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We investigate the stability of highly charged Reissner-Nordström black holes to charged scalar
perturbations. We show that the near-horizon region exhibits a transient instability which becomes
the Aretakis instability in the extremal limit. The rates we obtain match the enhanced rates for
nonaxisymmetric perturbations of the near-extremal and extremal Kerr solutions. The agreement
is shown to arise from a shared near-horizon symmetry of the two scenarios.

I. INTRODUCTION

The importance black holes in modern theoretical
physics cannot be understated. At large scales, numer-
ous astrophysical phenomena feature black holes as ma-
jor players: stellar mass black holes are the end states
of “high-mass” stellar collapse [1], supermassive black
holes have the capacity to source high-energy jets seen
in the centers of galaxies [2], and binary black holes pro-
vide a source of gravitational waves, recently detected
for the first time [3]. At small scales, black holes pro-
vide a testing ground for theories of quantum gravity,
which must reproduce the area law of entropy [4, 5] at
the semi-classical level. Mathematically, the non-linear
stability of black holes is far from understood, though
the linear stability problem of black hole solutions has
seen tremendous progress in recent years [6–8].

Solutions describing black holes near their extremal
limits have attracted additional interest. This may be
due in part to the fact that in the extremal limit many
problems become analytically tractable. For instance,
microstate counting simplifies near the BPS (extremal)
bound where certain fields behave classically. Hence, ex-
tremal solutions have been important for string theory
calculations of black hole entropy [9]. Apart from their
analytically tractability [10–20], extremal black holes
have uniquely interesting physical features. These in-
clude turbulent-like dynamics [21], unique telltale ob-
servational features [22–27], and enhanced symmetries
shared by certain conformal field theories [28].

A new development came in 2010 when Aretakis
proved that extremal horizons are linearly unstable [29–
31]. For perturbations of non-extremal black holes the
redshift of outgoing radiation at the horizon controls
transverse derivatives occurring in energy estimates [32].
However, the redshift factor degenerates in the extremal
limit. The lack of a redshift, combined with the exis-
tence of conserved quantities on the future horizon [33],
generically gives rise unbounded polynomial growth of
sufficiently high-order derivatives at late times [34–36].
The polynomial growth was shown to arise in a mode
expansion from a branch-point in the Laplace transform
at the superradiant frequency [37].

Physically, extremal solutions occupy a set of measure
zero and can never be realized thermodymically in finite
time [38]. However, given the continuous dependence of

the Kerr solution on the spin parameter, the Aretakis “in-
stability” is exhibited in a tamer form for near-extremal
solutions as well [39, 40].

Here we consider charged (denoted q) massless scalar
field perturbations ψ of a Reissner-Nordström (RN) black
hole, the unique static electrovacuum solution in four di-
mensions.

There are many reasons to study charged perturba-
tions of the RN spacetime. For one, the highly charged
RN scenario provides a simplified setting which cap-
tures many features of the rapidly spinning astrophys-
ical Kerr black hole. In this paper we will show that
the linearized near-horizon dynamics of RN, including
the horizon instability, share many salient features with
Kerr and can be understood within background spher-
ical symmetry. These shared features include a set of
long-lived modes and an Aretakis rate enhancement rel-
ative to neutral scalar perturbations that is identical to
the nonaxisymmetric rate enhancement found in [37] for
perturbations of Kerr. In fact, many results carry over
exactly to the Kerr analysis by simply mapping q → m,
where m is the azimuthal mode number of a Kerr per-
turbation. Moreover, the (near)-extremal RN geome-
try offers an ideal setup to study non-linear interactions
between long-lived modes. Such a study may unearth
more evidence of gravitational turbulence in asymptot-
ically flat spaces [21], pushing the limits of the estab-
lished fluid gravity correspondence [41, 42] wherein AdS
black branes have been shown to exhibit turbulent fea-
tures [43, 44]. Yet another reason to study charged fields
in (near)-extremal Reissner-Nordström, when allowing
Anti-de Sitter asymptotics, comes from the AdS/CMT
correspondence [45], as it may inform our understand-
ing of novel low-temperature strongly-coupled states of
matter [46, 47].

The scalar field ψ is decomposed into a set of discrete
spherical harmonic modes (ℓ,m) on S2. It is also mero-
morphically extended into the complex frequency plane
through a Laplace transform, which we invert to resolve
the time-dependence. The near-horizon field modes are
shown to organize into spaces (modules) imaged by the
action of the near-horizon symmetry group. The repre-
sentations are labeled in part by the so called “conformal
weight” h. Through the field equations, we find that the
conformal weight is related to the (eigenvalues of the)
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SO(3) and U(1) Casimirs, Kℓ := ℓ(ℓ+ 1) and q
2, by

h =
1

2
+

√

1

4
+Kℓ − q2. (1)

Our main results apply to modes for which h ∈ C. In the
language of representation theory, these are the “princi-
pal series” representations [48]. The principal representa-
tions were shown to dominate the near-horizon response
of the rapidly spinning Kerr black hole [40], where the az-
imuthal mode number m plays the role of q in (1). In the
charged case studied here, we again find that the princi-
pal modes run the show, giving rise to horizon dynamics
replicating extremal Kerr.
One explanation of the similarities with the Kerr sce-

nario lies in the shared presence of a critical frequency at
which the horizon flux is zero—the superradiant bound.
The perturbation spectra of both (near-extremal) space-
times features a family of weakly damped quasinor-
mal modes clustered around the superradiant bound fre-
quency [24, 25, 49–58]. The collective excitation of these
slowly decaying quasinormal modes gives rise to a steeply
graded field with large local energy density measured
near the horizon. In the extremal limit, a confluence
of these resonant modes forms a branch point precisely
at the superradiant bound frequency. In this paper we
analytically compute the field arising from the long-lived
quasinormal modes (near-extremal case) and branch cut
integral (extremal case), presenting decay rates for each.
We follow the conventions of [59] and use geometric

units G = c = 1.

II. FIELD EQUATIONS

We consider the charged scalar field

DαD
αψ = 0, (2)

where Dα = ∇α − iqAα, as a linear perturbation of
the Reissner-Nordström spacetime. The field ψ is con-
structed via the Green function governing the linear re-
sponse to suitable initial data or a prescribed compact
source. The Green function is defined as the distribu-
tional solution of the adjoint equation

Dα
∗Dα∗G(X,X ′) = δ4(X,X

′), (3)

where δ4(X,X
′) is the covariant Dirac-distribution and

“∗” signifies taking the complex conjugate. We choose
G(X,X ′) to vanish when the spacetime point X is not
in the chronological future of X ′. With this choice, the
Kirchhoff representation of the “forward” solution in the
absence of sources is

ψ =

∫

Σ

(ψΣD
∗
αG

∗ −G∗Dα ψΣ)n
α
√
h d3y (4)

for given compact support initial data ψΣ and nαDαψΣ

on the spacelike surface Σ with future directed normal

nα and intrinsic metric hjk. We restrict to initial data
supported away from the future outer horizon.
In ingoing coordinates xµ = (v, r, θ, φ), the background

metric and gauge field are given by

ds2 = −f(r)dv2 + 2dvdr + r2dΩ2 (5)

A = −Q
r
dv, (6)

where f(r) = 1 − 2M/r + Q2/r2 = (r − r−)(r − r+)/r
2

with r+ and r− denoting the locations of the inner and

outer horizons, r± =M ±
√

M2 −Q2. The quantities Q
and M are the ADM charge and mass of the black hole,
respectively.
To separate variables 1 we adopt a mode decomposition

G∗ = 1
2π

∑

ℓm

Yℓm(θ, φ)Y ∗
ℓm(θ′, φ′)

×
∫ ic+∞

ic−∞

e−iωv g̃(r, r′)µ(r′)dω, (7)

where Yℓm are spherical harmonics satisfying ∆S2Yℓm =
−KℓYℓm and g̃(r, r′) is the “transfer function” obeying

fr2 ∂2r g̃(r, r
′) + 2 (r −M − ir(ωr − qQ)) ∂r g̃(r, r

′)

+ (−Kℓ + i(qQ− 2ωr)) g̃(r, r′) = µ−1(r)δ(r − r′).
(8)

We have also introduced a “weight factor” given by

µ(r) =
1

r2f
exp

(
∫

2 (r −M − ir(ωr − qQ)) /(r2f) dr

)

(9)

= e−2iωr∗ exp

(

2iqQ

∫

dr

rf

)

(10)

∼ e−2iωr∗(r/r+ − 1)2iqQ, r → ∞, (11)

where r∗ =
∫

dr/f .2 The quantity c is a small positive
constant chosen to put the integration contour in a strip
where g̃ is holomorphic.
A suitable transfer function consistent with the causal

conditions imposed on G may be constructed from homo-
geneous solutions Rin and Rup, which are defined to have
no incoming radiation from the past horizon (in) and past
null infinity (up). To construct this quantity explicitly,
we employ the “variation of parameters” formula

g̃(r, r′) =
Rin(r<)Rup(r>)

W , (12)

making use of the notation r< := min(r, r′), r> :=
max(r, r′), and introducing the scaled Wronskian W =

1 Here we are separating the adjoint of (3).
2 The function µ is a weight in the following sense. Define E :=
fr2 ∂2

r + 2 (r −M − ir(ωr − qQ)) ∂r + (−Kℓ + i(qQ − 2ωr)).
Then E is symmetric in the bilinear (a, b) =

∫
a(r)b(r)µ(r)dr

in the sense that (a, Eb) = (Ea, b).
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r2fµ(r)
(

Rin ∂rR
up −Rup ∂rR

in
)

such that ∂rW = 0.
As defined, the in solution is regular on the future horizon
and the up solution is regular at infinity.
Following [10], homogeneous radial solutions are ob-

tained in two asymptotic regions, the “near” and “far”
zones, and then matched in a region of common overlap:
the “buffer”. The existence of a buffer region relies on the
presence of an additional parameter deemed small. When
the black hole is extremal, a sufficient parameter arises
in our spectral analysis as the deviation from the super-
radiant bound frequency, a simple but profound conse-
quence of the fact that waves of all frequencies defined
with respect to the near-horizon geometry limit to the
superradiant bound when viewed in coordinates adapted
to the asymptotically flat region. We thus pattern our
analysis on [11], obtaining asymptotic solutions by solv-
ing the radial equation directly in the limiting spacetimes
(limiting sections on the U(1) bundle). In doing so we
make use of the near-horizon symmetries to streamline
our derivation of the Aretakis instability.

III. HOMOGENEOUS SOLUTIONS

A. Near-zone solutions

1. Near-extremal near-zone solution

We now derive the ingoing near-zone solution by solv-
ing the radial equation near the horizon and imposing no
incoming radiation. For near-extremal solutions

σ :=
r+ − r−
r+

≪ 1. (13)

We further introduce a shifted radial coordinate

x :=
r − r+
r+

, (14)

which puts the outer horizon at zero, forming the inner
boundary of our working domain.
To begin, we construct the near-horizon geometry by

introducing a scaling parameter λ. For the near-extremal
RN black hole, the near-horizon geometry of interest is
the endpoint (λ → 0) of a flow along a one-parameter
family of spacetimes having σ = λσ̄. The flow is taken
at fixed “scaled” coordinates v̄ = λv/r+, x̄ = x/λ, and
σ̄. The limiting metric forms a patch of the Robertson-
Bertotti universe, AdS2 × S2, with metric [60–63]

r−2
+ ds2 = −x̄(x̄ + σ̄)dv̄2 + 2dv̄dx̄+ dΩ2. (15)

The gauge field in the form (6) is singular in this limit.
We choose a section on the U(1) bundle compatible with
the near-horizon limit by shifting A → A + dχ, where
χ = Q

r+
v, such that A(r+) = 0. The limit λ→ 0 gives

Ā = Qx̄ dv̄. (16)

The near-zone scalar field frequency in this gauge is then
given by

ω̄ :=
σ̄r+(ω − qΦ+)

σ
, Φ+ :=

Q

r+
. (17)

Upon separating variables using e−iω̄v̄R(x̄)Yℓm(θ, φ),
the homogeneous radial equation is found to be an ordi-
nary hypergeometric equation

x̄ (x̄+ σ̄)R′′+(σ̄ − 2i(ω̄ + qx̄+ ix̄))R′−(Kℓ + iq)R = 0,
(18)

where q := r+q. Of the two linearly-independent solu-
tions we choose the ingoing one

Rin
near = 2F1

(

1− h− iq, h− iq, 1− ik̄,− x̄
σ̄

)

, (19)

where we have introduced

k̄ := 2r+(ω − qΦ+)/σ.

Using Eq. (15.8.2) of [64], we find that the ingoing solu-
tion has the large-x̄ (buffer zone) asymptotics

Rin
near ∼ Ā(x̄/σ̄)h−1+iq + B̄(x̄/σ̄)−h+iq, x̄→ ∞, (20)

where

Ā =
Γ(2h− 1)Γ(1− ik̄)

Γ(h− iq)Γ(h− ik̄ + iq)
, (21a)

B̄ = Ā(h↔ 1− h). (21b)

The operational meaning of h ↔ 1 − h in (21b) is to
interchange h with 1− h everywhere in A.

2. Extremal near-zone solution

We are also interested in seeing what happens in the
extremal limit. To study this regime, we require the near-
horizon radial functions. These functions are solutions
to the radial differential equation derived from the field
equation in the extremal near-horizon geometry. The
extremal near-horizon limit is obtained by the same lim-
iting procedure used in the previous section, but now we
instead fix the scaled coordinates

x̂ =
x

λp
, v̂ =

λpv

r+
(22)

with p ∈ (0, 1) and take λ → 0 while keeping σ̄ fixed.
The extremal limiting geometry forms a different patch
of AdS2 × S2 with metric

r−2
+ ds2 = −x̂2dv̂2 + 2dv̂dx̂+ dΩ2, (23)

which is diffeomorphic to the near-extremal patch (15)
[62, 65].
In the frequency domain, one also must hold

ω̂ = λ−pk, where k := r+(ω − qΦ+),
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fixed to have a well-defined Laplace transform. Then, the
mode functions e−iω̂x̂R(x̂)Yℓm(θ, φ) reduce the extremal
near-horizon field equation to

∂x̂(x̂
2 ∂x̂R)− 2i(ω̂ + qx̂) ∂x̂R− (Kℓ + iq)R = 0. (24)

Notice that the regular singular points at the inner and
outer horizon which determined the solution of the near-
extremal near-horizon radial equation (18) have “come
together” to form a irregular singular point at the de-
generate horizon x̂ = 0. The confluence of singular
points may be exploited to generate the ingoing solu-
tion of (24) from the previously obtained ingoing (near-
extremal) near-zone solution by taking the scaling limit

lim
λ→0

2F1(1− h− iq, h− iq, 1− 2iλp−1ω̂/σ̄,−λp−1x̂/σ̄)

(25)
and using the confluence identity [17] Wν,µ(z) =

limc→∞ 2F1 (µ− ν − 1/2, 1/2− µ− ν, c; 1− c/z) e−z/2zν,
whereWν,µ(z) is the Whittaker confluent hypergeometric
function. It is easily checked that the result

Rin
near(x̂) =

(

−2iω̂

x̂

)−iq

exp

(

− iω̂
x̂

)

Wiq,h−1/2

(

−2iω̂

x̂

)

(26)
satisfies (24). In the neighborhood of the horizon, the
asymptotic ingoing solution is given by [64]

Rin
near ∼

∞
∑

j=0

(h− iq)j (1− h− iq)j
j!

(

x̂

2iω̂

)j

, x̂→ 0,

(27)
where (a)j := Γ(a+ j)/Γ(a) is the Pochhammer symbol.
To find the buffer zone asymptotics, one may either take
the scaling limit λ→ 0 of Eq. (20) at fixed hatted coordi-
nates and with fixed finite ω̂, or equivalently, employ the
large-x̂ asymptotics of (27) directly via Eq. (13.14.18) of
[64]. Taking the former route, and applying Eq. (5.11.12)
of [64], one finds

Rin
near ∼ Â x̂h−1+iq + B̂ x̂−h+iq, x̂→ ∞, (28)

where

Â =
Γ(2h− 1)

Γ(h− iq)
(−2iω̂)

1−h−iq
, (29a)

B̂ = Â(h↔ 1− h). (29b)

Notice that the extremal buffer-zone coefficients exhibit
branch points at the superradiant bound ω̂ = 0.

B. Far zone solutions

To obtain the far horizon limit, we fix the far (asymp-
totic) coordinates xµ = (v, r, θ, φ) and take σ → 0 and
k = r+(ω− qΦ+) → 0. This limit corresponds to pertur-
bations of the extremal geometry at the critical frequency
k = 0.

In this limit, the inner and outer horizons (singular
points of the ODE) “converge” and radial equation is

(x2R′)′−2iqx(1+x)R′− (Kℓ + iq(1 + 2x))R = 0. (30)

Equation (30) is a confluent hypergeometric differential
equation with solution

Rfar =Px
h−1+iq

1F1(h+ iq, 2h, 2iqx)

+ x−h+iq
1F1(1− h+ iq, 2− 2h, 2iqx). (31)

Again, we have used that h(h − 1) = Kℓ − q
2. The far

solution is regular for the choice

P = − (−2iq)2h−1Γ(2− 2h)Γ(h− iq)

Γ(2h)Γ(1− h− iq)
. (32)

The buffer zone asymptotics are obtained using

1F1(a, b, 0) = 1 for any a and b /∈ Z−∪{0}. One may ver-
ify that the large-x̄ asymptotic near-extremal solution, as
given in Eq. (20), matches onto the far-horizon solutions
just obtained. Moreover, the far zone solution matches
onto the hatted solution Eq. (28), as can be seen by rein-
troducing k := λpω̂ in the near-horizon solution and re-
placing Âx̂h−1+iq by A(x/k)h−1+iq (likewise for the B̂
term).

IV. LINEAR RESPONSE: CHARGED FIELD

INSTABILITY

The time-dependence of the Green function has an
intricate relationship with the analytic structure of the
transfer function g̃ and the contour of the inversion in-
tegral (3) [66]. Subtleties aside, the qualitative picture
goes as follows. At “early” times, direct propagation on
the future light-cone derives from the large-|ω| arc. At
very “late” times, the field exhibits a power-law time de-
pendence deriving from the branch point(s) located at
ω = 0 for the non-extremal black hole, and ω = qΦ+ and
ω = 0 at extremality. At “intermediate” times, the field
takes the form of a decaying sinusoid coming from the
poles of the transfer function, the quasinormal modes.

A. Near extremal case

1. Quasinormal mode spectrum

The spectrum of long-lived quasinormal modes which
characterize the dominant near-horizon ringing is now
obtained. From Eq. (12) we see that for holomorphic
homogeneous solutions, the poles of the transfer func-
tion are given by the zeros of the Wronskian W alone.
Matching the near and far solutions and demanding lin-
ear dependence (W = 0) gives the quasinormal mode
condition Ā = PB̄, or

Γ2(1− 2h)Γ2(h− iq)Γ(h+ iq − ik̄)

Γ2(2h− 1)Γ2(1− h− iq)Γ(1− h+ iq − ik̄)
= (−2iσq)1−2h

.

(33)
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To find the quasinormal modes, we adopt an ansatz
originating with Hod [67], which approximates the zeros
ofW by the negative integer poles of certain gamma func-
tions containing k̄ in (33). The deviation of the quasi-
normal mode pole position from the pole of the gamma
function is parameterized by a complex number η, which
weakly depends on the integer overtone index n. When
h ∈ R the approximation is validated by the perturbative
smallness of σ and η = O(σh), while for complex h the
Hod approximation has been found to be numerically ac-
curate to within |η| ≈ 10−3 in typical cases [55, 68]. We
find that the near-horizon quasinormal modes fall into
two categories

k̄n = q + i (h− 1− n) + η, (principal), (34a)

k̄n = q + i (−h− n) , (supplementary), (34b)

where k̄n := 2r+(ωn − qΦ+)/σ at the frequency ωn.
The terminology “principal” and “supplementary” has
its roots in the classification of SO(2, 1) representations
to be discussed in some detail in Sec. V.
In addition to the weakly decaying near-horizonmodes,

there are also damped “far-horizon” quasinormal modes
distributed in C away from the superradiant frequency
[56]. As these modes have non-σ-suppressed exponential
decay, they will have a negligible contribution relative to
the near-horizon modes after an inverse-σ timescale.

2. Overtone sum

For simplicity, let us assume that the perturbation de-
velops from compactly supported initial data with am-
plitude peaked deep within far zone where x′ ≫ 1. In
this case, we approximate Rup(x

′) by its asymptotics

Rup ∼ C∞e
2iqx′

(x′)2iq−1 x′ → ∞. (35)

At large x′ the weight is given by

µ ∼ e−2iqx′

(x′)−2iq, x′ → ∞ (36)

such that complete x′ dependence is asymptotically given
by µ(x′)Rup(x

′) ∼ C∞/x
′ as x′ → ∞. The transmission

amplitude C∞ is straightforwardly computed from the
asymptotics of (31) subject to the outgoing condition
(32).
As in [40], we define a near-horizon-mode (NHM)

Green function due to poles near the superradiant bound,

GNHM = − iσ

2r+x′

∑

ℓm

C∞Yℓm(θ, φ)Y ∗
ℓm(θ′, φ′) (37)

×
∞
∑

n=0

e−ik̄nV̄ Rin(X̄; k̄n)

dW/dk̄
∣

∣

k̄=k̄n

,

where

V̄ := σ(v − v′)/(2r+), X̄ := x/σ. (38)

The values of k̄n := 2ω̄n/σ̄ are given by (34).
The residues at the QNM frequencies are derived from

the zeros of the scaled Wronskian

W := Γ(1− ik̄)

(

a σ1−h−iq

Γ(h− ik̄ + iq)
+

b σh−iq

Γ(1− h− ik̄ + iq)

)

,

where a = −Γ(2h)/Γ(h−iq), b = Γ(2h−2)/Γ(1−h−iq)×
P , with P given in Eq. (32). To find the approximate ze-
ros of W we substitute the Hod ansatz (34), differentiate
with respect to η, and drop O(η) error terms. For the
dominant principal modes, we find

dW
dk̄

∣

∣

∣

k̄=k̄n

= b σh−iq
(

i(−n)n+1n!
)

Γ(h− iq − n), h ∈ C,

(39)
where we have used 1/Γ(−n−iη) = −iη(−1)nn!+O(η2).
The supplementary modes are obtained from (39) by
swapping b↔ a and h↔ 1− h.
To compute overtone sum we again follow [40]. How-

ever, here we restrict to the principal series modes for
which

GNHM =
−i

2r+x′

∑

ℓm

σ1−h+iq C∞b
−1 · Yℓm(θ, φ)Y ∗

ℓm(θ′, φ′)

× e−i(q+i(h−1))V̄ SP . (40)

The overtone sum

SP :=
∞
∑

n=0

(−1)ne−nV̄

n!Γ(h− iq− n)

× 2F1(1− h− iq, h− iq, h− iq − n,−X̄) (41)

is evaluated by invoking the series representation of the
hypergeometric function and interchanging the two sums.
The result of both summations is

SP =
(1− e−V̄ )h−iq−1

Γ(h− iq)

[

1 + X̄
(

1− e−V̄
) ]h−1+iq

. (42)

At late times V̄ → ∞, SP → 1/Γ(h− iq), the response
decays exponentially according to (40). At semi-early
times—after a light-crossing time but before the expo-
nential decay “takes over”—the overtone sum takes the
simple form

SP ≈ V̄ h−iq−1

Γ(h− iq)

(

1 + X̄V̄
)h−1+iq

, V̄ ≪ 1, (43)

where ≈ signifies we have expanded e−V̄ and kept first
order in V̄ only. We further overload the ≈ symbol by
restricting to values of V large enough that the contribu-
tion from the large-|ω| arc may be ignored, ensuring that
the quasinormal mode sum is convergent. Finally, taking
n radial derivatives of (43) one finds

S(n)
P ≈ V̄ h−1−iq+n

Γ(h− iq)
(h− 1 + iq)n

(

1 + X̄V̄
)h−1+iq−n

.

(44)



6

Therefore we have demonstrated that n derivatives of a
principal harmonic grow at a rate V̄ −1/2+n for V̄ ≪ 1.
The same transitory growth, including the rate, was
found for nonaxisymmetric perturbations of the near-
extremal rotating Kerr black hole [40].

B. Extremal case

The analysis of the previous section suggests un-
bounded growth of radial derivatives on the horizon as
σ → 0. We now show how the Aretakis instability arises
at the extremal horizon as a steep-gradient tail by exam-
ining the Laplace transform near the branch point at the
superrandiant bound frequency.
Near the horizon, the asymptotic transfer function for

far-zone initial data (x′ ≫ 1) is given by

g̃ ∼ Rup(x
′) (−2ik)iq

a(−2ik)1−h + b(−2ik)h

∞
∑

j=0

Rj

( x

2ik

)j

, x→ 0,

(45)
where a = −Γ(2h)/Γ(h−iq), b = Γ(2−2h)/Γ(1−h−iq)×
P and Rj := (h−iq)j(1−h−iq)j/j!. The k-independent
quantity P appearing above in b was previously given in
Eq. (32).
In general, the late-time asymptotics of the Green

function are determined by the singular points of g̃ in
C with the largest real part [69]. For perturbations
of four-dimensional stationary (asymptotically flat) ex-
tremal spacetimes, the known uppermost singular points
of g̃ are the static (ω = 0) and superradiant (k = 0) fre-
quencies, both existing as branch points on the real axis.
These branch points arise because the extremal radial
equation has irregular singular points at the horizon and
infinity. We have found that the power-law contribution
from the branch point at the static frequency is sublead-
ing in the case of extremal Kerr [70] and we assume the
same to hold for extremal Reissner-Nordström.
First consider modes having supplemental representa-

tions, where h > 1/2. In this case the a-term in the
denominator of g̃ in (45) is more singular near k = 0.
Then, the n-th radial derivative of the transfer function
at the horizon to leading-order in the late-time “1/k”
expansion [37] is given by

g̃
(n)
S |H(k → 0) ∼ fn(x

′)(−2ik)h−1−n+iq, h > 1/2,
(46)

where fn(x
′) := n!(−1)n RnRup(x

′) and the subscript S
means supplementary. Using Thm 37.1 of [69], the results
of which are succinctly summarized in [37], we find the
inverse transform to be

g
(n)
S |H(v → ∞) ∼ fn(x

′)e−iqv

2Γ(1− h+ n− iq)

(v

2

)n−h−iq

.

(47)
For principal representation modes, both the a and b

terms in the Wronksian (denominator of (45)) are equally

singular [37] at k = 0. The n-th derivative of the horizon
transfer function in this case is

g̃
(n)
P |H(k → 0) ∼ fn(x

′)(−2ik)α

(−2ik)−2iλ + ζ
, h ∈ C, (48)

where we have introduced fn(x
′) :=

(−1)nn!RnRup(x
′)/a, ζ := b/a , and α :=

−1/2 − n + i(q − λ) as simplifying factors. De-
spite considerable effort, we are unable to analytically
invert (48). Instead, we resort to numerical evaluation
with the Mathematica package NumericalLaplaceInversion

[71], which computes the inverse Laplace transform to
arbitrary numerical precision. Through experience with
the same form of integral in the extremal Kerr study
[37], we find it may be fitted to

g
(n)
P |H(v → ∞) ∼ Dne

−iqvvn−1/2+ip (49)

for complex Dn and p ∈ R. Comparison with (47) reveals
that the principal modes are dominant at late times.

V. SYMMETRY INTERPRETATION

We have shown that a collective ringing of overtones
at the critical frequency gives rise to transient power-
law behavior with duration 1/σ. Though the field itself
decays, the n-th transverse derivative grows with scaling
σ1/2−n. Therefore, the energy density Tαβu

αuβ ∼ σ−1

measured by infalling observers at the horizon becomes
infinite in the extremal limit.
The same phenomena were found for nonaxisymmet-

ric perturbations of the near-extremal and extremal Kerr
black holes [26, 37]. In hindsight, the similarities may
have been predicted from their mutual symmetries. Both
scenarios contain a U(1) symmetry in addition to the
near-horizon 2+1 Lorentz symmetry SO(2, 1). For Kerr
the U(1) manifests as axisymmetry of spacetime, while
for charged scalars it is a gauge symmetry on the princi-
pal bundle with q playing the role of ∂φ angular momen-
tum m. The triviality of the U(1) bundle—existence of
a global section—enabled us to globally utilize a smooth
gauge adapted to the λ→ 0 limit wherein the connection
between m and q was furnished explicitly through the
near-horizon frequency ω̄ = r+(ω− qΦ+)/λ. In this way,
the nonaxisymmetric modes of rapidly spinning Kerr may
be thought of as a tower of charged scalar perturbations
with integer separated charges.
We now sketch how the near-horizon charged pertur-

bations of extremal Reissner-Nordström fall into modules
of the symmetry group. Symmetry in the background is
defined as

LX,χgαβ = LXgαβ = 0, (50a)

LX,χA = LXA− dχ = 0, (50b)

where X is the set of left-invariant vector fields generat-
ing spacetime isometries and χ is the set of U(1) tran-
sition functions, which, for smooth A, can be uniquely
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paired with each X [72]. The generators act on the
charged scalar by LX,χψ = LXψ+ iqχψ. In the extremal
limit the so(2, 1) Cartan-Weyl generators carry simple
expressions in ingoing coordinates

H0 = v∂v − x∂x, (51a)

H+ = ∂v, (51b)

H− = v2∂v − 2(xv + 1)∂x, (51c)

and satisfy the commutation relations [H+, H−] = 2H0

and [H±, H0] = H±. These vector fields Lie derive the
metric (23). To Lie derive the vector potential A = vdx
we pair H− with the transition function χ− = −2v. We
also pair H0 with χ0 = 1. With this pairing all gener-
ators commute with the D2 operator. Then, by Schur’s
Lemma, D2 is proportional to the identity. Therefore we
have

D2ψ =
(

h(h− 1)−Kℓ + C
)

ψ (52)

where Kℓ labels so(3) as before, C = q
2 trivially labels

u(1), and h(h− 1) is the so(2, 1) Casimir [73]. The wave

equation then implies h = 1
2 ±

√

1/4 +Kℓ − C for non-
trivial solutions. Thus for a given ℓ and q, the near-
horizon solutions ψ may be partially classified according
to h. The casimir h provides only a partical classifica-
tion because so(2, 1) is non-compact. In general, simple
non-compact Lie algebras requires not only the Casimir
h(h− 1), but also a set of roots—simultaneous eigenval-
ues of the diagonal generators. For so(2, 1), the Cartan
subalgebra is rank-1 (single eigenvalue), so the choice of
generator we diagonalize is arbitrary without restricting
to unitary representations. Our choice is to classify by
the eigenvalue E0 of H0, which is already diagonal in the
ingoing coordinate basis,

LH0
ψ = E0ψ.

One solution of this equation is ψ = vE0f(vx), while an-
other is ψ = x−E0f(vx). The physical eigensolution is
determined by fixing boundary conditions such as regu-
larity at x = 0.
General finite representations of SO(2, 1) are classified

into four types, three of which have unbounded weight
spectra E0 + n, where n ∈ Z, and the other is finite [48,
74–77]. The infinite representations are further divided
into principal/supplementary series which have a bilat-
eral unbounded weight spectrum, and highest/lowest
weight series which are unbounded from above/below
n = 0, respectively. For the principal/supplementary
series modes, h is complex/real, whereas the highest and
lowest weight modes have real h = ±E0. For the finite
representation, which occurs for q = 0, h is an integer.
The only unitary finite representation is trivial (ℓ = 0).
Axisymmetric linear perturbations of Kerr transform as
a finite representation also.

We have been primarily interested in the principal se-
ries representations, which have the dominant contri-
bution to the horizon instability. As Kℓ is positive-
semidefinite, the field is a principal series solution of (52)
when

C > 1/4 +Kℓ. (53)

For charged fields, C is an arbitrary parameter that may
chosen such that Eq. (53) is satisfied for some ℓ. In the
case of generic mode perturbations of Kerr 3, principal
representations correspond to 1/4 . m/ℓ [78]. In near-
horizon regions of both RN and Kerr, the principal har-
monics (modes on which the generators act such that
(52) and (53) are satisfied) which respect causal bound-
ary conditions, and continuously match to the far region
radiation, realize non-unitary representations. With re-
spect to the global near-horizon AdS2 geometry, these
modes lack a positive definite Hermitian form [79] and
violate the Breitenlohner-Freedman bound [80]. Stability
results supporting these observations were found for the
near-horizon perturbations of extremal Kerr in [81, 82].
Lastly we remark on the explicit action of so(2, 1) ∈ g

on the physical solutions. With the v and x dependence
derived in (43), let us write ψ = vh−1−iqf(vx), ignor-
ing overall constants and also the angular dependence.
As f(vx) is trivially Lie-derived along H0, LH0

ψ =
(h− 1)ψ follows 4. This weight spectrum is unbounded,
(LH±

)jψ 6= 0 ∀j ∈ N, and has neither a highest or low-
est weight module. Starting with ψ one can generate
descendant solutions of (52) in both stable and unstable
directions by acting on ψ with either H+ or H− at the
horizon: H− raises E0 by an integer and enhances the
Aretakis rate by a integer power of v, while H+ lowers it
in the same way in the opposite direction. Though we can
map solutions into solutions by the action of so(2, 1), to
maintain consistency with the boundary conditions, one
must also act with the Cartan-Weyl generators of so(3),
changing the multipole number, and adjust q suitably to
ensure uniqueness of the solution. This “mixing” lim-
its the practical application of the construction based on
symmetry alone.
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