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Targets for ground-based gravitational wave interferometers include continuous, quasi-periodic sources of
gravitational radiation, such as isolated, spinning neutron stars. In this work we perform evolution simulations of
uniformly rotating, triaxially deformed stars, the compressible analogues in general relativity of incompressible,
Newtonian Jacobi ellipsoids. We investigate their stability and gravitational wave emission. We employ five
models, both normal and supramassive, and track their evolution with different grid setups and resolutions, as
well as with two different evolution codes. We find that all models are dynamically stable and produce a strain
that is approximately one-tenth the average value of a merging binary system. We track their secular evolution
and find that all our stars evolve towards axisymmetry, maintaining their uniform rotation, rotational kinetic
energy, and angular momentum profiles while losing their triaxiality.

I. INTRODUCTION

The discovery of gravitational waves (GWs) from a binary
black-hole system [1] was a triumph that initiated a new era in
astronomy and astrophysics. Although the prime candidates
for the ground-based interferometers are binary systems, GWs
from isolated neutron stars (NSs) also can be detected and
help reveal the nature of these objects. Out of the∼ 2500 cur-
rently known pulsars in our Galaxy, approximately 90% are
isolated. Many of these single rotating stars may be promis-
ing sources of GWs [2–4].

A single NS can become an emitter of GWs as long as it
has a non-spherical time changing quadrupole moment. The
lack of symmetry can arise in various scenarios [5–7]. For
example, a pulsar can have a “small mountain” that could de-
velop following a starquake in the NS [8, 9], or it can ex-
hibit different kinds of non-spherical oscillations [10]. An-
other possibility is binary NS mergers, which are themselves
prime candidates for the production of GWs. When the two
component stars do not have large masses the remnant may
not undergo “prompt” collapse, but instead form a hypermas-
sive star and undergo “delayed collapse”, or form a spinning
NS that is dynamically and secularly stable [11]. At forma-
tion such remnants may be non-axisymmetric and strong GW
emitters. A third scenario arises in gravitational stellar col-
lapse, where the bouncing core can be rotating fast enough
so that non-axisymmetric instabilities set in and deform the
star into an ellipsoid [12]. Fallback accretion onto newly born
magnetars also supports the existence of triaxial deformations
and the efficient production of GWs [13].

Despite the enormous amount of work done in the field of
rotating stars [14, 15] full general relativistic (GR) numer-
ical simulations that investigate the stability and accurately
quantify the GW signature of single, uniformly rotating, tri-
axial stars have not been performed. One of the reasons is the
scarcity of accurate initial models needed to study their evo-
lution. Typically these objects are probed in the context of

binary mergers or collapse scenarios, which involve a sub-
stantial amount of computational resources and make diffi-
cult a systematic parameter study. In these cases one typi-
cally ends up with a differentially rotating object while for
single, isolated NSs one is often interested in uniformly rotat-
ing stars, the GR analogues of Jacobi ellipsoids in Newtonian
theory. Such solutions have been obtained for the first time
by Nozawa [16] allowing azimuthal dependence in the space-
time metric, but restricted it to an axisymmetric form. Using a
different method, triaxial quasi-equilibrium models have been
computed without such a restriction in the conformal flatness
approximation [17] and in the waveless approximation [18] as
part of the COCAL code.

The ab initio computation of such non-axisymmetric ob-
jects presents a number of challenges. First, these objects
are not stationary equilibria, since they emit GWs, and there-
fore an approximate scheme has to be applied in order to find
quasi-stationary solutions. This choice has be compatible with
the fact that the radiated energy within one rotational period
is much smaller than the binding energy of the star. Second,
such models are known to exist only for stiff equations of state
(EoS). If we assume a polytropic law p = kρΓ

0 , where ρ0 is
the rest-mass density and k, Γ are constants, then Γ needs to
be larger than 2.24 in the Newtonian limit [19]. For softer
EoS mass shedding appears at lower angular velocity than
the one needed to reach the triaxial state. GR increases the
critical value of the polytropic index by a small amount (to
Γ ∼ 2.8) [20]. Third, uniformly rotating, non-axisymmetric
solutions exist only for high spin rates, i.e. β := T/|W |
larger than 0.14 in the Newtonian case [21]. Here T is the
rotational kinetic energy andW the gravitational potential en-
ergy. In GR this critical value is higher [22–28]. The com-
bination of the above characteristics imply that an evolution-
ary follow-up will also be nontrivial, since the first challenge
described above will imply the presence of junk initial radi-
ation, which must be controlled, while the second and third
challenges require higher resolution than for slowly rotating
stars. Since the GW timescale to radiate the rotational energy
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is tGW/M & (M/R)−4 only highly compact objects can be
evolved to their endpoint state, while lower compaction stars
can be studied only partially. High compaction requires higher
resolution, which increases the computational demands even
more.

The dynamical stability of the quasi-equilibrium solutions
obtained in [17, 18] is not yet known. If these objects are dy-
namically unstable, do they undergo prompt collapse to black
holes, or do they evolve to significantly different, stable, ax-
isymmetric equilibria by rearranging their mass and/or angu-
lar momentum profiles? If they are dynamically stable, their
secular fate is still unknown. Being non-axisymmetric and ro-
tating they will generate GWs, which will radiate both energy
and angular momentum. Will this lead to delayed collapse to
a black hole, or will it lead to the formation of a Dedekind-like
configuration, or something less exotic?

In [29, 30] the dynamical stability of axisymmetric, differ-
entially rotating stars (even including an initial perturbation)
has been studied numerically in GR and it was found that they
are stable against quasi-radial collapse and bar-mode forma-
tion for sufficiently small β. GR enhances the dynamical bar-
mode formation since the critical value for β = βdyn above
which the stars become dynamically unstable was found to be
∼ 0.24, slightly less than the corresponding Newtonian value
0.27 for incompressible Maclaurin spheroids. A precise de-
termination of the threshold for the dynamical instability, the
effects of stellar compaction on that, as well as the timescale
of the persistence of the bar deformation have been studied
in [31–34]. In [35–37] linear stability analysis and simula-
tions have been performed to analyze the occurrence of the
dynamical instability against non-axisymmetric bar mode de-
formation for differentially rotating stars. It was found that
when differential rotation is high, the stars are dynamically
unstable even when β was of order of 0.01. This dynamical
instability does not create spiral arms [38–43] or fragmenta-
tion, but drives the star into a quasi-stationary ellipsoid that
emits GWs.

The secular bar-mode instability induced by GWs with a
polytropic (Γ = 2) EoS in the 2.5 post-Newtonian framework
for rapidly rotating stars with β ∼ 0.2−0.25 has been investi-
gated in [44]1. They tracked the evolution of the bar-mode up
until the final object was a deformed ellipsoid which was still
emitting GWs (therefore was not a Dedekind-like star). At the
same time the nonlinear development of the secular bar-mode
instability using a stiffer EoS (Γ = 3) and similarly including
post-Newtonian terms for the gravitational radiation reaction
was investigated in [46]. Although they were able to reach a
“Dedekind-like” state, this was destroyed after ten dynamical
times. According to the authors the reason could be either the
nonlinear coupling of various oscillatory modes in the star, or
an “elliptic flow” instability which manifests itself when the
fluid flow is forced along elliptic streamlines.

In a previous work [47] we computed for the first time tri-
axial supramassive NSs (uniformly rotating models with rest-

1 The critical β for instability in Newtonian Maclaurin spheroids is βsec ∼
0.14, but decreases in GR as the compaction increases [45]

mass higher than the maximum rest-mass of a non-rotating
star, but lower than the maximum rest-mass when allowing
for maximal uniform rotation), by using a piecewise poly-
tropic EoS. In this work we perform the first evolutions of
such stars and try to investigate their stability and GW con-
tent. Following [47] we carefully construct five such models:
two normal ones (uniformly rotating but not supramassive)
with compactions 0.1 and 0.252 adopting a stiff (Γ = 4) EoS,
and three supramassive models with compactions M/R =
0.23, 0.24, 0.26 adopting a two-piece polytrope that has a
soft core. Although these EoSs are rather extreme, our goal
is to prove a matter of principle rather than focus on realistic
EoSs. For a single polytrope a stiffer EoS can sustain a larger
triaxial deformation, and hence the maximum mass of the tri-
axial star relative to that of the spherical star is expected to be
larger. However, for the two-piece polytropic EoS, the max-
imum mass of the triaxial star relative to the spherical coun-
terpart increases, even though the overall averaged stiffness
of the EoS is softer. If the mass difference between the max-
imum axisymmetric and triaxial solutions is ∼ 10% or less,
then that implies that the EoS of high density matter becomes
substantially softer in the core of NSs [47].

We were able to follow the evolution of these objects for
more than twenty rotation periods, proving that they are dy-
namically stable. After an initial short period of time where
junk radiation in the initial data propagates away, the NS
evolves along quasi-equilibrium states that satisfy the first law,
dM = ΩdJ . Along this trajectory the orbital angular velocity
remains constant inside the NS, whose triaxial shape evolves
toward axisymmetry. During this period the GW amplitude
decreases significantly, especially in the highly compact mod-
els. The question that arises is: are we probing the secular fate
of the stars or is this clear monotonic amplitude decrease an
artifact of numerical dissipation.

We do not think that the decrease of the GW amplitude is
due to numerical viscosity. We performed a resolution study
which did not alter the main description above. We discuss
the trigger for the declining amplitude below.

If our models are imagined to sample bar-mode perturba-
tions of an axisymmetric configuration with β > βsec then
according to well-known results [45], our stars should be sec-
ularly unstable. We weren’t able to find any growth of a
bar-mode. As in [48], where evolutions of models with β
larger than βsec with an initial bar-mode perturbation were
performed, we find the decay of the initial perturbation.

Here we employ geometric units in which G = c = M� =
1, unless stated otherwise. Greek indices denote spacetime
dimensions (0,1,2,3), while Latin indices denote spatial ones
(1,2,3).

II. METHODS AND PHYSICAL PARAMETERS

The numerical methods used here are those implemented
in the COCAL and ILLINOIS GRMHD codes, and have been

2 These are the corresponding compactions of the spherical solutions.
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Γ (p/ρ0)c ρc (ρ0)c M0 M M/R

4 1.334 0.004658 0.003224 2.882 2.250 0.3552

(4, 2.5) 0.5674 0.006175 0.004536 1.960 1.657 0.2871

TABLE I. Characteristic quantities for the maximum mass spherical
solutions of the two EoSs considered in this work. Here Γ denotes the
polytropic index, (p/ρ0)c the central pressure-to-rest-mass-density
ratio, ρc the central total energy density, M0 the rest mass, M the
gravitational mass, and M/R the compaction of the star. First line
refers to simple polytrope models G4C010, G4C025, while second
line to piecewise models pwC023, pwC024, pwC026. To convert to
cgs units multiply mass, density and pressure by 1.989 × 1033 g,
6.173× 1017 g/cm3, and 5.548× 1038 g/(cm sec2), respectively.

described in great detail in our previous works [49–59], so we
only summarize the most important features here.

A. Initial data

Our initial rotating star spacetimes possess a helical Killing
vector, kα, that Lie-drags the fluid variables,

Lk(huα) = Lkρ0 = Lks = 0. (1)

Here uα is the 4-velocity of the fluid, ρ0, h, s are the rest-
mass density, enthalpy, and the entropy per unit rest-mass. We
have ρ0h = ρ+ p, where ρ is the total energy density and p is
the pressure.

For the helical Killing vector we follow the definition of
[60] (see also [61]). We decompose kα as

kα = tα + Ωφα, (2)

where we choose tα and φα to be the time and azimuthal coor-
dinate basis vectors associated with an asymptotically inertial
observer, and Ω the angular velocity of the fluid with respect
to the same observer. In a chart {t, xi}, where xi are Cartesian
coordinates, it is tα = δα0 , and φα = (0, φi) = (0,−y, x, 0).
The 4-velocity of the fluid will then be along the helical
Killing vector, i.e. there is a scalar ut such that

uα = utkα = ut(tα + vα) = αut(nα + Uα). (3)

In the above, vi = Ωφi is the velocity with respect to the
inertial frame, while Uα is the spatial velocity with respect
to normal observers (those with 4-velocity nα). In the last
equality, α is the lapse function, that normalizes the normal
vector to the spacelike hypersurfaces which foliate the space-
time, nα = −α∇αt.

For a perfect gas stress-energy tensor and an isentropic ini-
tial configuration the equations of motion yield a first integral,

h

ut
= E , (4)

where E is a constant. The two constants that appear in our
equations {Ω, E} are determined via an iterative scheme. For
the gravitational fields we use the Isenberg-Wilson-Mathews

Initial data models
G4C010 G4C025 pwC023 pwC024 pwC026

ρ0(×10−3) 1.005 1.565 1.902 1.991 2.226

ρ(×10−3) 1.019 1.644 2.065 2.176 2.477

Rx 7.677 7.429 7.774 7.625 7.266

Rz/Rx 0.4727 0.4957 0.4977 0.5015 0.5108

Ry/Rx 0.7500 0.9063 0.9219 0.9375 0.9688

ez 0.8812 0.8685 0.8673 0.8652 0.8597

ΩM 0.01823 0.08043 0.07850 0.08237 0.09138

P (Period) 193.8 138.3 140.8 137.7 130.4

M 0.5623 1.771 1.760 1.805 1.896

M0 0.5900 2.012 1.989 2.047 2.169

J/M2 1.109 0.8516 0.8279 0.8202 0.8003

(M/R)s 0.1000 0.2500 - - -
M/Rx 0.07324 0.2383 0.2264 0.2367 0.2610

T/|W | 0.1543 0.1773 0.1666 0.1661 0.1633

I 10.81 58.77 57.46 58.51 59.70

εz 0.2320 0.05581 0.02771 0.0191 0.006200

δM(×10−4) 0.8237 0.9893 1.129 1.063 1.007

VE(×10−4) 12.13 5.463 8.047 7.753 7.546

Quadrupole estimates
Ė(×10−8) 2.846 14.01 2.918 1.548 0.2017

J̇(×10−7) 8.778 30.84 6.540 3.391 0.4186

rh/M(×10−3) 14.63 7.357 3.441 2.389 0.7774

Timescales
td/M 50 10 10 10 10

ts/M 105 105 106 106 107

TABLE II. Models G4C010, G4C025 are described by a Γ = 4
EoS, while models pwC023, pwC024, pwC026 are described by
a piecewise-polytropic EoS with polytropic indices (Γ1,Γ2) =
(4, 2.5) and are supramassive. Here ρ0 is the rest-mass density,
ρ is the total energy density, Ri are the coordinate radii, ez =√

1− (Ry/Rx)2 is the eccentricity with respect to the z-axis, Ω
is the the angular velocity of the fluid, P is the period, M is the
ADM mass, M0 is the rest-mass, J is the ADM angular momentum,
(M/R)s is the corresponding spherical compaction, β = T/|W |
is the rotational-to-gravitational-potential-energy ratio, I is the mo-
ment of inertia, εz is the ellipticity with respect to the z-axis (Eq.
A9), Ė is the luminosity, J̇ is the angular momentum loss rate, h
is the GW maximum amplitude as predicted by the quadrupole ap-
proximation applied on the initial data configurations, r is the dis-
tance to the source, td is the dynamical timescale [see. Eq. (9)], ts
the secular timescale [see Eq. (12)]. Finally, δM and VE are di-
agnostics to measure the accuracy of the initial data defined in Eq.
(5) and in Eq. (A14) of [18], respectively. To convert to geomet-
ric G = c = 1 or cgs units, use the fact that 1 = 1.477 km =
4.927 µs = 1.989× 1033 g.

(IWM) approximation [68, 69] which assumes a flat confor-
mal metric and maximal slicing. The resulting five elliptic
equations are solved together with Eq. (4) and coupled to a
piecewise EoS as described in [17, 18].

A number of diagnostics are used to describe the initial so-
lutions and explicit formulae are given in the appendix of [18]
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and will not be repeated here. Since the IWM formulation
is used, we have that γij = ψ4fij , where γij is the spatial
metric on the hypersurface, ψ is the conformal factor and fij
the flat metric in spherical coordinates. The angular momen-
tum J = JADM [where JADM is the Arnowitt-Deser-Misner
(ADM) angular momentum] is computed via a surface inte-
gral at infinity or a volume integral over the spacelike hyper-
surface. The kinetic rotational energy is defined as T := 1

2JΩ
(although we are not in axisymmetry we still use this for-
mula because it is gauge-invariant), and the gravitational po-
tential energy is defined as W := MADM −MP − T . Here
MADM = M is the (ADM) mass andMP is the rest-mass plus
internal energy of the star (see e.g. [70]). These expressions
are used then to compute the rotation parameter β. Also the
moment of inertia is defined as I := J/Ω. As a measure of
accuracy of the initial data we provide two diagnostics: The
first one is the difference between the Komar and ADM mass,

δM =
|MK −MADM|

MK
. (5)

For stationary and asymptotically flat spacetimes MK =
MADM

3 [72]. The second diagnostic is the relativistic virial
equation (VE) [73].

The initial-data GW diagnostics involve the second mass
moments

Iij :=

∫
Σt

ρ0u
αxixjdSα (6)

with dSα = ∇αt
√−gd3x. In Appendix A we have de-

rived some useful quantities such as the quadrupole approx-
imation for the luminosity and the GW amplitude, that can
be computed on a spacelike hypersurface in the presence of
a helical Killing vector. However, full GW output, includ-
ing the “junk” radiation inherent in the initial data, is com-
puted in full GR as part of the integration of the field equa-
tions via the Baumgarte-Shapiro-Shibata-Nakamura (BSSN)
formalism [62, 63].

As in [47] we employ the same “benchmark” EoSs. The
first one is a simple Γ = 4 polytrope, while the second is
a piecewise-polytropic EoS with two pieces and a soft core,
where {Γ1,Γ2} = {2.5, 4}. Characteristics of the maximum
mass solutions for spherical stars using these two EoSs are
reported in Table I. The adiabatic constant k, is chosen so
that the value of the rest-mass becomes M0 = 1.5 (in units
of solar mass) at the compaction M/R = 0.2. By choosing
different values of k one can attain larger maximum masses.
A well-known fact that relates the maximum masses of those
models, is that a stiffer EoS can sustain a larger maximum
mass (see below). The same result holds for the maximum

3 Although for non-axisymmetric systems the helical Killing vector (station-
arity in the rotating frame) is incompatible with asymptotic flatness [71],
one can define an approximate asymptotic region in which the GW energy
is small compared with the total energy of the system. The same argument
holds for the existence of the Komar mass that is associated with a timelike
Killing field tα.

ra = 0 : Radial coordinate where the radial grids start.
rb = 106 : Radial coordinate where the radial grids end.
rc = 1.25 : Radial coordinate between ra and rb where

the radial grid spacing changes.
Nr = 384 : Number of intervals ∆ri in r ∈ [ra, rb].
N f
r = 128 : Number of intervals ∆ri in r ∈ [ra, 1].

Nm
r = 160 : Number of intervals ∆ri in r ∈ [ra, rc].

Nθ = 96 : Number of intervals ∆θj in θ ∈ [0, π].
Nφ = 96 : Number of intervals ∆φk in φ ∈ [0, 2π].
L = 12 : Order of included multipoles.

TABLE III. Summary of grid parameters used by COCAL to produce
the five models. N f

r = 128 is the number of points across the largest
star radius which extends from r = 0 to r = 1 in COCAL coor-
dinates, while Nr = 384 is the total number of radial points. The
radial grid is equidistant from r = 0 to r = rc, and non-equidistant
thereafter. The angular grids are equidistant with ∆θj = π/Nθ , and
∆φk = 2π/Nφ in the θ and φ directions respectively. For more
details on the grids used by COCAL see [18].

masses of the axisymmetric solutions. The values of Γ used
are simply to prove a point of principle, rather than address
physical EoS parameters: stiffness is necessary in order for
these triaxial solutions to exist. A higher value of Γ satisfies
the necessary conditions for uniformly rotating triaxial solu-
tions to exist, and this is the main reason behind such a choice.
As discussed in [47] the softening of the core enables us to
compute for the first time supramassive, triaxially deformed,
uniform rotating stars, without increasing further the maxi-
mum polytropic exponent Γ. This was made possible from
the following counter-intuitive fact which does not depend on
the values of the specific polytropic indices: Assume a simple
(any Γ > 2.24) polytrope which in most cases does not sup-
port supramassive triaxial solutions. Then consider a second
two piece polytropic EoS {Γ1,Γ2}, with Γ2 = Γ and a soft
core with Γ1 < Γ. This second EoS is effectively softer than
the first. Thus one expects that the piecewise EoS does not
exhibit triaxial solutions with mass larger than the maximum-
mass spherical solution. This was proven not to be the case
[47], and if the relative difference between the maximum tri-
axial and axisymmetric masses is less than 10%4 it provides
strong evidence of softening in the core of the compact object.

In order to investigate the stability and GW signature of
such solutions we consider five models, G4C010, G4C025,
pwC023, pwC024, and pwC026 whose characteristics are re-
ported in Table II 5. The last three columns are supramassive
solutions while the others are normal ones. The triaxiality6 is

4 The maximum mass of triaxial solutions is always smaller than the maxi-
mum mass of axisymmetric ones.

5 As we mentioned in the introduction all quantities reported are in G =
c = M� = 1 units. This means that if one wants to convert mass to
geometric G = c = 1 units one has to multiply by 1.477 km. For the
angular velocity Ω, one divides by 1.477 km. Similarly to get Ω in cgs
units again one divides by 4.927 µs.

6 Triaxiality is not used in any quantitative way in this paper. It can be de-
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larger for the first column model and diminishes as we move
to more compact stars. This means that the amplitude of the
GW will be larger for the first model and smaller for the last
one.

The models have been computed with the COCAL code,
a second-order finite-difference code whose methods are ex-
plained in [50–54]. For single compact objects it employs a
single spherical patch (r, θ, φ) with r ∈ [ra, rb], θ ∈ [0, π],
and φ ∈ [0, 2π], where ra = 0, rb = O(106M), and M the
total mass of the system (no compactification used). The grid
structure in the angular dimensions is equidistant but not in the
radial direction. The definitions of the grid parameters can be
seen in Table III, along with the specific values used to obtain
the quasi-equilibrium solutions of this work.

B. Evolution

For the evolution we use the ILLINOIS GRMHD code7,
which solves the Einstein field equations in the BSSN for-
malism [62, 63, 70]. The code is built on the CACTUS [76]
infrastructure and uses CARPET8 for mesh refinement, which
allows us to focus numerical resolution on the strong-gravity
regions, while also placing outer boundaries at large distances
well into the wave zone for accurate GW extraction and stable
boundary conditions. The evolved geometric variables are the
conformal metric γ̃ij , the conformal factor φ, (γij = e4φγ̃ij),
the conformally-rescaled, trace-free part of the extrinsic cur-
vature, Ãij , the trace of the extrinsic curvature, K, and three
auxiliary variables Γ̃i = −∂j γ̃ij , a total of 17 functions. For
the kinematic variables we adopt the puncture gauge condi-
tions [77–79], which are part of the family of gauge condi-
tions using an advective “1 + log” slicing for the lapse, and a
“Gamma-driver” for the shift [80].

The equations of hydrodynamics are solved in
conservation-law form adopting high-resolution shock-
capturing methods [56, 57]. The primitive, hydrodynamic
matter variables are the rest mass density, ρ0, the pressure p
and the coordinate three velocity vi = ui/u0. The enthalpy is
written as h = 1 + ε + p/ρ0, and therefore the stress energy
tensor is Tαβ = ρ0huαuβ + pgαβ . Here, ε is the specific
internal energy9.

To close the system an EoS needs to be provided and for
that we follow [58, 59] where the pressure is decomposed as
a sum of a cold and a thermal part,

p = pcold + pth = pcold + (Γth − 1)ρ0(ε− εcold) (7)

fined in various ways, like Ry/Rx, ez , or εz (see Table II) and signifies
the departure from axisymmetry. In GW detection studies, triaxiality is
measured by the ellipticity εz . Notice that the ellipticities of the models
we consider here are larger than typical limits set by LIGO [74]. However,
as isolated pulsars are dim and hard to find, there could exist a population
of undetected pulsars that LIGO has not probed, yet.

7 We do not use Illinois GRMHD, which is the version of the code em-
bedded in the Einstein Toolkit [75].

8 http://www.carpetcode.org
9 This should not be confused with the ellipticity εz .

where

εcold = −
∫
pcoldd(1/ρ0) =

k

Γ− 1
ρΓ−1

0 + const. . (8)

Here k,Γ are the polytropic constant and exponent of the cold
part (same as the initial data EoS) and Γth = 5/3. The con-
stant that appears in the formula above is zero for a single
EoS, but takes different values in a piecewise polytrope where
one has to account for the continuity of pressure at the join
between the different pieces.

The grid structure used in these evolutions is summarized
in Table IV. Typically we use six refinement levels with the
innermost level half-side length being approximately ∼ 1.25
times larger than the radius of the star in the initial data (Rx).
We use 240 × 240 × 120 points for the innermost refine-
ment level, which means that we have approximately 190
points across the NS largest diameter. (For the initial data
construction we used 256 points across the largest NS di-
ameter.) For the innermost refinement level this implies a
∆x ∼ 0.07916̄ = 117 m. This number of points was nec-
essary in order to have accurate evolutions of such stiff EoS
(Γ = 4) which present a challenge for any evolution code.

For the last model pwC026 we have done two extra simu-
lations, as the compaction in this case was very high and the
triaxiality very low. In this model the GW signal was very
weak (rh/M ∼ 10−4) and therefore we wanted to corrobo-
rate our findings by using different resolution and box size for
the outer boundary conditions. On the last two lines of Table
IV the lower resolution simulation has the same outer bound-
ary distance (288) but 80 points across the star radius, while
we have also a simulation with seven refinement levels and the
outer boundary at much larger distance (1152.0) than all other
cases. In all our models we impose equatorial symmetry.

III. RESULTS

NS mergers remnants can be non-axisymmetric configura-
tions which are initially differentially rotating. However, it
is expected that magnetically induced turbulence drives the
star toward uniform rotation. This motivates a study of the
stability of uniformly rotating, triaxial configurations and an
estimate of their GW emission. In particular, it motivates the
following questions that we want to address in this work: Can
a uniformly rotating triaxial star be dynamically stable? If that
is possible, what is the secular fate of such a configuration?

A. Dynamic stability

The dynamical timescale for our stars is

td
M
∼ 1

ΩM
∼
(
M

R

)−3/2

, (9)

and values range from ∼ 10 for the most compact cases to
∼ 50 for G4C010, the least compact model (see Table II). We
find that all of the models considered are dynamically stable.
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FIG. 1. Contour plots on the xy-plane of the rest-mass density ρ0 for the normal models G4C010 and G4C025. Distances are normalized by
the initial data radius along the x-axis Rx(t = 0). The black dashed line signifies the initial data surface, while dashed color lines correspond
to t = 0 level lines of densities {0.2, 0.4, 0.6, 0.8, 1.0} × 10−3 for the G4C010 model. The same color but solid lines correspond to the same
density levels after ten rotation periods. The contour plots of the G4C025 model correspond to {0.2, 0.5, 1.0, 1.3, 1.53} × 10−3. To convert
densities to cgs units multiply by 6.173× 1017 g/cm3.
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FIG. 2. Angular velocity profile across the x-axis (bottom) and the y-axis (top) for the normal models G4C010 and G4C025. The horizontal
gray, dashed line corresponds to the initial data Ω and extends only in the interior of the star (this curve is difficult to see since it coincides
with the red and blue curves inside the star). Red and blue solid lines correspond to the angular velocity after one and ten rotation periods,
while the green line is the Keplerian limit (M/r3)1/2. Vertical brown dashed lines corresponds to the initial data radii along the x and y axes.
Vertical dotted gray lines on the top figures denote the initial radii along the x-axis. To convert Ω in cgs units divide by 4.927 µs.
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Model xmin xmax ymin ymax zmin zmax Grid hierarchy dx N

G4C010 −304 304 −304 304 0 304 {9.5, 19.0, 38.0, 76.0, 152.0, 304.0} 2.53̄ 96

G4C025 −304 304 −304 304 0 304 {9.5, 19.0, 38.0, 76.0, 152.0, 304.0} 2.53̄ 93

pwC023 −304 304 −304 304 0 304 {9.5, 19.0, 38.0, 76.0, 152.0, 304.0} 2.53̄ 98

pwC024 −304 304 −304 304 0 304 {9.5, 19.0, 38.0, 76.0, 152.0, 304.0} 2.53̄ 96

pwC026 −288 288 −288 288 0 288 {9.0, 18.0, 36.0, 72.0, 144.0, 288.0} 2.4 96

pwC026-I −288 288 −288 288 0 288 {9.0, 18.0, 36.0, 72.0, 144.0, 288.0} 2.88 80

pwC026-II −1152 1152 −1152 1152 0 1152 {9.0, 18.0, 36.0, 72.0, 144.0, 288.0, 576.0} 9.6 96

TABLE IV. Grid parameters used for the evolution of each model. Parameter N corresponds to the number of points used to cover the largest
radius of the star. Parameter dx is the step interval in the coarser level. We impose reflection symmetry across the equatorial plane. To convert
to physical units multiply by 1 = 1.477 km.

Figure 1 shows typical contour plots at t = 0 (dashed colored
lines) as well as the same contour plots after ten rotation pe-
riods (solid colored lines). The black dashed line signifies the
initial data surface of the star in the xy-plane as calculated by
COCAL. Of particular importance are the lowest density con-
tours at ρ0 = 0.0002 = 9.16788×10−15 cm−2 (magenta col-
ored). The choice of this particular value can be considered as
one of the largest densities that follow closely the initial data
profile (black dashed line). By following the evolution of this
contour one can have an accurate picture of the surface of the
star. After the junk radiation has propagated away the stars
still retain their triaxiality. But by t = 10 P , all contours tend
to circularize (the one of the highest density is initially circu-
lar). All these contours contract in the x-direction and expand
in the y-direction. The amount of contraction/expansion di-
minishes as one moves towards the center of the star. Thus
the star becomes more axisymmetric. After ten periods the x-
axis has lost 9−8% of its length. For the supramassive models
this picture still holds, although since the ellipticities there are
much smaller the amount of contraction/expansion is some-
what diminished. For the most supramassive model, pwC026,
after ten rotation periods the decrease is ∼ 4% and the ob-
ject is essentially axisymmetric. While density contours are
not gauge-invariant, they yield a qualitative picture that agrees
with the GW signature that we discuss in the next section.

The constant angular velocity profile is well preserved (Fig.
2). The angular velocity across the x-axis (bottom panels) and
the y-axis (top panels) is plotted for the G4C010 and G4C025
models. Red curves correspond to Ω after one rotation period
while blue curves after ten rotation periods. Vertical brown
dashed curves denote the initial data star radii, and the green
curve is the Keplerian limit ΩK = (M/r3)1/2. The less com-
pact the star the closest to the Kepler limit is the “atmospheric
tail” outside the surface of the star. Although the y-axis starts
shorter than the x-axis after ten rotation periods it has “closed
the gap” and the two axes have essentially identical angular
velocity profiles (this gap is the space between vertical brown
dashed and gray dotted lines). This effect is more evident in
the G4C010 model but can be clearly seen in the other most
compact cases like G4C025.

B. Secular fate

Although dynamic stability was straightforward to estab-
lish, that has not been the case with secular stability. After
evolving for more than twenty rotational periods one can see
in Fig. 3 the major characteristics of GW emission. The or-
dinate in the plots is the retarded time tret = t − r?, where
r? = Ra + 2M ln(Ra/(2M) − 1) is the tortoise coordinate
corresponding to areal radius Ra from the source. The fre-
quency of the dominant (l = m = 2) GW mode is twice
the rotational frequency, and has amplitude approximately
one-tenth of the average value of a merging binary system.
The quadrupole-approximation prediction for the GW strain
based on the initial configurations is given by Eq. A6, and is
shown in the plots as a dashed horizontal green line. This
approximate value for the strain is about 50 − 60% of the
maximum amplitude found in the evolution (see also Fig. 4).
The GW amplitude in the more compact models (G4C025)
experiences a more rapid decrease (almost ten times more)
than in the G4C010 case, which has the smallest compaction
(M/R = 0.1). Similar behavior is exhibited in the luminosity
and radiated angular momentum plots. In all cases, after an
initial period that lasts a little over 500 M� (M� = 4.927 µs)
Ė and J̇ intersect the predictions from the quadrupole approx-
imation based on the initial-data (in the plots these are denoted
by the horizontal blue and red dashed lines, Eqs. A2). How-
ever, Ė and J̇ undergo exponential decay in close agreement
with the corresponding exponential decay in the GW ampli-
tude, i.e.,

Ė ∝ J̇ ∝ (rh)2 . (10)

In Fig. 3 we denote the exponential fits for all relevant func-
tions. The evolutionary path of these rotating objects oc-
curs along quasi-equilibrium states as seen in the left panel
of Fig. 5, which shows dE = ΩdJ . After an initial period
of ∼ 500 M�, this law is satisfied in all cases, apart from
a small perturbation at 1050 M� for the most supramassive
case pwC026. As we see from Table IV, the grid structure
of pwC026 is very close to that of models G4C010, G4C025,
pwC023, pwC024. However, pwC026 is only slightly non-
axisymmetric, and, as a result, its GW signal is very weak
– approximately one order of magnitude smaller than the rest.
Therefore, if the outer boundary is not sufficiently far away re-
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Ė

(×
10
−

5 )

∼ e−0.0004t

∼ e−0.00225t G4C010
G4C025

500 1000 1500 2000 2500 3000
tret/M�

−30

−20

−10

0

10

20

30

(r
/

M
)h

(2
2)

+
(×

10
−

3 )

∼ e−0.0002t

G4C010

889 1778 2667 3557 4446 5335
tret/M

0 500 1000 1500 2000 2500 3000
tret/M�

10−3

10−2

10−1

100

101

102

J̇/
M

(×
10
−

6 )

∼ e−0.0004t

∼ e−0.00225t

G4C010
G4C025

500 1000 1500 2000 2500 3000
tret/M�

−15

−10

−5

0

5

10

15
(r

/
M

)h
(2

2)
+

(×
10
−

3 )
∼ e−0.0011t

G4C025

282 564 847 1129 1411 1694
tret/M

FIG. 3. All plots correspond to the normal models G4C010 and G4C025, and horizontal dashed lines are the initial data quadrupole estimates.
Top left is GW power emitted; top right is the dominant l = m = 2 mode of the GW strain for the least compact model G4C010, with vertical
dashed lines corresponding to rotational periods; bottom left is the emitted angular momentum, and bottom right the strain for the G4C025
model. Also denoted are exponential fitting curves. The GW timescales for the G4C010 and G4C025 models are 1/0.0002 = 8895 M and
1/0.0011 = 513 M respectively. To convert Ė and J̇/M to cgs units multiply by 1 = 3.629 × 1059 ergs/sec and 8.988 × 1020 ergs/g
respectively.

flections from there can alter this weak signal and produce the
perturbation seen using the grid pwC026. When we push the
outer boundary to larger values like in pwC026-II, this artifact
is greatly diminished (blue curve on bottom of Fig. 5). As a
final check for the model pwC026 which is the most com-
pact, supramassive and almost axisymmetric we performed
a third run using the coarser resolution pwC026-I. Through
this lower-resolution run we were able to confirm that the GW
characteristics and quantities we quote here are invariant with
resolution.

The kinetic (rotational)-to-gravitational-potential-energy
ratio β remains essentially constant and is equal to the initial
value (see right panel of Fig. 5) during the whole evolution.
For the less compact case G4C010, β slightly decays which is
consistent with the quasi-equilibrium studies of [18].

The thermal energy generated by shocks was also measured
in these simulations by inspecting the entropy parameterK :=
p/pcold, where pcold = kρΓ

0 . With εth = ε − εcold = (K −
1)(Γ − 1)εcold/(Γth − 1), then K > 1 implies shock heated
gas [81]. Since we don’t have any mergers in our problem we
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FIG. 5. Left plot: The first law for the triaxially deformed, uniformly rotating NSs. The top panel corresponds to the normal models G4C010
and G4C025, while the bottom one corresponds to the most supramassive case for two different grid setups pwC026 and pwC026-II from
Table IV. Dashed lines denote the corresponding initial data angular velocities. To convert dE/dJ is cgs units divide by 4.927 µs. Right plot:
rotational-to-gravitational-potential-energy ratio for the same models. Dashed lines denote the initial data values.

didn’t expect any shocks, and this was the case for the bulk of
the stars (K ∼ 1.0).

Although we clearly see that triaxially deformed stars
evolve in a quasi-equilibrium manner towards axisymmet-
ric objects, the key question is whether this evolution is due
mainly to GW emission or to a hydrodynamical reconfigura-
tion? Using the exponential fitting functions in Fig. 3 we read
off the GW decay timescales. These are 5000M� ∼ 104 M
for the G4C010 and 900M� ∼ 500 M for the G4C025 mod-

els. The GW driven bar-mode instability occurs for stars ro-
tating with β > βsec and βsec ≈ 0.14 in the Newtonian in-
compressible limit. This value decreases in GR as the com-
paction increases [45]. The two models discussed here have
β = 0.15, 0.18 (see Table II), and are thus greater the Newto-
nian critical value βsec. The GW timescale is [82]

τGW
bar

M
∼ 2× 10−3

(
M

R

)5

(MΩ)−6(β − βsec)−5 , (11)
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where βsec may be approximated by βsec = 0.115 −
0.048M/M sph

max [83]. Here M sph
max is the maximum spherical

mass for the given EoS. For our cases values are taken from
Table I, which imply that τGW

bar ∼ 108 M for the G4C010 and
τGW
bar ∼ 105M for the G4C025 models, respectively. Supra-

massive models pwC023, pwC024, pwC026 have timescales
τGW
bar ∼ 105M too. We also note that the GW timescales as

calculated from the crude quadrupole estimate,

ts ∼
T

|Ė|
, (12)

and reported in Table II, are in most cases (except for
G4C010) longer than the timescales obtained from Eq. 11.
Moreover, our configurations do not evolve toward Dedekind-
like ellipsoids as in the case of the bar-mode unstable Newto-
nian configurations [12, 84]. It is possible that the nonlinear
growth of the instability is halted by mode-mode coupling, as
our triaxial configuration contains modes beyond m = 2.

Another possibility for a GW driven secular instability is
the non-axisymmetric r-mode. For the l = m = 2 mode the
timescale is [85]

τGW
r

M
∼ 10

(
M

R

)4

(MΩ)−6 , (13)

which implies τGWr ∼ 107 M for the G4C010 and τGWbar ∼
105M for the G4C025 respectively. These timescales again
are much longer than the timescales found numerically. Also,
in this case the wave frequency fGW = 4/3frot therefore this
possibility is also ruled out by our data, for which fGW =
2frot.

Numerical viscosity, although nonzero, can in principle be
responsible. The presence of viscosity can damp a GW ra-
diation reaction-induced bar-mode instability [86], although
it needs to be properly tuned. However, we evolved with
two different resolutions and found no change in the behav-
ior which might have been expected if numerical viscosity
were significant. Also we repeated the calculation with the
WHISKY code [87–90] and got very similar results. It may
be that even a small numerical viscosity over time is suffi-
cient to damp the mode, given the long timescale (� tdyn)
for GW emission. If we modeled numerical viscosity by a
turbulent viscosity ν ∼ αRcs ∼ α(R/M)1/2, where cs is the
sound speed, then a damping time of 104 M associated with
this would only require α ∼ 10−3 to be effective. Such a
small value might go unnoticed by a modest resolution study.
On the other hand, if viscosity were to dominate GW dissi-
pation, one still expects that the bar mode will be triggered
above β = βsec, since viscosity alone can drive the instability,
and the triaxiality would grow [91], but this is not observed.
Hence we conclude that although our triaxial stars evolve to-
wards axisymmetry, it is not the bar or r-mode secular effects
that are mainly responsible for this fate but rather a hydrody-
namical reconfiguration of the initial data.

IV. DISCUSSION

In this work we investigated the stability properties and
gravitational wave signatures of uniformly rotating, triaxial
NSs in GR. Using the COCAL code we have constructed nor-
mal as well as supramassive solutions in quasi-equilibrium
and we evolved them for the first time with the ILLINOIS
GRMHD code.

All five solutions that we considered are dynamically stable
and evolve secularly towards an axisymmetric configuration.
Although we monitored the evolution for more than twenty ro-
tation periods we were unable to probe the final (secular) fate
of these stars, which is orders of magnitude longer. We cor-
roborated our findings by using different resolutions, place-
ment of outer boundary conditions, atmospheric treatments,
and simulations with a different (WHISKY) code.

According to [45] a perturbed axisymmetric star with β >
βsec will be secularly unstable and develop a bar mode. In our
case the initial models already contain a bar perturbation and
are rotating beyond the secular bar-mode instability limit, but
we found no further growth of a bar mode in the time frame of
our simulations, which was shorter than the predicted, theoret-
ical secular timescale. On the contrary we observed the decay
of the star’s triaxiality, which is in accordance with previous
investigations [48].

On the other hand in [18] we constructed sequences of ax-
isymmetric and triaxial stars using both the conformal flatness
and the waveless approximation for a simple Γ = 4 polytrope
with compactions M/R = 0.1, 0.2, 0.3 (see Fig. 6 in [18]).
As we have seen, triaxial sequences for the larger compactions
have essentially constant T/|W | all the way from the bifurca-
tion point to the mass shedding limit. The sequence of smaller
compaction (M/R = 0.1) exhibits a small increase in T/|W |
as one moves toward the mass shedding limit. This is con-
sistent with right panel of Fig. 5. Our initial (t = 0) triaxial
models are highly rotating and are close to the mass shedding
limit. The most compact ones (G4C025, pwC026) evolve to-
ward the bifurcation point with a constant T/|W |, while the
less compact one (G4C010) loses a small amount of rotational
energy. Therefore the quasi-equilibrium picture is in agree-
ment with the actual dynamical evolution of such systems in
full general relativity.
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Appendix A: Quadrupole formulae in helical symmetry

For an estimate of the GWs one can compute the time
derivatives of the quadrupole mass moments. Typically the
quadrupole formula reads

hij(t, x
a) =

2

r

[
d2 –ITTij
dt2

]
ret

(A1)

where –Iij := Iij− 1
3fijIkk, and –ITTij is the transverse trace-less

reduced quadrupole moment [92]. The second time deriva-
tives are computed at a retarded time. The corresponding
gravitational wave luminosity and the angular momentum car-
ried away per unit time are

dE

dt
=

1

5
〈
...
–I ij

...
–I ij〉,

dJ i

dt
=

2

5
εijk〈–̈Ija

...
–I ka〉 , (A2)

where 〈·〉 denote an average over several wavelengths. In
full dynamical spacetimes there is no unique definition of
the quadrupole moment but typically one uses Eq. (6) as a
generalized integral over the hypersurface Σ, [93] which can
be thought as an Euclidean integral over a weighted density
ρ∗ = ρ0u

t√−g. Its time derivative

d

dt
Iij =

∫
Σ

ρ0u
α(xivj + xjvi)dSα , (A3)

can be obtained by using the conservation of rest mass ∂tρ∗+
∂i(ρ∗v

i) = 0, and integration by parts [94].
Another way to obtain the same result is to employ the

transport theorem that says that for any density ρ∗ that satis-
fies the above continuity equation and any function Q(t, xi),
we have

d

dt

∫
Vt

ρ∗QdV =

∫
Vt

ρ∗
DQ

Dt
dV , (A4)

where DQ
Dt = ∂tQ + vi∂iQ is the Lagrangian derivative of

Q. For a fluid velocity vi = Ωφi, we have DQ/Dt = LkQ,
and thus we can write a fully 4-dim version of the classical
theorem as

d

dt

∫
Σt

Qρ0u
αdSα =

∫
Σt

LkQρ0u
αdSα . (A5)

A straightforward proof of Eq. A5 can be obtained if we con-
sider f(t) =

∫
Σt
Qρ0u

αdSα. Let Σ = Σ0 and Σt = ψt(Σ),

where tα is the generator of the diffeomorphism family ψt.
Then

f ′(0) = lim
t→0

1

t

{∫
Σt

Qρ0u
αdSα −

∫
Σ

Qρ0u
αdSα

}
= lim
t→0

1

t

{∫
Σ

ψ−t(Qρ0u
αdSα)−

∫
Σ

Qρ0u
αdSα

}
=

∫
Σ

lim
t→0

1

t
{ψ−t(Qρ0u

αdSα)− (Qρ0u
αdSα)}

=

∫
Σ

Lt(Qρ0u
αdSα) =

∫
Σ

Lt(Qρ0u
t√−g)d3x

=

∫
Σ

Lk(Qρ0u
t√−g)d3x− Ω

∫
Σ

Lφ(Qρ0u
t√−g)d3x

=

∫
Σ

Lk(Qρ0u
t√−g)d3x− Ω

∫
Σ

Di(Qρ0u
tαφi)dS

=

∫
Σ

Lk(Q)ρ0u
αdSα .

To obtain the last line we converted the second integral in
the previous line over a divergence, to a surface integral that
vanishes, and also used the continuity equation in the form
Lk(ρ0u

t√−g) = 0.
For the computation of Eq. (A2) we need to compute the

third material derivatives of xixj . We denote by φi = (φA, 0)
where capital letters take values in {1, 2}. Then φA =
−εABxB and the nonzero components are

DxA

Dt
= ΩφA := vA

DvA

Dt
= −Ω2xA := aA

DaA

Dt
= −Ω3φA .

Setting $i = (xA, 0) we have

İij(0) = Ω

∫
Σ

ρ0u
α(xiφj + xjφi)dSα ,

Ïij(0) = −Ω2

∫
Σ

ρ0u
α($ixj − 2φiφj + xi$j)dSα ,

...
I
ij

(0) = −Ω3

∫
Σ

ρ0u
α(φixj + 3$iφj + 3φi$j + xiφj)dSα.

Using the derivatives of the multiple moments above one
can compute the luminosity or the angular momentum radi-
ated from Eq. A2. For the GW strain, assuming rotation
around the z-axis, we have

[hAB ] =
2

r

[
(Ï11 − Ï22)/2 Ï12

Ï21 −(Ï11 − Ï22)/2

]

=

[
h+ h×
h× −h+

]
.

For the case of an exact triaxial ellipsoid the two elliptical
polarization modes for head on observation along the z-axis,



12

we set

h(+,×) =
4Ω2

r
(I1 − I2) (cos(2Ωt), sin(2Ωt)) , (A6)

where Ik are the principal moments of inertia. Then the emit-
ted power and angular momentum will be,

|Ė| =
32

5
(I1 − I2)2Ω6, (A7)

|J̇ | =
32

5
(I1 − I2)2Ω5. (A8)

A parameter which is often mentioned is called ellipticity
of the source is defined as ε := |I1 − I2|/I3. Although there
is no rigorous counterpart in GR we can generalize as

εz :=
|I11 − I22|
I11 + I22

. (A9)

This is the quantity that is reported in Table II.
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