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Abstract

Non-Abelian flux tubes (strings) are well studied in N = 2 supersymmetric

QCD in (3+1) dimensions. In addition to translational zero modes they have

also orientational moduli associated with rotations of their fluxes inside a non-

Abelian group. The dynamics of the orientational moduli is described by the

two dimensional CP(N −1) model living on the world sheet of the non-Abelian

string. In this paper we consider a deformation of N = 2 supersymmetric QCD

with the U(N) gauge group and Nf = N quark flavors with a mass term µ

of the adjoint matter. In the limit of large µ the theory flows to an N = 1

supersymmetric QCD. We study the solution for the non-Abelian string in this

limit and derive an effective theory on the string world sheet. The bosonic sector

of this theory is still given by the CP(N−1) model but its scale is exponentially

small as compared to the scale of the four dimensional bulk theory in contrast

to the N = 2 case where these scales are equal. We study also the fermionic

sector of the world sheet theory. Upon the deformation the non-Abelian string

is no longer BPS and we show that the fermionic superorientational zero modes

are all lifted. This leaves us with the pure bosonic CP(N − 1) model on the

string world sheet in the limit of N = 1 QCD. We also discuss what happens

to confined monopoles at large µ.
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Introduction

The mechanism of confinement based on a monopole condensation [1] was shown to

work [2, 3] in the monopole vacua of N = 2 supersymmetric QCD. This confinement

is essentially Abelian [4, 5, 6, 7]. Non-Abelian gauge group is broken down to an

Abelian subgroup by condensation of the adjoint scalars at a high scale, while the

condensation of monopoles occurs at a much lower scale, in a low-energy Abelian

theory. Simultaneously, there occurs the formation of confining flux tubes (strings)

of the Abelian Abrikosov-Nielsen-Olesen (ANO) type [8].

On the other hand it is believed that confinement in the real world QCD is

essentially non-Abelian. This motivates studies of possible non-Abelian generaliza-

tions of the confinement mechanism. One important ingredient of such mechanism,

namely the non-Abelian confining strings, was found in N = 2 supersymmetric QCD

[9, 10, 11, 12], see also [13, 14, 15, 16] for a review. These strings are formed in

the quark vacua of N = 2 QCD with the U(N) gauge group, and they give rise to

the confinement of monopoles and the so called ”instead-of-confinement” phase for

quarks, see [17] for a review.

In much the same way as the real world QCD, N = 1 supersymmetric QCD

does not have adjoint scalars. Therefore it is believed to have an essentially non-

Abelian dynamics. On the other hand, due to supersymmetry it is more tractable

then non-supersymmetric QCD. One may hope that, starting from N = 2 QCD and

decoupling the adjoint scalars, one can arrive at a non-Abelian regime. In particular,

it was shown that the non-Abelian ”instead-of-confinement” phase survives in the

limit where the adjoint matter (present in N = 2 QCD) decouples, see review [17]

and references therein.

In this paper we make the next step and study what happens to the non-Abelian

confining strings upon decoupling of the adjoint matter. Namely, we consider a de-

formation of N = 2 supersymmetric QCD with the U(N) gauge group and Nf = N

quark flavors by a mass term µ of the adjoint matter. The µ-deformation breaks

the N = 2 supersymmetry and in the limit of large µ the theory flows to N = 1

supersymmetric QCD.

In addition to the translational zero modes typical for ANO strings, non-Abelian

strings have orientational moduli associated with rotations of their fluxes inside the

non-Abelian SU(N) group. The dynamics of the orientational moduli in N = 2 QCD

is described by the two dimensional CP(N −1) model living on the world sheet of the

non-Abelian string. In this paper we study the solution for the non-Abelian string

and derive an effective theory on the string world sheet in the limit of large µ.

Similar problem was addressed in [18, 19, 20, 21, 22, 23] where the µ-deformation

was considered in N = 2 supersymmetric QCD with the U(N) gauge group and
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Nf = N flavors of massless quarks supplemented by the Fayet-Iliopoulos (FI) D-

term. In the limit of large µ this theory flows to a theory which differs from N = 1

QCD by the presence of the FI term. In particular, in this theory a scalar quark

(squark) condensation is triggered by the FI D-term.

It was shown in the aforementioned papers that bosonic profile functions of

the non-Abelian string stay intact upon the µ-deformation, while the fermionic zero

modes are changed as compared to the ones in the N = 2 limit. The string remains

BPS saturated and the world sheet theory becomes the heterotic CP(N − 1) model

with N = (0, 2) supersymmetry [19, 20, 21, 23]. In this model, the supertranslational

fermionic moduli interact with the superorientational ones. Large N solution of the

world sheet model shows that N = (0, 2) supersymmetry is spontaneously broken

[22]. The model has N vacua corresponding to N different non-Abelian strings and

the discrete Z2N symmetry is spontaneously broken.

In this paper we consider the µ-deformation of N = 2 QCD without a FI term

in a quark vacuum. Squark condensate is determined by
√
µm, were m is a quark

mass. In the large µ limit the theory flows to N = 1 QCD in the quark vacuum.

Non-Abelian strings cease to be BPS saturated and both bosonic and fermionic profile

of the string are modified.

We study solutions for the non-Abelian string profile functions in the large µ

limit and derive the effective theory on the string world sheet. The bosonic sector

of this theory is still given by the CP(N − 1) model. The CP(N − 1) model is

asymptotically free, and it is determined by its scale ΛCP (position of the infra-red

pole of the coupling constant). At small µ ΛCP = ΛN=2, where ΛN=2 is the scale of

four dimensional N = 2 QCD, see, for example, review [15]. We show that in the

in the large µ limit ΛCP is exponentially small. We also derive a potential in two

dimensional world sheet theory induced by quark mass differences.

Next we study the fermionic sector of the world sheet theory. Upon the µ-

deformation the fermionic superorientational zero modes are all lifted. This leaves us

with the pure bosonic CP(N − 1) model on the string world sheet in the limit when

the bulk theory becomes N = 1 QCD. This ensures that the world sheet theory is in

the Coulomb/confinement phase, at least at large N , see [24].

We also address a question of what happen to the confined ’t Hooft-Polyakov

monopoles present in the N = 2 limit, when we go to the large µ. Studying the world

sheet potential we show that confined monopoles seen in the world sheet theory as

kinks [11, 12] become unstable at large µ if quark masses are not equal. However, if

quarks have equal masses the confined monopoles survive in the limit of N = 1 QCD.

The paper is organized as follows. In Sec. 1 we review our bulk theory, namely

µ-deformed N = 2 supersymmetric QCD in the quark vacuum and calculate its
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perturbative mass spectrum in the large µ limit. Sec. 2 presents the non-Abelian

bosonic string solution at large µ for equal as well as unequal quark masses. The

bosonic part of the effective world sheet theory is derived in Sec. 3. First we consider

the kinetic term and then discuss the world sheet potential which arises when quark

masses are not equal. Moving on, in Sec. 4 we study the fermionic sector and derive

superorientational zero modes, starting from the N = 2 limit and then moving to the

µ-deformed case. We show that all the superorientational zero modes are lifted upon

the µ-deformation. In Sec 5 we review the physics of the world sheet theory on the

non-Abelian string and discuss what happen to confined monopoles at large µ. Sec. 6

is devoted to our Conclusions. Details of the derivation of the fermion zero modes

are presented in Appendices.

1 Bulk theory

In this section we review our four dimensional bulk theory, see review [15] for more

details. The bulk theory is µ-deformed N = 2 supersymmetric QCD (SQCD) with

the gauge group U(N) =SU(N)×U(1). The field content of the theory is as follows.

The N = 2 vector multiplet consists of the U(1) gauge field Aµ and SU(N) gauge field

Aa
µ, complex scalar fields aU(1) and aa in the adjoint representation, and their fermion

superpartners (λ1α, λ
2
α) and (λ1aα , λ2aα ). The adjoint index a runs from 1 toN2−1, while

the spinorial index α = 1, 2. The adjoint scalars and fermions λ2 can be combined

into the N = 1 adjoint matter chiral multiplets AU(1) and ASU(N) = AaT a, where T a

are generators of the SU(N) gauge group normalized as Tr
(
T aT b

)
= (1/2) δab .

The matter sector consists of Nf = N flavors of quark hypermultiplets in the

fundamental representation and scalar components (squarks) qkA and q̃Ak, while the

fermions are represented by ψkA and ψ̃Ak. Here A = 1, .., N is a flavor index and

k = 1, .., N is a color index.

The superpotential of N = 2 supersymmetric QCD reads

WN=2 =
√
2
{1
2
q̃AAU(1)qA + q̃AAaT aqA

}
+ mA q̃Aq

A , (1.1)

where we use the same notations for quark multiplets qA and q̃A and their scalar

components, while mA are quark masses.

The µ-deformation is the mass term for the adjoint matter

WN=1 =

√
N

2

µ1

2

(
AU(1)

)2
+

µ2

2
(Aa)2 , (1.2)

which breaks N = 2 supersymmetry down to N = 1 .
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In the special case when

µ ≡ µ2 = µ1

√
2

N
, (1.3)

superpotential (1.2) becomes a single trace operator

WN=1 = µTr(Φ2) (1.4)

where we defined a scalar adjoint matrix as

Φ =
1

2
aU(1) + T a aa. (1.5)

We will consider bulk QCD in the limit of large µ1 and µ2, when the adjoint

matter decouples and the theory becomes N = 1 QCD. Integrating out the adjoint

matter in a sum of superpotentials (1.1) and (1.2) we get a quark superpotential of

our µ-deformed bulk theory

W(q, q̃) = − 1

2µ2

[
(q̃Aq

B)(q̃Bq
A)− α

N
(q̃Aq

A)2
]
+mA(q̃Aq

A) , (1.6)

where

α = 1−
√
N

2

µ2

µ1

. (1.7)

In the case of single trace deformation (1.3) α = 0.

The bosonic action of the theory is 1

Sbos =

∫
d4x


 1

2g22
Tr
(
F SU(N)
µν

)2
+

1

4g21

(
FU(1)
µν

)2
+ (1.8)

∣∣∇µq
A
∣∣2 +

∣∣∣∇µq̃
A
∣∣∣
2

+ V (qA, q̃A)


 .

Here ∇µ is a covariant derivative

∇µ = ∂µ −
i

2
AU(1)

µ − i Aa
µT

a , (1.9)

while the scalar potential V (qA, q̃A) is a sum of the D-term and F -term potentials,

V (qA, q̃A) = VD(q
A, q̃A) + VF (q

A, q̃A). (1.10)

1From here further on we use a Euclidean notation, that is F 2
µν = 2F 2

0i + F 2

ij , (∂µa)
2 = (∂0a)

2 +

(∂ia)
2, etc. Furthermore, the sigma-matrices are defined as σαα̇ = (1,−i~τ), σ̄α̇α = (1, i~τ). Lowering

and raising of spinor indices are performed by virtue of an anti-symmetric tensor defined as ε12 =

ε
1̇2̇

= 1, ε12 = ε1̇2̇ = −1. The same raising and lowering convention applies to the flavor SU(N)

indices f , g, etc.
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The D-term potential reads

VD =
g22
2

(
q̄AT

aqA − q̃AT a ¯̃qA
)2

+
g21
8

(
|qA|2 − |q̃A|2

)2
, (1.11)

while the F term potential is determined by superpotential (1.6). It has the form

VF =
1

|µ2|2

{
(q̄Aq

B)
[
(q̄C ¯̃q

A)− ᾱ

N
δAC(q̄F ¯̃q

F )− µ̄2m̄Aδ
A
C

]

×
[
(q̃Bq

C)− α

N
δCB(q̃F q

F )− µ2mBδ
C
B

]

+ (q̃A ¯̃q
B)
[
(q̄B ¯̃q

C)− ᾱ

N
δCB(q̄F ¯̃q

F )− µ̄2m̄Bδ
C
B

]

×
[
(q̃Cq

A)− α

N
δAC(q̃F q

F )− µ2mAδ
A
C

]}
.

(1.12)

In this paper we will consider the vacuum (zero of the potential (1.10)) where

the maximal possible number of quark flavors equal to N condense (the so called

r = N vacuum, where r is the number of condensed squark flavors at weak coupling,

see [17] for a review). In this vacuum squark VEVs are given by

〈qkA〉 = 〈q̃kA〉 = 1√
2



√
ξ1 0 ...

... ... ...

... 0
√
ξN


 , (1.13)

where we wrote down the squark field as an N ×N matrix in color and flavor indices,

and the parameters ξA are defined as

ξA = 2

(√
2

N
µ1m̂ + µ2(mA − m̂)

)
, (1.14)

while

m̂ =
1

N

N∑

A=1

mA. (1.15)

For single trace deformation (1.3) expressions for the parameters ξA simplify:

ξA = 2µ2mA (1.16)

In this paper we will mostly consider the non-Abelian limit when all quark masses

are equal,

m1 = m2 = ... = mN ≡ m, (1.17)
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so that the parameters ξA degenerate, ξA ≡ ξ, and the squark VEVs become

〈qkA〉 = 〈q̃kA〉 =
√
ξ

2




1 0 ...

... ... ...

... 0 1


 (1.18)

Note that if we take the limit µ → ∞ (keeping the quark masses fixed) the

parameters ξ ∼ µm also go to infinity, and our quark vacuum becomes a run-away

vacuum (all the r vacua with the non-zero r become run-away vacua). In this case

N = 1 QCD is a theory with only N vacua which originate from N monopole vacua

(r = 0 vacua) of N = 2 QCD.

Here we define N = 1 QCD in a different way. By taking the limit of large µ

we make the quark masses small so that the product µm (and the quark VEVs) are

fixed,

µ→∞, m→ 0, µm = fixed. (1.19)

This way we keep track of all the r vacua present in N = 2 QCD. In this paper we will

study non-Abelian strings particularly in the r = N quark vacuum (1.18) assuming

the limit of large µ when the bulk theory flows to the generalized N = 1 QCD defined

above.

In order to keep our bulk theory at weak coupling we assume that the squark

VEVs are large as compared with the scale ΛN=1 of the SU(N) sector of N = 1 QCD.

Namely, we assume that √
µm≫ ΛN=1. (1.20)

Squark VEVs (1.18) result in a spontaneous breaking of both gauge and flavor

SU(N)’s. The diagonal global SU(N) survives, however,

U(N)gauge × SU(N)flavor → SU(N)C+F . (1.21)

A color-flavor locking takes place in the vacuum. This fact leads to an emergence of

non-Abelian strings, see [15] for a review.

Let us briefly summarize a perturbative spectrum of our bulk theory in the large

µ limit, cf. [15]. Consider for simplicity the case of equal quark masses. The U(N)

gauge group is completely Higgsed and the masses of the gauge bosons are

m
SU(N)
G = g2|

√
ξ| (1.22)

for the SU(N) gauge bosons and

m
U(1)
G = g1

√
N

2
|
√
ξ| (1.23)
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for the U(1) one. Below we also assume that the gauge boson masses are of the same

order,

m
U(1)
G ∼ m

SU(N)
G ≡ mG (1.24)

Extracting a quark mass matrix from potentials (1.11), (1.12) we find that out

of 4N2 real degrees of freedom of the qkA and q̃kA squarks N2 phases are eaten by the

Higgs mechanism, (N2 − 1) real squarks have mass (1.22), while one real squark has

mass (1.23). These squarks are scalar superpartners of the SU(N) and U(1) gauge

bosons in massive vector N = 1 supermultiplets, respectively.

Other 2N2 squarks become much lighter in the large µ limit. The masses

of 2(N2 − 1) of them forming the adjoint representation of the global color-flavor

SUC+F (N) (1.21) are given by

m
SU(N)
L =

∣∣∣∣
ξ

µ2

∣∣∣∣ , (1.25)

while two real SUC+F (N) color-flavor singlets have mass

m
U(1)
L =

√
N

2

∣∣∣∣
ξ

µ1

∣∣∣∣ , (1.26)

If µ2 and µ1 are of the same order (more exactly, we assume below that α = const,

see (1.7)), then

m
U(1)
L ∼ m

SU(N)
L ≡ mL ∼ m≪ mG. (1.27)

Below we will heavily use this mass hierarchy of the perturbative spectrum.

In particular, in the limit (1.19) mL → 0, and 2N2 squarks become massless.

This reflects the presence of the Higgs branch which develops in this limit. The

presence of massless scalars developing VEVs makes the string solution ill-defined

[25, 26], see also next section. Below we use the µ-deformed N = 2 QCD at large µ

as an infra-red (IR) regularization of N = 1 QCD. At large but finite µ the Higgs

branch present in N = 1 QCD is lifted and the IR divergences are regularized, cf.

[27].

2 Non-Abelian strings

In this section we derive a vortex solution, assuming the equal quark mass limit (1.17).

First we review a general ansatz for the non-Abelian string and present equations for

string profile functions. Then we solve these equations assuming the mass hierarchy

(1.27) in the large µ limit.
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2.1 Equations of motion

We consider a static string stretched along the x3 axis so that the corresponding

profile functions depend only on coordinates in the (x1, x2) plane. Closely following

the strategy developed for N = 2 supersymmetic QCD (see review [15]) we first

assume that only those squark fields which develop VEVs have non-trivial profile

functions in a string solution. Therefore we set

qkA = ¯̃qkA =
1√
2
ϕkA. (2.1)

and look for the string solutions using the following ansatz [10, 11, 15]:

ϕ = φ2 + nn
(
φ1 − φ2

)

=
1

N

(
φ1 + (N − 1)φ2

)
+
(
φ1 − φ2

)nn − 1/N

 ,

A
SU(N)
i = εij

xj

r2
fW (r)


nn − 1/N


 ,

A
U(1)
i =

2

N
εij

xj

r2
f(r) ,

(2.2)

where the index i runs over 1, 2. The profile functions φ1(r) and φ2(r) determine

the profiles of the squarks in the plane orthogonal to the string at rest, while f(r)

and fW (r) are the profiles of the gauge fields. The profile functions depend on the

distance r from a given point xi to the center of the string xi0 in the (x1, x2) plane.

Here we have also introduced the orientational complex vector nl, l = 1, ..., N ,

subject to the condition

nl · nl = 1 . (2.3)

Vector nl parametrizes the orientational modes of the non-Abelian vortex string. It

arises due to a possibility to rotate a given particular string solution with respect to

the unbroken color-flavor global group SU(N)C+F , see (1.21).

Boundary conditions for the gauge and scalar profile functions are

φ1(0) = 0, φ2(0) 6= 0, φ1(∞) =
√
ξ, φ2(∞) =

√
ξ, (2.4)

fW (0) = 1, f(0) = 1, fW (∞) = 0, f(∞) = 0.

Substituting ansatz (2.2) into action (1.8) we get an energy functional (tension
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of the string):

T = 2π

∫
rdr

(
2

g21N
2

f ′2

r2
+

N − 1

N

1

g22

f ′2
W

r2
+ φ′2

1 + (N − 1)φ′2
2

+
1

N2

[f + (N − 1)fW ]2

r2
φ2
1 +

N − 1

N2

[f − fW ]2

r2
φ2
2 + V (φ1, φ2),

)
(2.5)

where the potential V (φ1, φ2) is

V (φ1, φ2) =
1

4|µ2|2

(
φ2
1

[
φ2
1 +

α

N
(φ2

1 + (N − 1)φ2
2)− 2µ2m

]2

+ (N − 1)φ2
2

[
φ2
2 +

α

N
(φ2

1 + (N − 1)φ2
2)− 2µ2m

]2
)

(2.6)

and we assume that µ2m is real 2.

String tension functional (2.5)) gives equations for the profile functions. We get

f ′′ − f ′

r
− g21

2
(f + (N − 1)fW )φ2

1 − (N − 1)
g21
2
(f − fW )φ2

2 = 0 (2.7)

f ′′
W − f ′

W

r
− g22

N
(f + (N − 1)fW )φ2

1 +
g22
N
(f − fW )φ2

2 = 0

φ′′
1 +

φ′
1

r
− 1

N2

(f + (N − 1)fW )2

r2
φ1 −

1

2

∂V

∂φ1
= 0

φ′′
2 +

φ′
2

r
− 1

N2

(f − fW )2

r2
φ2 −

1

2(N − 1)

∂V

∂φ2
= 0

These equations are of the second order rather than the first order. This is because

our string is not BPS saturated. Note, that for a BPS string the masses of the scalars

forming the string are equal to masses of the gauge bosons (1.22) and (1.23), see [15].

For our µ-deformed theory this is not the case. Masses of singlet and adjoint scalars

in the scalar matrix ϕkA in (2.1) are given by (1.25) and (1.26), and in the large µ

limit they are much smaller than the masses of gauge bosons. In particular, as we

mentioned already, in the limit (1.19) mL → 0, and our µ-deformed theory develops

a Higgs branch.

2.2 String profile functions

It is quite often that supersymmetric gauge theories have Higgs branches. These are

flat directions of the scalar potential on which charged scalar fields can develop VEVs

2If it is in fact a complex quantity, we should modify relation (2.1) inserting there the phase of

µ2m.
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breaking the gauge symmetry. In many instances this breaking provides topological

reasons behind formation of vortex strings. A dynamical side of the problem of the

vortex string formation in theories with Higgs branches was addressed in [25, 26, 27].

A priori it is not clear at all whether or not stable string solutions exist in this class

of theories. The fact is that a theory with a Higgs branch represents a limiting case of

type I superconductor with vanishing Higgs mass. In particular, it was shown in [25]

that infinitely long strings cannot be formed in this case due to infrared divergences.

Later this problem was studied in [26, 27]. It was shown that vortices on Higgs

branches become logarithmically ”thick” due to the presence of massless scalars in

the bulk. Still, they are well defined if IR divergences are regularized. One way of

regularization is to consider a vortex string of the finite length L [26]. This setup is

typical for the confinement problem. It was shown in [26] that confining potential

between heavy trial charges becomes nonlinear,

V (L) ∼ L

logL
, (2.8)

in theories with Higgs branches.

Another way of IR regularization is to lift the Higgs branch so that scalar fields

forming the string have small but non-zero masses mL, cf. [27]. We use this approach

here, see Eqs. (1.25) and (1.26), assuming that µ is large but finite.

To the leading order in logmG/mL the vortex solution has the following structure

in the (x1, x2) plane [26]. The gauge fields are localized inside the core region of the

radius Rg and almost zero outside this region3. In contrast, scalar profiles are almost

constant inside the core. In particular, the φ1 profile function associated with winding

of the vortex is almost zero inside the core (see (2.4)),

φ1 ≈ 0

φ2 ≈ (1− c)
√
ξ,

(2.9)

where c is a constant to be determined.

Then the two first equations for gauge profile functions in (2.7) have solutions

f = fW ≈ 1 − r2

R2
g

(2.10)

inside the core.

Outside the core in a logarithmically wide region

1/mG . r . 1/mL (2.11)

3We will determine Rg shortly.
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gauge fields are almost zero and two last equations in (2.7) reduce to the equations

for free massless scalars. Their solutions have a logarithmic form

φ1 ≈
√
ξ


1 −

ln
1

rmL

ln
1

mLRg


 ,

φ2 ≈
√
ξ


1 − c ·

ln
1

rmL

ln
1

mLRg


 ,

(2.12)

where the normalization is fixed by matching with the behavior inside the core (2.9)

and with the boundary conditions at infinity (2.4).

In the region of very large r, r ≫ 1/mL, the scalar fields exponentially approach

their VEVs (∼ exp{−mLr}), see (2.4)). This region gives a negligible contribution to

the string tension and a particular form of the scalar potential (2.6) is not important.

Upon a substitution of the above solution into tension functional (2.5) one arrives

at

T ≈ const

R2
g

(
2

g21N
2
+
N − 1

g22N

)
+

2π|ξ|
ln

1

RgmL

[
1 + (N − 1) c2

]
, (2.13)

where the first term comes from the gauge fields inside the core while the second term

is produced by the logarithmic integral over the region (2.11) coming from the kinetic

terms of scalars.

Minimization of this expression with respect to the constant c yields

c = 0, (2.14)

so that the profile function φ2 does not depend on r and is given by its VEV
√
ξ.

Minimizing (2.13) with respect to Rg we find

Rg ∼
const

mG

ln
mG

mL

. (2.15)

The solutions for string profile functions in the intermediate region (2.11) be-

comes

φ1 ≈
√
ξ


1 −

ln
1

rmL

ln
mG

mL


 ,

φ2 ≈
√
ξ ,

f ≈ fW ≈ 0 ,

(2.16)
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while the final result for the tension of a non-Abelian string takes the form

T =
2π|ξ|
ln
mG

mL

+ · · · , (2.17)

where corrections are suppressed by powers of large logarithm logmG/mL. The lead-

ing term here comes from quark kinetic energy ((φ′
1)

2) integrated over intermediate

region (2.11), see (2.5). Note, that the logarithmic suppression of the string tension

is not specific for non-Abelian strings. Similar expression was found for the ANO

string on a Higgs branch [26, 27].

2.3 Non-equal quark masses

In this section we relax condition (1.17) and consider a string solution assuming that

quark mass differences are small,

∆mAB = mA −mB ≪ m̂, (2.18)

where m̂ is the average quark mass, (1.15).

Non-equal quark masses break color-flavor symmetry (1.21) down to U(1)N , so

the orientational modes of the non-Abelian string are no longer zero modes. They

become quasizero modes in the approximation of small quark mass differences (2.18),

cf. [15]. In fact, in Sect. 3.2 we will derive a shallow world sheet potential with N

extreme points associated with ZN strings.

Now we generalize the ansatz for the string solution (2.2) as follows. First we

set an orientational vector

nl = δlA0 , A0 = 1, ..., N (2.19)

separating the A0-th ZN string (the string associated with the winding of A0 squark

flavor, see [15]).

We expect that, much in the same way as for the equal quark masses case, the

main contribution to the string tension comes from logarithmically wide intermediate

region (2.11), while the string core does not contribute to the leading order. Then

taking into account (2.18) we can neglect mass differences of different gauge bosons

setting

mG ≈ g2

√
|ξ̂|, (2.20)

where

ξ̂ =
1

N

N∑

A=1

ξA. (2.21)
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In this approximation we can use the same ansatz for the gauge fields as for the

case of equal quark masses, see two last equations in (2.2) with nl from (2.19). Gauge

fields are still parametrized by only two gauge profile functions f(r) and fW , which

are non-zero inside the string core determined by mG (2.20).

The ansatz for the squark fields in (2.2) is generalized as follows

ϕ =




φ1(r) 0 . . . 0 . . . 0

0 φ2(r) . . . 0 . . . 0

. . . . . . . . . . . . . . . . . .

0 0 . . . φA0
(r) . . . 0

. . . . . . . . . . . . . . . . . .

0 0 . . . 0 . . . φN(r)




, (2.22)

where we introduce the profile functions φ1, ..., φN for non-winding flavors A 6= A0

while the profile function φA0
is associated with A0-th winding flavor.

Boundary conditions for gauge profile functions are the same as in (2.4) while

for quarks we require

φA0
(0) = 0 (2.23)

φA(∞) =
√
ξA, A = 1, ..., N, (2.24)

where ξA are given by (1.14).

Equations for the profile functions now read

f ′′ − f ′

r
− g21

2
(f + (N − 1)fW )φ2

A0
− g21

2
(f − fW )

∑

A 6=A0

φ2
A = 0

(2.25)

f ′′
W − f ′

W

r
− g22

N
(f + (N − 1)fW )φ2

A0
+

g22
N(N − 1)

(f − fW )
∑

A 6=A0

φ2
A = 0

φ′′
A0

+
φ′
A0

r
− 1

N2

(f + (N − 1)fW )2

r2
φA0

− 1

2

∂V

∂φA0

= 0

φ′′
A +

φ′
A

r
− 1

N2

(f − fW )2

r2
φA −

1

2

∂V

∂φA

= 0, A 6= A0.

Solving these equations in much the same way as we did in the previous subsec-

tion we get

φA ≈
√
ξA, A 6= A0. (2.26)

Moreover, gauge profile functions are determined by (2.10) inside the core, while they

are zero outside it. Here the size of the core is still given by (2.15).
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In much the same way as for the case of equal quark masses the profile function

φ1 is almost zero inside the core and is given by

φA0
≈

√
ξA0


1 −

ln
1

rmL

ln
mG

mL


 (2.27)

in the region (2.11) of intermediate r.

The results for the string tensions of ZN strings have the form

TA0
=

2π|ξA0
|

ln
mG

mL

+ · · · , A0 = 1, ..., N. (2.28)

We see that now string tensions of N ZN strings are split.

3 World sheet effective theory

A non-Abelian string has both translational and orientational zero modes. If we allow

a slow dependence of the associated moduli on the world sheet coordinates z = x3
and t they become fields in the effective two dimensional low energy theory on the

string world sheet [10, 11], see [15] for a review. Namely, we will have translational

moduli xi0(t, z) (position of the string in the (x1, x2) plane, i = 1, 2) and orientational

moduli nl(t, z), l = 1, ..., N . Translational sector is free and decouples therefore we

will focus on the orientational sector.

In this section we will derive the bosonic part of the effective world sheet theory

on the string.

3.1 CP(N − 1) model on the string world sheet

First we consider the limit of equal quark masses (1.17). In this limit color-flavor

symmetry (1.21) is unbroken and the orientational moduli nl describe the zero modes

of the non-Abelian string. Namely, consider a particular ZN solution (2.2) with

nl = δlA0, A0 = 1, ..., N . It breaks the SU(N)C+F group down to SU(N − 1)×U(1).
Therefore the SU(N)C+F rotation of the ZN string solution generates the whole family

of solutions (non-Abelian string) parametrized by the vector nl from the moduli space

SU(N)C+F

SU(N − 1)× U(1) = CP(N − 1). (3.1)

Since for equal quark masses the SU(N)C+F group is unbroken there is no world

sheet potential for orientational moduli nl. To derive the kinetic term we closely follow
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the general procedure developed in [10, 11] (see [15] for a review) for the N = 2 case.

We substitute solution (2.2) into four-dimensional action (1.8) assuming slow t and z

dependence of the orientational moduli nl.

Once the moduli nl cease to be constant, the gauge field components A
SU(N)
0 and

A
SU(N)
3 also become non-vanishing. We use the ansatz [10, 11, 28]

A
SU(N)
k = −i

[
∂kn · n̄− n · ∂kn̄− 2n · n̄(n̄ ∂kn)

]
ρ(r) , k = 0, 3 , (3.2)

for these components, where we assume a contraction of the color indices inside the

parentheses in the third term. We also introduced a new profile function ρ(r) which

will be determined through a minimization procedure.

Substituting (2.2) and (3.2) into (1.8) we get CP(N − 1) model

S(1+1) = 2β

∫
dt dz

{
(∂k n̄ ∂k n) + (n̄ ∂k n)

2
}
, (3.3)

with the coupling constant β given by

β =
2π

g22
I , (3.4)

where I is a normalization integral determined by the string profile functions inte-

grated over (x1, x2) plane.

I =

∫ ∞

0

rdr

{(
d

dr
ρ(r)

)2

+
1

r2
f 2
W (1− ρ)2

+ g22

[
ρ2

2

(
φ2
1 + φ2

2

)
+ (1− ρ) (φ2 − φ1)

2

]}
.

(3.5)

The above functional determines an equation of motion for ρ,

− d2

dr2
ρ− 1

r

d

dr
ρ− 1

r2
f 2
W (1− ρ) + g22

2

(
φ2
1 + φ2

2

)
ρ− g22

2
(φ1 − φ2)

2 = 0 , (3.6)

while boundary conditions for ρ read

ρ(∞) = 0, ρ(0) = 1, (3.7)

see [15] for the details.

The formulas above are valid for a non-Abelian string in both N = 2 QCD and

µ-deformed QCD. For our large µ limit we use the string profile functions found in

Sec. 2.2. To find the solution for ρ we first note that inside the core ρ ≈ 1. In

the intermediate region (2.11) fW ≈ 0. The terms of equation (3.6) which involve

16



derivatives of ρ are negligible compared to the others (we will check that afterwards),

and so an approximate solution can be easily found:

ρ ≈ (φ1 − φ2)
2

(φ2
1 + φ2

2)
≈

(
ln 1

rmL

ln 1

RgmL

)2

2 − 2
ln 1

rmL

ln 1

RgmL

+

(
ln 1

rmL

ln 1

RgmL

)2 , (3.8)

where we used solutions (2.16) for quark profile functions.

It is easy to check that ρ′ ∼ mLρ and ρ′′ ∼ m2
Lρ, so it was indeed consistent to

drop the derivatives out of the equation (3.6).

Our next step is to substitute this solution into the (3.5) and calculate I. As

we will see, only the region r . 1/mL gives a significant contribution to this integral.

We have:

I ≈ g22

∫
rdr

(
1

2

(φ1 − φ2)
4

(φ2
1 + φ2

2)
+

2φ1φ2 (φ1 − φ2)
2

(φ2
1 + φ2

2)

)

=
g22
2

∫
rdr

(φ2
1 − φ2

2)
2

(φ2
1 + φ2

2)
(3.9)

Calculation yields

I ≈ c
m2

G

m2
L

1

ln2 m2

G

m2

L

∼ g2|µ|
|m|

1

ln2 g2|µ|
|m|

, (3.10)

where we used Eqs. (1.22) and (1.25) while the constant c is associated with the

ambiguity of the upper limit (∼ 1/mL) of the integral above. As for the region of

large r, r ≫ 1/mL, the function ρ falls off exponentially, and a contribution from this

region is therefore negligible.

Substituting (3.10) into (3.4) we get the final result for the coupling β of the

world sheet CP(N − 1) model (3.3)

β ≈ c
2π

g22

m2
G

m2
L

1

ln2 mG

mL

∼ |µ||m|
1

ln2 g2|µ|
|m|

. (3.11)

CP(N −1) model (3.3) is a low energy effective theory on the string world sheet.

It describes the dynamics of massless orientational moduli at energies much below

the inverse thickness of the string proportional to mL. If we go to higher energies we

have to take into account higher derivative corrections to (3.3).

Relation (3.11) is derived at the classical level. In quantum theory the coupling

constant β runs. Relation (3.11) defines the CP(N − 1) model coupling at a scale of
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the ultra-violet (UV) cutoff of the world sheet theory equal to mG. In fact, CP(N−1)
model is an asymptotically free theory. Its coupling at the UV scale mG ∼

√
ξ at one

loop is given by

4πβ(
√
ξ) = N ln

√
ξ

ΛCP

, (3.12)

where ΛCP is the scale of the CP(N − 1) model. This gives for the scale ΛCP

ΛCP ≈
√
ξ exp

{
−const |µ||m|

1

ln2 g2|µ|
|m|

}
. (3.13)

We see that the scale of CP(N − 1) model ΛCP is exponentially small, so the

world sheet theory is weekly coupled in a wide region of energies≫ ΛCP . This should

be contrasted to non-Abelian string in N = 2 QCD where world sheet theory has a

scale ΛCP equal to scale ΛN=2 of the bulk QCD [15].

3.2 World-sheet potential at large µ

In this subsection we relax the condition of equal quark masses (1.17) and consider the

effect of quark mass differences to the leading order in ∆mAB, see (2.18). Non-equal

quark masses break color-flavor symmetry (1.21) down to U(1)N so as we already

mentioned above the orientational modes of the non-Abelian string are no longer

zero modes. They become quasizero modes in the approximation of small quark mass

differences (2.18). We still can introduce the orientational quasimoduli nl, l = 1, ..., N

and consider a shallow potential in the CP(N −1) world sheet theory (3.3) generated

by the mass differences. We neglect effects of small mass differences in the kinetic

term assuming that it is still given by Eq. (3.3).

Our general strategy is to take string solution (2.2) with the unperturbed string

profile functions of Sec. 2.2 and substitute it into potential (1.12) taking into account

explicit mA dependence of this potential to the leading order in ∆mAB. After a rather

involved calculation we arrive at the potential of the world sheet theory

δV1+1 = χ

N∑

A=1

Re
[
(ξA − ξ̂) ¯̂ξ

]

|ξ̂|
|nA|2, (3.14)

where δV1+1 is the potential up to a constant, ξP are given by (1.14), while the factor

χ is determined by the string profile functions integrated over (x1, x2) plane,

χ =
π

|µ2|2

∞∫

0

rdr (φ2
2 − φ2

1)
[
φ2
1 −

α

N
(φ2

1 − φ2
2)
]
. (3.15)
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Now we use our solutions for φ1 and φ2 (see Sect. 2.2) and integrate here over

the region r <∼ 1/mL. We also assume that µ1 and µ2 scale in such a way that the

parameter α in (1.7) is fixed. More explicitly, we assume that

µ ≡ µ2 = const · µ1

√
2

N
, (3.16)

This gives for χ

χ ≈ const · 2π

ln mG

mL

. (3.17)

Moreover, the region of integration r ≫ 1/mL in (3.15) does not contribute to the

leading order. The unknown constant above appears due to an ambiguity of the upper

limit of the integral over r, r ∼ 1/mL.

Substituting this into (3.14) we get

δV1+1 ≈ const · 2π
N∑

A=1

Re
[
(ξA − ξ̂) ¯̂ξ

]

|ξ̂| ln mG

mL

|nA|2. (3.18)

Now let us fix the unknown constant in the equation above comparing it with

expressions (2.28) for the string tensions of ZN strings. ZN strings are extreme points

of the world sheet potential V1+1, therefore a value of V1+1 at the extreme point

nl = δlA0 corresponding to A0-th ZN string should be equal to string tension (2.28).

This gives const = 1 in (3.18) and leads us to the final expression for the potential in

the world sheet CP(N − 1) theory

V1+1 ≈
4π

ln mG

mL

∣∣∣∣∣

√
2

N
µ1m̂ + µ2

(
N∑

A=1

mA|nA|2 − m̂
)∣∣∣∣∣. (3.19)

This potential integrated over world sheet coordinates t and z should be added to

the kinetic term in (3.3). Note, that this potential is a generalization of our result in

(3.18) since it includes all terms in the expansion in powers of (mA − m̂)/m̂. For the

single trace µ-deformation (1.3) the world sheet potential takes a particularly simple

form

V1+1 ≈
4π

ln mG

mL

|µ2|
∣∣∣∣∣

N∑

A=1

mA|nA|2
∣∣∣∣∣ . (3.20)

The potential (3.19) has only one minimum and one maximum at generic ∆mAB.

Other (N − 2) extreme points are saddle points. All these extreme points are located

at

nA = δAA0 , A0 = 1, ..., N, (3.21)
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and associated with the ZN strings. A value of the potential at a given extreme point

coincides with the tension of the A0-th ZN string,

V1+1(n
A = δAA0) = TA0

, A0 = 1, ..., N. (3.22)

Absolute minimum (the unique vacuum) of (3.19) corresponds to the ZN string as-

sociated with winding of a squark with the smallest mass.

Note that our derivation of Eq. (3.18) reproduced the logarithmic suppression

typical for string tensions in extreme type I superconductors (with small Higgs mass

mL), see (2.28) and [26].

Potential (3.19) is similar to the potential in the world sheet theory on the non-

Abelian string derived in [29] for µ-deformed N = 2 QCD in the limit of small µ.

In this case the world sheet theory is heterotic CP(N − 1) model with N = (0, 2)

supersymmetry. For small µ the world sheet potential obtained in [29] can be written

in the form

V µ→0
1+1 = 4π

∣∣∣∣∣

√
2

N
µ1m̂ + µ2

(
N∑

A=1

mA|nA|2 − m̂
)∣∣∣∣∣. (3.23)

It differs from the one in (3.19) by the absence of the logarithmic suppression. This

has a natural explanation. At small µ in much the same way as in our case the saddle

points of the world sheet potential correspond to the ZN strings and relation (3.22) is

still valid. On the other hand in the limit of small µ the ZN strings are BPS saturated

and their tensions are given by T µ→0
A0

= 2π|ξA0
|, see [29]. This explains the absence

of the logarithmic suppression in the potential (3.23).

3.3 Mass spectrum on the string

Let us assume that m1 is the smallest quark mass. Then the vacuum of the world

sheet potential (3.19) is located at

nA = δA1 (3.24)

and the minimum value V min
1+1 = TA=1. Let us calculate a perturbative mass spectrum

of the world sheet theory in this vacuum. Expanding

|n1|2 = 1 −
∑

A 6=1

|nA|2 (3.25)

and extracting the quadratic in fluctuations nA terms from potential (3.19), we get

masses of world sheet excitations nA, A 6= 1

m2
A 6=1 =

π

β ln mG

mL

Re
[
(ξA − ξ1)ξ̄1

]

|ξ1|
. (3.26)
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Note the factor 1/(2β) here that comes from the kinetic term in (3.3). Substituting

here the coupling β from (3.11) we see that the masses of the perturbative world sheet

excitations behave as

m2
A 6=1 ∼ m(mA −m1) ln

mG

mL

(3.27)

The coupling constant of CP(N−1) model grows at low energies and gets frozen

at the scale of the masses calculated above. If these masses are much larger than ΛCP

(3.13) then the world sheet theory is at weak coupling. Since ΛCP is exponentially

small we see that world sheet theory is at weak coupling even at rather small mass

differences ∆mAB. However in the equal quark mass limit (1.17) when ∆mAB = 0

the world sheet CP(N − 1) model becomes strongly coupled.

Our result (3.19) for the world sheet potential on the non-Abelian string in µ-

deformed theory can be compared with the world sheet potential for the non-Abelian

string in N = 2 supersymmetric QCD with FI D-term generated by quark mass

differences, see [15] for a review. In the N = 2 case all the ZN strings are degenerate,

with tensions given by the FI parameter. The world sheet potential in this case has

N minima located at (3.21) separated by shallow barriers quadratic in ∆mAB. The

world sheet theory has N = (2, 2) supersymmetry and the presence of N vacua is

ensured by the Witten index for CP(N − 1) supersymmetric model. There are kinks

interpolating between these vacua which are interpreted as confined monopoles of

bulk QCD [11, 12], see Sec. 5 and [15] for a review.

In the limit of large µ potential (3.19) dominates over the quadratic in ∆mAB

potential, and one can neglect the latter one. We see that most of the vacua present

in the N = 2 case are lifted and the world sheet theory has a single vacuum at non-

zero ∆mAB. Moreover, the lifted vacua are saddle points rather than local minima

and therefore classically they are unstable. This means that there are no kinks in the

world sheet theory.

Thus we come to the conclusion that confined monopoles present in N = 2 QCD

with FI term do not survive large µ limit when µ-deformed theory flows to N = 1

QCD, provided that ∆mAB are non-zero. Only when ∆mAB = 0, the potential (3.19)

vanishes (and the world sheet theory enters into the strong coupling), and we can

consider kinks/confined monopoles. We will discuss this case below in Sec. 5

4 Fermion zero modes

In this section we consider the fermion zero modes of the non-Abelian string. First

we briefly review the limit of small µ, see [15] for a more detailed review. In this

limit deformation superpotential (1.2) reduces to the FI F -term and does not break
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N = 2 supersymmetry [5, 7]. In the N = 2 limit both superorientational and

supertranslational fermion zero modes of the non-Abelian string can be obtained by

a supersymmetry transformation of the bosonic string solution [11, 21, 23]. Next

we gradually increase µ and study perturbations of superorientational zero modes at

small µ. We show that all the superorientational fermion zero modes are lifted by the

µ-deformation. As a result fermionic moduli which become fermion fields in the two

dimensional low energy CP (N − 1) model on the string acquire masses. Eventually

they disappear from the world sheet theory in the large µ limit. Finally we comment

on supertranslational fermion zero modes which in much the same way as in N = 2

theory can be obtained by supersymmetry transformations from the bosonic string

solution.

4.1 Superorientational modes in N = 2 limit

The fermionic part of the N = 2 QCD defined by superpotentials (1.1) and (1.2)

(before integrating out adjoint fields) is as follows:

L4d =
2i

g22
Tr λ

SU(N)
f /DλfSU(N) +

i

g21
λ
U(1)
f /∂λfU(1) + Tr i ψ /∇ψ + Tr i ψ̃ /∇ψ̃

+ i
√
2Tr


qfλfU(1)ψ + ψ̃λ

U(1)
f qf + ψλ

U(1)
f qf + qfλ

U(1)
f ψ̃




+ i
√
2Tr


qfλfSU(N)ψ + ψ̃λ

SU(N)
f qf + ψλ

SU(N)
f qf + qfλ

SU(N)
f ψ̃


 (4.1)

+ i
√
2Tr ψ̃

(
1

2
aU(1) +

mA√
2

+ aSU(N)

)
ψ + i

√
2Tr ψ

(
1

2
aU(1) +

mA√
2

+ aSU(N)

)
ψ̃

− 2

√
N

2
µ1


(λ2U(1)

)2
+
(
λ
U(1)
2

)2 − µ2Tr


(λ2 SU(N)

)2
+
(
λ
SU(N)
2

)2 ,

where derivatives acting on fermion fields are defined by the σ-matrices, for example

/̄∇ = ∇µσ
µ
α̇α, and a color-flavor matrix notation is used for the quark fermions ψkA

α ,

ψ̃α
Ak. Index f is SU(2)R index of the N = 2 theory, qf = (q, q̃), λfα = (λ1α, λ

2
α). Note

the µ-deformation mass terms for the f = 2 gauginos in (4.1). In the N = 2 limit

these terms vanish.

A string solution in the N = 2 limit at small µ is 1/2 BPS, which means that

half of the supercharges of the N = 2 theory act trivially on solution (2.2), provided

the orientational vector nl is a constant vector. Namely, the four supercharges (out

of eight supercharges Qαf ) that satisfy the constraints

Q21 = Q22, Q11 = −Q12 . (4.2)
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act trivially on the BPS string in the N = 2 theory with the FI F -term [7, 11, 15].

The other four supercharges generate four supertranslational modes which are

superpartners of the two translational modes.

However once the orientational vector nl acquires a slow t and z dependence,

the supercharges selected by (4.2) become supersymmetry generators acting in the

N = (2, 2) supersymmetric CP (N − 1) model on the string world sheet [11]. This

allows one to obtain the orientational fermionic zero modes from a bosonic solution

using supersymmetry transformations selected by (4.2) [11, 15]. The result is

ψ2̇ =
φ2
1 − φ2

2

φ2
· nξ̄L ,

ψ̃1̇ = − φ2
1 − φ2

2

φ2
· ξRn̄ ,

λ11 SU(N) = i
φ1

φ2
fW

x1 − i x2
r2

· nξ̄L (4.3)

λ22 SU(N) = − i
φ1

φ2
fW

x1 + i x2

r2
· ξRn̄

λ12 SU(N) = λ11 SU(N) , λ21 SU(N) = − λ22 SU(N) ,

where we suppress color and flavor indices while superscripts of adjoint fermions mean

λαf .

Note that the bosonic profile functions of the string φ1,2(r), f(r) and fW in this

section are the profile functions of the BPS string in the N = 2 limit of small µ rather

than the string profile functions of Sec. 2.2, which corresponds to the large µ limit.

Former are solutions of first order equations rather than second order equations (2.7).

They satisfy boundary conditions (2.4) and were found numerically in [10], see [15]

for a review.

The Grassmann variables ξlR,L, l = 1, ..., N in (4.3) are proportional to the

parameters of the supersymmetry transformations ǫαf selected by (4.2), namely

ξlL ∼ ǫ21 + ǫ22, ξlR ∼ ǫ12 − ǫ11. (4.4)

These parameters become fermion fields (superpartners of nl) in the effective world

sheet CP (N − 1) model once we allow their slow dependence on the world sheet

coordinates t and z [11, 15]. They are subject to the conditions

nl ξ
l
L,R = 0 , (4.5)

which are a supersymmetric generalization of the CP(N − 1) condition |n|2 = 1.
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4.2 Small µ expansion for fermion orientational zero modes

As we switch on the mass terms for the f = 2 gauginos (see the last line in (4.1)), the

theory becomes N = 1 supersymmetric and half of the supercharges Qαf=2 are lost.

There are no SUSY transformations which act trivially on the string with constant

nl (they were used to generate superorientational modes in N = 2 limit), and the

string is no longer BPS. Therefore, to calculate zero modes one has to solve the Dirac

equations.

Note that for the case of the massless µ-deformed theory with FI D-term con-

sidered in [23] the supercharges that act trivially on the string with constant nl in

the N = 2 limit are Q12 and Q21 instead of the linear combinations selected by (4.2).

Therefore as we switch on the µ-deformation only one (two real) of the above super-

charges is lost, namely Q12. The other one (two real), Q21, still acts trivially and

ensures that the string is still BPS-saturated. In our case all four supercharges of

N = 1 theory Qα1 act non-trivially on the string. This is the reason why the string

ceases to be a BPS one as we switch on µ.

Dirac equations which follow from action (4.1) read

i

g21

(
/∂λfU(1)

)
+ i
√
2Tr


ψqf + qf ψ̃


 − 4 δ f

2

√
N

2
µ1 λ

U(1)

2 = 0 ,

i

g22

(
/DλfSU(N)

)a
+ i
√
2Tr


ψT aqf + qfT aψ̃


 − δ f

2 µ2 λ
aSU(N)
2 = 0 ,

− i ψ
←−
/∇ + i

√
2


qf

{
λfU(1) + λfSU(N)

}
+ ψ̃

{
1

2
aU(1) +

mA√
2

+ aSU(N)

}
 = 0 ,

i /∇ψ̃ + i
√
2



{
λ
U(1)
f + λ

SU(N)
f

}
qf +

{
1

2
aU(1) +

mA√
2

+ aSU(N)

}
ψ


 = 0 ,

(4.6)

i /∇ψ + i
√
2



{
λ
U(1)
f + λ

SU(N)
f

}
qf +

{
1

2
aU(1) +

mA√
2

+ aSU(N)

}
ψ̃


 = 0 ,

− i ψ̃←−/∇ + i
√
2


qf

{
λ
U(1)
f + λ

SU(N)
f

}
+ ψ

{
1

2
aU(1) +

mA√
2

+ aSU(N)

}
 = 0 .

To simplify the problem we will use below the following strategy. We consider the

region of small µ and look for solutions of the Dirac equations above perturbatively

in µ. Of course, zero modes (4.3) satisfy Dirac equations (4.6) [21, 23] at µ = 0. We

take these modes as a zero order solutions and solve for perturbations proportional

to µ.

Similar method was used in [21, 23] for a massless µ-deformed theory with a
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FI D-term. In that case it was shown that the orientational fermion zero modes

survive the µ-deformation, however, their profile functions become deformed. Below

we will show that in our case of µ-deformed theory with massive quarks without the

FI D-term the answer is different: orientational fermion zero modes do not survive

the µ-deformation.

In analogy with the method of [23] we will use an ansatz for the superorientational

modes:

λ1f SU(N) = 2
x1 − ix2

r
λ1f+ (r) nξL + 2 λ1f− (r) ξLn ,

λ2f SU(N) = 2
x1 + ix2

r
λ2f+ (r) ξRn + 2 λ2f− (r) nξR ,

(4.7)

ψ̃1̇ = 2 ψ̃1̇+(r) ξRn + 2
x1 − ix2

r
ψ̃1̇−(r) nξR .

ψ̃2̇ = 2 ψ̃2̇+(r) nξL + 2
x1 + ix2

r
ψ̃2̇−(r) ξLn .

ψ1̇ = 2ψ1̇+(r) ξRn + 2
x1 − ix2

r
ψ1̇−(r) nξR .

ψ2̇ = 2ψ2̇+(r) nξL + 2
x1 + ix2

r
ψ2̇−(r) ξLn .

(4.8)

Here λ+(r) and ψ+(r) represent ”undeformed” profile functions present in the N = 2

case, while λ−(r) and ψ−(r) are the ”perturbations” due to µ-deformation. Of course

this terminology makes sense only in the small µ limit, then ”-” -components will be

of order µ. More generally, the ”+” profile functions are expanded in even powers of

µ, while ”-” components are expanded in odd powers of µ.

Let us consider the equations for the perturbative ”-” -components (solutions

for the ”+” -components are given by (4.3) up to the O(µ2) terms). Half of them are

very similar to those solved in [23]. If we denote

λ22− − λ21− ≡ λ− ,

then two of these equations for λ− and ψ̃1̇− take the form

∂rψ̃1̇−(r) +
1

r
ψ̃1̇−(r) −

1

Nr
(f + fW (N − 1)) ψ̃1̇−(r) + iφ2 λ− = 0

− ∂rλ− −
fW
r
λ− + i g22φ2 ψ̃1̇−(r) − µ2g

2
2

i

2

fW
r

φ1

φ2

= 0 (4.9)
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These equations can be solved in much the same way as in [23]. The solutions are

ψ̃1̇− = − µ2g
2
2

r

8φ1

(
φ2
1 − φ2

2

)
+ O(µ3) ,

λ− = λ22− − λ21− = − µ2g
2
2

i

4


(fW − 1)

φ2

φ1
+

φ1

φ2


 + O(µ3) . (4.10)

Another pair of the profile functions ψ2̇− and (λ12− + λ11− ) satisfies the same equations

(4.9). Hence the solution reads

ψ2̇− = ψ̃1̇− ,

λ12− + λ11− = λ−. (4.11)

Let us study behavior of these solutions in the limits r → ∞ and r → 0. The

bosonic profile functions fall off exponentially at infinity

fW (r) ∼ exp{−mGr}, φ1,2 −
√
ξ ∼ exp{−mGr}, (4.12)

while their behavior at r → 0 is as follows:

fW (r)− 1 ∼ r2, φ1 ∼ r, φ2 ∼ const, (4.13)

see (2.4).

From this behavior we see that fermion zero modes (4.10), (4.11) are normaliz-

able. They fall off exponentially at r →∞ and are regular at r → 0.

Now consider solutions for the other components. They turn out to be more

complicated. Denoting

λ22− + λ21− ≡ λ(1) ,

one gets:

∂rψ1̇−(r) +
1

r
ψ1̇−(r) +

1

Nr
(f − fW )ψ1̇−(r) + iφ1 λ(1) = 0 ,

− ∂rλ(1) −
fW
r
λ(1) + i g22φ1 ψ1̇−(r) − µ2g

2
2

i

2

fW
r

φ1

φ2
= 0.

(4.14)

So far solutions for our equations were given by certain algebraic combinations of the

bosonic profile functions. However, for the functions ψ1̇− and λ(1) it is not the case.

The above equations are solved in Appendix A. The solutions are given by Eqs. (A.6)

and (A.7).

Two remaining modes ψ̃2̇− and (λ12− − λ11− ) satisfy the same equations (4.14).

Therefore these modes are given by the same expressions,
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ψ̃2̇−(r) = ψ1̇−(r), λ12− − λ11− = λ(1)(r). (4.15)

Solutions (A.6) and (A.7) fall off exponentially at infinity, however, the behavior

of the field λ in (A.7) is singular at r → 0, namely it is proportional to 1/r. This

means that these modes are non-renormalizable. Our perturbative approach does not

work: the corrections to (4.3) proportional to µ turn out to be non-normalizable. We

will show in the next subsection that the resolution of this puzzle is that the fermion

orientational modes get lifted by the µ-deformation.

4.3 Lifted fermion orientational modes

Let us consider instead of Dirac equations (4.6) equations with a non-zero eigenvalue

for quark fermions, namely

− i ψ
←−
/∇ + i

√
2

(
qf
{
λfU(1) + λfSU(N)

}

+ ψ̃

{
1

2
aU(1) +

mA√
2

+ aSU(N)

})
= −mor ψ̃ , (4.16)

i /∇ψ̃ + i
√
2

({
λ
U(1)
f + λ

SU(N)
f

}
qf

+

{
1

2
aU(1) +

mA√
2

+ aSU(N)

}
ψ

)
= −mor ψ . (4.17)

with the mass mor to be determined from the condition of normalizability of super-

orientational modes.

Proceeding exactly as it was done in the previous subsection, instead of Eqs. (4.14)

we arrive at

∂rψ1̇−(r) +
1

r
ψ1̇−(r) +

1

Nr
(f − fN)ψ1̇−(r) + iφ1 λ(1) = mor

φ2
1 − φ2

2

2φ2
,

− ∂rλ(1) −
fN
r
λ(1) + i g22φ1 ψ1̇−(r) − µ2g

2
2

i

2

fN
r

φ1

φ2
= 0.

(4.18)

We consider these equations in the Appendix A. The solutions are given by (A.8) and
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(A.9). The condition of regularity of these solutions at r → 0 gives the eigenvalue

mor = −

µ2g
2
2

∞∫

0

dy
f 2
N(y)φ

2
1(y)

yφ2
2(y)

1 − 2

∞∫

0

dy
f 2
N(y)φ

2
1(y)

yφ2
2(y)

. (4.19)

Solutions for ψ̃2̇− and the combination (λ12− − λ11− ) satisfy the same equations (4.18)

and are related to solutions (A.8) and (A.9) via (4.15).

4.4 Effective action in the orientational sector

Now to see the effect of lifting of the orientational fermion zero modes let us de-

rive a fermionic part of the two-dimensional effective action on the string world

sheet with the O(µ) accuracy. In order to do so, we assume a slow t and z de-

pendence of the fermionic moduli ξlL,R, substitute our ansatz (4.7), (4.8) into the four

dimensional fermion action (4.1) and integrate over x1, x2. Kinetic terms for bulk

fermions (containing derivatives ∂0 and ∂3) produce corresponding kinetic terms for

two-dimensional fermions, and mass terms are generated because fermionic modes

are now lifted. The result for the quadratic terms in the two dimensional fermionic

action is

S2d =

∫
dtdz

{
4π

g22
(ξ̄Li∂RξL + ξ̄Ri∂LξR) + morγ (ξ̄RξL + ξ̄LξR) + · · ·

}
,

(4.20)

where dots stand for higher order terms in fields and

γ = − 4

∫
dx1dx2 ψ̃1̇+ ψ2̇+ = 4

∫
dx1dx2 |ψ2̇+|2 , (4.21)

while

∂R = ∂0 + i ∂3 , ∂L = ∂0 − i ∂3 .

We see that all two-dimensional fermionic fields ξlL,R become massive with mass mor

proportional to µ. We expect that in the limit of large µ these fermions decouple

from bosonic CP(N − 1) model (3.3).

4.5 Supertranslational zero modes

As we already mentioned, supertranslational modes can be obtained via a supersym-

metry transformation from bosonic string solution even in the µ-deformed theory.
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String solution ceases to be a BPS one, and all of the four remaining supercharges

Qα1 of the N = 1 theory act non-trivially on the string solution. Much in the same

way as the bosonic translational modes, the supertranslational ones decouple from

orientational CP(N−1) model and are described by free fermions on the string world

sheet. This can be anticipated on general grounds. To see this note that the ori-

entational fermion fields ξlL,R become heavy at large µ and without them we cannot

construct interaction terms of nl and supertranslational moduli ζL,R compatible with

symmetries of the theory (if we do not consider higher derivative corrections).

For the sake of completeness we construct explicitly supertranslational zero

modes in the large µ limit in Appendix B acting by N = 1 supersymmetry transfor-

mations on the string solution of Sec. 2.

5 Physics of the world sheet theory and confined

monopoles

As we have seen above the fermionic fields ξl of the effective world sheet theory become

heavy in the large µ limit and decouple. Moreover, the translational sector is free and

does not interact with the orientational sector. Thus, our effective world sheet theory

on the non-Abelian string is given by bosonic CP(N -1) model (3.3) without fermions

in the large µ limit. If quark masses are small but not equal, the orientational moduli

nl are lifted by shallow potential (3.19).

As we already mentioned, our four dimensional bulk theory is in the Higgs phase

where squarks develop condensate (1.18). Therefore ’t Hooft-Polyakov monopoles

present in the theory in the N = 2 limit of small µ are confined by non-Abelian

strings. In fact in U(N) gauge theories confined monopoles are junctions of two

distinct strings [30, 11, 12]. In the effective world sheet theory on the non-Abelian

string they are seen as kinks interpolating between different vacua of CP(N − 1)

model, see [15] for a review.

The question of the crucial physical importance is whether monopoles survive

the limit of large µ when the the bulk theory flows toN = 1 QCD. Quasiclassically we

do not expect this to happen. From a quasiclassical point of view, the very existence

of ’t Hooft-Polyakov monopoles relies on the presence of adjoint scalars which develop

VEVs. At large µ adjoint fields become heavy and decouple in our bulk theory, so

quasiclassically we do not expect monopoles to survive.

We will see now that in quantum theory the story becomes more interesting.

Confined monopoles are represented by kinks of CP(N−1) model on the non-Abelian

string. Therefore to address the above problem we have to study kinks in the world
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Figure 1: Configuration of a string with kink and anti-kink on it. Zero and one

represent the true vacuum and the first quasi-vacuum respectively.

sheet theory. Certain results in this direction were already obtained. As we mentioned

before, in the framework of massless µ-deformed N = 2 QCD with FI D-term it was

shown that the effective theory on the string world sheet is heterotic N = (0, 2) su-

persymmetric CP(N−1) model [19, 20, 21, 23]. This model has N degenerative vacua

and kinks interpolating between them. This means that kinks/confined monopoles

do survive the large µ limit in the above mentioned theory.

In this paper we study a more ”realistic” version of µ-deformed theory with-

out the FI D-term. This theory flows to N = 1 QCD in the large µ-limit. As

we have shown the world sheet theory on the non-Abelian string reduces to non-

supersymmetric CP(N − 1) model without fermions in the large µ limit. If quark

mass differences are non-zero, a potential (3.19) is generated. It does not have mul-

tiple local minima, therefore kinks (confined monopoles of the bulk theory) become

unstable and disappear.

Consider the case when quark masses are equal. Then CP(N − 1) model is at

strong coupling. This model was solved by Witten [24] in the large N approximation.

It was shown that kinks in this model are in a confinement phase. In terms more

suitable for application to monopole physics of the bulk theory this can be understood

as follows, see also [15] for a more detail review.

The vacuum structure of the CP (N−1) model was studied in [31]. It was shown

that the genuine vacuum is unique. There are, however, of orderN quasi-vacua, which

become stable in the limit N → ∞ , since an energy split between the neighboring

quasi-vacua is O(1/N). Thus, one can imagine a kink interpolating between the true

vacuum and the first quasi-vacuum and the anti-kink returning to the true vacuum as

in Fig.(1). Linear confining potential between kink and anti-kink is associated with

excited quasi-vacuum.

This two dimensional confinement of kinks was interpreted in terms of strings and

monopoles of the bulk theory in [28]. The fine structure of vacua in CP(N−1) model

on the non-Abelian string means that N elementary strings are split by quantum

effects and have slightly different tensions. The difference between the tensions of

”neighboring” strings is proportional to Λ2
CP , see (3.13). Therefore monopoles, in
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addition to the four dimensional confinement (which ensures that they are attached

to the string), acquire two-dimensional confinement along the string. Monopole and

antimonopole connected by a string with larger tension form a mesonic bound state.

Consider a monopole-antimonopole pair interpolating between strings 0 and 1,

see Fig. 1. Energy of the excited part of the string (labeled as 1) is proportional to

the distance R between the kink and anti-kink as

V (R) ∼ Λ2
CP R. (5.1)

When it exceeds the mass of two monopoles which is of order of ΛCP then the second

monopole-antimonopole pair emerges breaking the excited part of the string. This

gives an estimate for the typical length of the excited part of the string, R ∼ N/ΛCP .

Since this length grows in the large N limit, kinks are metastable with an exponen-

tially small decay rate exp{−N}.

6 Conclusions

In this paper we considered non-Abelian strings in N = 2 supersymmetric QCD

deformed by a large mass term for adjoint matter. In the limit of large µ this theory

flows to N = 1 SQCD. We found a solution for the non-Abelian string and derived a

two dimensional effective theory on the string world sheet which describes the dynamic

of its orientational zero modes. This theory turns out to be bosonic CP(N−1) model

(3.3) with shallow potential (3.19) generated by small quark mass differences. The

fermionic superpartners ξl of the bosonic orientational moduli nl present in the N = 2

limit become heavy at large µ and decouple.

We addressed the question of what happen to confined ’t Hooft-Polyakov monopoles

at large µ. We showed that, if the quark mass differences are larger than (exponen-

tially small) ΛCP , the confined monopoles become unstable at large µ. However, if

the quarks have equal masses, the confined monopoles survive in the N = 1 QCD

limit. This result is quite remarkable since N = 1 QCD is in the non-Abelian regime

and quasiclassically we do not expect monopoles in this theory. It also supports the

picture of ”instead-of-confinement” phase for N = 1 QCD at strong coupling [17].
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Appendix A:

In this Appendix we solve Dirac equations (4.14). After a substitution

ψ1̇−(r) =
1

rφ2(r)
Ψ(r),

λ(1)(r) = ig22Λ(r)

equations (4.14) reduce to

1

rg22φ1φ2
∂rΨ = Λ ,

r∂rΛ + fNΛ −
φ1

φ2

Ψ = − µ2fN
2

φ1

φ2

,

(A.1)

which in turn gives an equation of second order for Ψ:

∂2rΨ −
1

r

(
1 +

2

N
(f − fN)

)
∂rΨ − g22φ

2
1Ψ = − µ2fN

2
g22φ

2
1 . (A.2)

First let us solve the homogeneous version of (4.14), i. e. put µ2 = 0. The solutions

are

ψ1̇− = c
fN
rφ2

,

λ(1) = c
ig22
2

(
φ1

φ2
− φ2

φ1

)
.

with some constant c. They correspond to Ψ = fN ; indeed, this is a solution for

homogeneous version of (A.2). With the help of it we can reduce the order of this

equation. Let us take

Ψ(r) = µ2 fN(r)




r∫

0

dxχ(x) + c1


 ,

with some constant c1, then from (A.2) it follows that

∂rχ +
1

r

(
1

fN
r2g22(φ

2
1 − φ2

2) − 1 − 2

N
(f − fN)

)
χ = − 1

2
g22φ

2
1 . (A.3)
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This is just an equation of the first order; its solution can be found very easily as

χ = − g22rφ
2
2

2f 2
N




r∫

0

dy

y

φ2
1

φ2
2

f 2
N + c2


 . (A.4)

Putting all this together, we obtain:

ψ1̇−(r) = − µ2 g
2
2

fN (r)

rφ2(r)




r∫

0

dx
xφ2

2(x)

2f 2
N(x)




x∫

0

dy

y

φ2
1(y)

φ2
2(y)

f 2
N(y) + c2


+ c1


 .

(A.5)

with some new constant c1.

For this solution to behave well at the origin we have to put c1 = 0. Considering

the infinity, we should also require that

c2 = −
∞∫

0

dy

y

φ2
1(y)

φ2
2(y)

f 2
N(y).

This gives

ψ1̇−(r) =
µ2 g

2
2

2

fW (r)

rφ2(r)

r∫

0

dx
xφ2

2(x)

f 2
W (x)

∞∫

x

dy

y

φ2
1(y)

φ2
2(y)

f 2
W (y). (A.6)

for for ψ1̇− and

λ(1)(r) ≡ λ22− + λ21− =

=
i µ2 g

2
2

2

(
g22
2

(
φ1

φ2
− φ2

φ1

) r∫

0

dx
xφ2

2(x)

f 2
W (x)

∞∫

x

dy

y

φ2
1(y)

φ2
2(y)

f 2
W (y)

+
φ2

φ1fW

∞∫

r

dy

y

φ2
1(y)

φ2
2(y)

f 2
W (y)

)
.

(A.7)

for λ(1). By direct substitution we verified that these modes indeed satisfy the Dirac

equations.

Now let us consider Dirac equations (4.18) with the non-zero eigenvalue mor.

Applying the method developed above we find the solutions

ψ1̇−(r) = −
(
mor − µ2

g22
2

)
fN(r)

rφ2(r)

r∫

0

dx
xφ2

2(x)

f 2
N (x)

∞∫

x

dy
f 2
N(y)φ

2
1(y)

yφ2
2(y)

(A.8)
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for ψ1̇− and

λ(1)(r) = − imor

2

(
φ1

φ2
− φ2

φ1

)
− ig22

(
mor − µ2

g22
2

)
1

2

(
φ1

φ2
− φ2

φ1

)
×

r∫

0

dx
xφ2

2(x)

f 2
N(x)

∞∫

x

dy
f 2
N(y)φ

2
1(y)

yφ2
2(y)

− i

(
mor − µ2

g22
2

)
φ2

fNφ1

∞∫

r

dy
f 2
N(y)φ

2
1(y)

yφ2
2(y)

(A.9)

for λ(1).

One can see, that the first and the last terms in the last expression behave at

the origin as 1/r. We can choose eigenvalue mor to insure that 1/r terms cancel out.

This gives the expression (4.19) for the mass mor.

Appendix B:

In this Appendix we generate supertranslational fermion zero modes in the large µ

limit acting by N = 1 supersymmetry transformations on the string solution of Sec. 2.

The N = 1 supersymmetry transformations have the form

δ
¯̃
ψkA
α̇ = i

√
2 ∇̄/α̇αqkAǫα +

√
2 ǭα ¯̃F kA ,

δψ̄α̇Ak = i
√
2 ∇̄/α̇αq̄Akǫ

α +
√
2 ǭαF̄kA , (B.1)

where the F -terms are given by derivatives of the superpotential (1.6),

F̄Ak = − ∂W
∂qkA

=
i

µ2

(
q̃Ck(q̃Aq

C)− α

N
(q̃Cq

C)q̃Ak

)
+mq̃Ak

=
i

µ2

(
ϕCk(ϕAϕ

C)− α

N
(ϕCϕ

C)ϕAk

)
+mϕAk ,

(B.2)

¯̃F kA = − ∂W
∂q̃Ak

=
i

µ2

(
qkC(q̃Cq

A)− α

N
(q̃Cq

C)qkA
)
+mqkA

=
i

µ2

(
ϕkC(ϕCϕ

A)− α

N
(ϕCϕ

C)ϕkA
)
+mϕkA ,

(B.3)

where we also used (2.1).

Consider first the region of intermediate r, in the range 1/mG . r . 1/mL.

As we will see, the fermion zero modes behave as 1/r. This will give us leading

logarithmic contributions to the kinetic terms for fermions of two dimensional effective

theory on the string world sheet.

To calculate the fermionic modes one should substitute bosonic solutions (2.16)

into the transformations (B.1). In (B.1), the first terms in the first and second lines
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give 1/r contributions, whereas the F -terms adds constant and logarithmic terms,

which does not produce leading logarithmic terms in the effective action. We neglect

these last terms, and get non-zero fermionic profiles

ψ1̇ ≈ (nn)
x1 − i x2

r

1

r

√
ξ

ln g2
√
ξ

mL

ζR ,

ψ2̇ ≈ (nn)
x1 + i x2

r

1

r

√
ξ

ln g2
√
ξ

mL

ζL ,

ψ̃1̇ ≈ (nn)
x1 − i x2

r

1

r

√
ξ

ln g2
√
ξ

mL

ζR ,

ψ̃2̇ ≈ (nn)
x1 + i x2

r

1

r

√
ξ

ln g2
√
ξ

mL

ζL.

(B.4)

One can see that these modes are indeed proportional to 1/r. Here ζL,R are the Grass-

mann parameters generated by supersymmetry transformations, ζL = 1√
2
ǫ1, ζR = − 1√

2
ǫ2).

These parameters become fermionic fields in the two dimensional effective theory on

the string world sheet.

The region of small r, r ≪ 1/mG does not contribute because quark fields vanish

in this limit.

To find the effective world sheet action, one should substitute solutions (B.4)

into four-dimensional fermionic action (4.1). For the kinetic term, we obtain:

L2d = 2πξ Iξ(ζ̄Li∂RζL + ζ̄Ri∂LζR) , (B.5)

where the normalization constant is

Iξ =
2N

ln mW

mL

. (B.6)

As we already mentioned, deriving this effective action we integrated over the transver-

sal coordinates in the range 1/mG . r . 1/mL. The integral over r is logarithmically

enhanced. The contributions of other regions do not have logarithmic enhancement

and can be neglected.

We see that (B.5) is the action for free fermions which decouples from the ori-

entational sector given by CP(N − 1) model (3.3).
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