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Advanced LIGO detectors at Hanford and Livingston made two confirmed and one marginal
detection of binary black holes during their first observing run. The first event, GW150914, was
from the merger of two black holes much heavier that those whose masses have been estimated
so far, indicating a formation scenario that might differ from “ordinary” stellar evolution. One
possibility is that these heavy black holes resulted from a previous merger. When the progenitors
of a black hole binary merger result from previous mergers, they should (on average) merge later,
be more massive, and have spin magnitudes clustered around a dimensionless spin ∼ 0.7. Here we
ask the following question: can gravitational-wave observations determine whether merging black
holes were born from the collapse of massive stars (“first generation”), rather than being the end
product of earlier mergers (“second generation”)? We construct simple, observationally motivated
populations of black hole binaries and we use Bayesian model selection to show that measurements
of the masses, luminosity distance (or redshift) and “effective spin” of black hole binaries can indeed
distinguish between these different formation scenarios.

I. INTRODUCTION

The observation of gravitational waves (GWs) from
merging black hole (BH) binaries was a milestone in
physics and astronomy [1–3]. During their first observ-
ing run (O1), the Advanced LIGO detectors detected two
GW events (GW150914 and GW151226) and a marginal
candidate LVT151012, which is also likely to be of astro-
physical origin. The second observing run (O2) is cur-
rently ongoing, and Advanced Virgo is expected to join
the detector network soon. Dozens of BH mergers may
be detected by the end of O2 or in the third run (O3),
allowing for statistical studies of their populations.

These events can further our understanding of the for-
mation channels of binary BHs [4], because different as-
trophysical scenarios predict different binary properties.
As the number of detections grows, a statistical analy-
sis of the observed binary parameters should eventually
allow us to identify or constrain the physical processes
responsible for the formation and merger of compact bi-
naries. Currently favored scenarios include stellar evo-
lution of field binaries [5] and the dynamical capture of
BHs in globular clusters [6]. Recent work showed that
both field formation [7–14] and cluster formation [15–18]
are broadly compatible with current Advanced LIGO ob-
servations [4].

It is quite likely that both field and cluster forma-
tion channels are at work in nature. The first event,
GW150914, was the most surprising, because the merg-
ing BHs are much heavier that those whose masses have
been estimated so far in X-ray binaries [19, 20], indicating
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a formation scenario that might differ from “ordinary”
stellar evolution. Alternative theoretical scenarios which
could explain the unexpected properties of GW150914 in-
clude formation via hierarchical triples [21–23], a Popula-
tion III origin for the binary members [24–26], chemically
homogeneous evolution in short-period binaries [27–29],
and a primordial origin for the merging BHs [30, 31].

One possibility to explain the high mass of the merg-
ing BHs in GW150914 is that these BHs did not form
following stellar collapse, but rather from previous BH
mergers. Field formation scenarios typically predict long
delay times between the formation and merger of a BH
binary [9], so repeated mergers seem unlikely. However
gravitational encounters are more common in dense stel-
lar environments, and some scenarios suggest that re-
peated mergers may be possible [32–34]. The most likely
environment to host multiple mergers are nuclear clus-
ters [32], which present larger escape speeds compared to
globular and open clusters, and can therefore more eas-
ily retains merger remnants with substantial recoils [35].
Stellar-mass BH binaries may also form in AGN gaseous
discs [36], where migration traps can be invoked to as-
semble multiple generations of mergers [37]. Primordial
BHs are also expected to merge very quickly [30, 31], so
the possibility of repeated mergers in this scenario should
not be excluded [38].

In this paper we ask the following question: can GW
observations determine whether merging BHs such as
those in GW150914 were born directly from the collapse
of massive stars (“first-generation” BHs, henceforth 1g)
rather than being the end product of previous mergers
(“second-generation” BHs, henceforth 2g)?

Roughly speaking, one can expect mergers to leave sev-
eral statistically observable imprints in 2g BHs, namely:
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FIG. 1. Cartoon sketch of the three possible scenarios for the merger of two BHs. First generation (1g) BHs resulting from
stellar collapse can form second generation (2g) BHs via mergers. Imprints of these formation channels are left in the statistical
distribution of masses, spins and redshift of the detected events.

• 2g BHs should be more massive than BHs born
from stellar collapse;

• quite independently of the distribution of spin mag-
nitudes following core collapse (which is highly un-
certain [39]), the spin magnitudes of 2g BHs should
cluster (on average) around the dimensionless spin
∼ 0.7 resulting from the merger of nonspinning
BHs [40];

• statistically, the merger of BH binaries including
2g components should occur later (i.e., at smaller
redshift or luminosity distance from GW detectors)
because of the delay time between BH formation
and merger.

In this paper we make these arguments more quantita-
tive and rigorous by developing a simple but physically
motivated model to describe the bulk theoretical proper-
ties of 1g and 2g binary BH mergers (Section II). Then we
consider a set of present and future GW detectors and we
simulate observable distributions by selecting detectable
binaries and estimating the expected measurement er-
rors on their parameters (Section III). Finally we set up
a Bayesian model selection framework (Section IV) to
address what can be done with current observations, and
to quantify the capabilities of future detectors to distin-
guish between different models (Section V). We conclude
by summarizing our results and pointing out possible ex-
tensions (Section VI).

II. THEORETICAL DISTRIBUTIONS

Our goal in this section is to develop a simple prescrip-
tion to build populations of binary BHs. Our greatly
oversimplified model is not meant to capture the com-
plexity of binary evolution in an astrophysical setting,
but just the main features distinguishing 1g and 2g BHs.

As illustrated by the cartoon in Figure 1, we con-
struct three theoretical distributions, labeled by “1g+1g”,
“1g+2g” and “2g+2g”. In this context, “1g” means that
one of the binary components is a first-generation BH
produced by stellar collapse, whereas “2g” means that
it is a second-generation BH produced by a previous
merger.

A. The 1g+1g population

Following the LIGO-Virgo Scientific Collaboration [3],
for the 1g+1g population we adopt three different pre-
scriptions for the distribution of source-frame masses:

(i) Model “flat”: we assume uniformly distributed
source-frame masses m1 and m2 in the range mi ∈
[5M�, 50M�] (i = 1, 2), where hereafter m1 > m2.

(ii) Model “log”: we take the logarithm of the source-
frame masses to be uniformly distributed in the
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same range, so that the probability distribution
p(m1,m2) ∝ 1/m1m2.

(iii) Model “power law”: we adopt a power-law dis-
tribution with spectral index α = −2.5 for the pri-
mary BH (i.e. p(m1) ∝ mα), while the secondary
mass is uniformly distributed in m2 ∈ [5M�,m1].

The upper limit of 50M� was chosen to be consistent
with current LIGO compact binary coalescence searches,
and it excludes “by construction” intermediate-mass BH
searches, discussed e.g. in [41]. Moreover, pair insta-
bility and pulsation pair instability in massive helium
cores [42, 43] may inhibit the formation of 1g BHs with
masses larger than ∼ 50M� [44]. If multiple mergers oc-
cur through mass segregation in stellar clusters, the more
massive objects will tend to form binaries, thus increasing
the component masses of 1g+2g and 2g+2g populations.
Our 50M� upper mass limit is therefore conservative, be-
cause physical mechanisms such as pair instabilities and
mass segregation would further separate the mass dis-
tributions of populations involving multiple mergers and
make them more easily distinguishable.

Given the great uncertainties on the spin magnitude
and orientation of binary BHs [45–48], in all three cases
we assume the dimensionless spin magnitudes χ1,2 to be
uniformly distributed in [0, 1], and their directions to
be isotropically distributed1. We are only interested in
the global statistical properties of the population. Since
isotropic spin distributions stay isotropic under preces-
sion and gravitational radiation reaction [51, 52], the as-
sumption of isotropy will hold also at the small separa-
tions relevant for GW observations. For this reason there
is no need to carry out post-Newtonian evolutions of the
spin distributions for individual binaries of the kind dis-
cussed in [52–54].

B. The 2g+2g population

In order to construct the 2g+2g population we use the
following procedure. We randomly extract two binaries
from a given 1g+1g population. For these binaries, we
estimate the final mass Mf and spin χf of the merger
remnant using the numerical relativity fitting formulas
of Refs. [55, 56]2 as implemented in [54]. These masses

1 Rodriguez et al. [48] argued that massive field binaries should
typically have aligned spins because “heavy” BHs receive small
supernova kicks that are unable to tilt the orbit [49, 50], while the
spins of massive binaries produced in dense stellar environments
should be isotropically distributed. A more detailed investigation
of the correlation between spin alignment and binary BH forma-
tion requires astrophysical modeling that is beyond the scope of
this paper (see e.g. [45, 50]).

2 There are several alternative fitting formulas for the final masses
and spins [57–63]. The difference between different prescriptions
is smaller than measurement errors in GW observations, and
therefore the choice of a particular fitting formula is of no con-
sequence for our present purpose.

and spins are used as input for the second round of binary
mergers.

To perform meaningful comparison with the 1g+1g
model described above, we again restrict our popula-
tion to binaries with component masses in the range
[5, 50]M�, because this is the mass range targeted by
LIGO compact binary coalescence searches.

C. The 1g+2g population

The 1g+2g distribution is the obvious mixture of the
two: we draw one binary from the 1g+1g distribution,
merge it to obtain a 2g BH, and then consider the merger
of this 2g BH with a 1g BH.

D. Redshift distribution

The redshift distribution of BH mergers in the three
different populations should be different, because on av-
erage 2g mergers are expected to happen later than
1g mergers. We can estimate the delay times between
the formation and merger of a BH binary using the
quadrupole formula

da

dt
= −64

5

q

(1 + q)2

M3

a3

G3

c5
, (1)

with the result

t =

ˆ 0

a

dt

da′
da′ =

5

256

(1 + q)2

q

a4

M3

c5

G3
. (2)

If the binary initial separations a are drawn from a log-
flat distribution (i.e., dn/da ∝ 1/a), the distribution of
the merger times is also log-flat (cf. [26]):

dn

dt
=
dn

da

da

dt
∝ 1

a4
∝ 1

t
. (3)

The “lookback time” tL is given by [64]

tL =
1

H0

ˆ z

0

dz

(1 + z)
√

ΩM (1 + z)3 + ΩΛ

, (4)

where we assume Ωk = 0, ΩM = 0.307, ΩΛ = 0.693 and
H0 = 67.7 kms−1Mpc−1 [65]. From the lookback time we
can compute the time tL(z1) − tL(z2) necessary for the
Universe to evolve from redshift z1 to redshift z2.

We distribute the 1g+1g sources uniformly in comov-
ing volume with redshifts z < 2. For the 1g+2g popula-
tion, we assume that 2g BHs formed as some redshift z̃
drawn from the same distribution used for 1g+1g bina-
ries. We then extract a delay time tD from a flat distri-
bution in log(tD) in the range tD ∈ [10−4 Gyrs, tL(z̃)].
The lower limit is very conservative, and it roughly corre-
sponds to the merger time for a 10M� BH binary evolv-
ing from an initial orbital separation a = 10R�. The
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FIG. 2. Theoretical distribution of the observable parameters u = {M, q, z, χeff} for 1g+1g (blue), 1g+2g (green) and 2g+2g
(red) populations, assuming the “flat” (top), “log” (middle) and “power law” (bottom) mass distributions.

redshift z of a 1g+2g merger is then given by the numer-
ical solution of the equation

tL(z̃)− tL(z) = tD . (5)

Finally, for the 2g+2g population we extract two val-
ues z̃1, z̃2 from the 1g+1g distribution. The redshift z
of a 2g+2g merger follows again from a numerical so-
lution of Eq. (5), with the difference that now we set
z̃ = min(z̃1, z̃2).

In Sec. V D we will discuss how time delay prescriptions
affect our results.

E. Measurable parameters

For concreteness and simplicity, we will characterize
each binary by its total mass M = m1 +m2, mass ratio
q = m2/m1 ≤ 1, redshift z and “effective spin” [66]

χeff =
1

M

(
S1

m1
+

S2

m2

)
· L̂ . (6)

The effective spin (a mass-weighted sum of the projection

of the spins Si = m2
iχiŜi along the orbital angular mo-

mentum L) is a constant of the motion in post-Newtonian

evolutions, at least at 2PN order [52, 67]. It is also the
easiest spin parameter to measure [66, 68].

Let us introduce a vector u whose components are the
observable variables to use in our statistical analysis, i.e.

u = {M, q, z, χeff} . (7)

The components of this vector will be labeled by an in-
dex j = 1, ..., J such that u1 = M , u2 = q, etcetera; a
capital Latin index J will denote the dimensionality of
the vector u, i.e. the number of observables considered
in the analysis. Each binary in our catalog is character-
ized by a specific set of observable properties ū(i), where
the superscript index (i = 1, ..., I) labels entries in our
synthetic catalog.

The theoretical distributions of measurable source pa-
rameters u = {M, q, z, χeff} for 1g+1g, 1g+2g and
2g+2g events are compared in Figure 2. Each row corre-
sponds to one of the three mass distributions described
in Section II A.

The mass distributions have some noteworthy features.
First of all, and quite obviously, 2g BHs have higher
component masses. Therefore the total mass is higher
when 2g BHs are present (for any given assumption on
the mass distribution), and this effect is most notable
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FIG. 3. Spin magnitude distributions for primary (χ1), secondary (χ2) and post-merger (χf) BH spins in each of the various
models used in this paper. On average, mergers tend to produce BH spins clustered around ∼ 0.7, quite independently of the
progenitor parameters (cf. Figure 3 and the left panels in Figures 4 and 5 of Ref. [40]).

for the 2g+2g distributions. Mergers also tend to in-
crease the number of comparable-mass binaries, in part
because of the fixed mass range for the component masses
(mi ∈ [5, 50]M�). For the “power law” mass function,
the mass ratio of the 1g+2g population peaks at q = 0.5.
This is because the mass distribution of the primary BH
is strongly peaked at the low end of the range (i.e., at
∼ 5M�), so many 2g binaries are nearly equal mass, with
component masses close to 5M�.

Redshift distributions also follow the expected trend:
most 1g+1g events occur at large redshift, whereas merg-
ers involving one or two 2g BHs occur (on average) at
smaller redshift, because there is a time delay between
the formation of 1g BHs via core collapse and their sub-
sequent merger.

The most striking differences are found in the distribu-

tions of individual spins. To better illustrate this point,
in Figure 3 we show the distribution of the individual
BH spins (χ1, χ2), as well as the distribution of the spin
of the remnant χf . As discussed in [40], from a statisti-
cal point of view the effect of mergers is to “cluster” BH
spins around χf ∼ 0.7, quite independently of the pro-
genitor parameters. While the 1g+1g spin magnitudes
are uniform in the range [0, 1] by construction, spin dis-
tributions become peaked at ∼ 0.7 when 2g BHs are in-
volved. This clustering is evident in the distribution of
primary spins χ1 for the 1g+2g and 2g+2g cases, and
in the distribution of secondary spins χ2 for the 2g+2g
case. For the 1g+2g population, the peak at χ2 ∼ 0.7 is
less pronounced. This is because the lower-mass BH is
most likely 1g, and the spin distribution of 1g BHs is by
construction uniform in [0, 1].
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Unfortunately low-SNR GW observations of merger
events are not very sensitive to χ1 and χ2, but rather
to the effective spin χeff defined in Eq. (6). The right
column of Figure 2 shows that the effect of mergers is
considerably smeared out in χeff , but more binaries with
χeff ∼ 0 are expected if all sources are 1g BHs. Measure-
ments of χeff may still be sufficient to distinguish between
different populations, especially when comparing 1g+1g
against either 1g+2g or 2g+2g. Discriminating between
BH progenitors should be considerably easier with future
detectors, when high-SNR events will allow for more pre-
cise measurements of χ1, χ2 and χf [69–71] .

F. Single detections

In the rest of this paper we will study how statistical in-
ference from several detections can be used to constrain
the underlying BH population. However, it is possible
that single detections with specific parameters can al-
ready provide smoking gun evidence for the occurrence
of multiple mergers.

One possibility, as mentioned in Section II A, is that
pair instabilities may prevent the formation of 1g BHs
with masses sensibly above ∼ 50M� [42–44]. If this is in-
deed the case, a single detection of a merging BH binary
where one of the components has mass larger than 50M�
would indicate the occurrence of multiple mergers. This
argument, however, relies on two crucial assumptions:
(i) that 1g BHs always form from stellar collapse, while
more exotic formation channels (e.g. involving primor-
dial BHs) may produce massive BHs without invoking
multiple mergers; (ii) that pair instabilities in core col-
lapse do indeed prevent the formation of massive BHs.
Pair instabilities, pair instability pulsations and the ex-
act value of the maximum BH mass that can be produced
via core collapse are all topics of current research [44].

Another possibility involves accurate measurements of
the component spins through the detection of a single
nearby, non face-on binary merger with comparable, low
masses and many precession cycles in the LIGO band.
Unfortunately, parameter estimation studies suggest that
current-generation detectors could allow dimensionless
spin measurement errors ∼ 0.3 in best-case scenarios [72].
Errors of this magnitude are comparable to the width of
the peaks in the spins distributions shown in Fig. 3 and
there is significant uncertainty in the spin magnitude dis-
tribution of astrophysical BHs, so it seems unlikely that
single spin measurements may allow us to tell apart 1g
BHs from 2g BHs, at least in the near future.

III. OBSERVABLE DISTRIBUTIONS

From the theoretical distributions described in Sec-
tion II, we construct observable distributions by (i) select-
ing detectable binaries according to a detection statistic,

such as a threshold in the signal-to-noise ratio (SNR),
and (ii) folding in measurement errors.

A. Detection probability

We first assign a detection probability κ(i) < 1 to each
binary in our catalogs. This number takes into account
the detector sensitivity and antenna pattern, as well as
the (random) sky position of the source. We compute κ(i)

following the procedure outlined in Ref. [12], where an as-
trophysical catalog of binaries produced using the Star-
track population synthesis code was filtered to produce
similar catalogs of observable binaries for a specific set of
GW detectors. This procedure is briefly reviewed below.

Each binary produces a GW strain h(t) and an expec-
tation value for the SNR

ρ2 = 4

ˆ ∞
0

|h̃(f)|
Sn(f)

df , (8)

where Sn(f) is the noise power spectral density of the

detector and h̃(f) is the Fourier transform of the strain
h(t). The strain is computed using the IMRPhenomC
waveform model [73]. In this paper we consider noise
power spectral densities for the first AdLIGO observing
run (O1), the Advanced LIGO design sensitivity [74], A+
(Advanced LIGO with squeezing) and Voyager (the most
advanced instrument that can be hosted in facilities sim-
ilar to LIGO) [75].

For any binary in our catalog we can compute ρopt, i.e.
the single-detector SNR for a binary that is optimally
located and oriented in the sky. We then select those
binaries in the catalog that are above a detection thresh-
old ρopt ≥ ρthr = 8. This criterion has often been used
as a simple, reasonable proxy for a more realistic calcu-
lation of GW detection rates in multi-detector networks
[12, 76]. Then we compute the detection probability as

κ(i) = P
(
w(i)

)
, (9)

where the function P (w(i)) is the cumulative distribution

function for the projection parameter w(i) ≡ ρthr/ρ
(i)
opt.

This cumulative distribution function takes into account
the geometrical “peanut factor” that characterizes the
sensitivity of the detector to the source sky location, incli-
nation and polarization (see [12] and references therein).
Roughly speaking, w(i) = 1 means that the source is in
a “blind spot” of the detector, while w(i) = 0 in the
high-SNR limit. A tabulated version of P (w(i)) is pub-
licly available3; we use standard spline interpolation to
compute this function for generic values of w(i).

3 www.phy.olemiss.edu/∼berti/research

http://www.phy.olemiss.edu/~berti/research
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FIG. 4. Blue: relative errors on the total mass M (left), mass ratio q (middle) and redshift z (right) as computed in Ref. [77].
Red: resampling of these data, obtained as described in Section III B. The top panels show scatter plots of the relative error
on each parameter as a function of the value of that parameter for the source. The bottom panels show the same information
as a histogram.

B. Measurement errors

Ideally we should compute measurement errors for
each binary in the catalog using Markov-Chain Monte
Carlo methods and use the obtained posteriors to per-
form model selection. This is computationally expensive,
and unnecessary from the point of view of our proof-of-
principle analysis. For our present purpose we adopt a
much simpler prescription, described below.

We build on study by Ghosh et al. [77], who computed
BH binary measurement errors using the lalinference
code [78] (see also [79–82] for more work on the subject).
In particular, we use their results for aligned-spin BH
binaries detected by a network of 3 advanced detectors.
Their data set provides 1σ errors on several quantities,
including the total mass M , mass ratio q and redshift z.
These are shown in blue in Figure 4.

The data set is too sparse to perform an efficient bin-
ning and interpolation in three dimensions (M, q, z). In
order to partially account for the expected degeneracies
(e.g., close binaries will generally have smaller errors on
the masses), we adopt the following procedure. Consider
a binary in our catalog with parameters M̄, q̄, z̄. To

estimate measurement errors on the parameters of this
binary, we consider the 5 “closest” binaries in the data
set of Ref. [77], and compute the average and standard
deviation of their measurement errors. Here “closest” is
defined in the following sense: given the maximum and
minimum value of each of the three parameters (M, q, z),
we rescale their actual values so that these parameters are
distributed in a cube of size one; then we compute the
Euclidean distance between binaries in this cube. The
average and standard deviation from the 5 closest bi-
naries are then used to extract the measurement errors
σM̄ , σq̄, σz̄ from a normal distribution. The red dots and
histograms in Figure 4 show the measurement errors ob-
tained from this resampling. The obtained distributions
look remarkably close to the original data. Errors on the
redshift are slightly overestimated, so (if anything) our
resampling procedure seems to yield conservative predic-
tions. Estimates for the errors on χeff were not computed
in Ref. [77], so we assume σχeff

= 0.1 for all binaries mea-
sured by LIGO at design sensitivity. This rough estimate
is quite conservative, and it is consistent with measure-
ment errors in the first GW detections [3].

Ref. [77] computed parameter estimation errors for the
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LIGO-Virgo network at design sensitivity. Fisher matrix
arguments [83] suggest that the capabilities of other de-
tectors can be estimated rescaling the errors on the total
mass, mass ratio, luminosity distance and χeff by the ra-
tio of SNRs, i.e.

σDetector = σLIGO
ρLIGO

ρDetector
. (10)

Luminosity distance and redshift are related by

DL =
1 + z

H0

ˆ z

0

dz√
ΩM (1 + z)3 + ΩΛ

, (11)

(where we use units such that c = 1), so that

dDL

dz
=

DL

1 + z
+

1 + z

H0

√
ΩM (1 + z)3 + ΩΛ

. (12)

The error on the redshift σz is related to the error on DL

by (
σz
DL

dDL

dz

)2

=

(
σDL

DL

)2

+

(
σH0

H0

)2

(13)

where we assumed σΩΛ
, σΩΛ

' 0 (see e.g. [84, 85]). Given
recent discrepancies in the determination of H0, we as-
sume σH0

/H0 = 0.1 [86–88].

C. Binning

Recall that each binary is characterized by a vector
of observable parameters u = {u1, . . . , uJ}. If (for sim-
plicity) we momentarily neglect measurement errors, the
observable distribution is just a sum of Dirac deltas cen-
tered at ū(i), and each delta is weighted by the detection
probability κ(i):

r̃(u, λ) =

∑I
i=1 κ

(i)
∏J
j=1 δ

(
uj − ū(i)

j

)
∑I
i=1 κ

(i)
, (14)

where λ labels the model (cf. Section IV) and the de-
nominator ensures normalization. Using the procedure
described in Section III B we can obtain estimates of the
1σ errors on the measurement of each parameter. The
i-th binary in the catalog now has estimated parameters
ū(i) with errors σ(i) = σ(ū(i)). Assuming that errors are
normally distributed and neglecting degeneracies, we can
substitute the Dirac deltas of Eq. (14) with Gaussian dis-
tributions:

r̃(u, λ) =

∑I
i=1 κ

(i)
∏J
j=1N

(
uj ; ū

(i)
j , σ(i)

)
∑I
i=1 κ

(i)
, (15)

where

N
(
uj ; ū

(i)
j , σ(i)

)
=

1

σ(i)
√

2π
exp

(
−
uj − ū(i)

j

2σ2 (i)

)
. (16)

Next, we need to bin the distributions r̃(u, λ). In each
direction j, we construct bins kj with extrema bkj and
Bkj , i.e. uj ∈ (bkj , Bkj ). The function r̃(u, λ) in each
multi-dimensional bin {k1, ..., kJ} is given by the integral

r̃k1,...,kJ (λ) =

ˆ Bk1

bk1

du1...

ˆ BkJ

bkJ

duJ r̃(u, λ)

=

∑I
i=1 κ

(i)
∏J
j=1

´ Bkj

bkj
N
(
uj ; ū

(i)
j , σ(i)

)
duj∑I

i=1 κ
(i)

. (17)

In practice, we spread each source over multiple bins be-
cause of measurement errors (see [89, 90] for a similar
approach in the LISA context). Eq. (17) is correctly nor-
malized to 1 only if the bins kj span the entire support
of r̃(u, λ). When substituting Dirac deltas with Gaussian
distributions we are adding support in the whole range
[−∞,+∞] for each of the uj ’s, and inevitably we end up
using a finite range. For simplicity, we just renormalize
r̃k1,...,kJ (λ) such that∑

k1

...
∑
kJ

r̃k1,...,kJ = 1 . (18)

From now on we will identify the bins by a multi-index
variable k = {k1, ..., kJ}, so (for example) we can write∑
k fk ≡

∑
k1
...
∑
kJ
fk1,...,kJ for any binned quantity f .

D. Putting the pieces together

Examples of observable distributions are given in Fig-
ure 5 for Advanced LIGO at design sensitivity (top) and
Voyager (bottom) assuming the “flat” mass function. In
each panel, dashed lines show the theoretical distribution
for the 1g+1g, 1g+2g and 2g+2g populations, as already
presented in Figure 2. The histograms show the observ-
able population, i.e. the distribution of detectable bina-
ries, where the measured parameters take into account
also measurement errors. Some trends are visible.

Let us first focus on the top row, which refers to ob-
servations with Advanced LIGO at design sensitivity. It
is clear that binaries with larger total mass and lower
redshift produce stronger signals, and therefore they are
more likely to be detected. In particular, Advanced
LIGO can hardly detect any binaries at redshift z & 1.
The distribution of χeff also shows a mild excess of ob-
servable events with χeff ' 0 for the 1g+1g population
with respect to the 1g+2g and 2g+2g populations, sug-
gesting that measurements of χeff can indeed help to dis-
criminate between populations.

The bottom row of Figure 5 shows that the increased
sensitivity of a Voyager-like detector has two main effects:
it makes observable distributions in each of the parame-
ters much closer to the corresponding theoretical distri-
butions, and (quite importantly) it extends the reach of
the detector to high-z binaries. We obviously expect that
more sensitive detectors will allow better discrimination
between the different populations.



9

10 20 30 40 50 60 70 80 90 100

M

0.000

0.005

0.010

0.015

0.020

0.025

0.030
n

flat
LIGO
flat
LIGO
flat
LIGO

0.0 0.2 0.4 0.6 0.8 1.0

q

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1g + 1g

1g + 2g

2g + 2g

0.0 0.5 1.0 1.5 2.0

z

0.0

0.5

1.0

1.5

2.0

−1.0 −0.5 0.0 0.5 1.0

χeff

0.0

0.5

1.0

1.5

2.0

10 20 30 40 50 60 70 80 90 100

M

0.000

0.005

0.010

0.015

0.020

0.025

0.030

n

flat
Voyager
flat
Voyager
flat
Voyager

0.0 0.2 0.4 0.6 0.8 1.0

q

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1g + 1g

1g + 2g

2g + 2g

0.0 0.5 1.0 1.5 2.0

z

0.0

0.2

0.4

0.6

0.8

1.0

−1.0 −0.5 0.0 0.5 1.0

χeff

0.0

0.5

1.0

1.5

2.0

FIG. 5. Observable distributions for Advanced LIGO at design sensitivity (top) and Voyager (bottom). All plots refer to the
“flat” mass distribution. In each panel, dashed lines show the theoretical distribution for the 1g+1g (blue), 1g+2g (green) and
2g+2g (red) populations; these are the same curves shown in Fig. 2. Following the same color scheme, solid shaded histograms
show the “observed” population, consisting of events that pass the SNR threshold and that include measurement errors.

The 2g+2g population presents a peak at M ∼ 80M�
and q ∼ 1. Equal mass binaries of ∼ 40M� + 40M� can
only be detected by Advanced LIGO at design sensitivity
if they are located at very small redshift (cf. e.g. [4]).
This explains the significant drop in the number of ob-
served events as q → 1. The effect is strongly mitigated
in Voyager, because the instrument is more sensitive at
low frequency.

IV. STATISTICAL TOOLS

In this section we briefly introduce statistical tools to
perform Bayesian model selection. We label models by
a parameter λ that can be either discrete (if we want to
distinguish two competing models A and B) or contin-
uous (if want to measure the “mixing fraction” between
competing models that best describes the data).

A. Number of observations

Our goal is to infer which model λ best describes a set
of data. As explained above, our binned distributions
r̃k(λ) are normalized. To compare our models with the
data we need an extra parameter N(λ), the total number

of observations predicted by model λ. We write

rk(λ) = N(λ) r̃k(λ) . (19)

As for the individual binary parameters, we introduce
an array d whose elements are the single observations
d(i), which in turn are J−dimensional arrays. We bin
the array d on the same grid used for the catalogs to
obtain binned values dk.

The likelihood of obtaining a data set dk from model
λ is given by

p(d|λ) =
∏
k

(rk(λ))
dke−rk(λ)

dk!
. (20)

In our analysis the total number of observation does
not contain information about the given model (this may
not be the case for more realistic scenarios, where differ-
ent models predict different merging rates: see e.g. [91]).
We therefore marginalize the likelihood over N(λ). Plug-
ging Eq. (19) into Eq. (20) one obtains [90]

p(d|λ) =

(∏
k

(r̃k(λ))
dke−r̃k(λ)

dk!

)(
N(λ)

∑
k dke−N(λ)

)
,

(21)



10

1g+1g vs. 2g+2g 1g+1g vs. 1g+2g 1g+2g vs. 2g+2g

O1 LIGO flat 12.7 (15.8) 2.0 (2.0) 6.4 (7.6)

log 3.3 (3.5) 0.9 (0.9) 3.5 (3.8)

power law 0.7 (1.0) 1.3 (1.6) 0.6 (0.6)

Ad. LIGO (design) flat 30.2 (37.8) 1.4 (3.7) 21.9 (10.11)

log 4.3 (7.0) 0.6 (1.4) 6.9 (5.1)

power law 0.6 (1.7) 1.0 (3.8) 0.6 (0.5)

TABLE I. Odds ratios from the three O1 observations (GW150914, GW151226 and LVT151012) and from hypothetical ob-
servations of the same events at Advanced LIGO design sensitivity. Odds ratios in parentheses were computed omitting all
redshift information, i.e. considering the 3-dimensional vector of observables u = {M, q, χeff}.

and consequently the marginalized likelihood is

p̃(d|λ) =

(∏
k

(r̃k(λ))
dke−r̃k(λ)

dk!

)∑
N

(
N

∑
k dke−N

)
.

(22)

Note that the term
∑
N

(
N

∑
k nke−N

)
is a multiplicative

coefficient that only depends on the data d, and not on
the model λ. This term can be ignored because, as we
will see below, we are only interested in likelihood ratios,
not in the likelihoods themselves.

From now on, to simplify notation, we will drop
the tilde on p and assume that likelihoods are always
marginalized over the total number of events.

B. Model selection

Let us first look at model comparison between pure
models, so that λ is a discrete variable. Given models
λ = A and λ = B, their odds ratio is defined as

OAB =
p(d|A)π(A)

p(d|B)π(B)
, (23)

where π is the prior probability assigned to each of the
two models. The simplest assumption on the priors is
π(A) = π(B) = 1/2, such that the odds ratio reduces to
the likelihood ratio. If OAB � 1 (OAB � 1) the data
favors model A (B). The probability of model A is

pA =
OAB

1 +OAB
=

p(d|A)

p(d|A) + p(d|B)
, (24)

and the probability of modelB is pB = 1−pA. Sometimes
σ-levels are used to quantify the significance of a discrete
model comparison, in analogy with Gaussian measure-
ments. The expression relating the odds ratio O and σ
is

O =
1

1− 2 erf(σ)
. (25)

We can also assume that the data are represented by
a mixture of two or more models, and assess whether

the data themselves are informative about the underly-
ing model mixing fractions. Each pure model m enters
the mixed model with a weight fm, such that

∑
fm = 1.

Model comparison is equivalent to Bayesian inference on
the parameters λ = {f1, f2, . . .}, as described by the pos-
terior distribution

p(λ|d) =
p(d|λ)π(λ)´
p(d|λ)π(λ)dλ

. (26)

As before, π(λ) is the prior assigned to each mixed model.
We choose π(λ) to be uniformly distributed on the sur-
face

∑
fm = 1.4 From a computational point of view,

we first draw values of λ from the uniform prior, and
then we produce a statistical sample distributed accord-
ing to p(d|λ) using a standard Monte Carlo hit-or-miss
algorithm.

V. RESULTS

So far we have outlined a procedure to build a set
of “synthetic” GW observations of merging BH bina-
ries (along with their associated errors) from simple as-
trophysical considerations. We now wish to understand
whether these observations can be used to distinguish be-
tween different populations using Bayesian model selec-
tion (see e.g. [89–93] for previous studies of this problem
in different contexts).

A. LIGO O1 data

We first apply our model comparison tool to the three
LIGO O1 observations. The data set d consists of the
maximum likelihood values provided in Ref. [3]:

• GW150914:

M = 65.3M�, q = 0.81, z = 0.090, χeff = −0.06.

4 For instance, for a mixture of three models λ = {f1, f2, f3} the
equation

∑
fm = 1 describes a 2-dimensional surface S of area√

3/2. The uniform prior on S is given by π(f1, f2, f3) = 2/
√

3,
so that

˜
S π dS = 1.
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• GW151226:

M = 21.8M�, q = 0.52, z = 0.094, χeff = 0.21.

• LVT151012:

M = 37M�, q = 0.57, z = 0.201, χeff = 0.03.

As stressed above, measurements errors are included in
this analysis at the level of the catalogs, by spread-
ing each source over multiple bins. A more in-depth
study should make use of the posterior distribution of
the observed parameters obtained through dedicated
parameter-estimation pipelines.

Performing model selection as described in the previ-
ous sections and using the O1 sensitivity curve, we ob-
tain the odds ratio reported in Table I. We also repeat
the same exercise assuming the anticipated noise power
spectral density of Advanced LIGO at design sensitivity.
This basically answers the question: “what if the O1 ob-
servations had been carried out with a better detector?”

As shown in Table I, most of the odds ratios are in the
range 0.3 . O . 3, corresponding to 1σ. This simply
indicates that 3 observations are not enough to perform
a meaningful statistical analysis. However some of the
comparisons return odds ratios O ∼ 10, approaching 2σ
evidence. When this happens (i) the 1g+1g population
seems to be preferred, and (ii) the odds become higher for
a more sensitive detector like Voyager. In these cases the
algorithm seems to capture real statistical differences be-
tween the catalogs, that become more pronounced when
more binaries are detected and measurement errors get
smaller.

As a note of caution, we stress here that such discrete
model comparison analyses can only tell us which of two
competing models better describes a given data set, not
which model is correct. For instance, our results in Ta-
ble I show some dependence on the underlying mass dis-
tribution. This could be due either to the low dimen-
sionality of the statistical sample (cf. Section V B), or to
the fact that none of the three mass distributions faith-
fully describes the observations. To bracket uncertainties
in the time delay prescription (cf. Section II D), Table I
also lists odds ratios computed omitting all redshift in-
formation. This calculation shows that assumptions on
the delay times do not significantly affect our conclusions,
given the limited statistics currently available. It will be
straightforward to update our analysis with higher statis-
tics and better motivated BH binary formation models
when more data become available.

B. Simulated data: pure models

The results of Section V A show, not surprisingly, that
more than 3 observations are needed to discriminate be-
tween different models. In order to estimate the capabili-
ties of larger data sets and more sensitive detectors, here
we perform model selection on simulated observations.
Our main goal is to estimate how many observations are

needed to distinguish a pair of models with a given con-
fidence level.

Given a model λtrue, we extract the number of events
per bin dk assuming a Poisson distribution

p(dk) =
rk(λtrue)

dke−rk(λtrue)

dk!
. (27)

Here the total number of observation Nobs = N(λtrue)
is a free parameter that we need to specify. We expect
model comparison to be easier/harder if more/less ob-
servations are available. This statement is made more
quantitative in Figure 6 and Table II.

Figure 6 shows the odds ratio distribution obtained
from several realization of Nobs observations. For each
pair or models we plot OAB (when A is the true model)
and OBA (when B is the true model), thus addressing
how easy (or hard) it is to identify any of the models if
it is correct. Thick lines mark the median odds, while
the shaded areas encompass 90% of the realizations (i.e.,
they cover the range between the 5th and the 95th per-
centiles).

The odds ratio O increases roughly exponentially with
the number of observations Nobs, so our ability to distin-
guish between different models should rapidly improve
in the coming years. Table II shows that in 5% of the
realizations, as few as ∼ 20 detections are enough to dis-
criminate the 1g+1g population from the 2g+2g popu-
lation at 5σ with Advanced LIGO at design sensitivity,
while Nobs ∼ 80 observations are necessary to achieve 5σ
confidence in 95% of the realizations.

Model selection involving the 1g+2g population typi-
cally requires a larger number of observations. This is
clear when comparing the left panels of Figure 6 to the
middle and right panels. In both the (1g+1g vs. 1g+2g)
and (1g+2g vs. 2g+2g) comparisons the odds ratio grows
(roughly) exponentially, but with smaller slope compared
to the (1g+1g vs. 2g+2g) case. However the slope (and
the odds ratio O) is larger when 1g+2g is the true model:
it is slightly easier to mistake a 1g+1g (or 2g+2g) popu-
lation for a 1g+2g population than vice versa.

Model comparison is easier with more sensitive detec-
tors. For example, distinguishing 1g+1g from 2g+2g at
5σ in 90% of the realizations requires only ∼ 30 Voy-
ager observations (instead of ∼ 80 for Advanced LIGO
at design sensitivity).

In Section V A, where only 3 observations were consid-
ered, the results were greatly dependent on the assumed
mass distribution. Table II shows that this dependence
becomes much weaker when more observations are avail-
able and/or the instrumental sensitivity improves. This
is largely due to the discriminating power of the redshift
distribution of the events, which becomes more relevant
when high-z binaries become detectable (cf. Figure 5).
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FIG. 6. Number of events that are necessary to distinguish populations for Advanced LIGO at design sensitivity (top) and
Voyager (bottom). The median odds ratio (thick lines) and 90% confidence intervals to identify each model as true are plotted
as functions of the number of observations Nobs.

Nobs at 5σ 1g1gT/2g2g 2g2gT/1g1g 1g1gT/1g2g 1g2gT/1g1g 1g2gT/2g2g 2g2gT/1g2g

5% 50% 95% 5% 50% 95% 5% 50% 95% 5% 50% 95% 5% 50% 95% 5% 50% 95%

LIGO O1 flat 27 53 100 31 57 103 40 76 143 44 80 146 50 105 204 77 133 233

log 27 52 94 25 50 94 30 58 106 29 56 106 42 86 165 59 104 182

power law 14 29 57 19 35 64 7 17 34 13 23 41 31 61 114 35 64 117

Ad. LIGO flat 23 46 86 26 50 91 45 82 146 37 73 139 37 83 170 73 122 206

log 20 41 79 24 45 83 41 73 132 33 66 122 26 56 112 48 81 138

power law 20 39 72 18 37 70 10 21 40 11 22 41 15 31 61 20 37 67

A+ flat 18 39 75 22 43 79 46 83 149 34 69 136 34 80 165 75 123 211

log 16 34 65 19 38 69 41 73 131 30 62 120 22 51 107 50 81 136

power law 17 35 67 17 34 65 10 22 41 10 21 40 12 27 52 20 35 61

Voyager flat 6 15 33 10 21 39 34 69 128 27 62 122 13 36 80 36 61 102

log 4 11 25 8 17 32 25 53 102 20 51 101 8 23 51 26 44 73

power law 5 13 26 7 16 31 9 19 37 7 18 36 4 11 24 12 21 35

TABLE II. Number of observations needed to distinguish populations at 5σ with 5%, 50% and 95% probability. The “true”
model is marked by a T in the column header. For instance, in column 1g1gT/2g2g we compare models 1g + 1g and 2g + 2g
when observations are drawn from the 1g + 1g catalog.
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FIG. 7. Posterior distribution of the mixing fraction between the 1g+1g, 2g+2g and 1g+2g pure models. Each triangle shows
the model space defined by

∑
f = 1 for a given realization of Nobs = 100 observations. The corners corresponds to the three

pure models. The black star marks the “true” injected value of the mixing fractions. Each of the injected mixing fractions
is constant along one of the dashed lines. The log-likelihood is shown in the color map: lighter regions are more likely than
darker regions. Solid black contours mark the 50% and 90% confidence regions.
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C. Simulated data: mixed models

Let us now turn to a more ambitious task. As antici-
pated in Section IV B, we now consider a population of
binaries consisting of a mixture of the three pure mod-
els 1g+1g, 1g+2g and 2g+2g. The task is to measure
their mixing fraction, i.e. to determine how many bina-
ries belong to each of the three pure populations. This
is computationally expensive, as it requires many evalua-
tions of the likelihood defined in Eq. (26) through Monte
Carlo methods.

As a proof of principle, in Figure 7 we show results
for a specific choice of the mixing parameters. Simulated
observations are drawn from a model5 where 60% of the
binaries are 1g+1g, 10% are 2g+2g, and 30% are 1g+2g:

λtrue ≡
{
f1g+1g, f1g+2g, f2g+2g

}
=
{

0.6, 0.1, 0.3
}
. (28)

For concreteness we assume the “flat” mass prescription
and consider several realizations of Nobs = 100 obser-
vations performed with the Advanced LIGO network at
design sensitivity. Each of the triangles in Figure 7 shows
the surface f1g+1g+f1g+2g+f2g+2g = 1. The color coding
corresponds to the values of the posterior p(λ|d). Pure
models lie on the corners of this “Dalitz plot”, while the
star marks the injected fraction.

As expected, measuring mixing fractions is sensibly
harder than performing discrete model comparison, and
it is going to require many more observations (a similar
result was obtained in Ref. [90]). The injected fractions
are recovered only in some of the realizations, suggest-
ing that these data points are probably not enough to
confidently perform the measurement.

In any case, we can note some trends. Most (but not
all) of the realizations assign a rather low probability to
the region where f2g+2g ∼ 0. Whenever a few 2g+2g
events are present, their properties are sensibly different
from those involving 1g BHs, and therefore the 2g+2g
population can be identified relatively easily. Although
we may be unlucky and estimate mixing fraction which
are sensibly different from their true values, our model
comparison algorithm does return a statistically consis-
tent result. Out of 1000 realizations, we find that the
correct mixing fraction is identified within the 50% (90%)
confidence interval in 57% (25%) of the cases. The rel-
atively small number of observations is likely to be one
of the main reasons for this relatively pessimistic result:
if we assume Nobs = 1000, the correct mixing fraction
is identified within the 50% (90%) confidence interval in
90% (77%) of the cases.

In conclusion, this preliminary study shows that mea-
suring mixing fractions will be challenging in the near

5 Our injected fraction of 2g BHs was chosen only for illustrative
purposes. It is higher than current estimates of merger rates in
nuclear clusters, which are favorable environments for multiple
merger events [32].

future. Estimating mixing fractions with high confidence
may require several hundreds (if not thousands) of obser-
vations.

D. Caveats on mass functions and time delays

We have shown that, given a sufficient number of de-
tected events, it is possible to distinguish a given 1g BH
population from a variant of the same population where
repeated mergers occur. Here we discuss how uncertain-
ties in the assumed 1g mass distribution and in time delay
prescriptions may bias our conclusions.

In Table III we perform pure model comparisons be-
tween BH binary populations that differ in both merger
generation (1g+1g, 1g+2g, 2g+2g) scenario and in the
assumed mass distribution. As shown in Section V B,
the true distribution is correctly identified whenever it is
among those tested. When the injected population is not
among those being compared, differences in the assumed
mass distribution can sometimes dominate over differ-
ences induced by the occurrence of subsequent mergers.
For instance, if injected 2g+2g observations assuming
the “flat” mass distributions are examined assuming a
“power law” mass model, one would erroneously con-
clude that the observed population is 1g+1g, rather than
2g+2g.

However this should not be a problem in practice, be-
cause the mass distribution should soon be well con-
strained by observations. Realistic astrophysical scenar-
ios typically predict a small fraction of multiple mergers,
i.e., a small fraction of 2g events. Even remaining theory-
agnostic, this anticipation is already (although inconclu-
sively) supported by the data. Our Table I suggests that
1g+1g mergers may already be favored over 2g scenarios.
So, in practice, there are theoretical and (hopefully soon)
experimental reason to assume that the majority of de-
tected events have a 1g+1g origin. In this very plausible
scenario, the model selection procedure can be “boot-
strapped” as follows:

(i) The mass distribution is inferred from a large
enough number of detections, assuming that most
events are 1g+1g;

(ii) This observationally inferred mass distribution can
be used to replace our “toy” mass distributions
(flat, log or power law) for 1g+1g BHs, and the
2g distributions can be constructed through hier-
archical mergers as described earlier;

(iii) We can now look at all measurable properties of
the population to determine whether some (pre-
sumably small) fraction of events has a 2g origin.

Table III shows that step (i) above does not present
problems. Indeed, according to Table III, while it is in-
deed possible to wrongly rule in favor of 1g+1g BHs given
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Injection Test Preferred

flat 1g+1g flat 1g+1g vs. flat 2g+2g flat 1g+1g 3T

log 1g+1g vs. log 2g+2g not significant

power law 1g+1g vs. power law 2g+2g power law 1g+1g 3

flat 2g+2g flat 1g+1g vs. flat 2g+2g flat 2g+2g 3T

log 1g+1g vs. log 2g+2g log 2g+2g 3

power law 1g+1g vs. power law 2g+2g power law 1g+1g 7

log 1g+1g flat 1g+1g vs. flat 2g+2g flat 1g+1g 3

log 1g+1g vs. log 2g+2g log 1g+1g 3T

power law 1g+1g vs. power law 2g+2g power law 1g+1g 3

log 2g+2g flat 1g+1g vs. flat 2g+2g flat 1g+1g 7

log 1g+1g vs. log 2g+2g log 2g+2g 3

power law 1g+1g vs. power law 2g+2g power law 1g+1g 7

power law 1g+1g flat 1g+1g vs. flat 2g+2g flat 1g+1g 3

log 1g+1g vs. log 2g+2g log 1g+1g 3

power law 1g+1g vs. power law 2g+2g power law 1g+1g 3T

power law 2g+2g flat 1g+1g vs. flat 2g+2g flat 1g+1g 7

log 1g+1g vs. log 2g+2g log 1g+1g 7

power law 1g+1g vs. power law 2g+2g power law 2g+2g 3T

TABLE III. Model comparison tests between populations characterized by different merger generations and mass distributions
using the Advanced LIGO sensitivity curve. For each injected distribution and model comparison we report the preferred
population in the limit where Nobs → ∞ (in practice we use Nobs = 103). The true population (T) is correctly identified
whenever it is among those tested. While most of the comparisons correctly identify the merger generation (rows denoted by a
3check mark), in some cases making the wrong assumption on the underlying mass distribution prevents a correct identification
(rows denoted by a 7). In one case (second row) we obtained odds ratios consistent with one even when Nobs → ∞, so that
no conclusions can be drawn and the comparison is marked as “not significant”. In all other cases the behavior of O(Nobs) is
qualitatively similar to Fig. 6, i.e. the odds ratio grows exponentially until populations can be distinguished at 5σ.

2g+2g injections, the converse is unlikely: if model selec-
tion favors 2g+2g BHs, the injected data never belong to
a 1g+1g population with a different mass spectrum.

To quantify the importance of time delays, we repeated
all the comparisons shown in Table II excluding redshift
information, i.e. taking u = {M, q, χeff} as our vector
of observable quantities. We find that the correct popu-
lation is always identified. The odds still grow exponen-
tially with the number of observations, although with
somewhat shallower slopes. This is expected, because
the statistical analysis is performed using less informa-
tion. Omitting redshift information does not significantly
affect the 1g+1g vs. 2g+2g and 1g+2g vs. 2g+2g com-
parisons, but it plays a more important role in the 1g+1g
vs 1g+2g comparisons. This is because (as illustrated in
Fig. 5) the mass distributions are very similar for these
populations, which are therefore harder to distinguish if
redshifts are ignored. For instance, while Fig. 6 shows
that ∼ 40 observations are enough to distinguish the
1g+1g and 1g+2g “flat” populations at 3σ with LIGO
in 50% of the realizations, up to ∼ 200 events will be
necessary to reach the same conclusion in the absence of
redshift information.

VI. CONCLUSIONS

The main result of this paper is that GW observations
of merging stellar-mass BH binaries can be used to gather
information about their progenitors. Starting from sim-
ple, physically motivated populations of “first genera-
tion” (1g) BHs born from stellar collapse, we construct
populations where merging binaries include “second gen-
eration” (2g) BHs, whose masses and spins are computed
using numerical relativity fitting formulas. Then we use
Bayesian model selection to determine whether current
or future ground-based GW interferometers can distin-
guish different populations. If 2g BHs occur in nature,
it should be possible to recover evidence for their exis-
tence from GW data; otherwise, the data can be used to
constrain astrophysical models that produce 2g BHs.

As a first application of our Bayesian model selec-
tion framework, we perform model selection using the
two confirmed detections (GW150914 and GW151226)
and the LVT151012 trigger from Advanced LIGO’s first
observing run. It is quite remarkable that, even with
only three data points, some of the comparisons show
odds ratios as high as ∼ 10 in favor of 1g BHs. As ex-
pected, model selection performance improves with more
observations and more sensitive detectors. Indeed, as
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shown in Figure 6, the Bayesian odds ratio for compar-
isons between two pure models scales (roughly) exponen-
tially with the number of observations. Depending on
the actual realization, ∼ 20–200 Advanced LIGO obser-
vations at design sensitivity should allow us to discrimi-
nate which of the three populations is favored by the data
at 5σ confidence level in one-to-one comparisons. Instru-
mental upgrades will bring this number down to 15–200
observations for A+, and 5–100 for Voyager.

More realistically, astrophysical populations of merg-
ing binaries will be a mixture of all three populations
(1g+1g, 1g+2g, 2g+2g), and the real experimental task
is to determine the relative mixing fractions. Using sim-
ulated data, we construct synthetic catalogs assuming a
mixture of models for the different BH generations, and
attempt to measure the mixing fractions using Bayesian
inference. Our preliminary results suggest that this is a
much more challenging task: recovering the mixing frac-
tions may require several hundreds (if not thousands) of
observations.

This work should be regarded as a proof-of-principle
study that can (and should) be extended in several direc-
tions. Our simple models are not supposed to be astro-
physically realistic: they were developed solely to show
that, at least in principle, GW observations could pro-
vide information on the occurrence of multiple stellar-
mass BH mergers. The inclusion of detailed spin align-
ment models and more realistic mass distributions (see
e.g. [94]), preferably with input from population synthe-
sis codes, is an important topic for future investigation.

As illustrated in Section II E (see in particular Fig-
ure 3), the spin magnitudes of the merging BHs are very
sensitive to their merger history. This is also true for the
massive BH binaries observable by LISA: see e.g. [40, 95].
Unlike BHs born from stellar collapse, the spin distribu-
tion of post-merger BHs should be strongly peaked at
χf ∼ 0.7. In this paper we only considered measure-
ments of the “effective spin” χeff , because this is the spin
parameter that enters at lowest PN order in the gravita-
tional waveform. This is a very conservative approach.
As shown in Figure 2, the “memory effect” encoded in
the spin magnitudes is largely washed out in this variable.
Measurements of the individual spin magnitudes should
be possible by considering better waveform models or
higher SNR signals: in this sense, our predictions should
be regarded as conservative. Moreover, high-SNR ring-
down observations will allow measurements of the final
(post-merger) spin χf within a few percent [69]. These
measurements could also be used to identify the progen-

itors of merging BHs.
The model selection framework developed in this paper

is complementary to other studies, which usually focus
on discriminating specific astrophysical formation chan-
nels (e.g., field binaries vs. dynamical formation sce-
narios [48, 91, 96–99], but see also [100] for work on
intermediate-mass BHs). We focused on using statisti-
cal distributions consisting of several observations, but it
is possible that single events may be smoking guns for (or
against) multiple merger scenarios, at the price of mak-
ing stronger assumptions on the formation mechanism of
1g BHs. For example, binaries with component masses
above the pair-instability gap [44] can point to the occur-
rence of multiple mergers is we assume that 1g BHs are
formed via core collapse, and if we are confident about
the upper mass limit on 1g BHs set by pair instabilities.
We hope that our approach will spark more studies of the
astrophysical information encoded in present and future
GW data sets.

While completing our study we learned that Maya
Fishbach, Daniel Holz and Ben Farr have been pursuing
a similar investigation [101]. Their work nicely comple-
ments our study, as they focus on the spin distributions
and address the detectability of more than two genera-
tions of mergers.
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[63] X. Jiménez-Forteza, D. Keitel, S. Husa, M. Hannam,
S. Khan, and M. Pürrer, PRD 95, 064024 (2017),
arXiv:1611.00332 [gr-qc].

[64] D. W. Hogg, ArXiv Astrophysics e-prints (1999), astro-
ph/9905116.

[65] P. A. R. Ade et al. (Planck Collaboration), A&A 594,
A13 (2016), arXiv:1502.01589.

[66] B. P. Abbott et al. (LIGO Scientific Collaboration
and Virgo Collaboration), PRL 116, 241102 (2016),
arXiv:1602.03840 [gr-qc].
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