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Motivated by various systems in which quantum effects occur in classical backgrounds, we consider
the dynamics of a classical particle as described by a coherent state that is coupled to a quantum
bath via bi-quadratic interactions. We evaluate the resulting quantum dissipation of the motion of
the classical particle. We also find classical initial conditions for the bath that effectively lead to the
same dissipation as that due to quantum effects, possibly providing a way to approximately account
for quantum backreaction within a classical analysis.

Several systems of interest involve the coupling of clas-
sical backgrounds to quantum fields. The dynamics of the
classical system radiates quantum excitations and thus
dissipates. We are interested in evaluating the backreac-
tion of the quantum excitations on the classical dynam-
ics.
This study is particularly relevant to gravitational sys-

tems where we do not yet have a full quantum theory and
in which context this problem has already received some
attention [1–5]. For example, in inflationary cosmology,
classical dynamics of the inflaton field excites quantum
fields that then become observable cosmological density
perturbations. The inflaton field denoted Φ(t) is assumed
to be homogeneous and initially displaced from its min-
imum. As the field rolls towards its minimum, it can
excite a second field, φ, that is coupled to it. Generally
symmetries under Φ → −Φ and φ → −φ are assumed
so that the lowest order coupling term is λΦ2φ2. The
classical evolution of φ will be governed by

�φ+m2φ+ 2λΦ2φ = 0 (1)

and the initial condition φ = 0, φ̇ = 0, gives φ = 0 for all
times. In quantum theory, however, if φ is assumed in
its ground state initially, it gets excited by the dynam-
ics of the Φ field. Then the quantum evolution of φ is
non-trivial and it backreacts on the dynamics of Φ and
dissipates its motion. We are interested in evaluating this
quantum dissipation. We are also interested in finding a
set of classical initial conditions different from φ = 0 = φ̇
for which the classical dissipation closely agrees with the
quantum result.
These questions are of interest beyond inflationary cos-

mology. Gravitational collapse leads to Hawking radia-
tion that is purely quantum and this will cause the col-
lapsing body to evaporate. The collapsing body is a large
object that is most conveniently treated clasically, as is
its gravitational field. But the radiation is quantum. Can
the backreaction on the collapse be estimated on the ba-
sis of a classical calculation?
There are non-gravitational settings where similar

questions arise. For example, what is the backreaction
of Schwinger pair production on the electric field? A
full treatment of this problem in 1+1 dimensions for the
special case of massless fermions leads to an interesting
t−1/2 decay of the electric field and an effective electrical

conductivity of the vacuum [6] but the case of massive
fermions is still open. Another setting where classical
and quantum descriptions confront each other is when
discussing the production of topological solitons in parti-
cle collisions [7, 8]. Solitons are solutions of the classical
field theory equations and this is the most convenient
framework to discuss them. In studying the creation of
solitons by scattering particles, if the initial condition
involves a large number of particles, they too can be de-
scribed by classical equations. Thus one may be inclined
to think that classical evolution is sufficient to study the
creation of solitons in (many) particle collisions. How-
ever this is not true in general because, depending on
the initial conditions, the classical evolution may be re-
stricted to an embedded subspace of the model [9, 10],
just as φ = 0 is the dynamical subspace in the example
of Eq. (1). Solitons, by their topological nature, involve
a very large part of the dynamical space of field configu-
rations and, in certain situations, quantum effects could
be crucial for the dynamics to explore the full space of
fields necessary to create solitons.
A concrete example helps to explain this issue better.

Consider light on light collisions. These involve the colli-
sions of a large number of photons and a classical descrip-
tion via Maxwell’s equations should suffice. However,
then the collision is trivial since Maxwell’s equations are
linear. In quantum theory, photon collisions will some-
times produce charged particle-antiparticle pairs (e.g.
W±, electrons, and other standard model particles).
These will create a plasma that will backreact on the dy-
namics of the light on light collisions. Only the quantum
dynamics will explore the full standard model and pos-
sibly produce electroweak strings [11] or sphalerons [12]
that are solutions of the classical electroweak equations.
The problem outlined above is very difficult to address

in field theory and we will only solve a simpler quantum
mechanical problem. We first expand the fields in modes.
For example for a scalar field,

φ(t,x) =
∑

k

ck(t)fk(x) (2)

where fk(x) are a set of orthonormal mode functions,
ck(t) are mode coefficients, and the sum is an integral if
the modes form a continuum. Then, as is standard in
quantum field theory (for example see [13]), the free field



2

part of the theory is equivalent to an infinite set of simple
harmonic oscillators (SHOs) given by the variables ck(t)
and these can be quantized. The interaction terms in the
field theory lead to couplings between the modes and are
equivalent to couplings between the SHOs. An interac-
tion term of the type λΦ2φ2, as discussed above, will be
equivalent to coupling four SHOs, two corresponding to
mode coefficients of Φ and two to those of φ. In gen-
eral the couplings will be of the form Ck1

Ck2
ck3

ck4
with

k1+k2+k3+k4 = 0, where Ck denotes a mode coefficient
of Φ. The bi-quadratic terms, C2

K
c2
k
, are the only ones

that are symmetric under Ck1
→ −Ck1

and also, sepa-
rately, ck3

→ −ck3
and hence are the only ones that will

survive if we evaluate the expectation value of the cou-
pling term. This suggests that the bi-quadratic couplings
may dominate and our simplification in what follows will
be to only consider this coupling. However, this sim-
plification should be examined further because there are
many more terms that are not bi-quadratic and fluctua-
tions, not just the expectation value, may be important.
(Systems with bi-linear couplings, CKck, can be diago-
nalized and have been analyzed in early work [14, 15].)
Since CK represents a classical degree of freedom, we take
it to be in a coherent state initially in our quantum anal-
ysis, while ck’s are quantum variables that are taken to
be in their ground state initially.

To summarize this discussion, we consider a heavy
SHO coupled to a bath of light SHOs via bi-quadratic
couplings. A solution of the classical equations is that
the heavy SHO oscillates and the light SHOs remain at
rest. This picture changes in the quantum analysis in
which the heavy SHO is initially described by a coher-
ent state and the light SHOs are in their ground state.
Oscillations of the heavy SHO excite the light SHOs and
there are two forms of backreaction on the heavy SHO.
First the heavy SHO motion gets damped. Second, the
state of the heavy SHO is no longer a coherent state and
the heavy SHO state changes towards becoming less clas-
sical, more quantum. In the present paper we focus on
the backreaction that causes dissipation. The backreac-
tion that takes the heavy SHO out of its coherent state
is interesting but not directly relevant to the dynamical
question and we postpone it for the time being.

We start out by describing the quantum mechanical
model in Sec. I. Sec. II contains our classical analysis
which we perform with action-angle variables, first study-
ing the dynamics for a single light SHO, followed by a cal-
culation of the classical dissipation for a bath of SHOs.
The bath is essential to obtain dissipation because oth-
erwise there is energy exchange between the heavy and
light SHOs but no dissipation. In Sec. III we analyze the
quantum model, first for a single light SHO, then for a
bath of light SHOs, and we then evaluate the quantum
dissipation. Our final result for the quantum vs. classical
backreaction is discussed in Sec. IV and the reader who
is not interested in the details of the calculations can di-
rectly go to Sec. IV. We conclude in Sec. V. Appendix A
contains a discussion of quantization of the SHO using

action-angle variables.

I. MODEL

The heavy SHO position and momentum variables
are (X,P ); the light SHO variables are (xi, pi) for i =
1, . . . , N . Traditionally, we would write the Hamiltonian

H =
P 2

2M
+

1

2
MΩ2X2 +

N
∑

i=1

(

p2i
2mi

+
1

2
miω

2
i x

2
i

)

+
1

2N
X2

N
∑

i=1

ǫi
l4i
x2i (3)

where li is a length scale and ǫi has dimensions of energy.
Rescaling

(MΩ)1/2X → X, (miωi)
1/2xi → xi, (4)

P → (MΩ)1/2P, pi → (miωi)
1/2pi (5)

and assuming a universal coupling, i.e. ǫi/l
4
i are inde-

pendent of i, and dividing throughout by a factor of Ω,
we get the Hamiltonian in the form

H =
P 2

2
+
X2

2
+

N
∑

i=1

ωi

(

p2i
2

+
x2i
2

)

+
ǫ

2N
X2

N
∑

i=1

x2i (6)

Note: We do not use the Einstein summation conven-
tion.

II. CLASSICAL ANALYSIS

A. Single light SHO

A neat method to do the classical calculation is to per-
form a canonical transformation so that the phase of the
SHO is the coordinate variable and the amplitude is re-
lated to the momentum variable,

q →
√

2I

mω
sin θ, p→

√
2Imω cos θ. (7)

The new Hamiltonian is

Hnew = I1 + ωI2 + 2ǫI1I2 sin
2 θ1 sin

2 θ2 (8)

where (θ1, I1) are variables for the heavy SHO and (θ2, I2)
are for the light SHO. The equations of motion are

θ̇1 = 1 + 2ǫI2 sin
2 θ1 sin

2 θ2

İ1 = −2ǫI1I2 sin(2θ1) sin
2 θ2

θ̇2 = ω + 2ǫI1 sin
2 θ1 sin

2 θ2

İ2 = −2ǫI1I2 sin
2 θ1 sin(2θ2) (9)
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The unperturbed solution (with ǫ→ 0) is

θ1 = t+ φ1

I1 = K1

θ2 = ωt+ φ2

I2 = K2 (10)

where φ1, φ2, K1 and K2 are constants.
To first order in ǫ,

θ1 = t+ φ1

+2ǫK2

∫ t

0

dt′ sin2(t′ + φ1) sin
2(ωt′ + φ2) (11)

I1 = K1

−2ǫK1K2

∫ t

0

dt′ sin(2(t′ + φ1)) sin
2(ωt′ + φ2) (12)

θ2 = ωt+ φ2

+2ǫK1

∫ t

0

dt′ sin2(t′ + φ1) sin
2(ωt′ + φ2) (13)

I2 = K2

−2ǫK1K2

∫ t

0

dt′ sin2(t′ + φ1) sin(2(ωt
′ + φ2)) (14)

To connect with the the usual position of the heavy
SHO we use

X =
√

2I1 sin θ1

=
√

2K1

[

1− 2ǫK2

∫ t

0

dt′ sin(2(t′ + φ1)) sin
2(ωt′ + φ2)

]1/2

× sin

[

t+ φ1 + 2ǫK2

∫ t

0

dt′ sin2(t′ + φ1) sin
2(ωt′ + φ2)

]

(15)

In terms of the oscillation amplitudes, X0 and A, we take
K1 = X2

0/2, K2 = A2/2. If the initial condition is that
the heavy SHO is displaced but at rest, we take φ1 = π/2;
for the phase of the light SHO we write φ2 = φ. Then,

X = X0

[

1 + ǫA2

∫ t

0

dt′ sin(2t′) sin2(ωt′ + φ)

]1/2

× cos

[

t+ ǫA2

∫ t

0

dt′ cos2(t′) sin2(ωt′ + φ)

]

(16)

These integrals can be done in closed form but the ex-
pressions are not illuminating.
The modified frequency of oscillation can be found by

identifying the linearly growing phase of the cosine in
Eq. (16) and is obtained by using
∫ t

0

dt′ cos2(t′) sin2(ωt′ + φ) =
t

4
+ oscillating terms.

(17)
This gives the oscillation frequency to first order in ǫ,

Ω = 1 +
ǫ

4
A2. (18)

In Sec. IV we will find A for which this modified frequency
agrees with the modified frequency in the quantum anal-
ysis.

B. Classical dissipation for bath of light SHOs

To obtain dissipation we have to work out İi to second
order in ǫ. In the equation,

İ1 = −2ǫI1I2 sin(2θ1) sin
2 θ2 (19)

we insert the first order expressions in Eq. (11)-(14). It
is convenient to define

J ≡ − t

4
+

∫ t

0

dt′ sin2(t′ + φ1) sin
2(ωt′ + φ2)

= − [sin(2α)− sin(2φ1)]

8
− [sin(2β)− sin(2φ2)]

8ω

+
[sin(2(α+ β))− sin(2φ+)]

16(1 + ω)

+
[sin(2(α− β))− sin(2φ−)]

16(1− ω)
(20)

where α = t+ φ1, β = ωt+ φ2, and φ± = φ1 ± φ2.
Then

∂J

∂φ1
=

∫ t

0

dt′ sin(2(t′ + φ1)) sin
2(ωt′ + φ2) (21)

∂J

∂φ2
=

∫ t

0

dt′ sin2(t′ + φ1) sin(2(ωt
′ + φ2)) (22)

and

İ1 = −2ǫK1K2

[

1− 2ǫ

(

K1
∂J

∂φ2
+K2

∂J

∂φ1

)]

×[sin(2α′) + 4ǫK2J cos(2α′)]

×[sin2(β′) + 2ǫK1J sin(2β′)] (23)

where α′ = (1 + ǫK2/2)t + φ1, β
′ = (ω + ǫK1/2)t +

φ2. We have discarded terms of higher order than ǫ2

except to show linear order corrections to the oscillation
frequencies even if these corrections lead to higher order
corrections in İ1.
We ignore the order ǫ terms since they are oscillating

and do not lead to dissipation. With some algebra

İ1 → ǫ24K1K2

[

1

2

(

K1
∂J

∂φ2
+K2

∂J

∂φ1

)

×
{

sin(2α)− 1

2
sin(2α+)−

1

2
sin(2α−)

}

+J

{

K+

2
cos(2α+)−

K−

2
cos(2α−)−K2 cos(2α)

}]

(24)

where K± = K1 ±K2 and α± = α ± β = (1 ± ω)t+ φ±
with φ± = φ1 ± φ2.
We want to find the dissipation when the classical SHO

is coupled to a bath of independent, incoherent, light
SHO’s. Let us assume that the bath of light SHO’s has
a spectral distribution of frequencies given by a function
n(ω). In other words, the number of light SHO’s with
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frequencies between ω and ω + dω is n(ω)dω. Therefore
we will calculate

Ė1,classical ≡ 〈İ〉 =
∫ ∞

0

dω n(ω)İ (25)

Further, we are only interested in the dissipatory terms,
not in the oscillatory terms. We will also assume n(0) =
0. Then the terms that dominate have (1 − ω) in the
denominator and we can effectively replace

J → sin(2((1− ω)t+ φ−))− sin(2φ−)

16(1− ω)

= − sin2((1 − ω)t) sin(2φ−)

8(1− ω)
+

sin(2(1− ω)t) cos(2φ−)

16(1− ω)

→ sin(2(1− ω)t) cos(2φ−)

16(1− ω)
(26)

since, in the last step, the first term tends to zero as
1 − ω → 0, while the second term goes to a finite value.
Similarly

∂J

∂φ1
→ − sin(2(1− ω)t) sin(2φ−)

8(1− ω)
= −2J tan(2φ−)

(27)

∂J

∂φ2
→ +

sin(2(1− ω)t) sin(2φ−)

8(1− ω)
= +2J tan(2φ−)

(28)
Recognizing that the integration over ω in Eq. (25) will
be dominated by ω ≈ 1 and that the oscillating terms do
not contribute to the dissipation, we obtain

İ1 → ǫ2

8
K1K2K−

sin(2(1− ω)t)

(1− ω)
(29)

where we have replaced J using Eq. (26). Next we use

∫ ∞

0

dx
sin(x− x0)

x− x0
≈

∫ ∞

−∞

dx
sin(x− x0)

x− x0
= π (30)

for x0 ≫ 1, and get

Ė1,classical ≈ −ǫ2π
8
K1K2K−n(1) (31)

for t≫ 1. In terms of the initial amplitudes of the SHO’s,
we take K1 = X2

0/2, K2 = A2/2, to get

Ė1,classical ≈ − π

64
ǫ2n(1)X4

0A
2

(

1− A2

X2
0

)

(32)

where A is the amplitude of the bath of SHO’s at the
resonant frequency ω = 1. A surprising feature of this
result is that the phases of the SHOs have dropped out.

III. QUANTUM ANALYSIS

The action-angle variables (θ, I) used in the classical
analysis were more convenient as they enabled a direct

calculation of the change in the energy of the heavy SHO
due to backreaction. Quantization in these variables is
described in Appendix A and is subtle because of oper-
ator ordering issues. Also, since the perturbation term
involves the SHO positions, action-angle variables do not
lead to any obvious simplifications in the quantum analy-
sis and we work with the conventional (x, p) coordinates.
Write the wavefunction in SHO Fock basis states

ψ(t,X, x) =

∞
∑

n,m=0

cnm(t)fn(t) |n〉X |m〉x (33)

where

fn(t) = e−it/2e−|z|2/2 z
n

√
n!

= e−it/2e−|z0|
2/2 z

n
0 e

−int

√
n!

.

(34)
In the second equality, we have used the coherent state
solution z = z0e

−it.
The initial state is taken to be a direct product of a

coherent state for X and ground state for x, i.e.,

cnm(0) = δm0. (35)

For convenience, we shall also use the notation

bnm(t) = cnm(t)fn(t). (36)

In terms of creation and annihilation operators

A =
1√
2
(X + iP ), A† =

1√
2
(X − iP ), (37)

a =
1√
2
(x+ ip), a† =

1√
2
(x− ip) (38)

we have

H =

(

A†A+
1

2

)

+ ω

(

a†a+
1

2

)

+
ǫ

2

(

A† +A√
2

)2 (
a† + a√

2

)2

(39)

Then the Schrodinger equation gives

i∂tbnm =

[(

n+
1

2

)

+ ω

(

m+
1

2

)]

bnm

+
ǫ

8

∞
∑

l,k=0

〈n|(A† +A)2|l〉〈m|(a† + a)2|k〉 blk (40)

Now use

〈n|(A† +A)2|l〉 =
√

n(n− 1)δn,l+2 + (2n+ 1)δn,l

+
√

(n+ 2)(n+ 1)δn,l−2 (41)

〈m|(a† + a)2|k〉 =
√

m(m− 1)δm,k+2 + (2m+ 1)δm,k

+
√

(m+ 2)(m+ 1)δm,k−2 (42)
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to get

i∂tbnm =

[(

n+
1

2

)

+ ω

(

m+
1

2

)

+
ǫ

8
(2n+ 1)(2m+ 1)

]

bnm

+
ǫ

8

[

√

n(n− 1) {
√

m(m− 1)bn−2,m−2

+(2m+ 1)bn−2,m +
√

(m+ 2)(m+ 1)bn−2,m+2}
+(2n+ 1){

√

m(m− 1)bn,m−2

+
√

(m+ 2)(m+ 1)bn,m+2}
+
√

(n+ 2)(n+ 1){
√

m(m− 1)bn+2,m−2

+(2m+ 1)bn+2,m +
√

(m+ 2)(m+ 1)bn+2,m+2}
]

(43)

Note that this equation for bnm also has a term propor-
tional to bnm on the right-hand side. This term is re-
sponsible for changing the frequency of oscillations and
is better brought over to the left-hand side leading to,

∂t

(

eiẼnmtbnm

)

=

−i ǫ
8
eiẼnmt

[

√

n(n− 1)

{

√

m(m− 1)bn−2,m−2

+(2m+ 1)bn−2,m +
√

(m+ 2)(m+ 1)bn−2,m+2

}

+(2n+ 1)

{

√

m(m− 1)bn,m−2

+
√

(m+ 2)(m+ 1)bn,m+2

}

+
√

(n+ 2)(n+ 1)

{

√

m(m− 1)bn+2,m−2

+(2m+ 1)bn+2,m +
√

(m+ 2)(m+ 1)bn+2,m+2

}]

(44)

where

Ẽnm ≡
(

n+
1

2

)

+ω

(

m+
1

2

)

+
ǫ

8
(2n+1)(2m+1) (45)

Eq. (44) is our master equation for bnm(t) that we will
solve perturbatively.

A. Perturbative treatment of single light SHO case

To first order in ǫ, we can replace blk on the right-hand
side of Eq. (44) by its unperturbed value

bnm = fn(t)e
−iωt/2δm0 +O(ǫ) (46)

to get

∂t

(

eiẼnmtbnm

)

=

−i ǫ
8
ei(Ẽnm−ω/2)t

[(

z2 + (2n+ 1) +
n(n− 1)

z2

)√
2δm,2

+

(

z2 +
n(n− 1)

z2

)

δm,0

]

fn (47)

Therefore only bn0 and bn2 are non-trivial. For bn0 we
get

bn0(t) = e−iωt/2

[

e−iǫ(2n+1)t/8

−i ǫ
8

{

z20e
−it +

n(n− 1)

z20
e+it

}

sin(t)

]

fn(t) (48)

Note that a perturbation expansion in powers of ǫ would
mean that we series expand the exp(−iǫ(2n+1)t/8) term.
However, then there is a term that is linear in t and the
expansion is valid only for very short times, in fact in an
n dependent way. The way we have done the calculation
here separates out changes in the frequency of oscillation
and then the result is valid for all times, as we have also
seen in the classical case. Also, we will see that although
the correction in Eq. (48) has a term that goes like ǫn(n−
1)/z20 , this contribution is of the same order (and cancels)
the term that goes like z20 .
Another peculiarity is that the correction term to bn0

does not vanish when z0 = 0 if n = 2. This suggests that
even if the heavy SHO coherent state is not oscillating,
it will excite the second SHO. This can be seen directly
from Eq. (44) in which the term (2m+ 1)bn−2,m is non-
zero for n = 2, m = 0 even if z0 = 0 because fn−2 = 1
for n = 2 and z0 = 0. Excitations of the light SHO in the
background of a static coherent state are to be expected
since the chosen initial state is an eigenstate only of the
unperturbed Hamiltonian, not of the full Hamiltonian.
The solution for bn2 is

bn2(t) = −i ǫ

4
√
2
e−i3ωt/2

×
[

e−itz20
sin((ω − 1)t)

ω − 1
+ (2n+ 1)

sin(ωt)

ω

+e+itn(n− 1)

z20

sin((ω + 1)t)

ω + 1

]

fn(t) (49)

B. Expectation values

1. Energy of heavy SHO

The Hamiltonian of the heavy SHO is

H1 = A†A+
1

2
(50)

We will calculate the time derivative of 〈H1〉,
d

dt
〈H1〉 = i〈[H,H1]〉 (51)
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Now

[H,H1] =
ǫ

2
x2[X2, A†A] =

ǫ

2
x2(A2 − (A†)2) (52)

We use

〈n|A2 − (A†)2|l〉 =
√

(n+ 1)(n+ 2)δn+2,l −
√

n(n− 1)δn−2,l (53)

〈0|x2|0〉 = 1

2
, 〈0|x2|2〉 = 1√

2
= 〈2|x2|0〉 (54)

Therefore

d

dt
〈H1〉 = − ǫ

2

∑

n

√

(n+ 1)(n+ 2)

×Im

[

b∗n,0bn+2,0 +
√
2

(

b∗n,0bn+2,2 + b∗n,2bn+2,0

)]

(55)

We need the coefficients bn,m only to first order in ǫ to
get the time derivative of 〈H1〉 to second order in ǫ.
Insert bn,0 and bn,2 from Eqs. (48) and (49) to obtain

∑

n

√

(n+ 1)(n+ 2) Im(b∗n0bn+2,0) =

−z20 sin ((2 + ǫ/2)t)− ǫ

8
(2z20 + 1) sin(2t) (56)

where we have used
∑

n

|fn|2 = 1,
∑

n

n|fn|2 = z20 ,
∑

n

n(n− 1)|fn|2 = z40 ,

(57)
that can be derived from the identity,

(

x
d

dx

)k

ex =

∞
∑

n=0

nk x
n

n!
. (58)

Next we calculate the middle term on the right-hand
side of Eq. (55)

√
2
∑

n

√

(n+ 1)(n+ 2) Im(b∗n,0bn+2,2) =

− ǫ

8

[{(4z20 + 1)(z20 + 2)ω2 − 2(2z20 + 1)ω − (2z20 + 5)z20}
ω(ω2 − 1)

× sin(2(ω + 1)t)

+
(2z20 + 5)z20

ω
sin(2t) +

z40
ω − 1

sin(4t)

]

(59)

and the final term of Eq. (55) is,

√
2
∑

n

√

(n+ 1)(n+ 2) Im(b∗n,2bn+2,0) =

ǫ

8
z20

[{(4z20 + 1)ω2 − (2z20 + 1)}
ω(ω2 − 1)

sin(2(ω − 1)t)

− (2z20 + 1)

ω
sin(2t)− z20

ω + 1
sin(4t)

]

(60)

Therefore

d

dt
〈H1〉 =

ǫz20
2

sin ((2 + ǫ/2)t)

+
ǫ2

16

[(

2z20 + 1 +
2z20
ω

(2z20 + 3)

)

sin(2t)

+
2ωz40
ω2 − 1

sin(4t) +
P1(z0, ω)

ω(ω2 − 1)
sin(2(ω + 1)t)

−z
2
0P2(z0, ω)

ω(ω2 − 1)
sin(2(ω − 1)t)

]

(61)

where

P1(z0, ω) = (4z20 + 1)(z20 + 2)ω2 − 2(2z20 + 1)ω

−(2z20 + 5)z20 (62)

P2(z0, ω) = (4z20 + 1)ω2 − (2z20 + 1) (63)

At this level there is no dissipation since energy is sim-
ply exchanged back and forth between the two SHOs.
To obtain dissipation we introduce a bath of incoherent,
light SHOs.

C. Bath of light SHOs

As in the classical case (see Eq. (25)), we now integrate
over a spectrum of incoherent, light SHOs with spectral
function n(ω). The rate of energy loss of the heavy SHO
will be

Ė1,quantum ≡ d

dt

∫ ∞

0

dω n(ω)〈H1〉

= oscillatory terms

− ǫ2

16

∫ ∞

0

dω n(ω)
z20P2(z0, ω)

ω(ω2 − 1)
sin(2(ω − 1)t) (64)

We will ignore the non-dissipative oscillating terms.
Since ω ∈ [0,∞), the terms that are not oscillating are
the ones that are inversely proportional to 1 − ω and
whose oscillation frequency is also 1 − ω. This means
that we only need keep the last term in Eq. (64). We
assume that the integral in the last term is dominated
by the region ω ≈ 1 and take t≫ 1 to get

Ė1,quantum ≈ − ǫ
2

8
n(1)z40

∫ ∞

0

dω
sin(2(ω − 1)t)

2(ω − 1)

≈ − π

16
ǫ2 n(1)z40 = − π

64
ǫ2 n(1)X4

0 (65)

where we have used the relation z0 = X0/
√
2.
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IV. COMPARISON OF CLASSICAL AND

QUANTUM SYSTEMS

Comparison of the quantum result in Eq. (65) with the
classical result in Eq. (32) gives

Ė1,classical = Ė1,quantumA
2

(

1− A2

X2
0

)

= Ė1,quantum
E2

(ω/2)

(

1− E2

E1

)

(66)

where E1 is the energy of the heavy SHO and E2 is the
energy of the light SHO in the bath that is at the resonant
frequency ω = Ω. (By rescalings in Sec. I we had set Ω =
1.) Next, to determine suitable values of A2, equivalently
E2, we consider the dynamics of the heavy SHO.
The expectation value of the position of the heavy SHO

is given by

〈X〉 = 1√
2

∞
∑

n,m=0

(zcn+1,mc
∗
n,m + z∗c∗n+1,mcn,m)|fn|2

(67)
where we used

√
nfn = zfn−1. This expression will be

evaluated to first order in ǫ in which case only cn0 (not
cn2) is relevant. From Eq. (48) we write

cn0 = e−iωt/2

[

e−iǫ(2n+1)t/8

−i ǫ
8

{

z20e
−it +

n(n− 1)

z20
e+it

}

sin(t)

]

(68)

We use Eq. (57) to do the sum over n in Eq. (67) and
find

z
∞
∑

n=0

cn+1,0c
∗
n,0|fn|2 = z0e

−i(1+ǫ/4)t − i
ǫ

4
z0 sin(t) (69)

Then, to leading order in ǫ

〈X〉 = X0 cos
[(

1 +
ǫ

4

)

t
]

(70)

which comes from the first term in the square brackets
in Eq. (68). The remaining terms all cancel.
Comparing Eq. (70) to (18) we see that the classical

and quantum results for the oscillation frequency agree
to O(ǫ) if we take A = 1. This is a natural value be-
cause then the classical energy (E2 = 1/2) is precisely
the energy of the ground state for the light SHO at the
resonant frequency ω = 1. Now, with A = 1, Eq. (66)
gives

Ė1,classical = Ė1,quantum

(

1− Ω/2

E1

)

(71)

where we have re-inserted Ω, the frequency of the heavy
SHO. The dissipation rates are identical for coherent
states with large occupation number (given by N1 =
E1/Ω) up to O(ǫ2).

V. CONCLUSIONS

Our final results in Eqs. (70) and (71) are quite re-
markable. They show that the classical and quantum os-
cillation frequencies and dissipation rates both agree pro-
vided the classical analysis is done with the light SHOs in
a classical analog of the quantum ground state and if the
coherent state has large occupation number. This sug-
gests that quantum vacuum dissipation may be studied
classically by giving each of the bath SHOs their ground
state energy.
Another surprising conclusion that we mentioned in

the introduction is that backreaction on the classical
SHO will make it more quantum. The reason is that the
initial coherent state is the most classical state, defined
by its minimum uncertainty ∆X∆P = ~/2, and back-
reaction can only increase the uncertainty and make the
state more quantum. This is opposite of the usual role of
interactions that cause quantum states to decohere and
become more classical. In a similar way, the initial state
is taken to be a product state but it evolves into a mixed
state and the SHOs becomes more entangled with time.
Our calculations are valid only in leading (second) or-

der in perturbation theory. We plan to study the sys-
tem at higher order in perturbation theory and at strong
coupling in the future, where the classical and quantum
analyses may deviate from each other. We also plan to
study the rate at which the coherent state “incoheres”
due to backreaction, and the rate at which the heavy
and light degrees of freedom get entangled.
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Appendix A: Quantization of SHO in action-angle

variables

Consider a quantum SHO

H =
p2

2
+
x2

2
= a†a+

1

2
(A1)

where

a =
x+ ip√

2
, a† =

x− ip√
2
. (A2)

and

[a, a†] = 1 (A3)

follows from [x, p] = i.
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Now consider the transformation

a = e−iθ
√
I, a† =

√
Ie+iθ (A4)

where we assume that
√
I is an Hermitian operator and

will shortly discuss the meaning of this operator. Then

H = I +
1

2
(A5)

and also Eq. (A3) leads to,

[θ, I] = i, (A6)

which has the representation

I = −i ∂
∂θ
. (A7)

Therefore the normalized eigenstates with energy n+1/2
are

ψn(θ) =
einθ√
2π

(A8)

with n = 0, 1, 2, . . . because the wavefunctions are peri-
odic under θ → θ+2π. Eigenstates with negative integer
values of n are not allowed in the physical spectrum be-
cause of the assumed Hermiticity of

√
I and the definition

of
√
I below.

To interpret
√
I we define

√
Ieinθ =

√
neinθ (A9)

and work in the basis {einθ}, assuming that
√
I acts lin-

early. For example, if

ψ(θ) =

∞
∑

n=0

cne
inθ (A10)

where cn are expansion coefficients, then

√
Iψ(θ) =

∞
∑

n=0

cn
√
n einθ (A11)

To recover the usual SHO wavefunctions in position
space, we need to find the eigenstates of the position
operator, x̂, in the einθ basis. That is, we need to solve

x̂

∞
∑

n=0

cnψn(θ) = x

∞
∑

n=0

cnψn(θ) (A12)

Note that the coefficients cn will depend on the c-number
position x. In Dirac notation, cn(x) = 〈x|n〉θ, and these
are the wavefunctions in position space. Using

x̂ =
a+ a†√

2
=

1√
2

[

e−iθ
√
I +

√
Ie+iθ

]

(A13)

leads to the recursion relation

√
n+ 1 cn+1 − x

√
2 cn +

√
n cn−1 = 0 (A14)

The recursion relation for Hermite polynomials,

Hn+1(x)− 2xHn(x) + 2nHn−1(x) = 0 (A15)

can be used to check that

cn(x) =
1

π1/4

1√
2nn!

Hn(x)e
−x2/2 (A16)

satisfies Eq. (A14). These cn’s are the usual normalized
wavefunctions of the excited states of the SHO in the
x-representation.
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