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Abstract

We study the emission of soft photons coupling to high energy fixed angle scattering processes

at first order in the electromagnetic coupling but to all loop orders in a class of theories without

soft divergences, including massive and massless Yukawa and scalar theories. We adapt a method

introduced by del Duca for quantum electrodynamics to show that subleading corrections to the

soft photon theorem are sensitive to the structure of non leading external jets of collinear lines.

Our techniques are based on a power counting analysis of loop integrals and an application of jet

Ward identities. We also apply Grammer and Yennie’s decomposition to isolate separately gauge

invariant contributions to the soft photon expansion. These are interpreted as infrared sensitive

matrix elements coupling to a field strength tensor.
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I. INTRODUCTION

The subject of the emission of soft particles in quantum field theory has a long history

dating back to the classic theorems of Low, Burnett and Kroll, and Weinberg [1–3]. The

leading term in the soft particle energy q0 universally behaves as 1/q0 and comes from

dressing an external line with a tree level vertex. The form of a soft theorem is strongly

influenced by the underlying symmetries of the theory. In QED, Low’s classic result shows

that the next to leading term is fixed by gauge invariance, implemented through the use of

Ward identities. More recently, it has been shown that soft graviton theorems can be realized

as the Ward identities of a symmetry of the gravitational S-matrix [4, 5]. This observation

is part of a renewed interest in soft theorems in both gauge and gravitational theories. In

particular, Ref. [6] has used the BCFW relation [7, 8] to not only derive Weinberg’s leading

term for soft graviton emission but also determine the next and next to next to leading

terms at tree level. It was later confirmed that these higher order terms in the soft graviton

theorem can be understood from the gravitational Ward identity [9] following a treatment

similar to Low’s analysis [10]. Loop corrections were investigated in [11–13].

In the case of gauge theories, the resummation of logarithms associated with soft and

collinear gluon emissions has been applied to numerous collider observables [14–22] and

loop corrections to the subleading term in soft theorems are important for applications to

precision studies of the Standard Model [23, 24].

Soft theorems in gravity and gauge theories have also been studied from several other

viewpoints, including scattering equations [25–27], string theory techniques [28–30], path

integral and diagrammatic methods [31–38], and effective field theory [39]. In particular,

Ref. [39] stresses the importance of matrix elements involving higher dimension operators,

which we will derive from an independent point of view.

In QED, loop corrections were studied long ago by del Duca, who recognized the im-

portance of carefully handling infrared logarithms [40]. Given m the mass of the external

particles and E the center of mass energy, del Duca showed that in the high energy limit,

the original form of Low’s theorem only holds in the small region q0 ≪ m2/E. When

m2/E < q0 < m, loop corrections to the first subleading term appear. These corrections

depend on the structure of jets of lines collinear to the external particles.

Our purpose in this paper is to revisit del Duca’s analysis by considering soft photon
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emission in the regime where q ∼ m2/E. We couple the electromagnetic field to massive

fermions interacting with massless scalars through Yukawa interactions in four dimensions.

The scalars are allowed to interact via a quartic potential but will be kept neutral for

simplicity. Our final form of the soft photon theorem considers the case where all external

hard particles are outgoing fermions or antifermions. The extension of our results to the cases

where the scalars are charged and allowed to appear as external particles is straightforward

but involves more terms in our final formulas. Our results will hold to first order in the

electric charge but to all orders in the Yukawa and φ4 couplings.

At second order in the electric charge, our methods are still applicable to the study of

double photon emission and virtual photon corrections. We will, however, focus on single

photon emission in this paper. The extension of our techniques to arbitrary order in the

electric charge and to gauge theories follows the same line of reasoning but would involve a

more complicated factorized form. This is the subject of ongoing work.

Yukawa and φ4 theories provide a non trivial testing ground for our ideas. We will show

that not only is soft photon emission sensitive to collinear jets, but also that the class

of jets contributing to the amplitude is broader than those corresponding to the leading

contribution in the elastic amplitude. The term “elastic” here and below refers only to the

absence of energy loss to the electromagnetic field.

This paper is organized as follows. Sections IIA and IIB review the basic reasoning of

Low’s theorem and identify the need for further study of the analytic structure of loop

amplitudes at high energies. In reviewing Low’s theorem, we take this opportunity to

discuss the transition between radiative and elastic kinematics. In Secs. IIIA and IIIB,

we briefly review the power counting techniques we have employed to find all pinch surfaces

contributing to the radiative amplitude up to order O(q0). In Sec. IV, we define a factorized

elastic amplitude incorporating contributions from all pinch surfaces relevant to the soft

photon theorem at high energies. Sections VA and VB present explicit examples that

illustrate our general results based on power counting and also exhibit the non analytic

contributions in loop amplitudes described in IIB. In Sec. VI , we carry out Low’s argument,

adapted to the factorized amplitudes that we identify in Sec. IV. This will result in a

preliminary form of the expansion of the radiative amplitude, which we further refine in Sec.

VII using a decomposition into photon polarizations inspired from Grammer and Yennie’s

work [41].
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II. SOFT PHOTON EMISSION AT HIGH ENERGIES

In the high energy regime where q ∼ m2/E and E ≫ m, we will see that a complete

treatment of Low’s theorem requires a study of the analytic structure of loop integrals.

To introduce the need for this analysis, we begin by reviewing Low’s classic approach to

soft radiation in the following subsection. The original treatment of Low appears in [1]

and his analysis was also adapted to non-abelian gauge theory and gravity in [10]. While

reviewing Low’s theorem, we will discuss the issue of retaining momentum conservation when

transitioning between the kinematics with and without an external photon. This point is

often neglected in the literature, but we believe it is relevant if one is to apply Low’s theorem

to realistic scenarios.

Low’s theorem is traditionally stated as the expansion of a radiative amplitude M(q) in

powers of q up to order q0,

M(q) =
1

q
σ−1 + σ0 , (1)

where the coefficients σ−1 and σ0 are built from the quantities at hand in the problem,

such as m and E. However, since we are considering the regime where q ∼ m2/E, the

soft momentum q is no longer the only “small” quantity in the problem. Consequently, a

quantity scaling as qE/m2 would be of the same order as the first subleading term σ0.

To get a complete soft photon expansion, it is important to identify carefully all contribu-

tions to the radiative amplitude that are of the same order of magnitude as the leading and

subleading terms in Eq. (1). This requires us to define a common “small” scale in terms of

which all orders of magnitude will be expressed. With that objective in mind, we treat the

total center of mass energy E as the scale of hard processes. We are interested in the regime

where the dimensionless parameter λ ≡ m
E
is much less than 1 and use it to quantify what we

mean by “small”. Using this notation, we then have that q ∼ λ2E and m ∼ λE. Further,

given an arbitrary quantity a, the notation a = O(λγ) will mean that there exists some

constant A such that |a| ≤ Aλγ. The constant A can be constructed with the appropriate

power of E to have the same dimension as a but may not depend on q or m. For instance,

we have q = O(λ2) and m = O(λ). Low’s theorem is then an expansion going from O(λ−2)

to O(λ0). With these definitions established, we proceed to reviewing Low’s theorem.
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A. Review of Low’s theorem

It is enough to consider Low’s original case of scalar Compton scattering to illustrate our

points on the importance of the infrared behavior of loop integrals. Therefore, consider a

radiative Compton scattering process

f(p1) + s(k1) → f(p2) + s(k2) + γ(q) , (2)

where a charged fermion and a neutral scalar of respective momenta p1 and k1 scatter into a

fermion and scalar of momenta p2 and k2 while a soft photon of momentum q is emitted. As

defined in the Introduction, the corresponding elastic amplitude is the same process without

the emission of the soft photon. Naturally, the momenta p1, p2, k1, and k2 are all on-shell

and

p1 + k1 = p2 + k2 + q , (3)

as required by momentum conservation.

The Feynman diagrams contributing to the radiative amplitude are generated by attach-

ing an external soft photon line to the diagrams contributing to the elastic amplitude. We

distinguish between two types of radiative emission amplitudes. Those where the soft pho-

ton is attached to an external fermion line are called “external” radiative amplitudes while

those where the soft photon is attached to an internal fermion line are called “internal”

radiative amplitudes. These two types of amplitudes are illustrated in Fig. 1. In Sec. VI,

we will adapt these definitions to a factorized form of the radiative amplitude.
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FIG. 1. Diagrams (a) and (b) represent the external amplitudes. Diagram (c) is the internal

amplitude where the soft photon is attached to an internal fermion propagator.
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The explicit forms of the external radiative amplitudes from Fig. 1 are

Mext,µ
a (p1, p2, k1, k2, q) = ū(p2)(−ieγµ)

i

/p2 + /q −m
M̃el(p1, p2 + q, k1, k2)u(p1) ,

Mext,µ
b (p1, p2, k1, k2, q) = ū(p2)M̃el(p1 − q, p2, k1, k2)

i

/p1 − /q −m
(−ieγµ)u(p1) . (4)

In the above, we denote the elastic amplitude stripped of the external spinors by M̃el(. . . ).

The internal radiative amplitude is denoted with the symbol M int,µ(p1, p2, k1, k2, q). This

notation allows us to express the QED Ward identity in a form that corresponds to the

separation of the photon emission amplitude into emission from external or internal legs,

qµM
ext,µ
a + qµM

ext,µ
b + qµM

int,µ = 0 . (5)

Substituting the explicit forms for the external amplitudes of Eq. (4) into Eq. (5), we find

that the Ward identity becomes

e ū(p2)M̃el(p1, p2 + q, k1, k2)u(p1) + (−e) ū(p2)M̃el(p1 − q, p2, k1, k2)u(p1) + qµM
int,µ = 0 .

(6)

This Ward identity is illustrated in Fig. 2.
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FIG. 2. The Ward identity relates the internal radiative amplitude to the elastic amplitude with

external momenta shifted by q. The arrow at the end of the photon line on the left hand side

indicates that the current operator corresponding to the emitted photon is contracted with the

photon momentum q. On the right, the photon momentum q is pictured as exiting the diagram

through a composite scalar-fermion-photon vertex.

Equation (6) allows us to solve for the internal amplitude M int,µ in terms of derivatives

of the elastic amplitude. We assume, following Low, that it is consistent to expand the
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stripped elastic amplitude M̃el(. . . ) in powers of q about the point (p1, k1, p2, k2). Using

charge conservation, one then finds

qµM
int,µ =− e qµ ū(p2)

∂

∂p1,µ
M̃el(p1, p2, k1, k2) u(p1)

− e qµ ū(p2)
∂

∂p2,µ
M̃el(p1, p2, k1, k2) u(p1) +O(λ4) . (7)

A possible problem with this procedure, as discussed by Burnett and Kroll in [2], is that

we are left with a formula where the elastic amplitude is evaluated at a point outside the

locus of momentum conservation. This unphysical formula could be ambiguous in realistic

applications and thus an alternative would be preferrable.

Following Burnett and Kroll, we define an elastic momentum configuration {p′1, k′1, p′2, k′2}
where p′1 and k

′
1 are the respective momenta of the incoming fermion and scalar while p′2 and

k′2 are the momenta of the outgoing fermion and scalar – see Fig. 3. These elastic momenta

are all on-shell and obey momentum conservation in the absence of the soft photon,

p′1 + k′1 = p′2 + k′2 . (8)

We want the elastic momenta to be shifted slightly away from the radiative configuration.

Hence, we introduce the small deviations ξ1(q), ξ2(q), η1(q), and η2(q) satisfying

pi = p′i(q) + ξi(q) for i = 1, 2,

ki = k′i(q) + ηi(q) for i = 1, 2. (9)

We also want that when q = 0, the radiative fermion and scalar momenta coincide with the

elastic ones. This motivates the requirement that the ξi’s and ηi’s be polynomials in q whose

leading term is linear in q, and in particular, ξi, ηi = O(λ2), as for qµ.

Now, insisting on preserving momentum conservation and having on-shell particles in the

elastic amplitude induces the following constraints on the ξi’s and ηi’s,

ξ1 + η1 − ξ2 − η2 = q ,

2pi · ξi = ξ2i for i = 1, 2,

2ki · ηi = η2i for i = 1, 2. (10)

To leading order in λ, the latter two equations in (10) above become

pi · ξi = ki · ηi = 0 for i = 1, 2. (11)
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FIG. 3. The elastic fs → fs amplitude involves no photon emission. The external momenta are

on-shell and obey momentum conservation.

To construct the ξi’s and ηi’s at leading order in λ, it is convenient to introduce an

orthonormal frame about each external fermion and scalar momentum. About the fermion

momenta ~p1 and ~p2, we introduce the three dimensional vectors ~npi , ~̄npi, and ~epi. The

vector ~epi = ~pi/|~pi| points in the direction parallel to ~pi while the vectors ~npi and ~̄npi

span the plane orthonormal to ~pi. Likewise, to each scalar’s momentum ~ki, we associate

the orthonormal frame ~nki , ~̄nki, and ~eki . We then decompose the ~ξi’s and ~ηi’s in their

corresponding orthonormal bases

~ξi = αpi~npi + βpi~̄npi + δpi~epi for i = 1, 2,

~ηi = αki~nki + βki~̄nki + δki~eki for i = 1, 2, (12)

where all coefficients α∗, β∗, and δ∗ are O(λ2).

Since the pi’s and ki’s are on-shell, we have

p0i =
√

|~pi|2 +m2 for i = 1, 2,

k0i = |~ki| for i = 1, 2. (13)

Combining this with (11) and (12), we find that

ξ0i = δpivpi for i = 1, 2,

η0i = δki for i = 1, 2, (14)

where we have defined the velocities vpi ≡ |~pi|/
√

|~pi|2 +m2 for i = 1, 2. This fully charac-

terizes the components ξ0i ’s and η0i ’s, and takes care of ensuring that the elastic momenta

are on-shell to leading order in λ. We still need to solve for momentum conservation in Eqs.
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(10). This requirement is most conveniently written in matrix notation,





0 0 vp1 0 0 1 0 0 −vp2 0 0 −1

~np1
~̄np1 ~ep1 ~nk1

~̄nk1 ~ek1 −~np2 −~̄np2 −~ep2 −~nk2 −~̄nk2 −~ek2



































































αp1

βp1

δp1

αk1

βk1

δk1

αp2

βp2

δp2

αk2

βk2

δk2































































=





q0

~q



 . (15)

The columns of the leftmost matrix above are made of the components of the orthonormal

frame vectors relative to some fixed common frame. Assuming the rank of the resulting

matrix to be maximal, we can determine the four coefficients αp1 , βp1, δp1 , and αk1 in terms

of the remaining α∗, β∗, δ∗, and q. If we choose the undetermined components to be O(λ2),

then the solution for αp1, βp1, δp1, and αk1 will also be O(λ2). Therefore, the construction

we have outlined allows us to derive ξi’s and ηi’s that are of the same order of magnitude

as the soft momentum q. It is then clear that one must include these deviations from the

elastic configuration in a complete expansion of the radiative amplitude.

Returning to Eq. (6), we proceed with the expansion of M̃el(. . . ) to O(λ2) about

(p′1, p
′
2, k

′
1, k

′
2), taking the ξi’s and ηi’s into account,

qµM
int,µ(p1, p2, k1, k2, q) =

e ū(p2)

[

M̃el(p
′
1, . . . ) +

∑

i=1,2

(

ξµi
∂

∂pµi
+ ηµi

∂

∂kµi

)

M̃el(p
′
1, . . . )− qµ

∂

∂pµ1
M̃el(p

′
1, . . . )

]

u(p1)

− e ū(p2)

[

M̃el(p
′
1, . . . ) +

∑

i=1,2

(

ξµi
∂

∂pµi
+ ηµi

∂

∂kµi

)

M̃el(p
′
1, . . . ) + qµ

∂

∂pµ2
M̃el(p

′
1, . . . )

]

u(p1)

+O(λ4) . (16)

When taking derivatives in the above, we treat the momenta p1, p2, k1, and k2 as vari-

ables upon which the elastic amplitude M̃el depends. The differentiated amplitude is then
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evaluated at the elastic configuration (p′1, p
′
2, k

′
1, k

′
2). Charge conservation reduces (16) to

qµM
int,µ(p1, p2, k1, k2, q) =− e qµ ū(p2)

∂

∂pµ1
M̃el(p

′
1, p

′
2, k

′
1, k

′
2) u(p1)

− e qµ ū(p2)
∂

∂pµ2
M̃el(p

′
1, p

′
2, k

′
1, k

′
2) u(p1) +O(λ4) . (17)

We see that the ξi and ηi terms have cancelled because of charge conservation. This means

that the way we choose to transition from radiative to elastic kinematics does not affect the

essence of Low’s theorem, which is the determination of the internal radiative amplitude in

terms of the external one. To obtain a full expansion of the radiative amplitude however,

we also need to expand the external amplitudes in Eq. (4) to O(λ2). As we shall see, the ξi

and ηi terms no longer cancel in the expansion of these external amplitudes.

Note that the elastic configuration p′1, p
′
2, k

′
1, k

′
2 is not unique. If we were to solve Eq. (15)

by making a different choice for the undetermined coefficients, we would obtain a different

set of ξi’s and ηi’s. However, as long as we choose coefficients that are O(λ2), the difference

in the elastic configuration we obtain will also be O(λ2). This would induce corrections

to the internal radiative amplitude that are beyond O(λ0), and hence beyond our order of

accuracy in Low’s theorem.

The obvious particular solution to Eq. (17) is derived by simply “factoring out” the soft

photon momentum qµ,

M int,µ(p1, p2, k1, k2, q) =− e ū(p2)
∂

∂p1,µ
M̃el(p

′
1, p

′
2, k

′
1, k

′
2) u(p1)

− e ū(p2)
∂

∂p2,µ
M̃el(p

′
1, p

′
2, k

′
1, k

′
2) u(p1) +O(λ2) . (18)

However, one may inquire about the possibility of separately gauge invariant contributions

to M int,µ. These have the generic form

Bµ(l, q) =
∑

l∈S

f1,l(S, q) (l · q qµ − q2lµ) ū(p2)u(p1)

+
∑

l∈S

f2,l(S, q) (l · q qµ − q2lµ) ū(p2)γ5u(p1)

+ f3(S, q) ū(p2)[γ
µ, /q]u(p1) , (19)

where S = {p1, p2, k1, k2} is the set of external momenta excluding the soft photon mo-

mentum. The tensor structures corresponding to f1, f2, and f3 are of order λ4, λ4, and

λ2 respectively. Accordingly, to have contributions of order λ0, f1, f2, and f3 must have
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enhancements of orders λ−4, λ−4, and λ−2. Such enhancements do not appear in the low

energy regime E ∼ m where the classic form of Low’s theorem holds. At high energies

E ≫ m however, these enhancements are intimately linked to the infrared behavior of loop

integrals and the need to generalize the classic form of Low’s theorem, as we will see in Secs.

II B and VA.

We conclude this section by showing the full radiative amplitude deduced from the classic

form of Low’s argument,

Mµ = ū(p2)(−ieγµ)
i

/p2 + /q −m
M̃el(p

′
1, p

′
2, k

′
1, k

′
2) u(p1)

+ ū(p2)M̃el(p
′
1, p

′
2, k

′
1, k

′
2)

i

/p1 − /q −m
(−ieγµ) u(p1)

+ ū(p2)

[

∑

i=1,2

(

ξαi
∂

∂pαi
+ ηαi

∂

∂kαi

)

− qα
∂

∂pα1

]

M̃el(p
′
1, p

′
2, k

′
1, k

′
2)

i

/p1 − /q −m
(−ieγµ) u(p1)

+ ū(p2)(−ieγµ)
i

/p2 + /q −m

[

∑

i=1,2

(

ξαi
∂

∂pαi
+ ηαi

∂

∂kαi

)

+ qα
∂

∂pα2

]

M̃el(p
′
1, p

′
2, k

′
1, k

′
2) u(p1)

− e ū(p2)
∂

∂p1,µ
M̃el(p

′
1, p

′
2, k

′
1, k

′
2) u(p1)

− e ū(p2)
∂

∂p2,µ
M̃el(p

′
1, p

′
2, k

′
1, k

′
2) u(p1)

+O(λ2) , (20)

where we retain the necessary ξi and ηi dependence for the external connections, which

enter with different Dirac structure, and hence do not cancel in general. In the next section,

we show precisely why the classic form of Low’s theorem we have just described requires

generalization in the regime q = O(λ2).

B. Failure of the linear expansion

In Sec. IIA, our ability to deduce M int,µ from the Ward identity (5) depends on being

able to expand the elastic amplitude M̃el(. . . ) in (6) to linear order in q. The accuracy of

this expansion is intimately tied to the infrared behavior of the loop integrals contributing

to the radiative and elastic amplitude.

Once all loop integrals contributing to the radiative amplitude have been carried out,

some regions of the loop integration will have yielded functions of q that are either singular
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at q = 0 or are analytic with a “very small” radius of convergence. Examples of the former

include pole terms such as 1/pi · q. The latter category includes logarithmic terms such as

f(q) ≡ log(1 + api · q/m2) where a = O(1) is some constant. The Taylor series for this

logarithmic function of q has radius of convergence R ∼ m2/E = O(λ2) since there is a

branch cut within a distance of order O(λ2) of q = 0. When expanding f(q) to linear order,

the remainder has a small upper bound only in the vanishingly small region q << m2/E.

It is convenient here to apply the term “non analytic” to functions whose power series have

radius of convergence R = O(λ2). Our claim is then that in general, loop integrals have

singular and non analytic contributions that either cannot be Taylor expanded about q = 0

altogether, or whose linear expansion in q is accurate only for vanishingly small photon

momenta q << O(λ2). Either way, in our region of interest, such contributions prevent us

from carrying out Low’s argument as described in Sec. IIA.

To extend Low’s theorem to high energy scattering, it is necessary first to identify singular

and non analytic contributions, and then factorize them from terms that can be legitimately

expanded to linear order in q. Fortunately, identifying these contributions can be done

by studying the loop integrand rather than fully evaluating the loop integral [42–48]. We

introduce these methods through an example.

Consider a triangle integral where two massive on-shell particles of mass m and momenta

p1 and p2 exchange a massless scalar,

I ≡
∫

d4k
1

[k2 + iǫ][(k + p1)2 −m2 + iǫ][(k + p2)2 −m2 + iǫ]
, (21)

with p21 = p22 = m2 and (p1 − p2)
2 < 0. Although they would have to be included in general,

we ignore numerator factors in this illustrative example. Our goal is to locate regions of

the d4k integration that may result in singular or non analytic terms. At high energy, the

coordinates best suited to this goal are light cone coordinates. An arbitrary vector v is

defined by its components (v+, v−, vT ) with the standard definitions

v± ≡ 1√
2
(v0 ± v3) ,

vT ≡ (v1, v2) . (22)

Scalar products take the form

v · w = v+w− + v−w+ − vT · wT . (23)
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Collinear and soft momenta are defined by the scaling of their light cone coordinates. Sup-

pose that p1 is moving in the z direction. The components of a momentum k collinear to p1

scale as (1, λ2, λ)E. Those of a soft momentum, on the other hand, scale as (λ2, λ2, λ2)E . An

arbitrary hard momentum scales as (1, 1, 1)E. Note that in our example, p2 is hard relative

to p1. Focusing on the region where k is collinear to p1 in our example, it is straightforward

to see that

k2 = O(λ2) ,

k2 + 2p1 · k = O(λ2) ,

k2 + 2p2 · k = 2p−2 k
+ +O(λ) = O(λ0) . (24)

We can now explain why it is inaccurate to expand M̃el(p1 − q, p2, k1, k2) to linear order

in q by studying the integrand. Consider Eq. (21) with the external momentum p1 replaced

with p1 − q similarly to M̃el(p1 − q, p2, k1, k2) in (6),

I ′ ≡
∫

d4k
1

[k2 + iǫ][k2 + 2(p1 − q) · k + q2 − 2p1 · q + iǫ][k2 + 2p2 · k + iǫ]
. (25)

The sum of the invariants with a factor of q in the middle denominator is

q2 − 2p1 · q − 2k · q = O(λ2) ,

which is of the same order of magnitude as k2+2p1 ·k in region (24). Therefore, when q flows

through a momentum collinear to p1, we may not treat terms in propagator denominators

with factors of q as small quantities in which we can expand using a power series. Further,

the scaling k2 + 2p1 · k = O(λ2) implies that k + p1 is very close to the mass shell. Similar

conclusions apply when k is collinear to p2 rather than p1.

It turns out that internal momenta going on-shell are a necessary condition for having

singular or non analytic terms. To see this, consider the generic multiloop integral

F̃ (p1, . . . , pn) =

∫ L
∏

l=1

d4kl

∫ M
∏

j=1

dαj δ

(

1−
M
∑

j=1

αj

)

× N ({pi, kl, αj})
[

∑M
j=1 αj(l2j ({pi, kl})−m2

j ) + iǫ
]

∑M
j=1

δj
, (26)

where the Feynman parameters α1, . . . , αM have been introduced. The numerator factor

N ({pi, kl, αj}) gathers all vertex factors, propagator numerators, and external spinors in
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the amplitude. The exponents δi are the powers of the original propagator denominators.

As in our previous example, introducing a q dependence in the integral by shifting one of

the pi’s will result in a function depending on q through invariants of order O(λ2) in the

denominator,

F̃ (p1, . . . , pi0 + q, . . ., pn) =

∫ L
∏

l=1

d4kl

∫ M
∏

j=1

dαj δ

(

1−
M
∑

j=1

αj

)

× N ({pi, kl, αj}, q)
[

∑M
j=1 αj(l2j ({pi, kl})−m2

j ) +G({pi · q, kl · q, αj}, q2) + iǫ
]

∑M
j=1 δj

,

(27)

with G({pi · q, kl · q, αj}, q2) = O(λ2). If we have

M
∑

j=1

αj(l
2
j (pi, kl)−m2

j) = O(λ2) , (28)

then a power series expansion in q of the denominator becomes inaccurate. Regions in loop

variables space where (28) holds are close to submanifolds where the denominator of the

loop integrand in (26) vanishes. The latter can be thought of as “singular submanifolds”.

If the integration contour in (26) can be deformed away from a singular submanifold by a

deviation larger than O(λ2), then a power series expansion in q is possible. This can be

achieved as long as the singular submanifold does not coincide with the endpoint of one of

the integration contours or is not pinched between pairs of coallescing singularities in the

complex plane. Therefore, a necessary condition for having singular or non analytic terms

in q in our loop integrals is the presence of pinch surfaces.

To summarize, to extend Low’s theorem to soft photon emission in the high energy

regime, we need to find all pinch surfaces of the loop integrand for the elastic amplitude.

These pinch surfaces may yield singular or non analytic terms in the elastic amplitude which

prevent us from performing the expansion in q that is crucial to the classic form of Low’s

argument. Pinch surfaces are found by solving the Landau equations [42]. Solutions to these

equations can be visualized as physical processes with classical propagation of particles,

following an observation first made by Coleman and Norton [43]. Physical propagation of

on-shell particles is represented using “reduced diagrams” where all off-shell lines are shrunk

to a point. In general, loop integration over a neighborhood of a pinch surface will yield

non analytic logarithmic dependence on the soft momentum q which must be factorized as
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described below. Not all pinch surfaces result in singular terms however, and in the majority

of cases, integration about a given pinch surface will yield a contribution of order higher

than is relevant for the soft photon theorem. In the next section, we will use power counting

techniques [44] to determine the order of magnitude of integrals over regions neighboring

pinch surfaces, and also to determine if the resulting term is singular or not.

III. ANALYTIC STRUCTURE OF THE RADIATIVE AND ELASTIC AMPLI-

TUDES

Low’s theorem is an expansion of the soft photon radiative amplitude in powers of λ from

O(λ−2) to O(λ0). As explained in Sec. II B, incorporating loop corrections in the high energy

regime requires a careful study of the loop integrand’s pinch surfaces. This is because the

loop integration over a region neighboring a pinch surface produces non analytic logarithms

of q, and in some cases even singular terms at q = 0.

Following Akhoury and Sen [49, 50], finding pinch surfaces using the reduced diagrams

of Coleman and Norton is straightforward. Once we have found a pinch surface, we will use

power counting techniques to put an upper bound on the loop integral over a region close to

that pinch surface. This will allow us to determine whether this pinch surface corresponds

to a contribution to the soft photon expansion at O(λ0).

Power counting techniques also allow us to determine if the integral about a pinch surface

is singular and in fact, these were first introduced to search for infrared singularities in higher

loop integrals. We will begin with a brief review of this technology. More detailed treatments

are given in [45–48].

A. Review of power counting

Arbitrary multiloop Feynman diagrams have infrared singularities associated with various

limits in their loop integration momenta [51, 52]. These singularities come from singular

submanifolds where propagator denominators vanish. A necessary condition for a singular

submanifold to result in a singularity is that it must be a pinch surface. However, a pinch

surface need not yield a divergent integral. To determine whether that is the case or not

requires the use of power counting techniques [44]. Power counting allows us to determine
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the order of growth of a loop integral over a region close to a pinch surface. This procedure

is best explained by studying a concrete example.

Consider again the triangle integral in (21). We consider the pinch surface arising from

the limit where k becomes collinear with p1. To capture how singular this pinch surface is,

we need to change the loop integration variables to “intrinsic” and “normal” coordinates.

Normal coordinates are the variables that vanish as we approach the singular submanifold.

Intrinsic coordinates, on the other hand, are variables whose variation moves a point along

the submanifold without leaving it.

The scalings in (24) tell us that as we approach the collinear region by taking the limit

λ → 0, two denominators vanish as O(λ2), as is required for a singularity. Further, the

collinear region is approached by making k− and kT small, which leads us to identify these

as the normal variables. The remaining large component k+ of k is the intrinsic component.

Changing integration variables to the normal and intrinsic coordinates, (21) becomes

I = π

∫ b+

c+
dk+

∫ b−λ2

c−λ2

dk−
∫ bTλ2

cTλ2

dk2T
1

2k+k− − k2T + iǫ

× 1

2k+k− − k2T + 2p+1 k
− + 2p−1 k

+ + iǫ

× 1

2k+k− − k2T + 2p+2 k
− + 2p−2 k

+ − 2kT · p2T + iǫ
.

(29)

In the bounds of integration, we have introduced the numbers b∗ and c∗ which are all

O(1). The bounds include an appropriate power of λ since we are interested in the order of

magnitude of the loop integral over a region of integration that borders the collinear pinch

surface where k− and kT vanish. To obtain an estimate of the order of the loop integral

about the collinear region, we then perform the changes of variables

k+ = κ+

k− = λ2κ−

kT = λκT . (30)

Eq. (29) becomes

I = π

∫ b+

c+
dκ+

∫ b−

c−
λ2dκ−

∫ bT

cT

λ2dκ2T
1

λ2(2κ+κ− − κ2T + iǫ)
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× 1

λ2(2κ+κ− − κ2T + 2p+1 κ
− + 2p−1 κ

+/λ2 + iǫ)

× 1

2λ2κ+κ− − λ2κ2T + 2λ2p+2 κ
− + 2p−2 κ

+ − 2λκT · p2T + iǫ
.

(31)

Factoring out the leading powers of λ in the numerator and denominators, we are left with

an overall scaling of λ0 times an integral where all three denominators are O(1) and whose

domain of integration is well separated from the pinch surface, since its bounds are all O(1).

This is the case even though the integration volume vanishes as a power of λ. Note that the

term 2p−1 κ
+/λ2 in the second line is O(1) since the component p−1 scales as λ2 = m2

2p+
1

. An

overall scaling for the integral of λ0 indicates the potential for a logarithmic term. In fact,

any scaling as a power of λ is valid up to multiplication by a logarithmic function of λ.

The procedure we have just employed to find the potential for a logarithmic divergence

without going through a full calculation of a loop integral can be systematized and applied

as above to any higher order multiloop diagram for Mel({pi}) whenever none of the pi

are parallel. The key points are the identification of candidate pinch surfaces, the proper

definition of normal variables and their scaling, and finally power counting to put bounds

on the order of growth of the integral. The final step will tell us that the loop integral

scales as some power λγ of the small parameter λ. This power γ is called the infrared degree

of divergence of the pinch surface, in analogy with the ultraviolet degree of divergence of

renormalization theory. A strictly positive degree of divergence γ > 0 means that we have

a non-singular integral. Conversely, a degree of divergence γ ≤ 0 indicates that we have

an infrared divergence in the loop integration when λ → 0 i.e. in the massless limit. More

specifically, γ < 0 tells us that the pinch surface leads to a power divergence while γ = 0

indicates the presence of a logarithmic divergence. In our analysis of soft photon emission, we

are interested in retaining a finite mass for the fermion, but we can still apply power counting

techniques, as we have described, to determine the order of magnitude of contributions from

pinch surfaces to loop integrals.

B. Power counting analysis of n particle scattering

Armed with the tools we have described, we begin our treatment of the soft photon

theorem with a study of the infrared structure of the elastic amplitude. Although we will only
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consider outgoing external fermions and antifermions in the interest of conciseness, extending

our analysis to include external scalars is straightforward. To classify pinch surfaces based

on the order of magnitude of their contribution as a power of λ, we introduce a separate set of

light cone coordinates for each external particle p1, . . . , pn. As in the example we studied, the

normal variables are the transverse and “minus” components for a collinear loop momentum,

or all momentum components for a soft loop momentum. These definitions of the scaling

of momenta in singular regions result in the power counting rules listed in Table I. When

analyzing a reduced diagram that represents a given pinch surface, we use the rules in the

table to determine the contribution to the infrared degree of divergence from all components

of the reduced diagram – i.e. collinear fermion lines, soft fermion lines, etc. Using the Euler

identity, it is possible to obtain a general formula for the degree of divergence of the most

general reduced diagram [47]. Although we will not review the details of such a treatment,

we will outline the main intermediate results for convenience.

As shown in Refs. [49, 50], the application of the Coleman-Norton analysis [43] gives the

most general reduced diagram for the elastic scattering of n particles, which is shown in Fig.

4. The hard part labelled H has several jets of collinear particles emerging from it. In our

notation, the jet of lines collinear to the ith external particle is linked to the hard part by

N i
f collinear fermion lines and N i

s collinear scalar lines. Each jet can also have soft particles

emerging from it; for the ith jet, we denote the number of such soft fermions by ni
f and the

number of soft scalars by ni
s. The number ni

f + N i
f is odd in the case we study, when the

nth external particle is a fermion, and would be even if the external particle were a scalar.

The soft fermions and scalars emerge from the n jets and combine at a soft cloud denoted

S. Finally, there are mf soft fermions and ms soft scalars connecting the soft cloud to the

hard part.

The ith jet’s contribution to the degree of divergence of Fig. 4 is denoted by γJi and the

contribution from the soft cloud S will be denoted by γS. Then using the rules from Table

I and the Euler identity, one can derive the following

γJi = N i
f +N i

s − ni
f − ni

s − 1 ,

γS = 4
∑

i

ni
f + 2

∑

i

ni
s + If + 4mf + 2ms , (32)

where we have introduced the symbol If to stand for the number of soft fermion lines internal

to the soft cloud S. The suppression associated with a Yukawa vertex in Table I enters in the
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derivation of γJi, and follows from the relation (γ−)2 = 0 and the Dirac equation. The above

formulas remain valid whether the ith external particle is a fermion or a scalar. Combining

the formulas in (32), we obtain that the degree of divergence of the most general reduced

diagram is

γ =
∑

i

(N i
f +N i

s + 3ni
f + ni

s − 1) + If + 4mf + 2mS . (33)

Using this result, it is possible to identify the diagrams with γ = 0, γ = 1, and γ = 2. These

appear in Figs. 5, 6, and 7. Another consequence of Eq. (33) is that there are no diagrams

with γ < 0, meaning that the elastic amplitude is at most logarithmically singular in the

limit λ→ 0. These results were derived long ago by Akhoury in the massless case [49].

TABLE I. The power counting rules below define how much each component of a reduced diagram

contributes to the degree of divergence of the corresponding pinch surface. These rules are for

Yukawa and scalar theories where the fermions are massive and the scalars are massless. In the

case of massless fermions, soft fermions yield an enhancement of −2 rather than −1.

Enhancement Suppression

Collinear fermion line -2

Collinear scalar line -2

Soft fermion line -1

Soft scalar line -4

Collinear loop integral +4

Soft loop integral +8

Yukawa vertex on collinear fermion line +1

The regions of integration about the pinch surfaces with 0 ≤ γ ≤ 2 are precisely the

ones we need to consider for extending the soft theorem. To see why, recall first that

the soft photon momentum q scales as (λ2, λ2, λ2)E. Hence, attaching a soft photon to a

collinear or soft fermion line will not alter the scaling of the pre-existing fermion line. In

fact, the net effect as far as our power counting procedure is concerned will be the addition

of a supplementary collinear or soft fermion line. Therefore, following the rules in Table I,

attaching an external soft photon to an elastic amplitude diagram will reduce its degree of
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J i

J j

H
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mf

mS

n S
i

n f
i

n f
j

n S
j

N i
f

N
j
f

N i
S

N j
S

FIG. 4. The most general reduced diagram incorporating the hard vertex, the soft function, and

well separated jets.

divergence by 2 if the photon is attached to a collinear fermion line, or 1 if it is attached to a

soft fermion line. If we start from diagrams with 0 ≤ γ ≤ 2, this will leave us with radiative

diagrams of order between O(λ−2) and O(λ0), which is precisely the range of magnitudes

relevant to Low’s theorem.

(a) (b) (c) (d)

FIG. 5. Four of the classes of elastic amplitude diagrams that we need to include when attaching

a photon for performing Low’s analysis. These are the only ones contributing in the massless limit

– see the text for a discussion of this limit. The diagrams in (a) are the leading terms with γ = 0.

Diagrams in (b) have γ = 1 in the massive case and γ = 2 in the massless case. The classes of

diagrams in (c) and (d) always have γ = 2.
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(a) (b)

S

FIG. 6. In the massive case, we have to include two additional classes of diagrams with γ = 2.

The soft two-point function in (b) includes only soft scalars.

S

FIG. 7. This class of diagrams has γ = 2 but will be combined with the leading jet class.

The class of diagrams in Fig. 5(a) corresponds to the logarithmic leading term of Akhoury.

This class consists only of the hard part attached by single fermions to several jets of virtual

on-shell lines collinear to the external particles. Since jets attached to the hard part by

a single fermion line give the leading term in the elastic amplitude, we will henceforth

refer to such jets as “leading jets”. Adding a soft photon to a diagram with only leading

jets generates the leading O(λ−2) terms in the soft photon theorem. The non-leading jets

appearing in Figs. 5 (b), (c), and (d) will be referred to as fs-jets, fss-jets, and fff -jets

respectively. These labels indicate whether the collinear particles connecting the jets to the

hard part are scalars (s) or fermions/antifermions (f). The two jets connected by a soft

two-point function in Fig. 6 (b) are named fs-jets, where the scalar label s is underlined to

indicate that it refers to a soft scalar rather than a collinear one.

The diagrams (c) and (d) of Fig. 5 have γ = 2 and inserting a photon into them produces

diagrams that are O(λ0) up to multiplication by a logarithmic term in q. When the fermions

have non zero mass m, the diagrams in 5(b) have γ = 1 and inserting a soft photon into
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them produces a term scaling as λ−1, thereby yielding a contribution of the same order as

m/q.

One can take the limit where m → 0 and retain the definitions of collinear and soft

scaling provided another suitable small scale λ is identified. We will assume this has been

done when discussing the fully “massless limit” here and below. In this case, the fs-jets

scale as λ2, unlike the λ scaling predicted by power counting in the massive case. This makes

the whole class of diagrams in Fig. 5(b) scale as λ2. Hence, the term of intermediate order

of magnitude λ−1 disappears in the massless limit. The O(λ) contribution is absent from

fs-jets in the massless limit because the denominator of the loop integrand is symmetric

under simultaneous reflection of all transverse loop momenta while the leading term in the

numerator is odd under such a transformation. Consequently, the term that would scale

as λ, and thereby conform to the power counting rules of Table I, actually vanishes. This

vanishing of the would-be leading term pushes the scaling of fs-jets back to the next available

order, namely λ2. We illustrate how this happens explicitly in Sec. VA.

In Fig. 6, we show two additional classes of diagrams that only contribute in the massive

case. Both of these have γ = 2. Diagram 6(a) contains two distinct non-leading jets but

can be treated similarly to diagrams appearing in Fig. 5. Diagram 6(b) includes a two-point

function of soft particles connected to two distinct jets. From the requirement γ ≤ 2 with

γ given by Eq. (33), we find that this two-point function consists only of soft scalars and

therefore no photon is emitted from it.

The disappearance of contributions from diagrams 6(a) in the massless limit takes place

because with massless fermions, fs-jets scale as λ2 rather than λ, as we mentioned when

discussing Fig. 5(b). This makes the diagrams of Fig. 6(a) scale as λ4 rather than λ2. As

for contributions from diagrams 6(b), the fs-jets will scale as λ0 rather than λ−1 in the

massless case, making the whole diagram scale as λ4. As in the case of fs-jets, the scaling

of fs-jets in the massless limit is due to the leading term in the integrand being odd under

simultaneous reflection of all transverse loop momenta.

Finally, Fig. 7 shows a diagram with a soft scalar self energy connecting to a single leading

jet. These also have γ = 2, but since we do not need to consider photon emission from the

soft self energy, we will simply include this class of diagrams within the leading jets of Fig.

5.

Now that we have identified all pinch surfaces necessary for extending Low’s theorem to
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high energies, we need to factorize their contributions into jet functions. This will allow us

to factor the radiative and elastic amplitude into parts that can or cannot be expanded in

a power series in q. We turn to this task in Sec. IV.

IV. FACTORIZATION OF NON ANALYTIC CONTRIBUTIONS

Our approach to extending Low’s analysis will rely on factorization. The effect of the

pinches producing jet-like momentum configurations can be captured by universal “jet func-

tions” having the same pinch surfaces and singularities as the original Feynman diagrams.

The product of jet functions is then matched onto the full amplitude by a “hard function” or

“hard part”. The hard part gets its leading contribution from exchanges of hard virtual par-

ticles. We assume it can be constructed from an algorithm consisting of nested subtractions

similar to the procedure described in [48, 53, 54]. The jet functions have matrix element

definitions, which are closely related to the soft collinear effective theory approach to soft

radiation theorems [39] and the treatment of bound states in [55–57]. In the soft collinear

effective theory approach, the role of our hard part is played by the matching coefficients.

To set the stage for our adaptation of Low’s analysis, we need to introduce a unifying

notation for jet functions. For Akhoury’s leading jets, we use the notation Jf (pi). The

superscript f represents the single fermion or antifermion emerging from the hard part and

attaching to the collinear lines comprising the jet. The corresponding hard part is simply

denoted H(p1, . . . , pn). Since leading jets are attached to the hard part by a single fermion

line, Jf(pi) is essentially a reduced on-shell self energy. For example, for an outgoing fermion,

Jf (pi) has the matrix element definition

Jf (pi) = 〈pi|ψ(0)|0〉 . (34)

We now introduce a standard notation appropriate for the factorized amplitude. As is

customary when using light cone coordinates, we define the vectors nµ
i and n̄µ

i by

~ni =
~pi√
2 |~pi|

= −~̄ni ,

n2
i = n̄2

i = 0 ,

ni · n̄i = 1 . (35)
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The vector ni points in the direction collinear to pi, while the vector n̄i points in the anti-

collinear direction.

The hard part H with which the jets are combined is only sensitive to the collinear

components of the external momenta pi. These collinear components are defined by

p̂i = p+i ni . (36)

This collinear vector is the natural argument for the hard part. In the case of a jet loop

momentum k collinear to pi, we proceed analogously and define k̂ ≡ k+ni. In hard parts,

the other components of jet loop momenta are set to zero, or in one case expanded about

zero (see below).

In the notation just introduced, the leading term in the expansion of the elastic amplitude

is

M leading
el =

(

n
∏

i=1

Jf(pi)

)

⊗H(p̂1, . . . , p̂n) . (37)

Each jet function and hard part carries implicit Dirac spinor indices. The tensor product

symbol “⊗” will stand for a product of Dirac spinors contracted with matching indices in

the jet functions and the hard part.

The non leading jet function in Fig. 5(b) is denoted by Jfs(pi − k̂, k̂). The fs super-

script indicates that the first momentum in the argument belongs to the collinear fermion

connecting the hard part to the jet and the second momentum to the collinear scalar. The

corresponding hard part is then denoted Hfs
i (p̂1, . . . ; p̂i − k̂, k̂; . . . , p̂n). The subscript i and

superscript fs indicate that the ith outgoing momentum pi is split between the collinear

fermion momentum pi−k and the collinear scalar momentum k that are shown between the

semicolons for clarity. This fs-jet function has the matrix element definition

Jfs(p− k̂, k̂) =

∫ ∞

−∞

dξ e−ik̂·(ξn̄i)〈p|φ(ξn̄i)ψ(0)|0〉 , (38)

for an outgoing fermion, and the subleading amplitude formed from this jet and hard part

has the expression

Mfs =
n
∑

i=1

(

∏

j 6=i

Jf (pi)

)

∫ p+i

0

dk+ Jfs(pi − k̂, k̂) ⊗Hfs
i (p̂1, . . . ; p̂i − k̂, k̂; . . . , p̂n) . (39)

In (38), the argument of the field φ is ξn̄i because we integrate over all non collinear compo-

nents of the loop momentum k. Therefore, ξ is the “−” component of the original position

space argument of the field φ, conjugate to the collinear component k+.
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Since fs-jets scale as O(λ), it is possible to obtain a contribution of order O(λ2) by

expanding the hard part Hfs to first order in the transverse loop momentum kT before it

is integrated over. This results in contributions captured by a derivative operator and a

separate corresponding hard part. The derivative fs-jet is denoted Jf∂s and given by the

operator definition

Jf∂s(p− k̂, k̂) =

∫ ∞

−∞

dξ e−ik̂·(ξn̄i)〈p|(∂Tφ)(ξn̄i)ψ(0)|0〉 . (40)

The transverse index in the derivative is suppressed. It is contracted with a corresponding

index in the matching hard part, which will be denoted by Hf∂s. Analogously to (39), we

have

Mf∂s =

n
∑

i=1

(

∏

j 6=i

Jf(pi)

)

∫ p+i

0

dk+ Jf∂s(pi − k̂, k̂) ⊗Hf∂s
i (p̂1, . . . ; p̂i − k̂, k̂; . . . , p̂n) , (41)

for the amplitude with an f∂s-jet, where the symbol ⊗ now includes a sum over the trans-

verse index of the derivative, just as for the implicit Dirac indices.

For Fig. 5(c), the symbol Jfss(pi− k̂1− k̂2, k̂1, k̂2) represents the fss-jet where two scalars

and a fermion merge at the hard part from a bundle of collinear lines. The momenta k1

and k2 are the momenta of the collinear scalars and pi − k1 − k2 is the momentum of the

collinear fermion. This jet has the matrix element definition

Jfss(p− k̂1 − k̂2, k̂1, k̂2) =

∫ ∞

−∞

dξ1 e
−ik̂1·(ξ1n̄i)

∫ ∞

−∞

dξ2 e
−ik̂2·(ξ2n̄i)〈p|φ(ξ1n̄i)φ(ξ2n̄i)ψ(0)|0〉 .

(42)

Following the same logic as in the previous case, the corresponding hard part isHfss
i (p̂1, . . . ; p̂i−

k̂1 − k̂2, k̂1, k̂2; . . . , p̂n) and the expression for the amplitude with a single fss-jet is

Mfss =

n
∑

i=1

(

∏

j 6=i

Jf (pj)

)

∫ p+i

0

dk+1

∫ p+i

0

dk+2 θ(p
+
i − k+1 − k+2 )

× Jfss(pi − k̂1 − k̂2, k̂1, k̂2)⊗Hfss
i (p̂1, . . . ; p̂i − k̂1 − k̂2, k̂1, k̂2; . . . , p̂n) . (43)

Finally, the fff -jet function in Fig. 5(d) is denoted Jfff (pi − k̂1 − k̂2, k̂1, k̂2) and its

corresponding hard part is Hfff
i (p̂1, . . . ; p̂i − k̂1 − k̂2, k̂1, k̂2; . . . , p̂n). Similarly to the above,

this jet has matrix element definition

Jfff (p− k̂1 − k̂2, k̂1, k̂2) =

∫ ∞

−∞

dξ1 e
−ik̂1·(ξ1n̄i)

∫ ∞

−∞

dξ2 e
−ik̂2·(ξ2n̄i)〈p|ψ(ξ1n̄i)ψ(ξ2n̄i)ψ(0)|0〉 ,

(44)
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and the amplitude involving a single fff -jet is

Mfff =
n
∑

i=1

(

∏

j 6=i

Jf(pj)

)

∫ p+i

0

dk+1

∫ p+i

0

dk+2 θ(p
+
i − k+1 − k+2 )

× Jfff (pi − k̂1 − k̂2, k̂1, k̂2)⊗Hfff
i (p̂1, . . . ; p̂i − k̂1 − k̂2, k̂1, k̂2; . . . , p̂n) . (45)

Here, the symbol ⊗ includes the contraction of three implicit Dirac indices.

It should be clear at this point that we could generalize our notation to jets with an

arbitrary number of particles merging into a jet of collinear lines. It will be convenient to

use the same notation for jets of collinear lines in reduced diagrams and the jet functions

themselves. Just like the jets themselves, Jfs, Jfss, and Jfff will also be referred to as

fs-jets, fss-jets, and fff -jets respectively. We will also sometimes include integration over

the collinear component of loop momenta in the tensor product symbol “⊗” and omit the

full momentum arguments of jet functions and hard parts when they are clear from the

context.

It is interesting to remark that the power-suppressed contributions we have identified are

closely related to exclusive amplitudes for bound states [55–57] and next-to-leading power

inclusive cross sections for pair production [58, 59].

With our notation set up, we can also write down the contribution to the elastic amplitude

involving two fs-jets,

Mfsfs =
∑

1≤i<j≤n

(

∏

l 6=i,j

Jf (pl)

)

∫ p+i

0

dk+1

∫ p+j

0

dk+2 J
fs(pi − k̂1, k̂1)

× Jfs(pj − k̂2, k̂2)⊗Hfsfs
ij (p̂1, . . . ; p̂i − k̂1, k̂1; . . . ; p̂j − k̂2, k̂2; . . . , p̂n) . (46)

As to the fs-jets from diagrams in Fig. 6(b), we use the label Jfs(pi + k, k) with the

understanding that the momentum argument corresponding to the label s is soft rather

than collinear. Accordingly, the contribution to the elastic amplitude from diagrams where

two fs-jets are connected by a single soft scalar two-point function S(k) is

Mfsfs =

∑

1≤i<j≤n

(

∏

l 6=i,j

Jf(pl)

)

∫

d4k S(k)Jfs(pi + k, k) Jfs(pj − k,−k)⊗Hfsfs
ij (p̂1, . . . , p̂n) .

(47)
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The hard part has no scalars emerging from it in this case. As we mentioned previously, Eq.

(33) implies that S(k) only contains soft internal scalars and cannot radiate any photon at

O(λ0). The matrix element definition of the fs-jet in Eq. (47) is

Jfs(p+ k, k) =

∫

d4y eik·y〈p| δSI

δφ(y)
ψ(0)|0〉 , (48)

where SI =
∫

d4xLI . In Yukawa theory, LI(x) = g φ(x)ψ(x)ψ(x) + g′

4!
φ4(x), where g is the

Yukawa coupling and g′ is the four-scalar coupling. No component of the soft momentum k

is integrated out. Also, the loop momentum k bears no hat in the above because it is a soft

rather than a collinear momentum.

Combining the above definitions allows us to write the fully factorized elastic amplitude,

Mel =

(

n
∏

i=1

J f
i

)

⊗H

+
n
∑

i=1

(

∏

j 6=i

J f
j

)

J fs
i ⊗H fs

i +
n
∑

i=1

(

∏

j 6=i

J f
j

)

J f∂s
i ⊗H f∂s

i

+
n
∑

i=1

(

∏

j 6=i

J f
j

)

J fss
i ⊗H fss

i +
n
∑

i=1

(

∏

j 6=i

J f
j

)

J fff
i ⊗H fff

i

+
∑

1≤i<j≤n

(

∏

l 6=i,j

J f
l

)

J fs
i J fs

j ⊗Hfsfs
ij +

∑

1≤i<j≤n

(

∏

l 6=i,j

J f
l

)

J fs
i J fs

j S ⊗Hfsfs
ij

+O(λ3) . (49)

When we derive the small q expansion of the radiative amplitude, we will have to consider

emission from each factor in each term: the leading jets, the non leading jets, and the hard

part. These emission amplitudes are described by the radiative jet functions Jf
i,µ(pl + q, q),

Jfs
i,µ(pi + q − k̂, k̂, q), etc., and the radiative hard parts Hµ(p̂1, . . . , p̂n, q), H

fs
i,µ(p̂1, ..., p̂i −

k̂, k̂, ..., p̂n, q), etc. The notation is the same as for non radiative jet functions and hard

parts, with the photon index µ coupling to the polarization of the emitted photon. The

radiative jet functions are derived from the matrix element definitions above by inserting an

electromagnetic current operator [40]. For example, the elastic jet function in (34) becomes

the radiative leading jet

Jf,µ(pi, q) =

∫

d4x eiq·x〈pi|jµ(x)ψ(0)|0〉 , (50)

where jµ(x) is the electromagnetic current operator and q is the photon momentum.
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FIG. 8. Lowest order fs-jet after the application of the Ward identity. The photon momentum

exits the jet at a composite scalar-photon-fermion vertex as in the Ward identity shown in Fig. 2.

V. EXAMPLES

Our discussion of the soft photon theorem above relies on a treatment of the analytic

structure of soft photon radiation. In particular, we have used a power counting analysis to

determine that non leading jets do contribute to Low’s theorem. It is instructive to verify

our claims by studying explicit examples. To this end, we study the lowest order fs-jet, and

a diagram with two one-loop fs-jets. We will consider a massless pseudoscalar coupled to

massive fermions in this section. A pseudoscalar coupling lets us use the Dirac equation to

obtain more compact formulas for the jet functions but still obeys our power counting rules

shown in Sec. III B.

A. Lowest order fs-jet

Consider first the lowest order fs-jet in a pseudoscalar theory, shown in Fig. 8. In the

classic form of Low’s argument, we would encounter this jet when deducing the internal

emission amplitude from the external amplitude as in Eq. (6) – see Fig. 2. In Eq. (6),

the elastic amplitude is given a q dependence by shifting one of the external momentum

arguments p to p+ q. We have introduced such a q dependence in our fs-jet as well, and in

doing so aim at exhibiting the logarithmic dependence on q that we described in Sec. II B.
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The loop integral for the elastic amplitude with a single fs-jet takes the form

Mfs(p+ q) =

∫ 1

0

dx

∫

ddl

(2π)d
ū(p)

(−igµǫγ5)i(/p+ /q − /l +m)

((p+ q − l)2 −m2 + iǫ)
Hfs(x)

i

l2 + iǫ
p+δ(l+ − xp+) .

(51)

We work in dimension d = 4 − 2ǫ. Our coupling constant for Yukawa theory is gµǫ, where

we introduce the mass scale µ to retain a dimensionless coupling.

The hard part as we have presented it in Sec. IV depends on the collinear components of

the fermion and pseudoscalar momenta: Hfs = Hfs(p̂− l̂, l̂). We can choose our coordinates

such that the collinear parts of p and l coincide with their + components. Then, through

the delta function δ(x− l+/p+) = p+δ(l+ − xp+), we introduce the new integration variable

x. This is the fraction of the collinear component of the fermion momentum p taken by

the collinear scalar. Since the hard part is only sensitive to the collinear components of its

arguments, Hfs is a function of x only. Introducing x allows us to integrate over the whole

range of loop momenta l while leaving the x integration undone.

The loop integral for Mfs can be evaluated analytically without making any simplifying

assumption. However, for our purposes, it is convenient to use the frame chosen above with

pT = 0. The result of the integration over loop momenta l after retaining the leading term

only is then

Mfs(p+ q) =
−gmµ−ǫ

(4π)2−ǫ
Γ(ǫ)

∫ 1

0

dx x ū(p)γ5H
fs(x)

(

x2
m2

µ2
− 2x(1− x)

p+q−

µ2

)−ǫ

, (52)

which is of order λ for ǫ = 0, as predicted by the power counting rules of Sec. III B. The

presence of the factor Γ(ǫ) indicates that there is an ultraviolet divergence coming from

the loop integral in the definition of the jet function. Therefore, the jet function must be

renormalized and thereby becomes a scale dependent quantity. However, the hard part must

also be renormalized so that the factorized amplitude matches the original amplitude. This

induces evolution equations for the jet functions and the hard parts, as for the treatment of

bound states [55–57] and in soft collinear effective theory [39].

If we apply an on-shell renormalization scheme and subtract the q = 0 part of the non

radiative fs-jet in (52), we obtain at order ǫ0

Mfs(p+ q) =
gm

(4π)2

∫ 1

0

dx x ū(p)γ5H
fs(x) log

(

1− 2

(

1− x

x

)

p+q−

m2

)

, (53)
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FIG. 9. Lowest order radiative fs-jet.

which exhibits the logarithmic dependence on q that we predicted in Sec. II B. A standard

analysis following Low would treat radiative fs-jets as part of the internal emission ampli-

tude and deduce their values by expanding (53) to linear order in q. This is inaccurate for a

photon momentum in the region q ∼ λ2E since we then have p+q−

m2 ∼ 1, thereby precluding

an expansion of log
(

1− 2
(

1−x
x

)

p+q−

m2

)

in powers of q. We therefore confirm that we are

required to include radiative fs-jets in the external amplitude.

Another prediction of our power counting rules is that adding a photon to the internal

collinear fermion line of the non radiative fs-jet reduces its degree of divergence by 2.

We may verify this expectation by considering the radiative fs-jet shown in Fig. 9. The

expression we need to calculate the radiative fs-jet function is

Mfs,µ
ext =

∫ 1

0

dx

∫

ddl

(2π)d
ū(p)(−igµǫγ5)

i(/p− /l +m)

(p− l)2 −m2 + iǫ
(−ieµǫγµ)

× i(/p− /l + /q +m)

(p− l + q)2 −m2 + iǫ
Hfs(x)

i

l2 + iǫ
p+δ(l+ − xp+) . (54)

This can also be evaluated analytically without making any simplifying assumption. How-

ever, we do not need to go into that amount of detail to confirm the results of power counting

and will, as before, keep the fermion moving in the + direction. Retaining only the leading

term yields the expression

Mfs,µ
ext = − egm

32π2q−

∫ 1

0

dx x ū(p)γ5γ
µγ−Hfs(x) log

(

1− 2

(

1− x

x

)

p+q−

m2

)

. (55)

The order of the radiative fs-jet is λ−1 as predicted by power counting. This is qualitatively

new since there are no terms of order O(λ−1) in the classic form of Low’s theorem. The

factor of magnitude O(λ−1) appears as m/q− in our example.
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FIG. 10. Diagram (a) shows the leading order (in g) case where a soft pseudoscalar connects two

leading jets. This diagram is too suppressed to affect our extension of Low’s theorem but diagram

(b) is not.

We conclude our study of the lowest order fs-jet by confirming that in the fully massless

case, m = 0, the non-radiative fs-jet is pushed back to O(λ2). To see this, we consider the

lowest order fs-jet loop integral after the massless condition has been implemented,

Mfs(p) =

∫ 1

0

dx

∫

dl+dl−dd−2lT
(2π)d

ū(p)(−igµǫγ5)i(−l+γ− − l−γ+ + γT · lT )Hfs(x)

l2 − 2p · l + iǫ

× i

l2 + iǫ
p+δ(l+ − xp+) . (56)

Since pT = 0, the denominator of the integrand is even in lT and therefore the trans-

verse term in the numerator can be ignored. Further, from the massless Dirac equation,

ū(p)γ− = 0 when pT = 0, which implies that the leading term in the numerator is O(λ2)

since γ+l− = O(λ2). It is then a simple matter to finish estimating the magnitude of the

integral and conclude that it is O(λ2). This result can be extended to arbitrary order fs-jets

by proving that any term in the integrand scaling as an odd power of λ must be odd under

simultaneously reversing the sign of every transverse momentum integration variable.

B. One-loop jets with soft line

The next example we study belongs to the class of diagrams where two fs- jets are

connected by a two-point function of soft scalars such as in Fig. 6(b). In pseudoscalar

theories, the leading order diagram in the Yukawa coupling g with two fs-jets shown in Fig.

10(a) has degree of divergence γ > 2 and hence does not contribute to Low’s theorem when

a soft photon is attached to it. However, this does not extend to higher loop diagrams, as

we demonstrate through this section’s example.

31



p

k

s

FIG. 11. The momenta assignments for the one-loop fs-jet that we are considering.

Consider then the diagram shown in Fig. 10(b). This diagram has a single soft scalar

connecting two one-loop fs-jets. We consider each fs-jet individually – see Fig. 11. The

expression for a single fs-jet is

Jfs(p, s) =
∫

ddk

(2π)d
ū(p)(−igµǫγ5)i(/p+ /k +m)(−igµǫγ5)i(/p + /k + /s +m)(−igµǫγ5)i(/p + /s +m)

((p+ k)2 −m2)((p+ k + s)2 −m2)((p+ s)2 −m2)

i

k2
.

(57)

The momentum s is the connecting soft pseudoscalar momentum. The loop momentum

k is the collinear pseudoscalar momentum. The leading term of this jet function in four

dimensions is

Jfs(p, s) =
g3

32π2

m

p · s ū(p)γ5
(

Li2(1 + 2a) +
2a

1 + 2a
log(−2a)− π2

6

) ∣

∣

∣

∣

a= p·s

m2

, (58)

which is O(λ−1). Returning to Fig. 10(b), the expression for the full diagram is

Mfsfs(p1, p2) =

∫

d4s
i

s2 + iǫ
Jfs(p̂1, s) J

fs(−p̂2,−s)⊗Hfsfs(p̂1 + s,−p̂2 − s) . (59)

Bearing in mind that when calculating the degree of divergence, a soft loop integration

measure contributes a suppression of +8 while a soft pseudoscalar propagator supplies an

enhancement of −4, we find that the entire amplitude in (59) has degree of divergence

γ = 8×1−1×2−4×1 = 2. This result is the same as if we had proceeded by applying power

counting rules to the diagram directly without going through an explicit calculation of the fs-

jet function. Consequently, attaching a soft photon to diagram 10(b) will yield a correction to

the soft theorem of order O(λ0) possibly multiplied by non analytic polylogarithms. Finally,

as in the case of fs-jets, the leading term of fs-jets vanishes in the massless fermion limit

because its integrand is odd under reflection of all transverse loop momenta.
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VI. ADAPTING LOW’S ARGUMENT TO THE FACTORIZED AMPLITUDE

In this section, we will first show a preliminary version of our extension of Low’s theorem

and see that to order O(λ0), we need only consider the hard part corresponding to diagrams

with leading jets. Photon emission from hard parts connecting to non leading jets will also

be derived for completeness. This treatment adapts Low’s argument to our factorized elastic

amplitude (49).

A. Preliminary form of Low’s theorem

To set the stage for the appearance of our preliminary version of Low’s theorem, we first

represent the full radiative amplitude in the generic form

Mµ =

n
∑

i=1

(

∏

j 6=i

Jf
j

)

Jf
i,µ ⊗H +

(

n
∏

i=1

Jf
i

)

⊗Hµ

+
∑

θ∈Θ1

n
∑

i=1

[(

∏

j 6=i

Jf
j

)

Jθ
i,µ ⊗Hθ

i +
∑

l 6=i

(

∏

j 6=i,l

Jf
j

)

Jf
l,µJ

θ
i ⊗Hθ

i

]

+
∑

θ∈Θ2

∑

i 6=j

[(

∏

l 6=i,j

Jf
l

)

Jθ
i,µJ

θ
j S

θ ⊗Hθθ
ij +

1

2

∑

h 6=i,j

(

∏

l 6=i,j,h

Jf
l

)

Jθ
i J

θ
j J

f
h,µ S

θ ⊗Hθθ
ij

]

+O(λ) , (60)

where Sθ = 1 if θ = fs and Sθ = S if θ = fs. The symbols Θ1 and Θ2 stand for the sets

of labels {fs, f∂s, fss, fff} and {fs, fs} respectively. Comparing with Eq. (49), one sees

that each term corresponds to a factorized form describing photon emission from a leading

jet, a non leading jet, or a hard part – as illustrated in Fig. 12. Notice however, that we

have omitted the following radiative contributions,

Eµ ≡
∑

θ∈Θ1

n
∑

i=1

(

∏

j 6=i

Jf
j

)

Jθ
i ⊗Hθ

i,µ +
1

2

∑

θ∈Θ2

∑

i 6=j

(

∏

l 6=i,j

Jf
l

)

Jθ
i J

θ
j S

θ ⊗Hθθ
ij,µ . (61)

These correspond to attaching a photon to the hard parts of the diagrams from Figs. 5 (b),

(c), (d), and 6, all of which have γ > 0. Attaching a photon to a hard line does not modify

the degree of divergence of the diagram. Therefore, the radiative contributions in (61) are of

order higher than O(λ0) and do not need to be included in our extension of Low’s theorem.

The only radiative hard part contributing at our order in λ is the one corresponding to

the diagram with leading jets only. We adapt Low’s analysis to this diagram by introducing
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(a) (b) (c)

FIG. 12. In applying Low’s argument, the radiative amplitude diagrams are split between those

with external photon emission as in (a) and (b), and those with internal photon emission as in (c).

new notation for the external and internal amplitudes,

Mext,µ
ldg =

(

∏

j 6=i

Jf
j

)

Jf,µ
i ⊗H ,

M int,µ
ldg =

(

n
∏

i=1

Jf
i

)

⊗Hµ . (62)

As before, these are related by the Ward identity,

qµM
ext,µ
ldg + qµM

int,µ
ldg = 0 , (63)

which we can use to deduce the radiative hard part Hµ. Indeed, once the jets have been

factorized as in Eqs. (60) and (61), the non radiative and radiative hard parts can be reliably

expanded in powers of q even in the regime q ∼ λ2E. We emphasize that it is possible to

expand the hard parts because the jet functions are engineered to contain all the leading and

next to leading pinch surfaces of the original Feynman diagrams. All the infrared singularity

structure of the radiative amplitude is contained within the jet functions. As noted above,

the hard parts correspond to the matching coefficients of soft collinear effective theory [39]

and are assumed to be constructible by nested subtractions similar to [48, 53, 54]. Hence,

hard parts get their leading contributions from off-shell lines and are dominated by hard

momenta in the factorized form. Adding a q dependence to hard lines will produce only

subleading behavior. This subleading behavior can be represented by higher order terms in

an expansion of the hard line propagators in q.

It is important to bear in mind that the Ward identity holds not only diagram by diagram,

but also at fixed loop momenta, and therefore pinch surface by pinch surface. By this we

mean that given a single reduced diagram contributing to an elastic scattering amplitude,
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the Ward identity will apply to this diagram by itself if we sum over all points of photon

insertion [47]. The only exception arises in fermion loops where a shift of the loop momentum

by the photon momentum q is required. Therefore, in (63), it is not necessary to include

the contributions from all reduced diagrams at once. Rather, we can focus on each class of

diagrams individually.

In the case of non leading jets, say an fs-jet for definiteness, the internal radiative

amplitude M int,µ
fs is of order O(λ). The external amplitude Mext,µ

fs , on the other hand, is of

order O(λ−1), and the Ward identity has the form

qµMext,µ
fs = −qµM int,µ

fs . (64)

A naive estimate tells us that the left hand side is O(λ) while the right hand side is O(λ3).

Therefore, leading terms in the external amplitudes must cancel each other in the Ward

identity. In Sec. VIB, we will see that this necessary cancellation also follows from charge

conservation – see the discussion below (76).

If we were to try and calculate the internal radiative amplitude Mµ
int directly, we would

need to delve into the construction of the hard part at each order and find all ways of inserting

a soft photon, thereby making the calculation different for each process. The alternative,

following Low, is to calculate the contraction of the soft momentum q with the universal

external radiative amplitudes and then use the Ward identity to extract Mµ
int. However, to

detemine qµM
µ
ext , we still need to express the quantity qµJ

f,µ
i in a form that also does not

depend on the details of the radiative jet function. To this end, we introduce the jet Ward

identities. In their most general form, these are expressed diagrammatically as in Fig. 13.

The jet QED Ward identity for photon emission is derived straightforwardly using dia-

grammatic or path integral techniques [47, 60]. The special case we need involves the leading

jet,

qµJ
f,µ(pi + q, q) = eiJ

f(pi) . (65)

It is then straightforward to extend Low’s argument and obtain

Hµ(p̂1, . . . , p̂n, q) = −
n
∑

l=1

el
∂

∂p̂lµ
H(p̂′1, . . . , p̂

′
n) +O(λ2) , (66)

for the radiative hard part. The momentum arguments p̂′i indicate that we have performed

the construction described in Sec. IIA to transition to an elastic set of momenta.
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FIG. 13. The general diagrammatic form of the Ward identity for jet functions. Each fermion line

that does not form a closed loop has a term corresponding to the photon exiting the jet at the end

of the line and a term for the photon exiting at the beginning of the line. The exception to this

rule is the through going fermion line that becomes the outgoing fermion – this line only has a

term with the soft photon exiting the diagram from the beginning and not at the on-shell external

line. The terms with the photon exiting at the beginning of a fermion line appear in the identity

with a relative + sign whereas those where the photon exits at the end of fermion line carry a −

sign.

With (66), we can write the preliminary form of our extension of Low’s theorem to high

energies. Incorporating the radiative hard part (66) into the generic radiative amplitude

(60), we find

Mµ = −
(

n
∏

i=1

Jf
i

)

⊗
n
∑

l=1

el
∂

∂p̂µl
H

∣

∣

∣

∣

P0

+

n
∑

i=1

(

∏

j 6=i

Jf
j

)

Jf
i,µ ⊗H

+
∑

θ∈Θ1

n
∑

i=1

[(

∏

j 6=i

Jf
j

)

Jθ
i,µ ⊗Hθ

i +
∑

l 6=i

(

∏

j 6=i,l

Jf
j

)

Jf
l,µJ

θ
i ⊗Hθ

i

]

+
∑

θ∈Θ2

∑

i 6=j

[(

∏

l 6=i,j

Jf
l

)

Jθ
i,µJ

θ
j S

θ ⊗Hθθ
ij +

1

2

∑

h 6=i,j

(

∏

l 6=i,j,h

Jf
l

)

Jθ
i J

θ
j J

f
h,µ S

θ ⊗Hθθ
ij

]

+O(λ) . (67)

We use the P0 symbol to denote that after the momentum derivatives have acted on the

non radiative hard part, we evaluate the resulting expression at an elastic set of momenta

close to the starting radiative configuration, as described in Sec. IIA. The first term gathers

all internal emission at O(λ0). It is remarkable that even at this level, summing over all
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FIG. 14. An example of a higher order jet required for a consistent treatment of the radiative

amplitude Eµ in (61).

insertions of a soft photon into the hard part results in the action of a differential operator

acting on its external momenta. On the other hand, as has been mentioned in Sec. IIA, this

formula does not yet fully clarify the structure of the radiative jet functions. In contrast to

the internal emission, these are universal, and for soft q, their structure can be probed using

Grammer and Yennie’s KG decomposition. We will turn to this task in Sec. VII.

For completeness, we show next how we can adapt Low’s insight to analyze the nonleading

radiative amplitude Eµ in (61). This amplitude could in fact be included in a higher power

treatment of Low’s theorem, which would include higher order jets such as the one shown

in Fig. 14, and also depend on the higher order subleading terms in the hard part.

B. Photon emission beyond O(λ0)

Consider first the class of diagrams with a single fs-jet. For the diagrams in Fig. 5(b),

the factorized amplitude consists in the fs-jet, the leading jets, and the hard part. As shown

in Eqs. (60) and (61), a soft photon can be emitted from any of those components. The

corresponding radiative amplitudes from Eqs. (60) and (61) have the expressions

Mext:fs,µ
fs =

n
∑

i=1

(

∏

j 6=i

Jf (pj)

)

Jfs,µ(pi + q − k̂, k̂, q)⊗Hfs
i (p̂1, ...; p̂i + q − k̂, k̂; ..., p̂n) , (68)

when radiating a photon from the fs-jet, and

Mext:f,µ
fs =

n
∑

i=1

∑

l 6=i

(

∏

j 6=i,l

Jf (pj)

)

Jf,µ(pl + q, q)Jfs(pi − k̂, k̂)

⊗Hfs
i (p̂1, ..., p̂l + q, ...; p̂i − k̂, k̂; ..., p̂n) , (69)
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when radiating from a leading jet, and finally

M int,µ
fs =

n
∑

i=1

(

∏

j 6=i

Jf (pj)

)

Jfs(pi − k̂, k̂)⊗Hfs,µ
i (p̂1, ...; p̂i − k̂, k̂; ..., p̂n, q) (70)

when radiating from the hard part. This factorization of photon emission is illustrated in

Fig. 12.

The three radiative amplitudes we have identified are related by the Ward identity, which

takes the form

qµM
ext:fs,µ
fs + qµM

ext:f,µ
fs + qµM

int,µ
fs = 0 . (71)

We recall that this Ward identity applies to each diagram represented in Fig. 13 individually

and there is no need to consider all diagrams contributing to an amplitude at once.

The three special cases of the jet Ward identity from Fig. 13 that will be of use to us can

be stated as follows using our notation

qµJ
fs,µ(pi + q − k̂, k̂, q) = eiJ

fs(pi − k̂, k̂) ,

qµJ
fss,µ(pi + q − k̂1 − k̂2, k̂1, k̂2, q) = eiJ

fss(pi − k̂1 − k̂2, k̂1, k̂2) ,

qµJ
fff,µ(pi + q − k̂1 − k̂2, k̂1, k̂2, q) = eiJ

fff (pi − k̂1 − k̂2, k̂1, k̂2)

+ eiJ
fff (pi + q − k̂1 − k̂2, k̂1 − q, k̂2)

− eiJ
fff (pi + q − k̂1 − k̂2, k̂1, k̂2 − q) , (72)

with ei the charge of the i
th scattering fermion or antifermion. On the left hand side in each

case, we choose to route the photon momentum q into the hard function via the through-

going fermion line that becomes the external particle. The momenta k, k1, and k2 are

collinear momenta that become part of a loop once the jet is attached to its corresponding

hard part. These Ward identities apply whether the scalars, which are neutral, are soft or

collinear.

Considering an fs-jet, the jet Ward identities allow us to expand (71) and cast it into

the explicit form

n
∑

i=1

(

∏

j 6=i

Jf (pj)

)

Jfs(pi − k̂, k̂)⊗ qµH
fs,µ
i (p̂1, ...; p̂i − k̂, k̂; ..., p̂n, q)

= −
n
∑

i=1

(

∏

j 6=i

Jf(pj)

)

eiJ
fs(pi − k̂, k̂)⊗Hfs

i (p̂1, ...; p̂i + q − k̂, k̂; ..., p̂n)
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−
n
∑

i=1

∑

l 6=i

(

∏

j 6=i,l

Jf (pj)

)

elJ
f (pl)J

fs(pi − k̂, k̂)⊗Hfs
i (p̂1, ..., p̂l + q, ...; p̂i − k̂, k̂; ..., p̂n) .

(73)

The next step is to Taylor expand the non radiative hard parts to O(λ2) in order to deduce

the radiative hard part Hfs,µ
i (p̂1, ...; p̂i − k̂, k̂; ..., p̂n, q) to O(λ

0). We will suppress any con-

sideration of the transition from the radiative kinematics to an elastic configuration such as

the one we considered in detail in Sec. IIA. Our analysis has shown that the ξi’s of Burnett

and Kroll can be constructed in general and will not affect the formula we obtain for the

internal amplitude. The expansion of the hard part then, is

Hfs
i (p̂1, ...; p̂i + q − k̂, k̂; ..., p̂n) =

Hfs
i (p̂1, ...; p̂i − k̂, k̂; ..., p̂n) + qµ

∂

∂p̂µi
Hfs

i (p̂1, ...; p̂i − k̂, k̂; ..., p̂n) +O(λ4) , (74)

for the photon attached to the fs-jet i, and,

Hfs
i (p̂1, ..., p̂l + q, ...; p̂i − k̂, k̂; ..., p̂n) =

Hfs
i (p̂1, ...; p̂i − k̂, k̂; ..., p̂n) + qµ

∂

∂p̂µl
Hfs

i (p̂1, ..., p̂l, ...; p̂i − k̂, k̂; ..., p̂n) +O(λ4) , (75)

when l 6= i is a leading power jet. The derivative above acts on all the components of each

p̂i for i = 1, . . . , n. These are treated as variables pµi that the hard part depends upon for

the sake of the differentiation. Once the differentiation has been performed, the vectors pµi

are evaluated at the collinear configurations p̂µi of the corresponding pi’s.

Substituting the expansions (74) and (75) into (73), we obtain

n
∑

i=1

(

∏

j 6=i

Jf(pj)

)

Jfs(pi − k̂, k̂)⊗ qµH
fs,µ
i (p̂1, ...; p̂i − k̂, k̂; ..., p̂n, q)

= −
n
∑

i=1

(

∏

j 6=i

Jf (pj)

)

Jfs(pi − k̂, k̂)

⊗
n
∑

l=1

[

elH
fs
i (p̂1, ...; p̂i − k̂, k̂; ..., p̂n) + el q

µ ∂

∂p̂µl
Hfs

i (p̂1, ...; p̂i − k̂, k̂; ..., p̂n)

]

+O(λ4) . (76)

After summing over the index l, the first term in the square brackets above vanishes by charge

conservation, as in the standard Low analysis. This cancellation confirms that contributions
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from the hard part associated with fs-jets are higher order in λ, and decouple from the use

of the Ward identity for the leading jets. The natural solution to Eq. (76) for the radiative

hard part is

Hfs,µ
i (p̂1, ...; p̂i − k̂, k̂; ..., p̂n, q) = −

n
∑

l=1

el
∂

∂p̂lµ
Hfs

i (p̂1, ...; p̂i − k̂, k̂; ..., p̂n) +O(λ2) . (77)

In fact, (77) is the full solution to Eq. (76). Additional gauge invariant terms would require

the radiative hard part to have enhancements in λ – see the discussion of Eq. (19). These

are not allowed since any dependence of the hard part on q or m comes as a subleading

correction to the hard exchanges.

Since f∂s-jets correspond to higher order contributions to fs-jet amplitudes, they are

treated using the same steps. Similarly, the analysis for photon emission from diagrams

with a single fss-jet is virtually unchanged. We need only include two collinear scalar

momenta k1 and k2 rather than a single one. The final result is

Hfss,µ
i (p̂1, ...;p̂i − k̂1 − k̂2, k̂1, k̂2; ..., p̂n, q)

= −
n
∑

l=1

el
∂

∂p̂lµ
Hfss

i (p̂1, ...; p̂i − k̂1 − k̂2, k̂1, k̂2; ..., p̂n) +O(λ2) . (78)

For diagrams with fff -jets, the analysis involves one additional step because the corre-

sponding jet Ward identity has three terms as shown in Eq. (72) and Fig. 13. The momentum

flow through the jets enables us to shift the collinear loop integration momenta, after which

we obtain

Hfff,µ
i (p̂1, ...; p̂1 − k̂1 − k̂2, k̂1, k̂2; ..., p̂n, q) =

−
n
∑

l=1

el
∂

∂p̂lµ
Hfff

i (p̂1, ...; p̂i − k̂1 − k̂2, k̂1, k̂2; ..., p̂n)

− ei
∂

∂k̂1µ
Hfff

i (p̂1, ...; p̂i − k̂1 − k̂2, k̂1, k̂2; ..., p̂n)

+ ei
∂

∂k̂2µ
Hfff

i (p̂1, ...; p̂i − k̂1 − k̂2, k̂1, k̂2; ..., p̂n) +O(λ2) . (79)

In the above, the partial derivatives ∂

∂k̂lµ
only act on the explicit dependence of Hfff

i on k̂1

and k̂2. That is, there is no contribution to the derivative from the implicit dependence of

Hfff
i on k̂1 and k̂2 through p̂i − k̂1 − k̂2.
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This concludes our description of photon emission at orders beyond O(λ0). In the next

section, we return to Eq. (67) and analyze the external amplitude using the KG decompo-

sition.

VII. THE KG DECOMPOSITION

By making use of the jet Ward identities once again, it is possible to unravel some

structure in the small q expansion of the radiative jet functions. Following del Duca [40],

who drew inspiration from Grammer and Yennie [41], we consider the two tensors

K ν
i µ ≡ (2pi + q)µ q

ν

2pi · q + q2
,

G ν
i µ ≡ g ν

µ −K ν
i µ . (80)

We will use the K and G tensors to decompose the soft photon polarization ǫµ(q) into

two complementary polarizations. It will turn out that the K polarized photon emission

amplitude contains all the leading O(λ−2) terms while the G polarized photon amplitude

supplies transverse corrections that begin at O(λ−1). Note that transversality of G polarized

photons, qµG ν
i µ = 0, follows immediately from (80).

So far, we have only been considering the stripped amplitudeMµ, that is, we have derived

the photon emission amplitude with the photon polarization tensor ǫµ(q) stripped away. For

the purposes of applying the KG decomposition, it is useful to reintroduce this polarization

tensor.

Consider first the emission of a K polarized photon. For definiteness, we will illustrate

our argument using fss-jets, although the same conclusion applies to any type of jet. The

relevant identity is

ǫµ(q)K ν
i µ Jfss

i,ν (pi + q − k̂1 − k̂2, k̂1, k̂2)⊗Hfss
i (p̂i + q − k̂1 − k̂2, k̂1, k̂2)

= ei
ǫ · (2pi + q)

2pi · q + q2
Jfss
i (pi − k̂1 − k̂2, k̂1, k̂2)⊗Hfss

i (p̂i + q − k̂1 − k̂2, k̂1, k̂2) . (81)

This result follows immediately from the application of the jet Ward identity for fss-jets, as

shown in (72). Since the infrared degree of divergence of a non radiative fss-jet is γ = 2, the

above formula confirms that the emission of a K polarized photon starts at O(λ0). The same

conclusion holds when attaching the soft photon to an f∂s-jet, an fff -jet, or to any jet in

diagrams containing either two fs -jets or two fs-jets as these all have degree of divergence
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γ = 2 prior to the soft photon insertion. For a diagram with a single fs-jet, the emission of

a K polarized photon is O(λ−1) since fs-jets have degree of divergence γ = 1 in the massive

case. Finally, following the same reasoning, the emission of a K photon from a leading jet

is O(λ−2). Therefore, the K polarization tensor does contain a leading order term, which is

derived purely from the application of the jet Ward identity. The question is then whether

a leading term also appears in the complimentary polarization.

A G polarized photon is connected to the radiative jet function through the insertion of

a field strength tensor operator,

ǫµ(q)G ν
i µ =

(2pi + q)µ
2pi · q + q2

F µν(q, ǫ) , (82)

where F µν(q, ǫ) = qµǫν(q) − qνǫµ(q). An important property of the G polarization tensor

following from this form is that it annihilates the scalar photon vertex,

ǫµ(q)G ν
i µ (2pi + q)ν = 0 . (83)

In particular, this implies that ǫµ(q)G ν
i µ piν = O(q). An analysis of the general loop inte-

grand for jet functions shows that their leading term is always proportional to piν , where pi

is the external momentum of the jet. The first subleading term is suppressed by at least one

power of λ in the massive fermion case. Since contracting piν with the G polarization tensor

yields a suppression of λ2, we find that the emission of a G polarized photon is suppressed

by at least one power of λ relative to the corresponding K polarized emission [40].

Using the techniques of Sec. III B, we found that attaching a soft photon to a non radiative

diagram with an f∂s, fss, or fff -jet, as well as to a diagram with two non radiative fs or

fs-jets makes the diagram at most logarithmic in q. Hence, emission of a G photon starts

at O(λ) when attaching a soft photon to any of those diagrams, which is beyond the order

of accurary of our extension of Low’s theorem to high energies. When a diagram only has

a single fs-jet, the emission of a G photon will start at O(λ0). Finally, for leading jets, G

photon emission begins at O(λ−1) when considering massive fermions.

We mention that using an on-shell renormalization scheme further simplifies external

emission amplitudes. It is straightforward to verify that in the tree level radiative leading

jet, G photon emission starts at O(λ0), and the leading O(λ−2) term is entirely contained

within the K photon emission amplitude. By definition, an on-shell scheme eliminates the

q → 0 limit of the radiative loop diagrams. Consequently, all leading O(λ−2) behavior is
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contained in the tree level diagram and fully accounted for by K photon emission. Further,

G photon emission begins at O(λ0) in this scheme.

We now have all the required pieces to apply the KG decomposition to all external

radiative terms in (67) and thereby complete the derivation of the final form of our extension

of Low’s theorem. It is useful to separate the soft photon amplitude into three contributions:

the internal emission amplitude, the external emission amplitude for K polarized photons,

and the external emission amplitude for G polarized photons,

ǫ ·M = ǫ ·Mint + ǫ ·MK
ext + ǫ ·MG

ext . (84)

The internal emission amplitude simply follows from contracting the photon polarization

tensor with the first term in (67),

ǫ ·Mint = −
(

n
∏

i=1

Jf
i

)

⊗
n
∑

l=1

el ǫ
µ ∂

∂p̂µl
H

∣

∣

∣

∣

P0

+O(λ) , (85)

where as above, P0 indicates that we are evaluating the derivative at a set of momenta

constructed from the procedure described in Sec. IIA.

The KG decomposition allows us to extract the leading O(λ−2) term from the radiative

jet functions. This leading term is contained within the complete K polarized emission

amplitude, which is

ǫ ·MK
ext =

n
∑

i=1

(

n
∏

j=1

Jf
j

)

⊗ ei
ǫ · (2pi + q)

2pi · q + q2
H(p̂i + q)

+

n
∑

i=1

∑

θ∈Θ1

(

∏

j 6=i

Jf
j

)

Jθ
i ⊗

n
∑

h=1

eh
ǫ · (2ph + q)

2ph · q + q2
Hθ

i (p̂h + q)

+
1

2

∑

i 6=j

∑

θ∈Θ2

(

∏

l 6=i,j

Jf
l

)

Jθ
i J

θ
j S

θ ⊗
n
∑

h=1

eh
ǫ · (2ph + q)

2ph · q + q2
Hθθ

ij (p̂h + q)

+O(λ) , (86)

where again Θ1 = {fs, f∂s, fss, fff} and Θ2 = {fs, fs}, and Sθ = 1 if θ = fs and Sθ = S

if θ = fs. In each term, the soft photon polarization is coupled to a tree level leading factor

reminiscent of early treatments of the soft theorem [1–3]. We have indicated which argument

of the hard parts is shifted by q. One could extend the construction of the ξi’s and ηi’s of

Sec. IIA and expand the hard parts. However, corrections of order O(λ2) would only be

required for the hard part corresponding to the leading jets, H(. . . , p̂i + q, . . . ).
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Corrections to the soft theorem also appear as separately transverse emission amplitudes

which couple to a tree level leading order factor through the field strength tensor in mo-

mentum space. These are always suppressed by at least one power of λ relative to the

corresponding K polarized photon emission amplitude. Therefore, at our order in λ, only

leading and fs-jets are relevant for these corrections, which are given by

ǫ ·MG
ext =

n
∑

i=1

∑

l 6=i

(

∏

j 6=i,l

Jf
j

)

(2pl + q)µ
2pl · q + q2

F µν(q, ǫ) Jf
l,νJ

fs
i ⊗Hfs

i (p̂l + q)

+

n
∑

i=1

(

∏

j 6=i

Jf
j

)

(2pi + q)µ
2pi · q + q2

F µν(q, ǫ)
(

Jf
i,ν + Jfs

i,ν

)

⊗Hfs
i (p̂i + q)

+O(λ) . (87)

Equations (84)-(87) taken together make up our final version of Low’s theorem.

VIII. CONCLUSION

Inspired by the renewed interest in soft theorems, we have set out to investigate the role

of loop corrections at high energy in Low’s classic result. Work on this subject had already

been carried out by del Duca [40] who showed that in the limit of high center of mass energy

E, Low’s argument only applies in the vanishingly small region q ≪ m2/E. In the regime

where q ∼ m2/E, del Duca identified loop corrections that take the form of universal infrared

sensitive matrix elements, the jet functions. To identify these loop corrections, he needed

to adapt Low’s analysis by factorizing the elastic amplitude into jet functions and a hard

part, and then to consider separately photon emission from each factor. More recently, an

analysis of soft theorems in effective field theory has been given in [39].

Focusing on Yukawa and scalar theories, we revisited the main assumption underlying

del Duca’s treatment of the soft photon theorem, namely the factorized form of the elastic

amplitude to which a soft photon is attached to construct the radiative amplitude for massive

and massless fermions. The application of the techniques described here to QED and other

gauge theories [23] is left for future work.

The first step in deriving a factorized amplitude is to identify the regions of loop space

giving rise to non analytic terms in the full loop integrals. The effect of the singular regions

of loop momentum space is then reproduced by universal functions that have the same
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singularity structure as the original amplitude. The non-singular parts of loop space are

accounted for by a set of hard functions. As we have reviewed in Sec. IIIA, singular regions

of loop space are classified according to their degree of divergence γ, which indicates an

overall scaling of λγ with λ ≡ m/E. In particular, del Duca’s analysis considers attaching a

soft photon to the pinch surface with minimal γ. However, in the region q ∼ λ2E, the soft

photon theorem is an expansion going from order λ−2 to λ0. Since attaching a soft photon

to a collinear fermion line reduces the degree of divergence of a non radiative diagram by 2,

it is clear that to obtain all contributions to the radiative amplitude up to O(λ0), one needs

to attach the soft photons to non radiative diagrams with a scaling up to λ2. Del Duca

was concerned with QED, and therefore, we may not directly compare our results with his.

However, it is natural to suspect that, compared to Ref. [40], additional terms may occur

from matrix elements with γ = −1 and γ = 0 in certain amplitudes in gauge as well as

Yukawa theories [39].

The new terms originate from our non leading jets: the fs, fss, and fff -jets. As we

have seen, there are also contributions from diagrams with soft two-point functions, which

is qualitatively new. The reduced diagrams corresponding to the new sources of terms in

the soft theorem were shown in Figs. 5 and 6. We emphasize that our treatment takes into

account all infrared sensitive behavior of the radiative amplitude at all loop orders in the

region q ∼ m2/E. In particular, we do not restrict ourselves to the massless case, although

our results are easily adapted to this limit. The full list of contributions to the soft theorem

from non leading jets is generated by attaching a photon to the diagrams of Figs. 5 and 6.

Factorizing the radiative amplitude into emission from all components identified in such a

list gives rise to the formula shown in Eq. (60).

Having derived the proper factorization of the radiative amplitude, we obtained the final

form of our extension of Low’s theorem by applying del Duca’s technique. This involves

the application of the jet Ward identities (72) to derive the radiative hard part, followed

by an application of the KG decomposition to isolate the leading term from subleading

corrections. The end result of this procedure is given in formulas (84), (85), (86), and (87).

Of course, the leading term retains its form as in Low’s classic result. Loop corrections from

both leading and non leading jets significantly alter the subleading term, however. Further,

the jet functions give rise to separately transverse contributions to the external amplitude,

as shown in (87).
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Our results in Yukawa and scalar theories are interesting in their own right because of

their potential applications to non linear sigma models and pion scattering. However, they

can also be viewed as a testing ground for gauge theories. One theory of particular interest to

us is of course QCD. Work in this direction has already been undertaken in Refs. [23, 24, 39].

A related subject concerns the emission of soft gravitons from Yukawa and scalar theories.

The power counting analysis in this case proves to be more challenging because the soft

graviton can couple to both fermions and scalars as well as to the potential itself. This is

the subject of ongoing work.
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