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Fully-coherent all-sky search for gravitational wave (GW) signals from the coalescence of compact
object binaries is a computationally expensive task. Approximations, such as semi-coherent coinci-
dence searches, are currently used to circumvent the computational barrier with a concomitant loss
in sensitivity. We explore the effectiveness of Particle Swarm Optimization (PSO) in addressing this
problem. Our results, using a simulated network of detectors with initial LIGO design sensitivities
and a realistic signal strength, show that PSO can successfully deliver a fully-coherent all-sky search
with < 1/10 the number of likelihood evaluations needed for a grid-based search.

I. INTRODUCTION

The detection of gravitational waves, announced in
2016 by the LIGO-Virgo Scientific Collaboration[1], has
launched the new era of gravitational wave (GW) astron-
omy. The detected signals, known as GW150914 [2, 3]
and GW151226 [4], are best matched by Compact Binary
Coalescence (CBC) sources consisting of the inspiral and
merger of black holes. The signals were detected by the
two aLIGO [5] detectors, which are currently undergo-
ing commissioning to reach their design sensitivity. Over
the next few years, aLIGO will be joined by a worldwide
network of comparable sensitivity detectors, namely, ad-
vanced Virgo [6], KAGRA [7] and LIGO-India [8]. Com-
bining the data from this network of geographically dis-
tributed second generation detectors will lead to a better
overall sensitivity for CBC signals along with better lo-
calization on the sky [9]. Prompt localization will enable
the study of such events using multiple messengers of
information [10].

Given that theoretically computed waveforms for CBC
signals are sufficiently reliable over a broad parameter
range [11], it is natural to use the Generalized Likeli-
hood Ratio Test (GLRT) and Maximum-Likelihood Es-
timation (MLE) [12] for the detection and estimation, re-
spectively, of such signals. However, both of these meth-
ods involve a computationally expensive non-linear and
non-convex numerical optimization problem. Applied to
the data from a network of detectors, the MLE/GLRT
approach – called a fully-coherent search – requires the lo-
calization of the global maximum of the likelihood over an
at least nine dimensional parameter space [13], where the
computation of the likelihood at each point requires cor-
relations between pairs of time series involving ∼ O(104)
(for initial LIGO) to O(106) (for aLIGO) samples. A
brute force grid-based search for the global maximum is
estimated to require ∼ 4×106 likelihood evaluations over
the low component mass range of 1 to 3 M� in the case
of initial LIGO [14], with the number becoming substan-
tially higher in the case of aLIGO. (The cost of a grid-

based search is dominated by the exploration of the low
mass range due to longer signal durations [14].)

The computational bottleneck in the fully-coherent
search for CBC signals has restricted the scope of its ap-
plicability so far. Fully-coherent search has either been
used only for targeted sky locations [15] or has been ap-
proximated by semi-coherent all-sky searches [16]. Semi-
coherent searches reduce the computational burden by
downselecting the number of data segments to analyze in
a fully-coherent step. The downselection is based on re-
quirements such as the simultaneous crossing of detection
thresholds [17] in at least two single-detector (incoherent)
searches and closeness of the estimated signal parame-
ters. As shown in [18], a semi-coherent search trades-off
a significant amount of sensitivity for the reduced com-
putational cost, with the detection volume being ∼ 25%
smaller than a fully-coherent search.

The estimates of computational cost above pertain to
the case of CBC waveforms for systems in which the ef-
fect of the spins of the binary components are negligible.
Moving on to the full parameter space including spins,
a grid-based search simply becomes infeasible due to the
exponential dependence of the number of points in a grid
on the dimensionality of the signal parameter space. Cur-
rent efforts at finding alternatives to grid-based search
in this context have focused on Markov Chain Monte
Carlo (MCMC) methods [19] and its variants. In [20],
MCMC was applied to the parameter estimation problem
for CBC signals when the spin of one binary component
is non-negligible. It was found that a typical MCMC
chain needs about O(5× 106) iterations (likelihood eval-
uations) in order to converge reliably. This is again too
high a computational cost to allow coverage of all data
and MCMC methods have been used only as a parameter
estimation step following a candidate detection.

Fast methods for producing rapid estimates of sky lo-
cation of a CBC source have been developed [21–23]. In
these methods, the subset of so-called intrinsic signal pa-
rameters, which are responsible for the bulk of the cost
of a grid search, are simply replaced by the values es-
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timated in the computationally cheaper single detector
searches. Under this approximation, the cost of evaluat-
ing the likelihood over the remaining parameters can be
reduced significantly. Other studies [24, 25] have shown
that it is possible to find alternative representations of
CBC signals that speed up the computation of the like-
lihood function.

Particle Swarm Optimization (PSO)[26] is a global op-
timization method that has proven to be effective across
a wide range of application areas [27] including astron-
omy, such as CMBR analysis [28] and gravitational lens-
ing [29]. In the context of GW data analysis, PSO was
first used in [30] for the single detector CBC search prob-
lem where it was shown to be effective in locating the
global maximum of the likelihood despite its ruggedness.
In Pulsar Timing Array (PTA) based GW detection,
PSO was used successfully in optimizing an extremely
rugged likelihood function over a 12-dimensional search
space [31]. Other successful applications of PSO in GW
data analysis are growing at a steady rate [32].

In this paper, we explore the effectiveness of PSO in
a fully-coherent all-sky CBC search. For the purpose of
testing PSO, we take a four-detector network, each hav-
ing the initial LIGO design noise Power Spectral Density
(PSD) [33], and use the 2-PN binary inspiral waveform.
We investigate the effectiveness of the GLRT and MLE
as found by PSO for detection and parameter estimation
respectively.

The rest of the paper is organized as follows. Sec II
describes the data and signal models used in the paper.
Sec III presents the objective function to be optimized
in a fully-coherent all-sky search. The PSO algorithm is
described in Sec IV. The simulation setup and results
are described in Sec V. Our conclusions are presented in
Sec VI.

II. DATA AND SIGNAL MODELS

In the following, the Fourier transform of a function,
a(t), of time is denoted by ã(f). The strain time series
recorded by the Ith GW detector in a network of N de-
tectors is

xI(t) = hI(t) + nI(t), (1)

where hI(t) is the detector response to the incident GW
and nI(t) denotes detector noise. We will assume that
nI(t) is a realization of a zero-mean, stationary Gaussian
stochastic process,

E[nI(t)] = 0, (2)

E[ñI(f) (ñI(f
′
))∗] =

1

2
Sn(f)δ(f − f

′
), (3)

with Sn(f) denoting the one-sided noise power spectral
density (PSD). It does not carry a detector index in this
paper because we assume identical PSD for all the detec-
tors.

We use the Earth Centered Earth Fixed Frame
(ECEF) [34] to define the geometry of the GW detector
network and sources. In terms of the TT-gauge polariza-
tion waveforms h+(t) and h×(t), the strain response of
the Ith detector is given by,

hI(t) = F I+(α, δ, ψ)h+(t−∆I)

+F I×(α, δ, ψ)h×(t−∆I) . (4)

Here, α, δ are the azimuthal and polar angles that define
the unit vector pointing to the source,

n̂ = (cosα cos δ, sinα cos δ, sin δ) , (5)

with the direction of propagation of the GW plane wave
being −n̂. The polarization angle ψ gives the orientation
of the wave frame axes orthogonal to n̂ with respect to
the fiducial basis,

eRx = (sinα, − cosα, 0) , (6)

eRy = (− cosα sin δ, − sinα sin δ, cos δ) , (7)

in the same plane. For CBC sources, the minor and major
axes of the ellipse formed by the projection of the orbit
of the binary on the sky provide the preferred orientation
for the wave frame axes. For generic sources, ψ can be
set to zero. ∆I is the time delay between the arrival of
the signal at the ECEF origin and the detector,

∆I =
rI . n̂

c
, (8)

where rI is the position vector of the detector in the
ECEF.
F I+ and F I× are called the antenna pattern functions

and they are given by,(
F I+
F I×

)
=

(
cos 2ψ sin 2ψ
− sin 2ψ cos 2ψ

)(
U I+
U I×

)
. (9)

Here, U I+ and U I× depend on (α, δ) [35] and are defined
by,

U I+ =
↔
ε + :

↔
dI , U I× =

↔
ε × :

↔
dI , (10)

where
↔
a denotes a tensor and : denotes the contrac-

tion operation on tensors. The polarization basis tensors
↔
ε +,× are given by,

↔
ε + = eRx ⊗ eRx − eRy ⊗ eRy , (11)
↔
ε × = eRx ⊗ eRy + eRy ⊗ eRx , (12)

while
↔
dI is the detector tensor

↔
dI =

1

2
(ûI ⊗ ûI − v̂I ⊗ v̂I) , (13)

where (ûI , v̂I) are unit vectors along the arms of the
detector. Here, for any given vectors a and b, (a⊗ b)ij =
aibj .
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Hanford Livingston Virgo Kagra

ux -0.2239 -0.9546 -0.7005 -0.4300

uy 0.7998 -0.1416 0.2085 -0.8363

uz 0.5569 -0.2622 0.6826 0.3400

vx -0.9140 0.2977 -0.0538 0.6821

vy 0.0261 -0.4879 -0.9691 -0.0542

vz -0.4049 -0.8205 0.2408 0.7292

x -2.1614e+6 -7.4276e+4 4.5464e+6 -3.7769e+6

y -3.8347e+6 -5.4963e+6 8.4299e+5 3.4839e+6

z 4.6004e+6 3.2243e+6 4.3786e+6 3.7667e+6

TABLE I: Location and orientation vectors for the
detectors used in this paper. The vector components

are specified in the ECEF. The components (ux,uy,uz)
and (vx,vy,vz) are for the unit vectors ûI and v̂I along

the detector arms. The components (x, y, z) of the
position vector rI are in meters. The data in this table

was obtained from [39, 40].

The relation between the responses of all the detec-
tors in a network, with each appropriately time-shifted
to compensate for the delay ∆I , to the incoming GW
strain signal can be expressed in the following compact
form. 

h1(t)
h2(t)

...
hN (t)

 = F

(
h+(t)
h×(t)

)
, (14)

where the Ith row of F, called the antenna pattern ma-
trix, contains (F I+, F

I
×). It is know that F can become

rank-deficient for certain parts of the sky, leading to an
ill-posed inverse problem that can have a significant ef-
fect [36–38] on parameter estimation errors. The rank-
deficiency of F is quantified in terms of its condition num-
ber.

In this paper, we use a four-detector network consisting
of the two LIGO detectors at Hanford (H) and Livingston
(L), Virgo (V) and Kagra (K). We assume the initial
LIGO design PSD [33] for the noise in each detector.
The orientations and locations of the detectors, provided
in Table I, match their real-world values.

Our choice of the initial LIGO PSD allows data real-
izations to be considerably shorter in length than what
is needed for the PSDs of advanced detectors. This re-
duces computational costs, which is appropriate for a first
investigation of PSO in the context of a fully coherent
search.

A. Restricted 2-PN signal

The signal model used in this paper is the restricted
2-PN waveform from a circularized binary consisting of
non-spinning compact objects. The phase of the signal
is calculated up to order (v/c)4 in the post-Newtonian
expansion but the amplitude modulation is calculated
only at the lowest (Newtonian) order [41].

The GW polarization waveforms can be expressed con-
veniently in the Fourier domain using the stationary
phase approximation [11],

h̃+(f) =
Af
r

(1 + cos2 ι)

2
f−7/6 exp[−iΨ(f)], (15)

h̃×(f) =
Af
r

cos ιf−7/6 exp[−i(Ψ(f) + π/2)], (16)

where r is the distance to the source and the phase Ψ(f)
is given by,

Ψ(f) = 2πftc − φc − π/4 +

4∑
j=0

αj

(
f

f∗

)(−5+j)/3

.(17)

The functional form of αj is given in Appendix A.
They only depend on the component masses m1 and m2

through the chirp times τ0 and τ1.5. tc is the time at
which the end of the inspiral signal arrives at the ECEF
origin. The amplitude Af depends on the component
masses m1 and m2. The coalescence phase of the signal
is given by φc. It is possible to absorb r, φc, ψ and ι in
a new set of parameters Ak, (k = 1, . . . , 4), giving

hI(t) =

4∑
k=1

Akhk
I(t) , (18)

with,

A1 =
1

r

(
β cosφc cos 2ψ − cos ι sinφc sin 2ψ

)
, A3 = −1

r

(
β sinφc cos 2ψ + cos ι cosφc sin 2ψ

)
, (19)

A2 =
1

r

(
β cosφc sin 2ψ + cos ι sinφc cos 2ψ

)
, A4 = −1

r

(
β sinφc sin 2ψ − cos ι cosφc cos 2ψ

)
, (20)

where β = (1 + cos2 ι)/2. Here, the waveforms hk
I , k = 1,...,4, are defined as

hI1(t) = U I+hc(t−∆I), hI2(t) = U I×hc(t−∆I),

hI3(t) = U I+hs(t−∆I), hI4(t) = U I×hs(t−∆I),
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with,

h̃c(f) = Aff−7/6 exp[−iΨ(f)|φc=0], (21)

h̃s(f) = −ih̃c(f). (22)

III. FULLY-COHERENT ALL-SKY SEARCH

Under our assumption of Gaussian, stationary noise,
the log-likelihood Ratio (LLR) [42] for the Ith detector
is given by,

ln λI = 〈xI |hI〉 − 1

2
〈hI |hI〉 , (23)

where,

〈 p | q 〉 = 4 Re

∫ ∞
0

df
p̃(f)q̃∗(f)

Sn(f)
. (24)

If we assume the noise in different detectors to be statis-
tically independent, the log-likelihood for an N detector
network is given by,

ln λ(N) =

N∑
I=1

[
〈xI |hI〉 − 1

2
〈hI |hI〉

]
. (25)

Substituting from Eqs. 18, 20, and 21 we get,

lnλ(N) = ATH− 1

2
ATMA, (26)

where A = (A1, A2, A3, A4)T, H = (H1, H2, H3, H4)T,

and Ha =
N∑
I=1

〈xI |hIa〉 for a = 1, . . . , 4. The matrix M is

given by

M =


A B 0 0

B C 0 0

0 0 A B
0 0 B C

 , (27)

where,

A =

N∑
i=1

U I+U
I
+〈hIc |hIc〉, (28)

B =

N∑
i=1

U I+U
I
×〈hIc |hIc〉,

C =

N∑
i=1

U I×U
I
×〈hIc |hIc〉.

It follows that, for a given data realization, the log-
likelihood is a function of the parameters A and θ =
{τ0, τ1.5, α, δ, tc}.

The GLRT statistic is the global maximum of the LLR
over the parameters A and θ. Following [16], it is denoted
by the equivalent statistic ρcoh,

ρ2
coh = 2 max

A,θ
lnλ(N) , (29)

called the coherent search statistic. The MLE, Â and θ̂,
of A and θ respectively are the maximizers.

The Maximization of the log-likelihood can be carried
out as,

ρ2
coh = max

θ
γ2(θ) , (30)

γ2(θ) = 2 max
A

lnλ(N) . (31)

The inner maximization over A can be performed ana-
lytically, giving

Â = M−1H , (32)

as the solution. Then,

γ2(θ) = HTM−1H. (33)

The outer maximization over θ must be carried out nu-
merically. For fixed {τ0, τ1.5, α, δ}, the maximization over
tc, can be carried out very efficiently using the Fast
Fourier Transform (FFT) since 〈p|q(t − tc)〉 is a corre-
lation operation [16]. We call

Γ2(Θ) = max
tc

γ2(θ) ⇒ ρ2
coh = max

Θ
Γ2(Θ), (34)

with Θ = {τ0, τ1.5, α, δ}, the coherent fitness function.
Its maximization over Θ is the main challenge in the im-
plementation of a fully coherent search. In this paper,
we use PSO, described next, to carry out this task.

IV. PARTICLE SWARM OPTIMIZATION

PSO is an optimization method derived from a simpli-
fied mathematical model of the swarming behavior ob-
served in nature across many species. It uses a fixed
number of samples (called particles) of the function to
be optimized (called the fitness function). The particles
are iteratively moved in the search space following a set
of dynamical equations.

A. PSO algorithm

To provide a rigorous description of PSO, we adopt the
following notation in this section.

• f(x): the scalar fitness function to be optimized,
with x = (x1, x2, . . . , xd) ∈ Rd. In our case, x = Θ,
f(x) is the coherent fitness function Γ2(Θ) (c.f.,
Eq. 34) and d = 4.

• S ⊂ Rd: the search space defined by the hypercube
ai ≤ xi ≤ bi, i = 1, 2, . . . , d.

• Np: the number of particles in the swarm.

• xi[k]: the position of the ith particle at the kth

iteration.
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• pi[k]: the best location found by the ith particle
over all iterations up to and including the kth.

f(pi[k]) = max
j≤k

f(xi[j]). (35)

• pg[k]: the best location found by the swarm over
all iterations up to and including the kth.

f(pg[k]) = max
1≤j≤Np

f(xj [k]). (36)

The PSO dynamical equations are as follows.

vi[k + 1] = w[k]vi[k] + c1r1(pi[k]− xi[k]) +

c2r2(pg[k]− xi[k]) . (37)

xi[k + 1] = xi[k] + zi[k + 1] , (38)

zji [k] =


vji [k], −vjmax ≤ v

j
i [k] ≤ vjmax

−vjmax, vji [k] < −vjmax

vjmax vji [k] > vjmax

.(39)

Here, vi[k] is called the “velocity” of the ith particle, w[k]
is a deterministic function known as the inertia weight
(see below), c1 and c2 are constants, and ri is a diagonal
matrix with independent, identically distributed random
variables having a uniform distribution over [0, 1]. The
second and third terms on the RHS of Eq. 37 are called
the cognitive and social terms respectively.

The iterations are initialized at k = 1 by indepen-
dently drawing (i) xji [1] from a uniform distribution over

[aj , bj ], and (ii) vji [1] from a uniform distribution over
[−vjmax, v

j
max].

The behavior of particles must be prescribed when they
exit the search space. We adopt the standard “let them
fly” boundary condition under which a particle outside
the search space is assigned a fitness values of −∞. Since
both pi[k] and pg[k] are always within the search space,
such a particle is eventually dragged back into the search
space by the cognitive and social terms. The stopping
criterion adopted is simply that a fixed number, Niter, of
iterations are completed.

B. Assessing convergence

The conditions for a stochastic optimizer to converge
to the global optimum [43] require that (a) every measur-
able subset of the search space be visited at least once,
and (ii) the fitness value at any iteration is equal or better
than the value at the previous one. There are no stochas-
tic optimization methods, including PSO, that pass these
conditions in a finite number of iterations. Hence, con-
vergence to the global maximum is not guaranteed. Note
that this does not mean that PSO cannot converge to the
global maximum. It simply means that we can never be
sure if it has found the global maximum or not. One can
only talk about the probability of convergence in a given
run of PSO. A simple way to increase this probability to

near certainty is to do a sufficient number of independent
runs of PSO. If the probability of convergence in a single
run is Pconv, then the probability of not converging in
any of Nruns independent runs is (1− Pconv)Nruns .

Another issue with using a stochastic optimization
method like PSO is that it is not directly possible to
verify that the end result of PSO is actually close to the
global maximum or not. This is because verification can
only be done using a grid search and, for the problem of
interest, a grid search may simply be infeasible. (The-
oretical studies of PSO use benchmark fitness functions
for which the location of the global optimum is known
by construction.) However, as pointed out in [30], there
exists an indirect way to check if PSO is performing sat-
isfactorily in the case of likelihood maximization with
data containing a signal injected with known parameters.
Since any parameter estimation method incurs an esti-
mation error caused by the shift of the global maximum
away from the true signal parameters, the global maxi-
mum of the fitness must be higher than the fitness value
at the true signal parameters, the latter being known for
simulated data. Thus, we can find out if PSO is doing a
satisfactory job or not by checking that it yields a fitness
value greater than the one at the true signal parameters.

C. PSO tuning

Stochastic optimizers such as PSO need to trade off
wide-ranging exploration of the search space against ex-
ploitation of a good candidate location. These two phases
are in conflict with each other, requiring a proper bal-
ance in the relative time spent in each phase. In gen-
eral, more exploration leads to higher computational cost
while making it too short leads to premature convergence
to a local maximum. Fig. 1 shows the global best fitness
value evolution for the coherent network analysis prob-
lem. One can see how PSO initially converges rapidly
during the exploration phase and then slows down while
it searches for the best value in a small region during the
exploitation phase.

In the version of PSO described here, the main pa-
rameter controlling the transition from exploration to ex-
ploitation is the inertia weight. In this paper, the inertia
weight is chosen to decay linearly from a value wmax at
k = 1 to wmin at k = Niter.

An attractive feature of PSO is the apparent robust-
ness of its parameter values across a wide range of op-
timization problems [44]. This greatly reduces the ef-
fort needed to tune the algorithm for satisfactory per-
formance. We find that, in the optimization problem
considered here, fairly standard settings [45] for the PSO
parameters work well. The values used for these param-
eters are Np = 40, c1 = c2 = 2.0, vimax = 0.5(bi − ai),
wmax = 0.9, and wmin = 0.3.

The only parameter above that required any kind of
tuning was Niter. To perform the tuning, we examined
the evolution of the the global best fitness f(pg[k]) as a



6

FIG. 1: Evolution of the mean and standard deviation
of the coherent search statistic for a single data
realization. The blue line is the average over 225

independent PSO runs, while the red curves show the
1σ standard deviation. The data realization contains a
signal with a coherent network SNR (defined in Eq. 40)

of 9.0.

function of k. The tuning process starts by picking an
Niter value that is sufficiently deep in the exploitation
phase based on a curve such as Fig. 1. We then do 12
independent runs of PSO with this value of Niter and find
the fraction of runs in which the final global best fitness
exceeds the fitness at the true signal parameters. This
gives an estimate of Pconv, the probability of successful
convergence. We increase Niter until Pconv ' 0.3, which
gives a probability of failure in 12 independent PSO runs
of 0.0138. However, since Pconv is estimated using only
12 trials, it is not very accurate. The actual probability
of successful convergence is discussed in Sec. V. Based
on this tuning procedure, we set Niter = 500.

It is important to note that the PSO algorithm pre-
sented here is considered to be one of the most basic
among the general class of algorithms that have been pro-
posed under the PSO meta-heuristic [46]. An important
variant, for example, is the use of a neighborhood best
location [47] instead of the global best pg[k]. Another
variant [27] applies a constriction factor to the equation
for vi[k] instead of clamping its components to the inter-
val [−vmax, vmax]. We did not find it necessary to explore
these other variants because the basic version of PSO ap-
pears to do a satisfactory job.

V. RESULTS

We test the performance of PSO using simulated re-
alizations of data for the HLVK network described in
Sec. II. For each data realization, Nruns = 12 indepen-
dent PSO runs are carried out. The result for each data
realization corresponds to the output from the run that
achieves the best final value of the coherent search statis-
tic ρcoh. The independent PSO runs are executed in par-
allel, and the choice of Nruns = 12 arises from the 12
processing cores per node in the computing cluster that

TABLE II: Source sky locations used in the
simulations. The first column lists the label assigned to

the location. The second and third columns list the
azimuthal and polar angles of the source location in the

ECEF. The condition number of the antenna pattern
matrix at each chosen source location is listed in the

last column.

Label α (deg) δ (deg) log10(Condition number)

L1 80.79 -29.22 0.9711

L2 -128.34 -33.80 0.6079

L3 -81.93 13.75 0.6008

L4 32.09 -53.86 3.2436

L5 150.11 -60.16 0.0066

L6 -122.61 41.25 1.6159

was used for the analysis.
The simulated signals are normalized to have a speci-

fied coherent network SNR (SNRcoh), defined as,

SNRcoh = γ(θtrue) =
[
HTM−1H|Â,θtrue

]1/2
, (40)

where θtrue denotes the values of {τ0, τ1.5, α, δ, tc} associ-
ated with the signal to be normalized. SNRcoh is related
to the optimal network signal to noise ratio (SNRopt) by,

SNRopt '
√

2 SNRcoh where SNRopt is defined as,

SNRopt =
E[lnλ(N)|H1]− E[lnλ(N)|H0][

E[(lnλ(N) − E[lnλ(N)|H0])2|H0]
]1/2(41)

=

[
N∑
I=1

〈hI |hI〉

]1/2

. (42)

Here, E[X|A] denotes the conditional expectation of a
random variable X given condition A. H0 and H1 corre-
spond to the cases where a signal is, respectively, absent
or present in the data. Normalization using SNRopt as-
sumes the best-case scenario where all the signal param-
eters, including A, are known a priori, while normal-
ization with SNRcoh relaxes this unrealistic assumption
somewhat.

We pick several combinations of binary component
masses and source sky locations to generate data re-
alizations containing signals. We label these combina-
tions using the scheme MaLb, where a ∈ {1, 2} and
b ∈ {1, 2, 3, 4, 5, 6}. M1 and M2 refer to the pair of binary
component masses (1.4M�, 1.4M�) and (4.6M�, 1.4M�)
respectively. Lb refers to the source sky location, for
which the values used are listed in Table II.

For each set, MaLb, of parameters, 120 data realiza-
tions are generated. In all cases, the signals are normal-
ized to have SNRcoh = 9.0 (equivalent to SNRopt = 12.7).
In all cases, the signals correspond to face-on binaries
with ι = 0. As such, ψ gets absorbed into the coales-
cence phase parameter which is set to φc = π/3 radians.



7

The degree of ill-posedness in the inverse problem of
coherent network analysis can be measured in terms of
the condition number [36–38] of the antenna pattern ma-
trix F. Since the antenna pattern functions depend on the
sky location of a source, so does the condition number.
The sky locations chosen in Table II sample the condition
number across a range of values, corresponding to a well
conditioned (low) to poorly conditioned (high) inverse
problem.

For each realization, the data is generated directly in
the Fourier domain with a frequency spacing of 0.0156 Hz
between consecutive bins and a maximum (Nyquist) fre-
quency of 1024 Hz. In the time domain, this corresponds
to a data segment duration of 64 sec sampled at 2048 Hz.
The chirp times corresponding to the two sets of masses
used in the simulation are (τ0, τ1.5) = (24.850, 0.866) sec
and (9.751, 0.728) sec respectively. It is assumed that
the signals are not visible at frequencies below 40 Hz due
to the steep rise in seismic noise below this frequency.
Hence, the signal waveform samples are set to zero below
this frequency. Similarly, any inspiral signal terminates
when the binary components reach the last stable circu-
lar orbit. We use 700 Hz, the frequency corresponding
to the lower total mass system, as the cutoff frequency
for all signal waveforms. The last stable orbit frequency
decreases for higher mass systems but, given the small
number of cycles at high frequencies, it makes no practi-
cal difference to the results if a uniform cutoff frequency
is used.

For PSO, we use a search range of (i) [0, 43.538] sec for
τ0, (ii)[0, 1.084] sec for τ1.5, (iii) [−180, 180] degrees for
right ascension (α) and (iii)[−90, 90] degrees for declina-
tion (δ).

A. Detection performance

It is important to note that the value of the coher-
ent search statistic, ρcoh, found by PSO need not be the
actual value, namely, the true global maximum of the
log-likelihood ratio. Hence, it is important to verify that
ρcoh as found by PSO performs well in terms of detection.

Fig. 2 shows the distribution of ρcoh found by PSO for
data realizations corresponding to (i) the null hypothesis
(H0): signal absent, and (ii) the alternative hypothesis
(H1): signal present. For the latter, we have combined
the ρcoh values for the 12 source parameter values, MaLb,
used in the generation of data realizations containing sig-
nals. For the number of data realizations used in our
simulations, there is no overlap between the distribution
of ρcoh for H0 and H1. This suggests that ρcoh found by
PSO performs quite well as a detection statistic and that
it is an acceptable surrogate for the true coherent search
statistic.

Fig. 3 shows a scatterplot of ρcoh found by PSO against
the coherent fitness function at the true signal location,
Γ(Θtrue), where Θtrue denotes the known parameters of
the signal injected into the data realization. As discussed

in Sec. IV B, ρcoh ≥ Γ(Θtrue) indicates that PSO has
likely found the global maximum. We find that this con-
dition is satisfied in 93.4% of the total number of data
realizations when the number of independent PSO runs
is set to Nruns = 12. Quantifying the departure from
this condition in terms of q = (1− ρcoh/Γ(Θtrue))× 100,
97.0%, 98.4%, and 99.7% of all trials satisfy q ≤ 3%,
≤ 5%, and ≤ 10% respectively. When the number of
PSO runs is set to Nruns = 24 for the realizations that
showed a departure from the above condition, the vast
majority ended up satisfying the condition again, lead-
ing to 99.7%, 99.9%, and 100% of all trials for q ≤ 3%,
≤ 5%, and ≤ 10% respectively.

While a violation of the condition ρcoh ≥ Γ(θtrue)
means a failure to locate the global maximum, the drop
in ρcoh found by PSO from its true value may be small
enough that the detection threshold is still crossed. This
would result in the detection of a signal, although it may
not provide a good estimate of its parameters. The loss
in detection probability can be estimated in terms of the
fraction of realizations in which ρcoh found by PSO fell
below a given detection threshold while Γ(Θtrue) stayed
above it. Since the true ρcoh is always greater than
Γ(Θtrue), the latter condition implies that a detection
would have resulted if the true ρcoh were available. For a
detection threshold η, we find that the fractional loss in
detection probability, given by the number of realizations
where ρcoh ≤ η and Γ(Θtrue) ≥ η relative to the number
where Γ(Θtrue) ≥ η, is between ' 0.9% to ' 2.5% for
8.0 ≤ η ≤ 9.0.

B. Estimation performance

The performance of PSO in estimating the sky loca-
tion of a source is shown in Fig. 4, with zoomed in views
shown in Figs. 5 and 6. It is evident from Fig. 4 that
the distribution of sky localization error is strongly in-
fluenced by the condition number of the antenna pattern
matrix (c.f. Eq. 14) at the true location. A source loca-
tion with a low condition number tends to have a small
positional error.

We use the area 16σασδ cos δ of the box of side length
4σα and 4σδ, where σα and σδ are the standard deviations
in estimates of α and δ respectively, as a simple measure
of position error. For the sources M1L5 and M2L5 that
have the lowest condition number, the position errors are
10.43 and 7.32 deg2 respectively. For the highest condi-
tion number location (L4), we get 152.45 and 140.39 deg2

for M1 and M2 respectively. The highest position error
occurs not at the highest condition number but at L6,
which is the second highest. However, our simple mea-
sure of position error is wholly inapplicable to these ex-
treme locations because the error is distributed along a
stretched out region. A proper estimation of errors for
extreme condition numbers requires a much larger num-
ber of data realizations in order to map out the error
region with a sufficient density of sample points. This
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FIG. 2: Distribution of coherent search statistic, ρcoh, values found by PSO. Left: Noise-only case obtained from
1024 independent data realizations. Right: Signal plus noise for SNRcoh = 9.

For the latter, we have pooled together the values of ρcoh for all the 12 source parameter value sets used in the simulations.
This leads to 1440 independent trial values of ρcoh for the histogram on the right.

is postponed to future work pending ongoing work on
increasing the computational efficiency of our codes.

Table III summarizes the marginal distribution of er-
rors up to the second moment for all the signal param-
eters constituting the PSO search space. No clear trend
emerges for the dependence on condition number of the
errors in the chirp time parameters τ0 and τ1.5. It is
likely that resolving a dependence, if any, requires a sig-
nificantly larger number of data realizations. For com-
pleteness, the marginal distributions are shown in Figs. 7
and 8. Table IV lists the sample correlation coefficients
between pairs of parameters. The sample correlation co-
efficient between τ0 and τ1.5 is ≥ 0.9 for all the sources
considered here. The strong correlation between chirp
time estimates is well known from studies of single de-
tector searches [48]. It is generally assumed from Fisher
information matrix based analyses [49] that the corre-
lation between the sky angles, α and δ, and chirp time
parameters is negligible. While this result, which strictly
holds only for asymptotically large SNRs, is borne out
by our simulation for the majority of cases, there are
some sky locations for both the M1 and M2 sets where
this does not hold. For example, for M1, there are two
locations, L6 and L2, where the sample correlation co-
efficients are −0.452 and 0.416 respectively, while it is
low (absolute value . 0.24) elsewhere. Thus, the Fisher
information may not be a good predictor of covariances
between parameters for all source locations.

C. Computational cost

Obtaining the coherent fitness value for each PSO par-
ticle is the computationally most expensive step. The
calculation of a single fitness value requires, (i) the gen-
eration of two template waveforms (Eq. 21, Eq. 22) in
the Fourier domain, (ii) taking a sample-wise product of
the data with each of the template waveforms (Eq. 24),
and (iii) taking the inverse FFT of each such product
sequence [16]. The computational cost of each fitness
evaluation in the PSO based approach is identical to
those of other stochastic optimization algorithms, such
as MCMC, that have been used for fully-coherent all-sky
search.

Among the above operations, the generation of tem-
plate waveforms is the computationally most expensive
step [50]. In situations where a grid-based search for the
global maximum is computationally feasible, template
waveforms can be pre-computed and stored in advance,
thus saving the cost of generating waveforms on-the-fly.
Stochastic search algorithms do not use pre-computed
waveforms and, hence, must contend with this extra cost.

Several schemes [51–54] have been constructed to speed
up waveform generation but we have not implemented
any of these in our code so far. Besides this, our code is
written entirely in Matlab and suffers a penalty in speed
as a result. Thus, the wall-clock execution time of our
code is not the correct metric to use for judging the com-
putational savings brought about by PSO. The only use-
ful metric for comparing PSO with other methods is the
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TABLE III: Sample mean and standard deviation (SD) of signal parameter estimates. The estimates of the binary
component masses, m1 and m2, are derived from those of the chirp time parameters τ0 and τ1.5 using the relations

given in A.

τ0(s) τ1.5(s) α(deg) δ(deg) m1(M�) m2(M�)

Source Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

M1L1 24.848 0.017 0.866 0.018 80.78 1.13 -28.90 1.79 1.491 0.138 1.299 0.089

M1L2 24.846 0.048 0.863 0.036 -128.61 2.57 -34.40 3.68 1.502 0.161 1.282 0.099

M1L3 24.848 0.023 0.863 0.022 -82.03 0.64 13.55 1.59 1.471 0.151 1.311 0.089

M1L4 24.849 0.024 0.866 0.025 31.73 2.09 -51.02 7.73 1.506 0.174 1.284 0.104

M1L5 24.849 0.018 0.866 0.018 150.09 1.56 -60.10 0.84 1.499 0.145 1.292 0.092

M1L6 24.849 0.022 0.865 0.023 -120.20 10.96 42.37 8.95 1.498 0.157 1.291 0.098

M2L1 9.750 0.023 0.728 0.025 80.61 2.25 -29.06 3.26 4.594 0.266 1.406 0.077

M2L2 9.747 0.023 0.725 0.022 -128.41 1.47 -34.17 2.09 4.559 0.247 1.415 0.080

M2L3 9.748 0.016 0.726 0.018 -82.02 0.65 13.52 1.79 4.570 0.189 1.410 0.052

M2L4 9.752 0.015 0.731 0.016 31.83 2.15 -51.74 6.92 4.623 0.164 1.396 0.042

M2L5 9.750 0.023 0.728 0.021 150.08 1.46 -60.11 0.63 4.590 0.239 1.407 0.088

M2L6 9.748 0.025 0.726 0.022 -122.14 5.27 41.26 7.85 4.563 0.272 1.415 0.103

FIG. 3: Comparsion of the coherent search statistic ρcoh

found by PSO with the coherent fitness value Γ(Θtrue)
at the true signal parameters, Θtrue. Each dot

corresponds to one data realization, from a total of 1440
realizations across all the source parameters used.

Dashed lines show the 3%,5%, and 10% drop from the
coherent fitness value. Black dots indicate data

realizations for which ρcoh < Γ(Θtrue) with Nruns = 12
indpendent PSO runs, but recovered to ρcoh ≥ Γ(Θtrue)
when Nruns = 24. The total number of points below the

diagonal is 95.

TABLE IV: Sample pair-wise correlation coefficients of
parameters. The parameter pairs are listed in the

headings of the columns.

Source (τ0, τ1.5) (α, δ) (τ0, α) (τ0, δ) (τ1.5, α) (τ1.5, δ)

M1L1 0.933 -0.618 0.152 -0.111 0.165 -0.096

M1L2 0.955 0.725 0.223 0.435 0.105 0.310

M1L3 0.959 0.174 -0.231 -0.179 -0.263 -0.163

M1L4 0.972 -0.791 -0.151 0.020 -0.144 0.051

M1L5 0.951 -0.426 -0.206 0.120 -0.229 0.150

M1L6 0.926 0.806 -0.452 -0.304 -0.345 -0.253

M2L1 0.970 -0.891 0.054 -0.025 0.045 -0.028

M2L2 0.947 -0.003 0.416 0.171 0.259 0.222

M2L3 0.935 0.305 -0.067 -0.034 -0.070 -0.011

M2L4 0.928 -0.794 0.011 0.081 0.058 0.031

M2L5 0.956 -0.147 0.093 -0.122 0.024 -0.095

M2L6 0.959 0.821 0.018 0.056 0.015 0.067

total number of fitness evaluations. Given the same code
for evaluating the fitness function, algorithms that get by
using a smaller number of evaluations will automatically
have a better execution speed.

Since the termination criteria used for PSO in this
paper is simply the number of iterations, there is an
upper limit to the total number of fitness evaluations
of 40(number of particles)× 500(number of iterations)×
12(number of PSO runs) = 2.4 × 105. However, the ac-
tual number of fitness evaluations is generally lower be-
cause of the boundary condition used, which allows par-
ticles to escape the search space. Particles outside the
search space do not evaluate their fitness until they are
pulled back in. Thus, the number of fitness evaluations
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FIG. 4: Estimated sky locations for the mass sets M1 (m1 = 1.4M�,m2 = 1.4M�) and M2
(m1 = 4.6M�,m2 = 1.4M�). The true sky locations are indicated with yellow dots and listed in Table II. Estimated
sky locations associated with a particular true location have the same color. Open circles with dots correspond to
the data realizations where the coherent search statistic found by PSO failed to exceed the coherent fitness at the

true signal parameter, ρ < Γ(θtrue), even for Nruns = 24 independent PSO runs. The background gray-scale image in
both panels is identical and shows the condition number sky map for the HLVK network corresponding to ψ = π/6.

TABLE V: Statistical summary of the number of
fitness evaluations for the two hypotheses under which

data realizations were generated. The sample minimum,
maximum, average, and standard deviation (SD) of the
number of fitness evaluations are calculated over all the

data realizations used for each hypothesis.

Min Max Mean SD

Signal Absent (H0) 163908 230808 210920 10758

Signal Present (H1) 193620 232716 221875 5373

can fluctuate across data realizations. Table V lists a
statistical summary of the number of fitness evaluations
obtained across all data realizations and all sources.

We see that the mean number of fitness evaluations is
slightly lower in the case where a signal is absent. Thus,
particles have an enhanced tendency to exit the search
space boundary when a signal is absent. This may be
a result of the fact that the contrast between the val-
ues at the local maxima of the fitness function is less
pronounced in this case. Since, most of the data from a
GW detector consists of only noise, the fitness evaluation
count for the signal absent case is more representative of
the computational cost that will be incurred in practice.

VI. CONCLUSION

This paper presents a study of a PSO based approach
to solving the computational challenge, stemming from
the necessity to carry out a high dimensional numerical
optimization task, in a fully-coherent all-sky search for
CBC signals.

At an astrophysically realistic signal strength (e.g., the
SNRopt used here matches SNRopt = 13 for GW151226),
we find that the best fitness value returned by PSO can
approximate the GLRT quite effectively, suffering≤ 2.5%
loss in detection probability, while using < 1/10 the num-
ber of likelihood evaluations needed for the grid-based or
Bayesian searches. It is important to emphasize here that
we are not altering the standard representation of CBC
waveforms or approximating the likelihood function in
any way. Any alternative scheme for likelihood or wave-
form calculation can be substituted without affecting the
PSO algorithm itself.

A comparsion of our parameter estimation results with
theoretical bounds derived from a Fisher information
analysis is not meaningful at the SNR value consid-
ered in this paper. This is because several studies have
shown [55, 56] that these bounds are reached only at sig-
nificantly higher SNRopt values.

A direct comparison with existing parameter estima-
tion results from Bayesian approaches is difficult, since
the definition of error in a Bayesian analysis differs from
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FIG. 5: Estimated sky locations (red dots) associated with the set M1 (m1 = 1.4M�,m2 = 1.4M�) of sources. In
each panel, the origin is centered at the true location of the source. The axes show the deviation of the estimated

values of α and δ from their true values. Each panel also shows the contour levels of the bivariate probability
density function, estimated using Kernel Density Estimation (KDE), [58] that enclose 68% and 95% of the points.
In these figures, the view has been zoomed in to show only the estimated locations that fall within or around the

outer contour.

the Frequentist one. Error in a Bayesian analysis is a
measure of the spread of the posterior probability dis-
tribution. The latter can be obtained even for a single
data realization. The Frequentist error is a measure of
the spread of the point estimates over an ensemble of
data realizations. Nonetheless, pending a future apples-
to-apples comparison of Bayesian and Frequentist errors
on identical data realizations, we find that the best case
error of ∼ 10 deg2 in sky position from PSO is near the
expected ballpark at the value of SNRopt used here. For
example, in [57] the sky location error for a signal with
SNRopt = 29.6,m1 = 1.5M�,m2 = 2.0M�, and the HLV

network is found to be 3 deg2.

Although our results have been obtained for the ideal
case of Gaussian, stationary noise, the computational
cost will not change significantly for real detector noise.
Recall that we are using PSO for only locating the global
maximum of a fitness function. As long as the nature
of this fitness function, in terms of the density of local
peaks and the contrast in their values, does not change
drastically, PSO will have the same performance. This
is already evident when the computational cost of PSO
is compared for the signal present and absent cases. We
expect the change in the nature of the fitness function
between these two cases to be far more significant than
that between ideal and real detector noise.

A similar conclusion regarding computational cost will
hold if different detector noise PSDs are used. In the case
of inspiral signals, the global maximum lies along a ridge
in parameter space and the first step towards success for
PSO is to land somewhere on this ridge. Having differ-
ent noise PSDs will not significantly affect the ruggedness
of the fitness function, which comes from the presence of
noise, but the ridge itself will become less sharply defined.
The latter will happen because the maximum likelihood
method automatically deemphasizes the contribution of
a detector with higher noise, which can be viewed as an
effective reduction in the number of detectors. This wors-
ens parameter estimation errors, which is equivalent to
broadening the likelihood function. Hence, it will become
easier for PSO to locate the ridge feature at a similar or
even lower computational cost.

We have run PSO on a rectangular search region con-
sisting of independent upper and lower bounds on each
parameter. This implies that the search range for each
chirp time includes unphysical values. However, our re-
sults demonstrate that the probability of the global max-
imum straying into the unphysical region at the value of
SNRopt used is negligible. This need not be true when
the data contains pure noise, and this may affect detec-
tion performance by increasing the false alarm probabil-
ity somewhat. A rigorous study of this issue is postponed
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FIG. 6: Estimated sky locations (red dots) associated with the set M2 (m1 = 4.6M�,m2 = 1.4M�) of sources. In
each panel, the origin is centered at the true location of the source. The axes show the deviation of the estimated

values of α and δ from their true values. Each panel also shows the contour levels of the bivariate probability
density function, estimated using Kernel Density Estimation (KDE), [58] that enclose 68% and 95% of the points.
In these figures, the view has been zoomed in to show only the estimated locations that fall within or around the

outer contour.

FIG. 7: Histograms of estimated chirp times, τ0 and τ1.5, for all locations and mass set M1 (1.4M� and 1.4M�).
The true values of the chirp times are shown by the red line in each plot. For each source sky location, the τ0 and
τ1.5 distributions are adjacent and on the same row, with the τ1.5 distribution always to the right of the τ0 one.
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FIG. 8: Histograms of estimated chirp times, τ0 and τ1.5, for all locations and mass set M2 (4.6M� and 1.4M�).
The true values of the chirp times are shown by the red lines. For each source sky location, the τ0 and τ1.5
distributions are adjacent and on the same row, with the τ1.5 distribution always to the right of the τ0 one.

to future work.
Our results show that PSO offers a promising approach

to realize a constantly on, fully-coherent all-sky CBC
search. Future investigations should address the follow-
ing outstanding issues. (i) A determination of wall-clock
time savings after incorporating state-of-the-art wave-
form generation and likelihood evaluation techniques. (ii)
Reducing the instances of failure in locating the global
maximum by trying out well-studied variants of PSO.
For example, in [31], the neighborhood best, rather than
global best, variant of PSO was found to perform sig-
nificantly better. (iii) Extension of the analysis to the
computationally more demanding case of aLIGO noise
power spectral density.
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Appendix A: Functional forms of phase parameters

Let M, µ and η denote the total mass, the reduced
mass and the symmetric mass ratio of the compact binary

system respectively. Let f∗ be the lower cutoff frequency
of the detector. Then for m1 > m2, the chirp times are
given by,

τ0 =
5

256π
f−1
∗ (

GM

c3
πf∗)

−5/3η−1, (A1)

τ1 =
5

192π
f−1
∗ (
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c3
πf∗)

−1η−1
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4
η
)
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η +

617

144
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where

M = (m1 +m2), µ =
m1m2

M
, and η =

µ

M
. (A5)

All the four chirp time parameters are functions of m1

and m2, implying that only two of them are independent.
We chose τ0 and τ1.5 as independent parameters to char-
acterize the signal. Estimated values of τ0 and τ1.5 were
used to derive values for M and µ using the following
equations.

µ =
1

16f2
∗

(
5

4π4τ0τ2
1.5

)1/3(
G

c3

)−1

. (A6)

M =
5

32f∗

(
τ1.5
π2τ0

)(
G

c3

)−1

. (A7)
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The parameters αi, i = 0, 1, . . . , 4 in the phase function
Ψ(f) (Eq. 17) are given by,

α0 = 2πf∗
3τ0
5
, α1 = 0, α2 = 2πf∗τ1, (A8)

α3 = −2πf∗
3τ1.5

2
, α4 = 2πf∗3τ2.
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