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We construct perturbative classical solutions of the Yang-Mills equations coupled to dynamical
point particles carrying color charge. By applying a set of color to kinematics replacement rules
first introduced by Bern, Carrasco and Johansson (BCJ), these are shown to generate solutions of
d-dimensional dilaton gravity, which we also explicitly construct. Agreement between the gravity
result and the gauge theory double copy implies a correspondence between non-Abelian particles
and gravitating sources with dilaton charge. When the color sources are highly relativistic, dilaton
exchange decouples, and the solutions we obtain match those of pure gravity. We comment on
possible implications of our findings to the calculation of gravitational waveforms in astrophysical
black hole collisions, directly from computationally simpler gluon radiation in Yang-Mills theory.

I. INTRODUCTION

The many structural similarities between Yang-Mills theory and general relativity hint at possible relations between
their observables and dynamics. At the perturbative level, a correspondence between S-matrix elements in gauge
theory and gravity was discovered in recent years by Bern, Carrasco and Johansson (BCJ) [1]. Their result builds on
earlier work of [2] which found certain squaring identities that relate tree-level open and closed string amplitudes. In
particular, the BCJ relations contain as a special case the KLT identities of [2] in the limit of large string tension, in
which the infinite tower of massive string modes decouples.

The BCJ relations state that once written in a specific form, Yang-Mills amplitudes, in any spacetime dimension d,
can be mapped onto their gravity counterparts by applying a simple set of well-defined color-to-kinematics replacement
rules. As in the KLT case, the double copy of gauge theories with or without matter is not pure general relativity.
Rather, as expected from counting degrees of freedom, the gravitational theory generally contains other massless fields
in addition to the graviton. For example, in pure Yang-Mills theory, the double copy is a theory whose massless states
consist of a graviton, a scalar field φ (dilaton), and a 2-form gauge field Bµν . The BCJ double copy has been verified
for amplitudes in a wide number of field theories, containing varying amounts of supersymmetry, at the multi-loop
level. In field theory, these relations have been explicitly derived [3] for n-point tree-level amplitudes, using modern
amplitude techniques. However, the microscopic origin of these relations, either in field theory or string theory, is still
unknown. See [4] for a review and more extensive references to the literature.

Aside from their inherent theoretical interest, the BCJ relations are of practical significance, as they reduce the
computational complexity of perturbative gravity to the relatively more manageable gauge theory Feynman rules. It
is therefore natural to consider if similar relations can arise for observables beyond the S-matrix. For example, is it
possible to predict the classical gravitational radiation field generated by a system of merging black holes from the
analogous solution in gauge theory coupled to color sources? This would have potential astrophysical applications, to
the calculation of templates for gravitational wave detectors such as LIGO1.

The existence of non-perturbative double copy relations between classical solutions in gauge theory and gravity
was raised first in [7]. They proposed a correspondence between solutions in the Abelian sector [8] of Yang-Mills
theory and Kerr-Schild spacetimes in general relativity. The gauge theory configurations consist of solutions of the
form Aaµ(x) = caχ(x)kµ(x) up to gauge (with ca constant and kµ null), for which the Yang-Mills equations become
linear. These solutions have close counterparts in general relativity consisting of metrics that up to gauge are of the
Kerr-Schild form

gµν = ηµν +mχ(x)kµkν . (1)

An important example is the non-Abelian 1/rd−3 Coulomb field of a point color charge ca, corresponding to the
d-dimensional Schwarzschild metric with mass m, which is indeed in the Kerr-Schild class. Further examples can be

1 An effective field theory of gravitons whose Feynman diagrams compute gravitational radiation from merging black holes was first
introduced in [5]. The possibility that gravity is the square of gauge theory, together with on-shell methods, can be used to simplify
gravitational wave calculations was discussed by [6].
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found in [7, 9–11]. See [12] for related discussion.
The Kerr-Schild correspondence ca → m of [7] is a natural extension of the BCJ relations to the non-perturbative

regime2. However, it is unclear how to use this approach to obtain more generic solutions in gravity which deviate
from the algebraically special Kerr-Schild form. In this paper, we instead focus on perturbative solutions, and find
evidence that BCJ-type relations exist between classical solutions of Yang-Mills theory and those in a gravitational
double copy containing scalar and graviton degrees of freedom. On the Yang-Mills side, the setup consists of several
initially well-separated color charges, interacting through gluon exchange. These sources are not treated as fixed.
Instead, they evolve self-consistently in the classical gluon field they themselves generate. We construct the long
distance radiation gluon field of this system, expressed in terms of momentum space integrals. By applying BCJ-
type color-to-kinematics substitutions at the level of the integrand, these are shown to precisely match, at leading
perturbative order, the asymptotic radiation fields in a theory containing gravity and a massless scalar (dilaton)
coupled to massive point particles.

More explicitly, in sec. II, we construct the Yang-Mills radiation field corresponding to a set of color charges
coming in from spatial infinity, in terms of the initial momenta pµ and initial charges ca transforming in the adjoint
representation of the gauge group. Our calculation is done in general spacetime dimension d, generalizing known
d = 4 static, [15, 16] and radiating [17, 18] two-particle solutions of the classical Yang-Mills equations. Exact classical
solutions of classical SU(N →∞) QCD coupled to color sources were constructed in [19]. Even though the observables
we obtain are classical, they are related to the quantum mechanical on-shell gluon emission amplitude sourced by
semi-classical non-Abelian particles.

In sec. III, we consider analogous solutions in the graviton-dilaton system coupled to massive (non-spinning) point-
particles. In addition to computing the asymptotic radiation gravitational and scalar fields sourced by these particles,
we compute the gravitational analog of the Wilson line which evolves each particle’s momentum from initial to late
times. We find in sec. IV a double-copy relation between these observables and the corresponding quantities in the
classical gauge theory. The specific relation takes the initial color charges ca and replaces them by a second copy of
the initial momenta pµ, and maps the Lie algebra structure constants fabc to a second copy of the kinematic part of
the three-gluon Feynman rule (the four-gluon interaction does not yet show up at the order in perturbation theory
that we consider here). These substitutions transform the asymptotic gluon field detected by far away observers to a
double-copy radiation amplitude that encodes emission in both graviton and dilaton channels.

For the double-copy relations discussed in sec. IV to work, it is essential to choose the dilaton couplings to the point
particles in such a way that the asymptotic scalar and radiation fields have, at the level of the integrand, no explicit
dependence on the dimensionality d. The specific form of the interactions is motivated by observations made in [20],
and require the point-particles to have scalar coupling strengths proportional to mass. Thus, at least perturbatively,
the correspondence between gauge and gravity solutions implies that the non-Abelian Coulomb field of a color charge
maps onto a configuration which on the gravity side has non-vanishing scalar field profile. In the case of a strictly
massless source, or in the limit d → ∞ of large spacetime dimensions3, the scalar field configuration vanishes and
the resulting gravitational field is of Kerr-Schild form, in agreement with the ideas of [7]. However, away from these
limits the perturbative double copy of a charged non-Abelian particle is not the Schwarzschild solution and, as we
explicitly check in sec. IV A, the gravitational field is coordinate inequivalent to Kerr-Schild form starting at second
order in perturbation theory. This suggests that the duality proposed by [7] may only hold in certain domains.

More generally, as we discuss in sec. IV B, for solutions corresponding to several massless interacting particles,
the dilaton can be consistently decoupled to all orders in perturbation theory and the double copy reduces to pure
general relativity. This observation may be useful for computing gravitational wave templates from merging black
holes directly from classical gauge theory, albeit in a limit in which the sources are highly boosted yet still within
the perturbative regime. We also comment in sec. V on the inclusion of worldline spin degrees of freedom and the
related question of the role played by the two-form gauge field Bµν in the classical double copy, as well as other open
questions raised by the results presented in this paper.

2 See [13, 14] for examples of non-perturbative double copy structure in supersymmetric theories.
3 The limit d→∞ of perturbative quantum gravity was discussed in refs. [21, 22] and for solutions of classical general relativity in [23].
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II. CLASSICAL YANG-MILLS SOLUTIONS

A. Equations of motion and classical observables

We consider solutions of classical Yang-Mills theory in d-spacetime dimensions coupled to point particle color
charges. By definition, these are objects localized on a worldline xµ(τ) that carry a color charge degree of freedom
ca(τ) transforming in the adjoint representation of the gauge group 4. The equations of motion are

DνF
νµ
a (x) = gJµa (x), (2)

where the color current is given by

Jµa (x) =
∑
α

∫
dτcaα(τ)vµα(τ)δd(x− xα(τ)). (3)

Here α is a label that distinguishes the different point masses and vµα = dxµα/dτ is their velocity. Current conservation,
DµJ

µ
a = 0 gives rise to the parallel transport equation v ·Dca = 0 for each charge, i.e.

dca

dτ
= gfabcvµAbµ(x(τ))cc(τ), (4)

with well known solution caα(τ) = Wα
a
b(τ)cbα(−∞) in terms of the adjoint representation Wilson line along the

trajectory xµα(τ),

Wα
a
b(τ) =

[
P exp

{
−ig

∫ τ

−∞
dxµαAµ · Tadj

}]a
b. (5)

The orbital motion follows from the conservation of total energy-momentum ∂µ(TµνYM + Tµνpp ) = 0, with

Tµνpp (x) =
∑
α

mα

∫
dτvµα(τ)vνα(τ)δd(x− xα(τ)) (6)

which implies that each particle obeys the Lorentz force law

dpµ

dτ
= m

d2xµ

dτ2
= gcaFµa νv

ν . (7)

The classical equations of motion Eq. (4), Eq. (7) were first obtained in [24] by taking a limit of the Dirac equation.
There are several physically distinct Lagrangian realizations. For instance, one can take as a specific model the
Lagrangian [25],

Spp = −m
∫
dτ +

∫
dτψ†iv ·Dψ, (8)

where ψ(τ) is a variable transforming linearly at xµ(τ) under the gauge group, and ca = ψ†T aψ. See also [26] for a
different Lagrangian formulation with non-linearly realized gauge symmetry on the worldline. For the purposes of this
paper, it is sufficient to work directly in terms of Eqs. (4), (7), so whatever results we obtain will hold independently
of any particular action formulation.

The main object of interest is the self-consistent classical field 〈Aaµ〉(x) generated by a collection of point color
charges that evolve according to the equations of motion Eqs. (2), (4), (7). As long as the particles remain well
separated, we can determine 〈Aaµ〉(x) perturbatively as an expansion in powers of the gauge coupling g. We find it
convenient to work in the gauge ∂µA

µ
a = 0, in which case the Yang-Mills equation can be re-written as [8]

�Aµa = gJ̃µa , (9)

4 Our conventions are Dµ = ∂µ + igAaµT
a, [Ta, T b] = ifabcT c. The generators in the adjoint representation are

(
Taadj

)b
c = −ifabc.
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FIG. 1: Leading order Feynman diagrams for the perturbative expansion of J̃µa (k).

where the gauge-dependent current J̃µa is defined as

J̃µa = Jµa + fabcAbν(∂νAµc − Fµνc ),

∂µJ̃
µ
a = 0. (10)

Formally, Eq. (9) can be solved iteratively. Once the solution at given order in g is found, it is fed back in to get
the field at the next order in perturbation theory. Equivalently, it is useful to to adopt a diagrammatic approach,
where the classical solution 〈Aµ〉(x) to Eq. (9) is calculated as a sum of Feynman diagrams of the form shown in
Fig 1. These diagrams are computed using standard momentum space Feynman rules, with insertions of the (Fourier
transformed) current Eq. (3). At the classical level, in order to preserve causality, it is necessary to use a retarded,
or “in-in” iε prescription for the gluon propagator5. This is in contrast to the standard Feynman boundary condition
that must be used to compute S-matrix elements between asymptotic in/out states. In this paper, it is implicit that

propagators obey retarded boundary conditions, i.e. 1/k2 = 1/[(k0 + iε)2 − ~k2].
Once the classical solution 〈Aµ〉(x) is known to a given order in perturbation theory, it can be used to compute all

the physical observables of this system. Here, we focus on observables measured by asymptotic observers at spatial
infinity, r = |~x| → ∞, which are directly related to the momentum space current J̃µa (k) =

∫
ddxeik·xJ̃µa (x) evaluated

for on-shell momentum k2 = 0. For example in d = 4 spacetime dimensions the asymptotic field at r → ∞ and
retarded time t is

lim
r→∞
〈Aaµ〉(x) =

g

4πr

∫
dω

2π
e−iωtJ̃µa (k) (11)

with kµ = (ω,~k) = ω(1, ~x/r). Similar results exist also in d dimensions. Thus the on-shell current J̃µa (k) directly
measures the flux of energy-momentum, color, and angular momentum radiated out to infinity by the system of point
charges. In particular, the total energy-momentum radiated out to r → ∞ in a fixed polarization channel εaµ(k) is

(
∫
k

=
∫
ddk/(2π)d)

∆Pµ =

∫
k

(2π)θ(k0)δ(k2) |Aa(k)|2 kµ, (12)

where we have defined the on-shell radiation amplitude Aa(k) = εaµ(k)
[
gJ̃µa (k)

]∣∣∣
k2=0

, with the polarization vector

obeying k ·εa(k) = 0, εa(k)·εb(k)∗ = −δab. Similar expressions hold for other conserved quantities (angular momentum
and color charge).

B. Perturbative solutions

We consider a setup consisting of several particles α = 1, . . . , N coming in from infinity at τ → −∞, with initial
data

caα(τ → −∞) = caα, (13)

5 This can be justified by interpreting 〈Aµ〉(x) as the tree level part of the in-in one-point correlation function 〈in|Aaµ(x)|in〉 in quantum
field theory coupled to classical particles.
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xµα(τ → −∞) = bµα + vµατ, (14)

where bµα are spacelike (the impact parameters are bµαβ = bµα − bµβ) and v2α = 1. As the particles come close and

interact, they scatter and emit classical radiation encoded in 〈Aµ〉(x). We assume that the charges always remain
sufficiently far away so that the particles’ trajectory changes are small and perturbation theory is valid. In this case,
the classical radiation field can be computed formally in powers of g, in terms of the diagrams shown in Fig. 1. The
precise form of the dimensionless small parameter that governs this expansion depends on the kinematics, and can be
determined by estimating the dependence of higher order diagrams not shown in Fig. 1 on the kinematic variables.
E.g., for particles of comparable mass and energy E & m, one finds the expansion parameter is

ε = g2
Γ
(
d−3
2

)
(4π)

d−2
2

cα · cβ
Ebd−3αβ

� 1. (15)

Since we construct our solutions only at the level of the integrand, we do not need to make any assumptions about
the size of the radiation frequency scale ω relative to the typical impact parameter b. Note that even though the
diagrams in Fig. 1 scale like definite powers of the gauge coupling, they each contain in general an infinite series
of terms suppressed by powers of ε � 1. It should be possible to construct a classical effective field theory whose
Feynman diagrams scale as definite powers of ε and/or ωb� 1 along the lines of ref. [5]. However, since in this paper
we are only interested in the leading order radiation field, we do not find it necessary to introduce manifest power
counting in ε� 1. Rather, we truncate Fig. 1(a) = ε0 + ε1 + · · · and Fig. 1(b) = ε1 + · · · .

At intermediate times, the particle trajectories in physical and color space are given by

xµα(τ) = bµα + vµατ + zµα(τ), (16)

caα(τ) = caα + c̄aα(τ), (17)

where the deflections zµα(τ), c̄a(τ) contain terms of order g2 (i.e ε1) and higher. To compute these deflections, we first
need the classical field at leading order, which is given by the diagram in Fig. 1(a) with static sources zµ = c̄a = 0.
In Feynman gauge, this is

〈Aµa〉(x) =
∑
α

∫
`

− i

`2
e−i`·x(−ig)

∫
dτcaαv

µ
αe
i`·(bα+vατ) = −g

∑
α

∫
`

(2π)δ(` · vα)
e−i`·(x−bα)

`2
vµαc

a
α. (18)

At this order in perturbation theory, the current is J̃aµ(k) = g
∑
α e

ik·bα(2π)δ(k · vα)vµαc
a
α, which vanishes on-shell for

timelike vµα, since static color charges do not radiate. Inserting this result into the equations for xµ(τ) and ca(τ), we
can now obtain the leading order deflections

dc̄aα(τ)

dτ
= −g2

∑
β 6=α

(vα · vβ)fabccbβc
c
α

∫
`

(2π)δ(` · vβ)
ei`·(bαβ+vατ)

`2
, (19)

and

mα
d2zµα
dτ2

= −ig2
∑
β 6=α

(cα · cβ)

∫
`

(2π)δ(` · vβ)
ei`·(bαβ+vατ)

`2

[
(vα · vβ)`µ − (vα · `)vµβ

]
. (20)

In particular, from Eq. (19) we can read off the Wilson line matrix at order g2

[lnWα(τ →∞)]ab = g2
∑
β 6=α

∫
`

(2π)δ(` · vα)(2π)δ(` · vβ)
ei`·bαβ

`2
(vα · vβ)fabcccβ . (21)

For later comparison to gravity, it is useful to insert a spurious integral over a new momentum variable `α and re-label
`→ −`β ,

[lnWα(τ →∞)]ab = g2
∑
β 6=α

∫
`α,`β

µα,β(k = 0) `2α(vα · vβ)fabcccβ , (22)

where we have introduced the notation

µα,β(k) =

[
(2π)δ(vα · `α)

ei`α·bα

`2α

][
(2π)δ(vβ · `β)

ei`β ·bβ

`2β

]
(2π)dδd(k − `α − `β). (23)
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The momentum integrals appearing in these expressions can be done by standard Schwinger parameter methods, but
we will not need those in what follows.

The order g2 (or ε1) correction to the current J̃µa (k) field has two contributions. One is from the diagram in
Fig. 1(a), taking into account the order g2 corrections to the equations of motion in Eqs. (19), (20). This gives rise

to the following contribution to the conserved color current J̃µa (k) defined in Eq. (9):

Fig. 1(a)|O(g2) =
∑
α

eik·bα
[
−i(k · vα)caα

(
zµα(ω)− k · zα

k · vα
vµα

)
+ c̄aα(ω)vµα

]
ω=k·vα

, (24)

where zµ(ω) =
∫
dτeiωτzµ(τ), c̄a(ω) =

∫
dτeiωτ c̄a(τ) are the frequency-space displacements. In this equation and in

what follows, the iε prescription 1/k · v = 1/(k · v + iε) is implied. Inserting the Fourier transforms into the above
expression then yields

Fig. 1(a)|O(g2) = g2
∑
α,β
α6=β

∫
`α,`β

µα,β(k)

[
cα · cβ
mα

`2α
k · vα

caα

{
−vα · vβ

(
`µβ −

k · `β
k · vα

vµα

)
+ k · vαvµβ − k · vβv

µ
α

}

+i(vα · vβ)fabccbαc
c
β

`2α
k · vα

vµα

]
. (25)

The second contribution to J̃µa (k) is from Fig. 1(b) with static sources,

Fig. 1(b)|O(g2) = g2
∑
α,β
α 6=β

∫
`α,`β

µα,β(k)ifabccbαc
c
β [2(k · vβ)vµα − (vα · vβ)`µα] . (26)

Combining we find

J̃µa (k)
∣∣∣
O(g2)

= g2
∑
α,β
α 6=β

∫
`α,`β

µα,β(k)

[
cα · cβ
mα

`2α
k · vα

caα

{
−vα · vβ

(
`µβ −

k · `β
k · vα

vµα

)
+ k · vαvµβ − k · vβv

µ
α

}

+ifabccbαc
c
β

{
2(k · vβ)vµα − (vα · vβ)`µα + (vα · vβ)

`2α
k · vα

vµα

}]
(27)

A consistency check of this result is that it obeys the Ward identity kµJ̃
µ
a (k) = 0 even for off-shell kµ. This requires a

cancellation between diagrams, which is only possible after the leading order solution for the time dependent charge
ca(τ) is inserted into Fig. 1(a).

III. CLASSICAL SOLUTIONS IN DILATON GRAVITY

We will compare our results obtained above to classical solutions in d-dimensional gravity coupled to a scalar φ and
to dynamical point sources. At the two-derivative level, the action is S = Sg + Spp, where the bulk theory is

Sg = −2md−2
Pl

∫
ddx
√
g [R− (d− 2)gµν∂µφ∂νφ] , (28)

and for a single particle

Spp = −m
∫
dτeφ, (29)

(dτ2 = gµνdx
µdxν). We refer to φ as the dilaton because of the form of its couplings to the massive particle. As in

ref. [20], the presence of the scalar field, as well as its normalization and choice of interactions with the point particle,
is motivated by the observation that the gauge theory Feynman rules that we use have no explicit dependence on the
spacetime dimensionality. This is in contrast to pure general relativity, where even the graviton propagator depends
on d. Thus the double copy of pure Yang-Mills coupled to charges must contain additional degrees of freedom beyond
those of Einstein gravity in order to cancel the d-dependence. Note that in the calculations below, we only need to
keep scalar couplings up to quadratic order, eφ = 1 + φ+ 1

2!φ
2 + · · · .
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The equations of motion for each particle are

dpµ

dτ
= − [Γµρνv

ρ + (vµ∂ν − vν∂µ)φ] pν . (30)

whose solution is pµ(τ) = Wµ
ν(τ)pν(−∞), where the gravitational analog of the Wilson line6

Wµ
ν(τ) = P exp

[
−
∫ τ

dxρ {Γµρν + (δρ
µ∂ν − gρν∂µ)φ}

]
. (31)

To set up the perturbative expansion, we write the metric as gµν = ηµν + hµν . The formal solution 〈hµν〉 to the
equations of motion can be written in deDonder gauge, ∂νh

µν = 1
2∂

µhσσ, as

〈hµν〉(x) =
1

2md−2
Pl

∫
k

e−ik·x

k2

[
T̃µν(k)− 1

d− 2
ηµν T̃

σ
σ(k)

]
, (32)

where T̃µν(x) is a conserved, ∂µT̃
µν = 0, but coordinate dependent pseudo-tensor that includes the energy-momentum

of the particle sources, the dilaton, and gravity. Distinct but physically equivalent definitions of T̃µν(x) for pure gravity

can be found in textbooks [30, 31]. Our definition is the one used in [5], with T̃µν(x) proportional to the coefficient
of the graviton tadpole term in the background field gauge effective action Γ[h, φ] for this theory,

Γ[h, φ] = −1

2

∫
ddxT̃µν(x)hµν(x) + · · · . (33)

The quantity T̃µν(k) with k2 = 0 then determines the classical field measured by observers at spatial infinity. For
example, in four dimensions, the dimensionless strain at retarded time t measured by gravitational wave detectors
placed at r →∞ is obtained by dotting T̃ ij into a normalized, transverse-traceless polarization tensor εij(k)

h±(t, ~n) =
4GN
r

∫
dω

2π
e−iωtε∗ij±(k)T̃ij(k). (34)

This yields the angular pattern of helicity ±2 gravitational waves along direction ~n = ~k/|~k| seen by observers far from
the sources. In any number of dimensions, the radiated energy-momentum is

∆Pµ =
1

4md−2
Pl

∫
k

(2π)θ(k0)δ(k2)kµ
∣∣∣ε∗ρσ(k)T̃ ρσ(k)

∣∣∣2 . (35)

The full (non-perturbative) equation of motion for the scalar field is

�φ(x) = − 1

4md−2
Pl (d− 2)

∑
α

mα

∫
dταe

φ(x) δ(x− xα)
√
g

, (36)

whose solution we express as

〈φ〉(x) = − 1

2m
(d−2)

2

Pl (d− 2)1/2

∫
k

e−ik·x

k2
As(k). (37)

For on-shell momentum k2 = 0, As(k) can be interpreted as the (canonically normalized) semi-classical probability
amplitude for scalar emission by the point sources. From a strictly classical point of view, As(k) with on-shell kµ

determines the radiation field measured by detectors at future null infinity.

6 The version of the gravitational Wilson line that appears here is the one given, e.g., in [27, 28] (here corresponding to the affine connection
for the conformally rescaled metric g̃µν = e2φgµν). In ref. [29] a different (non-covariant) definition of the gravitational Wilson loop was
found to be related to perturbative amplitude calculations in N = 8 supergravity.
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A. The leading order radiation fields

We now consider a set of particles α = 1, . . . , N moving along trajectories xα = bα + vατ + zα(τ) subject to initial

conditions zα(τ → −∞) = 0. As in the Yang-Mills case, we focus on perturbative solutions, in which case T̃µν(k)
and As(k) can be calculated in terms of the Feynman diagrams in Figs. 2,3. We follow the Feynman rule conventions
given in [5]. For example, the graviton propagator for internal lines is i

md−2
Pl

Pµνρσ/k
2, where the tensor structure is

given by

Pµνρσ =
1

2

[
ηµρηνσ + ηµσηνρ −

2

d− 2
ηµνηρσ

]
. (38)

For particles of comparable mass and energy E & m, perturbation theory is valid in the kinematic regime

ε =
Γ(d/2− 3/2)

(4π)(d−1)/2
E

md−2
Pl b

d−3
αβ

� 1. (39)

Even though the Feynman diagrams in Fig. 2, 3 scale as definite powers of 1/md−2
Pl , they do not exhibit manifest

power counting in ε. Explicit ε scaling can be achieved by constructing an effective field theory for the large impact
parameter limit, but we do not attempt to do so here. Again, we make no assumptions about the magnitude of the
dimensionless quantity ωb.

At leading order in perturbation theory, the particles travel undeflected, and source static fields that can be
calculated from the diagrams in Fig. 2(a), Fig. 3(a) with zµα = 0. The results are

〈hµν〉(x) =
1

2md−2
Pl

∑
α

mα

∫
`

e−i`·(x−bα)

`2
(2π)δ(` · vα)

(
vαµvαν −

1

d− 2
ηµν

)
, (40)

〈φ〉(x) =
1

4md−2
Pl (d− 2)

∑
α

mα

∫
`

e−i`·(x−bα)

`2
(2π)δ(` · vα). (41)

Because the sources are static at lowest order, these solutions do not contain radiation. However, they give rise to
equations of motion

d2zµα
dτ2

=
i

2md−2
Pl

∑
β 6=α

mβ

∫
`

(2π)δ(` · vβ)
ei`·(bαβ+vατ)

`2

[
1

2
(vα · vβ)2`µ − (` · vα)

(
(vα · vβ)vµβ −

vµα
2(d− 2)

)]
. (42)

Thus the leading order Wilson line along the path of particle α is given by

[lnW (τ →∞)]µν =
i

4md−2
Pl

∑
β 6=α

mβ

∫
`α,`β

µα,β(0)`2α(vα · vβ)
(
`µαvβν − `ανv

µ
β

)
. (43)

Given these results, we can now obtain the leading order radiation amplitude T̃µν(k). First plug in the solution zµα
to Eq. (42) into Fig. 2(a),

Fig. 2(a) =
∑
α

eik·bαmα (−ik · vα)

[
vµαz

ν
α(ω) + vναz

µ
α(ω)− vµαvνα

(
k · zα(ω)

k · vα
+ vα · zα(ω)

)]
ω=k·vα

, (44)

to obtain

Fig. 2(a) =
1

2md−2
Pl

∑
α,β
α6=β

mαmβ

∫
`α,`β

µα,β(k)
`2α

k · vα

[
1

2
(vα · vβ)2

(
vµα`

ν
β + vνα`

µ
β −

k · `β
k · vα

vµαv
ν
α

)

+(vα · vβ)

(
1

2
(vα · vβ)k · vα + k · vβ

)
vµαv

ν
α − (vα · vβ)(k · vα)(vµαv

ν
β + vναv

µ
β )

]
. (45)
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FIG. 2: Leading order Feynman diagrams in the perturbative expansion of T̃µν(k).

Note that we have dropped terms proportional to δ(k · vα) which, either for massive or massless particles, do not
contribute to the radiation field7 . At this order in perturbation theory, we must also compute the diagrams in
Fig. 2(b)-(e) at zero deflection, whose respective contributions to T̃µν(k) are

Fig. 2(b) = − 1

4md−2
Pl

∑
α,β
α6=β

mαmβ

∫
`α,`β

µα,β(k)

[
(vα · vβ)2 − 1

d− 2

]
`2αv

µ
αv

ν
α, (46)

Fig. 2(c) =
1

4md−2
Pl

∑
α,β
α6=β

mαmβ

∫
`α,`β

µα,β(k)
`2αv

µ
αv

ν
α

d− 2
, (47)

and

Fig. 2(d) =
1

4md−2
Pl

∑
α,β
α6=β

mαmβ

∫
`α,`β

µα,β(k)

[(
(vα · vβ)2 − 1

d− 2

)(
2`µα`

ν
α + `µα`

ν
β

)

+ηµν
{
vα · vβ(k · vα)(k · vβ)− 2(k · vα)2

d− 2
− 1

2

(
(vα · vβ)2 − 1

d− 2

)
`2α

}

+2

(
k · vα
d− 2

− (vα · vβ)k · vβ
)

(vµα`
ν
α + vνα`

µ
α) +

2k · vβ
d− 2

(
`µαv

ν
β + `ναv

µ
β

)
+2

(
(k · vβ)2 − `2α

d− 2

)
vµαv

ν
α +

{
`2αvα · vβ − k · vαk · vβ

}(
vµαv

ν
β + vναv

µ
β

)]
. (48)

To get the result in Fig. 2(d), we have used the background field gauge three-graviton interaction vertex, whose

explicit form can be found, e.g., in [5]. The remaining contribution to T̃µν(k) at this order in the interactions is

Fig. 2(e) = − 1

4md−2
Pl (d− 2)

∑
α,β
α6=β

mαmβ

∫
`α,`β

µα,β(k)

[
`µα`

ν
β −

1

2
ηµν`α · `β

]
. (49)

7 In the massless case, the argument of the delta function can be non-zero if kµ points along the direction of a particle momentum.
However, because the δ(k ·vα) term is proportional to pµαp

ν
α, dotting the amplitude into an external graviton, or taking a trace to project

onto scalar radiation gives a vanishing result.
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FIG. 3: Leading order Feynman diagrams in the perturbative expansion of the scalar emission amplitude As(k).

In all these equations, we have dropped terms that vanish when kµ is on-shell, as these do not contribute to the
asymptotic field at r → ∞. However, we have checked that the sum of the diagrams Fig. 2(a)-(e) obeys the Ward

identity kµT̃
µν(k) = 0 even for kµ off-shell. In order to compare to the analogous Yang-Mills results, we will only

focus on the components of T̃µν(k) which contribute to the radiation field at infinity. In particular, the canonically
normalized graviton emission amplitude simplifies to

Ag(k) = − 1

2m
(d−2)/2
Pl

ε∗µν(k)T̃µν(k) = −
ε∗µν(k)

8m
3(d−2)/2
Pl

∑
α,β
α6=β

mαmβ

∫
`α,`β

µα,β(k)
[
(vα · vβ)2`µα`

ν
α

+(vα · vβ)ηµν
{

1

2
(vα · vβ)`2α + (k · vα)(k · vβ)

}

−2(vα · vβ)

(
(vα · vβ)

`2α
k · vα

+ 2k · vβ
)
`µαv

ν
α − 2

(
(k · vα)(k · vβ) + (vα · vβ)`2α

)
vµαv

ν
β

+

{
(vα · vβ)

`2α
(k · vα)2

((vα · vβ)k · `α + 2(k · vα)(k · vβ)) + 2(k · vβ)2
}
vµαv

ν
α

]
, (50)

where we have only assumed that the polarization tensor obeys the deDonder gauge condition kµεµν(k) = 1
2kνε

σ
σ(k).

Note in particular that, by construction, all explicit dependence on the spacetime dimensionality cancels in this on-
shell quantity. This would not be true for the non-radiative components of the solution at this order, and it would
not be true of the radiation amplitude in pure gravity (diagrams (a), (b), (d) in Fig. 2). This cancellation is what
dictates the choice of scalar interactions, and is going to be important later when we discuss double copy relations
between the Yang-Mills solution and the result in Eq. (50).

We can use the same methods to calculate the amplitude for dilaton emission from the classical system. Inserting
the solution to Eq. (42) into Fig 3(a), we obtain the following contribution to As(k) (defined in Eq. (37)),

Fig. 3(a) = − 1

4m
3(d−2)/2
Pl (d− 2)1/2

∑
α,β
α6=β

mαmβ

∫
`α,`β

µα,β(k)
`2α

(k · vα)2
(vα · vβ) [(k · vα)(k · vβ)

− 1

2
(vα · vβ)

(
k · `β + (k · vα)2

)]
, (51)
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and working at zero deflection,

Fig. 3(b) = − 1

8m
3(d−2)/2
Pl (d− 2)1/2

∑
α,β
α 6=β

mαmβ

∫
`α,`β

µα,β(k)

[
(vα · vβ)2 − 1

d− 2

]
`2α, (52)

Fig. 3(c) = − 1

8m
3(d−2)/2
Pl (d− 2)1/2

∑
α,β
α 6=β

mαmβ

∫
`α,`β

µα,β(k)
`2α
d− 2

, (53)

Fig. 3(d) = − 1

4m
3(d−2)/2
Pl (d− 2)1/2

∑
α,β
α 6=β

mαmβ

∫
`α,`β

µα,β(k) (k · vα)2. (54)

In particular, the diagram Fig. 3(c) probes the coefficient of the quadratic coupling of the scalar to the particles
written in Eq. (29). The sum of these diagrams then gives the scalar radiation amplitude

As(k) = − 1

8m
3(d−2)/2
Pl (d− 2)1/2

∑
α,β
α 6=β

mαmβ

∫
`α,`β

µα,β(k)

[
(vα · vβ)`2α
(k · vα)2

{(vα · vβ)k · `α + 2(k · vα)(k · vβ)}+ 2(k · vα)2
]
.

(55)

IV. COLOR-KINEMATICS CORRESPONDENCE

We now show that there is a color-kinematics relation between the perturbative Yang-Mills observables in sec. II and
the corresponding ones in the scalar-gravity theory constructed in sec. III. The possibility of such a correspondence is
well motivated by work on scattering amplitudes, going back to the KLT relations and more recently the BCJ double
copy of gauge theory.

As in the BCJ case, the connection between gauge and gravity observables consists of making certain color-to-
kinematics substitutions. To recover gravity from our Yang-Mills results, we first replace the initial color charge of
each particle with a second copy of its initial momentum

ca → pµ. (56)

This substitution is motivated by the structural similarity between the respective classical equations of motion: in
gauge theory, charge ca(τ) is parallel transported in color space, while in gravity pµ(τ) also obeys a parallel transport
equation, Eq. (30), generated by the affine connection associated with the Weyl re-scaled metric g̃µν = e2φgµν . The
replacement Eq. (56) is also similar to the identification ca → m in the Kerr-Schild double copy proposal of [7].
Note that under the replacement in Eq. (56), the trivial (order ε0) gluon field in Eq. (18) does not map onto the
gravitational solution in Eq. (40), except in the case of highly boosted sources. The fact that the massless limit double
copies in this way is consistent with observations made in ref. [32], which constructed these solutions indirectly, by
resumming the eikonal limit of QCD and using the BCJ relations to make contact with classical gravity. The special
case of massless sources and their classical double copy is discussed in more detail below in sec. IV B.

Even though the (gauge dependent) leading order solutions in Eq. (18) and Eq. (40) are only related for m = 0
particles, we find that gauge-invariant classical observables, in particular the transverse radiation field at r → ∞,
does obey a double copy relation even in the more general case of massive sources. In order to see this relation,
we have to compare the solutions at the next order in perturbation theory, where radiation first shows up. At this
order in the expansion, it becomes necessary to introduce a substitution rule for the color structure fabc on the gauge
theory side. In our gauge theory results, every term containing a factor of fabc can be associated with an expression
involving incoming momenta q1,2,3. As in BCJ, it is natural to replace the structure constants with a second copy of
the kinematic factor appearing in the 3-gluon Feynman vertex,

ifa1a2a3 → Γν1ν2ν3(q1, q2, q3) = −1

2
[ην1ν3(q1 − q3)ν2 + ην1ν2(q2 − q1)ν3 + ην2ν3(q3 − q2)ν1 ] , (57)

with q1 + q2 + q3 = 0. Finally, to compare to gravity, we introduce the replacement rule

g → 1

2m
d/2−1
Pl

. (58)
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Given these rules, we can now determine the gravitational double copy of the emission amplitude A(k) =

εaµ(k)
[
gJ̃aµ(k)

]
. We replace the gluon polarization vector,

εaµ(k)→ εµ(k)ε̃ν(k), (59)

with independent photon polarizations εµ(k), ε̃µ(k). Making these substitutions, the double copy Âµν(k) of the
Yang-Mills amplitude is given by

εaµ(k)
[
gJ̃aµ(k)

]
→ εµ(k)ε̃ν(k)Âµν(k), (60)

which is only well-defined up to terms that vanish when dotted into the external on-shell polarizations. Using this
gauge freedom, the double copy amplitude with k2 = 0 can be taken to be, from Eq. (27),

Âµν(k) = −
∑
α,β
α6=β

mαmβ

8m
3(d−2)/2
Pl

∫
`α,`β

µα,β(k)

[
(vα · vβ)`2α
k · vα

vνα

{
(vα · vβ)

(
1

2
(`β − `α)µ − k · `β

k · vα
vµα

)
+ (k · vβ)vµα − (k · vα)vµβ

}

+
1

2

{
2(k · vβ)vνα − 2(k · vα)vνβ + (vα · vβ)(`β − `α)ν

}{
2(k · vβ)vµα − (vα · vβ)`µα +

(vα · vβ)`2α
k · vα

vµα

}]
.

(61)

To obtain, this, we have added pure gauge terms proportional to kν whose specific form has been chosen such that,
for on-shell k2 = 0, the Ward identity is obeyed in each Lorentz index,

kµÂµν(k) = kνÂµν(k) = 0. (62)

The double copy amplitude Âµν(k) simultaneously encodes radiation in the graviton and scalar channels. To
extract each process, we decompose the product εµε̃ν into irreducible SO(d− 2) massless little group representations.
In unitary gauge, with ε0(k) = ε̃0(k) = 0, the spatial components decompose as

εi(k)ε̃j(k) = εij(k) + aij(k)− ε(k) · ε̃(k)

d− 2
hij(k), (63)

where the scalar is proportional to hij(k) = δij − kikj/~k2 and the transverse traceless graviton is

εij(k) =
1

2
εi(k)ε̃j(k) +

1

2
εj(k)ε̃i(k) +

ε(k) · ε̃(k)

d− 2
hij(k). (64)

In principle, there is also the anti-symmetric mode aij(k) = (εi(k)ε̃j(k)− εj(k)ε̃i(k)) /2, associated with the existence
of a two-form gauge field Bµν in the Yang-Mills double copy. However, by direct calculation it is easy to see that

aij(k)Âij(k) = 0, so that this field is not radiated by the point sources. We will comment further on the role played

by the Bµν field in sec. V. The double copy Âµν(k) contains a canonically normalized scalar emission amplitude of
the form

− hij(k)Âij(k)√
hmnhmn(k)

=
ηµνÂµν(k)

(d− 2)1/2
= As(k), (65)

which reproduces the result Eq. (55) obtained in the gravity theory. In the graviton channel, the double copy amplitude
is

εij(k)Âij(k) =
1

2
εµ(k)ε̃ν(k)

[
Âµν(k) + Âνµ(k)

]
− ε(k) · ε̃(k)

d− 2
Âµµ(k). (66)

For graviton polarization of the form given in Eq. (64), this expression agrees with the asymptotic radiation field in
Eq. (50),

εij(k)Âij(k) = − 1

2m
(d−2)/2
Pl

εµν(k)T̃µν(k), (67)

computed directly in perturbative gravity.
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A. The double copy of a static point source

Taken at face value, our results in the previous section imply that the double copy of an isolated color charge
is an object that sources both the graviton and dilaton. We can use the results in sec. III to calculate the long
distance gravitational field of this object. This same method was first used by Duff [33] to calculate the asymptotic
four-dimensional Schwarzschild metric to second order in powers of rs/r � 1 and in [5] to order (rs/r)

3, where rs is
the Schwarzschild radius of the source.

For a single particle with bµ = 0, the leading order field as an expansion in powers of (rs/r)
d−3 � 1 can be read

off directly from Eq. (40). In a deDonder coordinate system, with ηµνΓλµν = 0,

hµν(x) =
1

d− 3

(rs
r

)d−3
(ηµν − (d− 2)vµvν) , (68)

with vµ the source’s velocity. In terms of the spatial coordinates xµ⊥ = xµ − (v · x)vµ, the radial variable is defined

to be r =
√
−x2⊥. At this order in perturbation theory, the solution coincides with the d-dimensional Schwarzschild

metric, and by defining a new radial coordinate

ρ = r

[
1 +

1

2(d− 3)

(rs
r

)d−3
+ · · ·

]
, (69)

the gravitational field of an isolated particle can be put in the standard Schwarzschild form

ds2 = f(ρ)dt2 − g(ρ)dρ2 − ρ2dΩ2
d−2, (70)

f(ρ) = 1−
(
rs
ρ

)d−3
+ · · · , (71)

g(ρ) = 1 +

(
rs
ρ

)d−3
+ · · · . (72)

At the next order in the expansion, the backreaction of the scalar field profile on the metric must be taken into
account. Summing up the energy-momentum of the graviton and φ, we find at second order in perturbation theory8

T̃µν(k) =
m2

8(d− 2)md−2
Pl

(2π)δ(k · v)

∫
`

(2π)δ(` · v)
1

`2
1

(`+ k)2
[2(d− 2)`µ`ν + (d− 2)(`µkν + `νkµ)

+2(d− 3)kµkν − 1

2
(3d− 10)k2ηµν + 2(d− 4)k2vµvν

]
. (73)

The correction to the metric can now be extracted from Eq. (32). In order to calculate hµν(x) we first do the integral
over momentum ` by standard one-loop Feynman parameter methods, and then the Fourier transform over k using
the identity ∫

k

(2π)δ(k · v)
e−ik·x

(−k2)α
=

1

(4π)
d−1
2

Γ(d/2− α− 1/2)

Γ(α)

(
2

r

)d−2α−1
. (74)

The result is that h
(2)
µν (x), the order (rs/r)

2(d−3) correction to the metric, is given by

h(2)µν (x) =
1

4

d− 2

(d− 3)2

(rs
r

)2(d−3) [
−2d2 − 13d+ 24

(d− 2)(d− 5)
ηµν +

2d2 − 16d+ 33

d− 5
vµvν −

3(d− 3)2

d− 5

x⊥µ x
⊥
ν

r2

]
. (75)

By re-defining the radial coordinate,

ρ2 = r2
[
1 +

1

(d− 3)

(rs
r

)d−3
− 2d2 − 13d+ 24

4(d− 3)2(d− 5)

(rs
r

)2(d−3)
+ · · ·

]
, (76)

8 This result can be obtained from the diagrams of Fig. 2(d), Fig. 2(e) in the case of a single particle.
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the metric including second order corrections can again be put in the form given in Eq. (70), where now

f(ρ) = 1−
(
rs
ρ

)d−3
+ 0 ·

(
rs
ρ

)2(d−3)

+ · · · , (77)

g(ρ) = 1 +

(
rs
ρ

)d−3
+

(
1− 1

4(d− 3)

)(
rs
ρ

)2(d−3)

+ · · · . (78)

The second order corrections to g(ρ) includes a pure gravity contribution that does not depend on d, and a scalar
contribution with logarithmic UV divergences in d = 3 dimensions9. Note that in the large d limit [21–23], the scalar
decouples and we recover the d-dimensional Schwarzschild solution to second order in perturbation theory. It is also
straightforward to calculate the scalar field profile. In deDonder coordinates, the result is

φ(r) =
1

2(d− 3)

(rs
r

)d−3
+ 0 ·

(rs
r

)2(d−3)
+ · · · , (79)

while in Schwarzschild coordinates

φ(ρ) =
1

2(d− 3)

(
rs
ρ

)d−3
+

1

4(d− 3)

(
rs
ρ

)2(d−3)

+ · · · . (80)

There is a natural connection [7] between certain solutions of the classical Yang-Mills equations and Kerr-Schild
solutions to the Einstein equations in pure gravity. According to this correspondence, the exact non-Abelian Coulomb
field of a point color charge corresponds to the Schwarzschild solution of vacuum general relativity. The results in
Eq. (78) instead indicate that, because of scalar charge, the double copy of the Coulomb field is neither a vacuum
spacetime nor is it equivalent to Kerr-Schild by coordinate transformations. To see this latter assertion, note that the
general d-dimensional spherically symmetric Kerr-Schild metric, gµν = ηµν +χ(ρ)kµkν , kµ = (1, xi/ρ), ρ = |~x| can be
put [11] in Schwarzschild form

ds2 = (1 + χ(ρ)) dt2 − dρ2

1 + χ(ρ)
− ρ2dΩ2

d−2 (81)

by a suitable choice of constant time slices. By comparison with Eqs. (77), (78) we see that the perturbative double
copy is not of Kerr-Schild form starting at second order in perturbation theory.

We are forced by this analysis to conclude that in the one-body sector, Kerr-Schild duality is at odds with the
strictly perturbative approach in this paper, except possibly in two physically interesting limits. First, in the case of
infinite spacetime dimensions [21–23], it is clear from Eq. (28) that the scalar field consistently decouples to all orders
in perturbation theory. In this case, the perturbative double copy of Yang-Mills is the d → ∞ limit of pure general
relativity, and our result in Eqs. (77), (78) reduces to the Schwarzschild vacuum. The second limit is that of massless
charges, which can be obtained from the results of this section by taking the ultrarelativistic limit v0 = γ → ∞. In
that limit the linearized result in Eq. (68) becomes exact to all orders in powers of (rs/r)

d−3 regardless of the dilaton
couplings, and the gravitational field is the Aichelburg-Sexl shockwave [34], which is one of the Kerr-Schild solutions
considered in [7].

B. Pure gravity and the double copy for massless particles

In fact, for strictly massless particle sources, the perturbative classical double copy of Yang-Mills theory is pure
Einstein gravity. This is seen most transparently by introducing into the point particle Lagrangian an auxiliary
“einbein” η(λ) whose role is to enforce invariance under reparametrizations λ→ λ̃(λ) of the worldline (see e.g. [35]).
In terms of this new degree of freedom, the action takes the form

Spp = −1

2

∫
dλ

[
η−1e2φgµν

dxµ

dλ

dxν

dλ
+ ηm2

]
. (82)

9 Such divergences renormalize the coefficients of non-minimal interactions between the particle worldline and gµν , φ [5].



15

Varying the action with respect to η then yields the constraint

e2φgµν
dxµ

dλ

dxν

dλ
= m2η2, (83)

which when inserted back into the Lagrangian reproduces the action −m
∫
dτeφ assumed in sec. III. In the einbein

formulation, φ obeys the equation of motion

�φ = − 1

8md−2
Pl (d− 2)

∑
α

∫
dλη−1e2φ(x)gµν

dxµ

dλ

dxν

dλ

δ(x− xα)
√
g

. (84)

It is now straightforward to take m = 0, in which case xµ(λ) obeys the null geodesic equation in the metric e2φgµν ,
while the constraint Eq. (83) reduces the dilaton equation to �φ = 0. Because null geodesics are preserved under
Weyl re-scalings, the dilaton has no effect on the motion of the particles, and in any case the trivial solution with
constant φ satisfies the equations of motion to all orders in perturbation theory. Thus, if all the particles are massless,
the scalar mode decouples and the double copy of the gauge theory configuration is automatically a solution of pure
general relativity.

V. DISCUSSION AND OUTLOOK

In this paper we have constructed perturbative classical solutions of Yang-Mills theory coupled to point charges
and analogous solutions in a theory of a graviton and a massless scalar field. Our results hold in any number of
spacetime dimensions, and for any number of point sources. By applying a simple set of BCJ-motivated replacement
rules, encapsulated in Eqs. (56), (57), (58), we are able to reproduce the gravitational and scalar fields detected by far
away observers from the corresponding asymptotic gluon field in classical gauge theory. We have focused on solutions
corresponding to classical unbound trajectories, but our results can also be easily applied to obtain solutions with
particles in non-relativistic bound orbits.

Several remarks are in order. First, given their close relation to on-shell observables, it is perhaps not completely
unexpected that the asymptotic classical gravity solutions we construct are related to gauge theory by rules similar to
the BCJ transformations that hold in the case of the S-matrix. However, the double copy structure of classical solutions
seems to differ in one important way from the relations for scattering amplitudes. Namely, for scattering amplitudes,
it is essential that matrix elements be put into explicit BCJ form, as a sum over groupings of Feynman diagrams
whose numerators are related by the Jacobi identity of the Lie algebra. In our case, the classical Yang-Mills radiation
field is only linear in the structure constants, and aside from total anti-symmetry under index permutations, algebraic
relations obeyed by fabc seems to not play any role. Going to the next order in perturbation theory, the classical
solutions will contain terms that are quadratic in the structure constants, and it is likely that the Jacobi identity
will be important in generating gravitational field configurations from their gauge theory counterparts. Likewise, at
this perturbative order we will have to deal with the 4-gluon interaction on the gauge theory side. Presumably, as in
BCJ, this can be handled by “blowing up” the 4-gluon vertex into the product of 3-point interactions, but an explicit
calculation is needed.

Despite being both on-shell and classical, the observables considered here are not simply the classical limit of tree-
level scattering in quantum field theory. This is clear due to the fact that for a fixed number of external particles,
there are only a finite number of tree diagrams contributing to either the gauge theory or gravity S-matrix element.
On the other hand, even for a small set of initial and final particles, the classical observables we compute receive
corrections from an infinite set of Feynman diagrams, with an ever-increasing number of source insertions at higher
orders in an expansion in powers of ε ∼ b3−d � 1. As is well known, for gravitational scattering in the ultrarelativistic
limit, it is possible to re-sum a subset of the diagrams at each order in the loop expansion of field theory to recover the
classical limit. See, e.g., refs. [36, 37] for a review and recent discussion. In this approach, an all orders resummation
of ladder and cross ladder diagrams (scaling as distinct powers of the loop expansion parameter (mPlb)

2−d � 1) is
needed just to reproduce the trivial ε0 solution in Eq. (40). The eikonal expansion is not as straightforward in the
case of gauge theory; see [38] for a recent effective theory formulation. Nevertheless, by applying these resummation
methods, ref. [32] argues that the massless gravitational shockwave solution can be recovered as the BCJ double copy
of a subset of diagrams for massless scattering in QCD. It may be feasible to extend this resummation to recover our
radiative solutions at order ε1, albeit only in the special case of massless sources (in d = 4 perturbative gravity, the
sub-leading terms in the eikonal expansion have been computed in [39]). However, even if it were possible in principle
to obtain the classical double copy relations reported here as a limit of the S-matrix BCJ double copy, it is obviously
more transparent and less cumbersome to follow the approach pursued in this paper.
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It is not surprising that the two-form gauge field Bµν , which plays a role in both the KLT relations and in the BCJ
double copy of pure gauge theory, has not appeared in our analysis. This follows from symmetry, as the simplest
interaction between the particle worldline and Bµν that respects gauge and diffeomorphism invariance is quadratic,
of the form

m

md−2
Pl

∫
dτHµνσHµνσ. (85)

Because the sources cannot couple linearly to Bµν , it can only appear in loop diagrams. Thus at the classical level,
Bµν exchange does not contribute to the classical fields hµν or φ, nor is there at any order in ~ a non-vanishing
Bµν one-point function. This situation differs in the case of spinning particles, in which case there can be a linear
interaction

m

m
d/2−1
Pl

∫
dτSµνvσHµνσ. (86)

involving the particle spin Sµν(τ), which must be treated as a dynamical variable in its own right (an effective
Lagrangian to spinning compact objects was developed in [40]). We are currently investigating [41] what sorts of
gravity solutions can arise as double copies of Yang-Mills solutions with spinning color charges. In this case, we
expect to find that Bµν will appear at the classical level, since it can be radiated by the source term in Eq. (86),
which in turn may arise as the double copy of the chromo-magnetic dipole interaction

g

∫
dτSµνcaF aµν (87)

in the gauge theory.
Finally, as discused in sec. IV, for massless particle sources, or in the d → ∞ limit [21–23], the effects of scalar

exchange are systematically suppressed. Thus in either of these limits, the gauge theory solution maps onto a solution
of pure general relativity coupled to point particles. To the extent that the finite size effects can be ignored, gluon
emission from ultrarelativistic non-abelian charges double copies to gravitational radiation by interacting black holes.
Provided that the replacement patterns found in this paper persist at higher orders in powers of GNE/b

d−3 � 1,
this observation paves the way for possible applications of BCJ double copy rules to the physics of gravitational wave
sources and LIGO. While it is not clear if there is an astrophysically significant fraction of perturbative ultrarelativistic
black hole collisions10 that can be detected by LIGO, the efficient calculation of precision gravitational wave templates
directly from Yang-Mills Feynman rules could play a role in comparisons between numerical and perturbative methods,
and give insight into template models. We leave these and other questions raised by our results for future work.
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