account for all combinatorial factors the energy shift can be written

as an integral over the loop four-momentum kµ = (k0,k)

∆Es =
mα5

π

∫ ∞

0

dk

∫

dk0
2πi

fs(k0, k), (1)

where (k = |k|)

fs(k0, k) = −
8m2k4

[k2

0
− k2 + i0][(k0 − 2m)2 − k2 + i0][(k0 −m)2 − k2 −m2 + i0]2

. (2)

The principal feature of the annihilation diagrams in Fig. 1 is that they have imaginary

part that arises because kinematics allows creation of two real photons. In agreement with

the optical theorem this imaginary part contributes to the parapositronium decay width.

Existence of the imaginary part makes Wick rotation in the integral in Eq. (1) impossible,

in the other case the diagram would be real. Considering positions of the poles of the

propagators in the box diagram we see that rotation in the plane of the complex k0 without

crossing one of the poles is impossible. The proper way to go is to calculate the integral over

k0 with the help of the residues, say in the upper half plane. The remaining one-dimensional

integral over the magnitude k = |k| of the three-dimensional loop momentum inherits a pole
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at k = m+ i0 of one of the photon propagators in the box diagram. We use the Sokhotsky’s

formula to separate the real and imaginary parts of the momentum integral, calculate both

the real and imaginary momentum integrals analytically and reproduce the classic result

[21]

∆Es =
mα5

π

(

1

2
ln 2−

1

2
−

iπ

4

)

. (3)

The pole in the one-dimensional integral survives in the diagrams with radiative insertions

in Fig. 2 but its position in the general case is shifted. One still can calculate the real and

imaginary parts of the respective integrals analytically in the same way as in the skeleton

case.

Our strategy is first to calculate the contributions of the diagrams in Fig. 2 without

the polarization operator insertions but with a finite radiative photon mass λ. We use the

Feynman gauge in this calculations. In the limit of λ → 0 this calculation reproduces a well

known contribution of order mα6 obtained in [22], and serves as a test of our calculations.

The integrals for the diagrams with polarization insertions in Fig. 2 are obtained from the

respective diagrams without polarization insertion by the substitution λ2 → 4m2/(1 − v2)

followed by the integration over v from zero to one with the weight (α/π)v2(1−v2/3)/(1−v2),

see, e.g., [23].

B. Diagrams with Two-Loop Insertions

1. Diagrams with Self-Energy Insertions

We start with calculation of the diagrams with the self-energy insertions in Fig. 2. The

well known renormalized self-energy operator has the form (see, e.g., [24], we restored an

exact dependence on the photon mass λ below)

ΣR(p− k) = (mγ0 − /k −m)2
α

2π

∫

1

0

dx

∫ x

0

dy
mh1(x, y)− (mγ0 − /k +m)h2(x, y)

−k2 + 2mk0 + a2
1
− i0

, (4)

where m is the electron mass, p = (m, 0), k = (k0,k), and
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h1(x, y) =
1 + x

y
, h2(x, y) =

1− x

y

[

1−
2(1 + x)y

x2 + λ2

m2 (1− x)

]

, a2
1
(x, y) =

m2x2 + λ2(1− x)

(1− x)y
.

(5)

We consider first the self-energy diagrams without polarization insertions but with a finite

photon mass. We use the projector on spin zero (parapositronium) states (see, e.g., [13]) to

get rid of the spinor structure and taking into account all combinatorial factors obtain an

expression for the energy shift in the form similar to Eq. (1)

∆EΣ(λ) =
mα6

π2

∫

1

0

dx

∫ x

0

dy

∫ ∞

0

dk

∫

dk0
2πi

fΣ(k0, k), (6)

where

fΣ(k0, k) = −8m2k4h2(x, y)[k
2

0
− k2 + i0]−1[(k0 − 2m)2 − k2 + i0]−1

× [(k0 −m)2 − k2 −m2 + i0]−1[k2

0
− k2 − 2mk0 − a2

1
+ i0]−1.

(7)

Instead of the double fermion pole in the respective skeleton function fs(k0, k) in Eq. (2),

the function fΣ(k0, k) contains two simple poles. We again close the contour in the upper

half-plane and use residues to calculate the integral over k0. The real and imaginary parts

of the integral over k are separated with the help of the Sokhotsky’s formula and calculated

analytically. After integration over the Feynman parameters x, y the integral at λ → 0

reproduces the infrared divergent contribution [13] of the one-loop self-energy insertion to

the energy shift of order mα6.

The contribution to the energy shift of the self-energy diagrams with the vacuum polar-

ization insertions in Fig. 2 requires one more integration

∆EΣ =
α

π

∫

1

0

dv
v2

(

1− v2

3

)

1− v2
∆EΣ (λ)∣

∣λ=

√

4m2

1−v
2

. (8)

After numerical calculations we obtain

∆EΣ = (−0.028 960 328 (2)− 0.003 967 685 (2)iπ)
mα7

π3
. (9)
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2. Diagrams with Vertex Insertions

To calculate the contribution of the diagrams with the vertex insertion in Fig. 2 we use

the Feynman gauge expression for the one-loop vertex with one virtual electron line and a

finite photon mass, see, e.g., [25] and references therein. This expression is too cumbersome

to cite it here. After some transformations we managed to represent the contribution of the

vertex diagrams without polarization insertions but with a finite radiative photon mass and

with account of all combinatorial factors in the form

∆EV (λ) =
mα6

π2

2
∑

n=0

∫

1

0

dx

∫ x

0

dy

∫ ∞

0

dk

∫

dk0
2πi

gn(x, y)fn(k0, k), (10)

where f0(k0, k) = fs(k0, k), see Eq. (2),

f1(k0, k) =
8m2k4

[(k0 − 2m)2 − k2 + i0][(k0 −m)2 − k2 −m2 + i0]2[k2
0
− k2 − 2mbk0 − a2 + i0]

,

f2(k0, k) =
8m2k4

[k2

0
− k2 + i0][(k0 −m)2 − k2 −m2 + i0]2[k2

0
− k2 − 2mbk0 − a2 + i0]

,

(11)

and

g0(x, y) =4

(

1− x−
x2

2

)

1

m2x2 + λ2(1− x)
+

2x2

∆m

,

g1(x, y) =
2x2

∆m

[

y(1− y)−
y(1− x)

2

]

+ 2y(1− y) + 2(x− y)(1− 2y) +
2(1− x)2

2
,

g2(x, y) =
2x2(1− x)y

2∆m

−
2(1− x)2

2
,

∆m =y(1− y)
(

2m2b+ a2
)

, a2 =
m2x2 + λ2(1− x)

y(1− y)
, b =

1− x

1− y
.

(12)

We have adjusted the expression for the vertex in such way that only the function f0(k0, k)

contains both annihilation photon poles. As a result, only the terms in the integrand in

Eq. (10) that contain this function generate both the real and imaginary contributions, the

integrals of two other functions f1(k0, k) and f2(k0, k) are real. The momentum integrals

in Eq. (10) are calculated analytically like the momentum integrals in Eq. (4), and the

remaining integration over the Feynman parameters x, y is done numerically. At λ → 0

the integral for ∆EV (λ) reproduces the infrared divergent contribution [13] of the one-loop

vertex insertion to the energy shift of order mα6.
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The contribution to the energy shift of the vertex diagrams with vacuum polarization in

Fig. 2 again requires one more integration

∆EV =
α

π

∫

1

0

dv
v2

(

1− v2

3

)

1− v2
∆EV (λ)∣

∣λ=

√

4m2

1−v
2

. (13)

After numerical calculations we obtain

∆EV = (0.241 501 (2)− 0.024 369 716 (2)iπ)
mα7

π3
. (14)

3. Diagrams with Spanning Photon

Calculation of the contribution of the diagrams in Fig. 2 with the spanning photon is the

most cumbersome part of this work. It is well known that the respective diagrams with-

out the one-loop polarization insertions in the photon propagator contain a linear infrared

divergence m/λ. This divergence is effectively cut off at the characteristic wave function

momenta ∼ mα, which indicates that the respective diagrams contain a contribution of

the previous order that should be subtracted. Insertion of the polarization operator in the

spanning photon eliminates all infrared divergences. As a result the diagrams in Fig. 2 with

the one-loop polarization insertions in the spanning photon are infrared finite and admit

calculation in the scattering approximation.

Like in the case of the vertex we managed to represent the integral for the energy shift

as a sum of convergent integrals and calculated the momenta integrals analytically. The

remaining integrals over the Feynman parameters were done numerically and we obtained

∆ES = (−0.179 57 (2)− 0.083 498 6 . . .− 0.083 498 60 (3)iπ)
mα7

π3
. (15)

Details of these calculations will be presented elsewhere.

III. SUMMARY OF RESULTS

Collecting the results in Eq. (9), Eq. (14), Eq. (15) we obtain the total hard contribution

to the parapositronium level shift of order mα7 generated by the diagrams in Fig. 2
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∆E = (0.032 97 (2)− 0.111 836 01 (3)iπ)
mα7

π3
. (16)

The total hard contribution of order mα7 generated by the six gauge invariant sets of dia-

grams with two-photon annihilation is given by the sum of the correction in Eq. (16) and

the results for the other five sets of annihilation diagrams calculated in [9, 10, 13]

∆E = 0.901 67 (2)
mα7

π3
= 3.95940 (8) kHz. (17)

Analogous sum of hard contributions to HFS of the six gauge invariant sets of scattering

diagrams was calculated earlier [7, 8, 11]

∆E = −1.291 7 (1)
mα7

π3
= −5.6720 (4) kHz. (18)

Combining these results with the hard three-photon annihilation contribution to the or-

thopositronium energy levels from [12]

∆E = 2.621 6 (11)
mα7

π3
= 11.512 (5) kHz, (19)

we obtain the hard contribution of order mα7 to HFS in positronium

∆E = 0.428 (1)
mα7

π3
= 1.881 (5) kHz. (20)

This is still not a total hard contribution to HFS of order mα7. Five gauge invariant sets of

diagrams remain unknown. These are two-photon exchange diagrams with insertions of two

radiative photons in one and the same fermion line, a similar set of two-photon annihilation

diagrams again with insertions of two radiative photons in one and the same fermion line,

the set of diagrams with four-photon annihilation, and two sets of non-annihilation diagrams

with recoil photons.

Calculation of these hard contributions as well as of soft corrections of order mα7 is the

next goal of the positronium theory.
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