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Models of loop quantum gravity based on real connections have a deformed notion of general
covariance, which leads to the phenomenon of signature change. This result is confirmed here in
a general analysis of all midisuperspace models without local degrees of freedom. As a subclass of
models, 2-dimensional theories of dilaton gravity appear, but a larger set of examples is possible
based only on the condition of anomaly freedom. While the classical dilaton gravity models are
the only such systems without deformed covariance, they do give rise to signature change when
holonomy modifications are included.
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I. INTRODUCTION

In canonical formulations of gravitational theories, covariance is ensured by gauge transformations generated by the
constraints rather than by coordinate transformations. Poisson brackets of the constraint functions on phase space
must then obey a certain form that reduces to the hypersurface deformations of general relativity in the classical (or
low-curvature) limit. Anomaly freedom, or the fact that the constraints in modified or quantized gravity models must
remain first class, imposes strong conditions on the possible forms of constraints and on structure functions in their
brackets. Signature change is the most characteristic and apparently generic consequence of these conditions.
Conditions that ensure covariance of a canonical quantum theory of gravity have been formulated in [1]. It has

been shown that not only (i) the classical Hamiltonian and diffeomorphism constraints, on quantisation, must still
satisfy a first-class system and have a closed algebra; but also (ii) that this algebra must have a classical limit whereby
it reduces to the familiar hypersurface-deformation brackets [2, 3] of general relativity. This statement holds also
for effective or modified theories in which certain quantum corrections are included while working in a semiclassical
approximation. Covariance therefore poses an important consistency question for canonical quantum-gravity theories,
which goes beyond the requirement that constraints be anomaly free. Brackets (or commutators) of the constraints
not only have to lead to a closed system, they must also close in such a way that a specific classical limit is obtained.
The examples discussed in detail in [1] show that anomaly freedom of gravitational models does not necessarily

imply covariance. In particular, constraint brackets in midisuperpace models can often be simplified by redefining the
classical constrained system, sometimes eliminating structure functions. The resulting Lie algebras are then easier to
quantize in an anomaly-free way. However, after quantization, it is not guaranteed that the redefinitions can still be
inverted such that a closed set of hypersurface-deformation generators is obtained. The main example given in [1] is
a partially Abelianized redefinition along the lines of [4], which can be made covariant in the presence of holonomy
modifications but only if there is no matter coupled to the system. Moreover, signature change is realized also in the
partially Abelianized system if holonomy modifications are present.
Recently, several other models have been analyzed by partial Abelianization, together with proposed quantizations.

In [5], a locally rotationally symmetric Gowdy model has been introduced and quantized in this way. In [6], the class
of 2-dimensional dilaton gravity models has been studied, with a special discussion of the vacuum CGHS model [7]
given in [8]. These models do not have local degrees of freedom and therefore do not encounter the obstructions
found in [1, 9] for covariant holonomy-modified models with local degrees of freedom. Nevertheless, the question of
covariance has not been addressed in [5, 6, 8]. In the present paper, we will fill in this lacuna. At the same time,
we construct the most general covariant 1 + 1-dimensional midisuperspace model without local degrees of freedom
with spatial derivatives of the metric (or dyad and dilaton) up to second order. We compute the modified structure
functions of all these models and conclude that the class of all classical 2-dimensional dilaton gravity models, with
an arbitrary dilaton potential but the same form of extrinsic-curvature type components as in general relativity, is
the only set with undeformed covariance. However, a large class of covariant models exists with deformed covariance,
which includes quantum versions of these dilaton models with effects from loop quantum gravity.
In a specific applications of these new constructions, we are particularly interested in the phenomenon of signature

change in models of loop quantum gravity. Such models are based on modified Hamiltonian constraints in which the
quadratic dependence on the connection or extrinsic curvature has been replaced by a bounded function, motivated
by the use of holonomies taking values in compact groups instead of connection components in the kinematical
Hilbert space of the full theory. This replacement implies, rather directly, that curvature or the energy density
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remains bounded during gravitational collapse in simple cosmological or black-hole models. Curvature singularities
may therefore be avoided, but a less direct implication of holonomy modifications in these models, given by signature
change [10, 11], implies that high-curvature regions remain limits of causal space-time because they do not allow
deterministic evolution. Whenever we comment on signature change in this paper, we will assume that the specific
constraints of the theory arise from holonomy modifications in the specified sense: replacements of the quadratic
dependence of the Hamiltonian constraint on connection or extrinsic-curvature components by bounded functions.
With this understanding, most of the new models we find here have signature change if modification functions are
such that they mimic holonomy modifications of loop quantum gravity. In this context, the classical limit of our
models will be a low-curvature limit in which holonomy modifications become small.

II. SIGNATURE CHANGE IN THE POLARIZED GOWDY MODEL WITH LOCAL ROTATIONAL

SYMMETRY

We first look at the specific model studied in [5]: the polarized Gowdy model on a three-torus with local rotational
symmetry (LRS). The last condition eliminates local degrees of freedom. As usual, we identify the two homoge-
neous directions, x and y, with each other while keeping the inhomogeneous direction θ unchanged. We have an
inhomogeneous midisuperspace model without local physical degrees of freedom.
In keeping with the conventions of [5], we work with the two triad components (Ex, ε) and the extrinsic-curvature

components conjugate to them, (Kx,A). In the reduced 1-dimensional manifold with coordinate θ, Ex and A have
density weight one. The Poisson brackets between the canonical variables are {Kx (θ1) , E

x (θ2)} = Gδ(θ1, θ2) =
{A (θ1) , ε (θ2)}. We will assume ε > 0. Derivatives with respect to the inhomogeneous coordinate are labelled by
primes in the following.
As in the well-known case of spherical symmetry, there is only one global degree of freedom. However, the form

of the Hamiltonian constraint in the Gowdy LRS case is distinct from that of spherical symmetry due to a different
internal curvature term. For the latter model, the constraint is given by

H [N ] = − 1

2G

∫

dθN(θ)

[

ε−1/2K2
xE

x + 4ε1/2AKx − 1

4
ε−1/2 (Ex)

−1
(ε′)

2

−ε1/2ε′′ (Ex)
−1

+ (Ex)
−2

ε1/2ε′ (Ex)
′

]

, (1)

while the diffeomorphism constraint

D[Nx] =
1

G

∫

dθNx(θ) [K ′

xE
x − ε′A] (2)

takes the same form as in spherically symmetric models. The classical constraint brackets are

{D[Nθ
1 ], D[Nθ

1 ]} = D
[

LNθ

1

Nθ
2

]

(3)

{H [N ], D[Nθ]} = −H [LNθN ] (4)

{H [N1], H [N1]} = D
[

qθθ (N1N
′

2 −N2N
′

1)
]

. (5)

The inverse-metric component qθθ = ε/(Ex)2 appears in the classical brackets as the only non-constant structure
function, while the other non-zero components of the inverse spatial metric are qxx = qyy = ε−1. (It follows from the
results of [12] that the Hamiltonian constraint (1) is the same as what is obtained for a 1 + 1-dimensional dilaton
gravity model with zero dilaton potential, when expressed in connection variables after a canonical transformation.
The LRS Gowdy model of [5] is therefore nothing but a CGHS model with zero cosmological constant.)
We introduce holonomy modifications in the Hamiltonian constraint

H [N ] = − 1

2G

∫

dθN(θ)

[

ε−1/2f1 (Kx)E
x + 4ε1/2Af2(Kx)−

1

4
ε−1/2 (Ex)−1 (ε′)

2

−ε1/2ε′′ (Ex)
−1

+ (Ex)
−2

ε1/2ε′ (Ex)
′

]

, (6)

while keeping the diffeomorphism constraint unmodified. In the classical case, f1 (Kx) = K2
x and f2(Kx) = Kx. Here,

we assume pointwise holonomy corrections along the homogeneous directions while working in an effective formalism.
However, as shown in [13], adding additional quantum moment terms does not change the structure of the constraint
brackets (while the constraints themselves usually do have moment corrections). By keeping these modification
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functions general, we are able to examine the restrictions imposed on them such that the modified constraints still
have closed brackets.
It is straightforward to see that the brackets between two diffeomorphism constraints and between a Hamiltonian

and a diffeomorphism constraint have the same form as in the classical case. The only complicated Poisson bracket
is thus the one between two Hamiltonian constraints, which gives

{H [N1], H [N2]} =
1

2G

∫

dθ(N1N
′

2 −N2N
′

1)

(

2
ε

(Ex)
2

(

df2
dKx

)

[

Kx (E
x)

′ − ε′A
]

ε′

Ex

[(

df1
dKx

)

− 2f2

])

, (7)

where we have integrated by parts several times. On analyzing this result, we note two features:

1. The closure of the algebra is ensured only if we have df1/dKx−2f2 = 0, implying restrictions on the modification
functions which have been kept free in the discussion so far. The coefficient of this term is neither the Hamiltonian
nor the diffeomorphism constraint and thus would give rise to an anomaly unless the whole term vanishes.

2. Although closure can be ensured in this model by making the above restriction on the form of the holonomy
modification functions, we obtain a structure function in the modified theory which is deformed by a factor of
df2/dKx as compared with the classical case. Using the consistency condition between f1 and f2, the factor
takes the form df2/dKx = 1

2d
2f1/d

2Kx.

We thus have a modification in the bracket

{H [N1], H [N1]} =
1

G

∫

dθ(N1N
′

2 −N2N
′

1)
ε

(Ex)
2

1

2

(

d2f1
dK2

x

)

[

Kx (E
x)

′ − ε′A
]

= D

[

1

2
qθθ

d2f

dK2
x

(N1N
′

2 −N2N
′

1)

]

. (8)

Signature change can be understood from this relation as follows: In models of loop quantum gravity, holonomy
modifications replace quadratic appearances of extrinsic-curvature components in the Hamiltonian constraint by some
bounded functions which reach their maximum value near the Planck scale. The bounded nature of these modification
functions is a crucial ingredient in claims of singularity resolution in these models. Near a local maximum of a function
such as f1, the second derivative is negative, making the coefficient on the right-hand side of (8) change its sign. The
same change of sign happens if one switches the signature of the theory to Euclidean, and indeed the form of the
brackets has a close relationship with the hyperbolic or elliptic nature of equations of motion consistent with the
brackets [10, 11]. A negative correction factor in structure functions of (8) can therefore be interpreted as indicating
signature change. For f1 (Kx) = K2

x, on the other hand, we recover the classical result where the modification in
the structure function goes to one. Thus, in addition to having a closed algebra for the modified constraints, we also
recover the hypersurface-deformation brackets in the classical (low-curvature) limit. The model is covariant provided
our conditions are fulfilled. Only one free function, f1(Kx), then remains, which is unrestricted by anomaly freedom
and covariance.
In [5], a loop quantisation of the LRS Gowdy model has been proposed. To this end, the authors first Abelianize the

classical bracket of two normal deformations while leaving the other two relations unchanged. Following [4], the new,
Abelianized constraint is defined as a linear combination of the old Hamiltonian constraint and the diffeomorphism
constraints, while the diffeomorphism constraint remains unchanged. (This partial Abelinization can also be applied
to the full polarized Gowdy model [9] without local rotational symmetry.) The new constraint used in this context,
Eq. (1) of [5], is

Hnew[N ] = − 1

2G

∫

dθ
N

ε′

[

2
√
εK2

x −
√
εε′

2(Ex)2

]′

, (9)

while D[Nx] follows from (2), as before.
The authors then adopt the holonomy modification scheme for models of loop quantum gravity and substitute

Kx → sin (γKx)/γ in (9). The K2
x term in (9) is therefore replaced by (sin (γKx))

2
/γ2. The new constraint commutes

with itself, which is easy to see if we integrate by parts in (9) (after absorbing the denominator ε′ in the lapse function)
and notice that there are no spatial derivatives of Ex anymore. Although the resulting theory is consistent in the
sense of being anomaly-free, it is not guaranteed to be covariant. In order to show covariance, one must be able to
recover suitable generators of gauge transformations such that their brackets lead to the hypersurface-deformation
brackets in the classical (low-curvature) limit. (That is, there must be such generators for any phase-space point in
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the modified theory, which usually take non-classical forms but reduce to the classical versions in a certain subset
of the phase space. This condition of covariance is therefore non-trivial, in contrast to a simple requirement that
the classical limit of the modified theory have suitable gauge generators. In a non-covariant theory, such as some of
the Abelianized holonomy-modified models, there may be the right number of gauge generators for the entire theory,
but they would not be continuously connected with the usual hypersurface-deformation generators in the classical or
low-curvature limit [1, 9].) This important conceptual step is missing in [5], but will be completed here.
We can start from (6), having incorporated the holonomy modification functions, and try to partially Abelianize

this bracket. Thus, we first holonomy-modify and then Abelianize. It is important to emphasise that we do not
impose any restrictions on either of the functions f1 or f2 at this point. Proceeding as in the classical case, the new
constraint is defined as

Hnew = Hold −
df1
dKx

ε′√
ε
D , (10)

where H,D stand for the unsmeared versions of the constraints. With this step, we arrive at the same form of the
new, holonomy-modified constraint as proposed in [5], provided the two modification functions obey the condition

df1/dKx = 2f2. (This condition ensures that the A-term in (6) cancels out if combined with (2) as in (10).) We have
the same restriction on the modification functions as found before by an analysis of anomaly freedom of hypersurface-
deformation brackets. Thus, requiring the new system of constraints to be (partially) Abelian is equivalent to imposing
that the old system of constraints form a closed system. The closed hypersurface-deformation brackets with modified
structure functions then again indicate signature change.
We can arrive at this result from another perspective as well. Starting with the newly defined classical constraint

(9), one can introduce a quantum theory as in [5]. However, to ensure covariance we must be able to define constraints
which have hypersurface-deformation brackets with the correct classical limit. This condition translates to recovering
a Hamiltonian constraint from the Abelianized constraint by inverting the linear transformation used above, which
can be equivalently thought of as transforming the lapse function and the shift vector as

N =
Ñ

Ex
(11)

Nθ = Ñθ − Ñ

√
ε df1/dKx

ε′
. (12)

This step puts the system of constraints in the form of our ansatz (6) and (2), with the specific choice of f1(Kx) =

(sin (γKx))
2 /γ2. As expected, for the holonomy-modified LRS Gowdy system in [5], signature change occurs in high

curvature regions: The second derivative of f1 in this case is proportional to 2 cos(2γKx), which has a negative sign
near a local maximum of f1.
It is remarkable that our result and signature change are robust even when different equivalent systems of classical

constraints are used as the starting point of a loop quantization. As demonstrated earlier with spherical symmetry [1],
the restrictions on holonomy modification functions are the same, no matter whether they are derived by requiring
closure of the algebra or by requiring that it be possible to define new constraints which have partially Abelian
brackets. The present section shows that this conclusion is also true for another model of loop quantum gravity,
namely the LRS Gowdy model. We have shown that signature change is an unavoidable consequence of holonomy
modifications in this model, irrespective of how one defines the system of constraints as long as one forces the resulting
quantum theory to be covariant. This result may be taken as an indication that these conclusions hold more generally
in midisuperspace models of loop quantum gravity without local physical degrees of freedom. The remainder of this
paper confirms this expectation.

III. GENERAL CASE

A theory without local degrees of freedom should have as many pairs of canonical variables as there are first-class
constraints. For hypersurface-deformation covariant systems in two space-time dimensions, there should therefore be
two pairs of canonical fields, which we continue to denote as in the LRS Gowdy model of the preceding section. A
generic form of a Hamiltonian constraint is

H [N ] = − 1

2G

∫

dθN (θ)

{

f (A,Kx, E
x, ε) + g1(ε)

(ε′)2

Ex
+ g2(ε)

ε′′

Ex

+g3(ε)
ε′(Ex)′

(Ex)2
+ g4(ε)E

x

}

, (13)
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whereas the diffeomorphism constraint again has the usual form

D[Nθ] =
1

G

∫

dθNθ(θ){K ′

xE
x − ε′A} (14)

if the spatial structure remains unchanged. The Poisson brackets between the canonical variables remain the standard
ones {Kx(x), E

x(y)} = Gδ(x, y) = {A(x), ε(y)}. One might expect quantum corrections in the Poisson structure, but
by Darboux’ theorem one can always transform back to canonical variables. All such corrections are then contained in
the modification functions already introduced. (The structure of the diffeomorphism constraint is strongly restricted
for canonical variables and would not change by such a transformation.)
The assumptions for our general form are:

1. The diffeomorphism constraint does not have modifications. For models of loop quantum gravity, this assumption
is made because one usually quantizes the diffeomorphism constraint, or rather the finite action it generates,
without taking recourse to holonomies around loops. (For an exception see [14].)

2. All curvature dependence is contained in a generic function f , while spatial derivatives of the triad components
have separate correction functions. One could include the last term g4(ǫ)E

x in the function f , but it is more
convenient to keep it separate.

3. Every term in (13) has the correct density weight as required. (See [15] for a discussion of density weights in
midisuperspace models.) In particular, this condition implies that the modification functions gi can depend only
on ε (but not on Ex), and that any spatial derivative has to be accompanied by a factor of 1/Ex. We do not
consider terms with spatial derivatives (or extrinsic curvature) in the denominator because they would not be
guaranteed to be finite everywhere.

4. There are no terms of higher than second spatial derivatives to the order considered here. Such terms would
require a derivative expansion as in [16].

5. There are no terms linear in spatial derivatives in order to ensure local parity invariance (transforming θ 7→ −θ
in a local chart).

6. In midisuperspace models of general relativity, terms proportional to the second order derivatives ofEx are absent
due to the fact that spatial derivatives come from the curvature tensor which cannot have two radial derivatives
of the radial components owing to its antisymmetry properties. Thus we do not have terms proportional to
(Ex)′′ or (Ex′)2. In Sec. III C, we will show that such terms are, in fact, impossible in an anomaly-free system
extending (1) and (2).

If these conditions hold, the system (13) with (2) is generic. Our goal is to start with this ansatz and try to impose
conditions on the arbitrary functions by requiring closure of the constraint algebra. We will also impose that the
Hamiltonian constraint has the correct classical (low-curvature) limit for small curvature components and large ε.
Both conditions taken together then ensure covariance.

A. Brackets

Looking at the {H,H} bracket, we know that the only non-zero contributions come from the first term with the rest
of the terms in the Hamiltonian constraint. We write each of these contributions from {H [N1], H [N2]} individually.
From now on, we are going to suppress the functional dependence of each of these arbitrary functions on the canonical
variables. Referring to the sum in (13), the Poisson bracket of term 1 with term 5 gives a vanishing contribution.
Term 1 with term 2 gives

− 1

2G

∫

dθ (N1N
′

2 −N ′

1N2)

(

∂f

∂Ag1
ε′

Ex

)

. (15)

Term 1 with term 4 gives

− 1

4G

∫

dθ (N1N
′

2 −N ′

1N2)

(

∂f

∂Kx
g3

ε′

(Ex)2
+

∂f

∂Ag3
(Ex)′

(Ex)2

)

. (16)
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Finally, term 1 with term 3 gives

1

4G

∫

dθ (N1N
′

2 −N ′

1N2)

(

∂f

∂A ġ2
ε′

Ex
− ∂f

∂Ag2
(Ex)′

(Ex)2

− ∂2f

∂A∂Kx
g2

K ′

x

Ex
− ∂2f

∂A2
g2

A′

Ex
− ∂2f

∂A∂Ex
g2

(Ex)′

Ex
− ∂2f

∂A∂ε
g2

ε′

Ex

)

. (17)

Here, a dot above any function dependent on a single variable refers to its derivative with respect to its variable.
The requirement for the algebra to be closed implies that any bracket between two constraints must be another

constraint. This means that the right-hand side of {H,H} can, in addition to the diffeomorphism constraint, also
include a Hamiltonian constraint, provided its coefficient goes to zero in the classical (low-curvature) limit.
Since there is no A′-term which can appear on the right-hand side, we infer ∂2f/∂A2 = 0 from (17). Thus f is

linear in A and can be written as

f(A,Kx, E
x, ε) = f2(Kx, E

x, ε)A+ f3(Kx, E
x, ε) . (18)

Similarly, there is no (Ex)′-term (without a factor of ε′) on the right-hand side, implying

f2g3(E
x)−2 + f2g2(E

x)−2 +

(

∂f2
∂Ex

)

g2(E
x)−1 = 0 (19)

or, equivalently,

g2 + g3 +
g2
f2

(

∂f2
∂Ex

Ex

)

= 0 . (20)

This expression can be rearranged to bring it to the form

−g2 + g3
g2

=
Ex

f2

(

∂f2
∂Ex

)

, (21)

where now the left-hand side depends only on ε whereas the right-hand side depends on ε, Ex and Kx. Therefore
both sides must each be equal to the same function of ε, which we call g5(ε). We have

1 + g3/g2 = −g5 (22)

and

Ex

f2

(

∂f2
∂Ex

)

= g5 . (23)

We conclude that

f2 (Kx, E
x, ε) = f̃2 (Kx, ε) (E

x)−(1+g3/g2) , (24)

where we restore the explicit definition of g5 in the final line.
Going back to the expressions (15), (17) and (16), we notice that any term proportional to just ε′ (without a

multiplicative factor of A) must also be set equal to zero since there is no such term in the diffeomorphism constraint,
and any ε′ in the Hamiltonian constraint would be multiplied with another ε′ or an Ex′:

2f2g1(E
x)−1 + g3

∂f3
∂Kx

(Ex)−2 − f2ġ2(E
x)−1 + g2

∂f2
∂ε

(Ex)−1 = 0 (25)

or
(

2f2g1 − f2ġ2 + g2
∂f2
∂ε

)

Ex = −g3
∂f3
∂Kx

. (26)

On the left-hand side, we can use (24) to write out the dependence of the expression on Ex. Since the right-hand side
involves g3, which is a function of ε alone, and the derivative of f3 with respect to Kx, we can then deduce that the
dependence of f3 on Ex is

f3(Kx, E
x, ε) = f̃3(Kx, ε)(E

x)−g3/g2 . (27)
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Inserting (24) and (27) in (26),

2f̃2g1 − f̃2ġ2 + g2
∂f̃2
∂ε

= −g3
∂f̃3
∂Kx

. (28)

Looking at the remaining two terms left, one of which is proportional to Aε′ and the other to K ′

xE
x, we have

∂f2
∂Kx

[

g2(E
x)−2K ′

xE
x + g3(E

x)−2ε′A
]

. (29)

For this to be proportional to the diffeomorphism constraint, we require that the prefactor of both the K ′

xE
x and the

Aε′ be the same. This implies

g2 = −g3 . (30)

We can use this relation in (24) and (27),

f2(Kx, E
x, ε) = f̃2(Kx, ε) , (31)

f3(Kx, E
x, ε) = f̃3(Kx, ε)E

x . (32)

From (28) and (30),

2f̃2g1 − f̃2ġ2 + g2

(

∂f̃2
∂ε

)

= g2

(

∂f̃3
∂Kx

)

. (33)

B. Implications and special cases

Some of our new relations have interesting interpretations, which we collect in this subsection.
Equation (30) implies that the two terms

g2(ε)
ε′′

Ex
+ g3(ε)

ε′(Ex)′

(Ex)2
= g2(ε)

(

ε′′

Ex
− ε′(Ex)′

(Ex)2

)

= −2g2(ε)Γ
′ (34)

can always be written in terms of the function

Γ = − ε′

2Ex
(35)

which has the same form as the only non-trivial spin-connection component in dilaton models obtained by symmetry
reduction from classical general relativity [15].
Equation (29) shows that the structure function of the modified system is equal to

∂f2
∂Kx

g2
(Ex)2

= β
ε

(Ex)2
= βqθθ (36)

with the modification function

β =
∂f2
∂Kx

g2
ε
, (37)

comparing with (3). Using (33), ∂f2/∂Kx is proportional to ∂2f3/∂K
2
x if the dependence of f2 on ε is weak. Around

a local maximum of f3 in Kx, the modification function β is therefore negative and we obtain signature change.
The modification function β does not introduce a dependence of structure functions on g4, and there is no restriction

on g4 from anomaly freedom. There should therefore be classical gravity models for any choice of g4(ε). Indeed, as
the canonical transformation derived in [12] shows, if g4 is the only modification function that differs from the LRS
Gowdy model, (13) is nothing but a 2-dimensional dilaton model with potential V (ε) = g4(ε), expressed in connection
variables as used in models of loop quantum gravity. (The function g1 does not appear explicitly in the expression of
β, but unlike g4 it cannot be chosen independently because it is related to f2, f3 and g2 by (33).)
It is not easy to analyze Eq. (33) in general form, but a few special cases are of interest. First, we can see that

it is not compatible with power-law lattice refinement [17, 18] which would require a dependence of modification
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functions on extrinsic curvature via the combination ǫqKx with some real number q. If we assume two different such
dependences in f̃2(ǫ

pKx) and f̃3(ǫ
qKx), (33) implies

2f̃2g1 − f̃2ġ2 + pǫp−1g2Kx
˙̃f2 = g2ǫ

q ˙̃f3 . (38)

The third term, with a factor of Kx, is incompatible with almost-periodic functions f̃2 and f̃3 as assumed in models
of loop quantum gravity.

Another special case is given by a factorizable ansatz for the modification functions:

f̃2 (Kx, ε) = f4(Kx)g6(ε) (39)

f̃3 (Kx, ε) = f5(Kx)g7(ε) . (40)

Inserting this form in (33), we find

2
g6g1
g7g2

− g6ġ2
g7g2

+
ġ6
g7

=
ḟ5
f4

. (41)

The left-hand side depends only on ε while the right-hand side depends solely on Kx. Thus, each of the two sides
must be equal to a constant.

df5
dKx

= cf4 , (42)

and

2
g6g1
g7g2

− g6ġ2
g7g2

+
ġ6
g7

= c . (43)

The form of our generalized Hamiltonian constraint is now restricted to be

H [N ] = − 1

2G

∫

dθN(θ)
(

g7f5(Kx)E
x + g6f4(Kx)A

+g1
(ε′)2

Ex
+ g2

ε′′

Ex
− g2

ε′(Ex)′

(Ex)2
+ g4E

x
)

. (44)

All of the gi are functions of ε, with their functional dependence suppressed. However, not all of the remaining
functions are unconstrained. We have the additional conditions given in (42) and (43). We can also absorb g7 in the
lapse function and rescale the rest of the g-functions accordingly. In other words, we can set g7 = 1 without any loss
of generality. We call the new lapse function Ñ .

For our generalized midisuperspace model, closure of two Hamiltonian constraints, including modifications, implies
the condition (42) for the modification functions. Given this condition, the deformed structure function takes the
form

1

c

d2f5
dK2

x

g2g6(E
x)−2 , (45)

while the final form of the Hamiltonian constraint is

H [N ] = − 1

2G

∫

dθÑ(θ)

(

f5(Kx)E
x +

g6
c

df5
dKx

A

+g1
(ε′)2

Ex
+ g2

ε′′

Ex
− g2

ε′(Ex)′

(Ex)2
+ g4E

x

)

. (46)

The classical (low-curvature) limit is given by g2(ε)g6(ε) = ε, while f5(Kx) = K2
x, with c = 2. The function g4 then

labels different classical models with undeformed covariance, including all 2-dimensional dilaton gravity models, or
the spherically symmetric model as well as Gowdy LRS.
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C. Second-order spatial derivatives beyond general relativity

In our analysis so far, we did not consider two possible terms proportional to second-order spatial derivatives of triad
components, namely (Ex)′′ and (Ex′)2. These terms are not present in midisuperspace models of general relativity
due to antisymmetry properties of the Riemann curvature tensor since derivatives with respect to the radial coordinate
cannot appear on the radial component of the triads. However, such terms could conceivably arise if there is some
modification to general relativity. Here, we show that the presence of such terms is incompatible with anomaly-free
constraints.
Taking into account density weights, the general form of the Hamiltonian constraint with the additional terms is

given by

H [N ] = − 1

2G

∫

dθN (θ)

(

f (A,Kx, E
x, ε) + g1(ε)

(ε′)2

Ex
+ g2(ε)

ε′′

Ex
(47)

+g3(ε)
ε′(Ex)′

(Ex)2
+ g4(ε)E

x + h1(ε)
(Ex)′′

(Ex)2
+ h2(ε)

(Ex′)2

(Ex)3

)

with two new functions h1(ε) and h2(ε). The new terms arising from the Poisson bracket of two such Hamiltonian
constraints are

− 1

2G

∫

dθ(N1N
′

2 −N ′

1N2)
∂f

∂Kx
h2E

x′(Ex)−3 (48)

and

− 1

4G

∫

dθ(N1N
′

2 −N ′

1N2)

(

2
∂f

∂Kx
h1E

x′(Ex)−3 − ∂f

∂Kx
ḣ1ε

′(Ex)−2

+
∂2f

∂K2
x

h1K
′

x(E
x)−2 +

∂2f

∂Kx∂A
h1A′(Ex)−2

+
∂2f

∂Kx∂Ex
h1E

x′(Ex)−2 +
∂2f

∂Kx∂ε
h1ε

′(Ex)−2

)

. (49)

They contribute to all the conditions we had before. Starting with the requirement that there be no terms proportional
to A′ on the right-hand side, we now have

g2E
x ∂2f

∂A2
+ h1

∂2f

∂A∂Kx
= 0 . (50)

Defining f1(A,Kx, ε, E
x) := ∂f/∂A,

g2E
x ∂f1
∂A = −h1

∂f1
∂Kx

. (51)

This equation has the general solution

f1(A,Kx, E
x, ε) = F (Kx −Ah1/(g2E

x), Ex, ε) (52)

with an arbitrary function F of three variables. Since f1 = ∂f/∂A, we have

f(A,Kx, E
x, ε) = G(Kx −Ah1/(g2E

x), Ex, ε) +H(Kx, Ex, ε) (53)

with ∂G/∂A = F and another free function H of three arguments.
We can already see that the new terms are likely to lead to problematic conditions on the modification functions:

The component A can only appear in the specific combination Kx −Ah1/(g2E
x) with Kx, but finding anomaly-free

modifications of the A-dependence has proven difficult [16]. (Holonomy modifications of the A-dependence would
result from holonomies along curves in the θ-direction which remains inhomogeneous in the midisuperspace models
considered here. Such modifications would therefore be non-local or, in a derivative expansion of an effective theory,
include higher spatial derivatives of A which we are not considering here. The Kx-dependence, by contrast, remains
local even if holonomy modifications are used in a midisuperspace model.) The function G could then only be a linear
function in its first argument.
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In fact, the new terms are ruled out if we use (53) and evaluate all contributions to the bracket that could give rise
to the term Aε′ in the diffeomorphism constraint. In particular, we have to make sure that we have a factor of A but
no factor of Kx multiplying ε′. Two such terms,

∂2f

∂A∂ε

g2
Ex

+
∂2f

∂Kx∂ε

h1

(Ex)2
=

∂2H

∂Kx∂ε

h1

(Ex)2
(54)

do not contribute a factor of A as coefficients of ε′. The remaining terms are

− ∂f

∂Kx

g3
(Ex)2

+
∂f

∂A
ġ2
Ex

+
∂f

∂Kx

ḣ1

(Ex)2
= −g3 + h1ġ2/g2 − ḣ1

(Ex)2
G1 (55)

plus terms (partial derivatives of H) that do not depend on A, where G1 is the partial derivative of G by its first
argument. We obtain a coefficient with linear dependence on A only if G is quadratic in Kx−Ah1/(g2E

x), but even if
this is the case, there will be additional terms depending on Kx which do not all cancel out. It is therefore impossible
to gather all the new terms in coefficients of the diffeomorphism constraint, and no anomaly-free formulation is possible
unless h1 = 0.
With this result, we can follow the previous steps up to Eq. (20). There is now a new term h2(E

x)−3∂f/∂Kx in
the resulting equation

∂f

∂Ag3(E
x)−2 +

∂f

∂Ag2(E
x)−2 +

∂2f

∂A∂Ex
g2(E

x)−1

+2
∂f

∂Kx
h2(E

x)−3 = 0 (56)

which, for f of the form (18), contains a factor of A. However, all other terms in (56) are independent of A, which
is compatible with the new term only if ∂f2/∂Kx = 0. But in this case there is no term of the form KxA in the
Hamiltonian, and the model is not compatible with the classical (low-curvature) limit. Therefore, h2 = 0 and both
new terms are ruled out.

IV. CONCLUSIONS

We have analyzed a general canonical form of 1 + 1-dimensional covariant models without local physical degrees of
freedom. A large subclass of such models has been recognized as classical 2-dimensional dilaton gravity models with
an arbitrary potential. Another large class of models, most of which have not been encountered before, has a deformed
notion of covariance and includes models of loop quantum gravity. Holonomy-modified versions of the 2-dimensional
dilaton gravity models, as studied for instance in [6, 8], fall within the latter group. In this class, signature change is a
generic consequence of modifications that introduce a bounded dependence of the Hamiltonian constraint on extrinsic
curvature.
Our results unify several recent investigations of midisuperspace models of loop quantum gravity, including [5, 6, 8].

They also provide further support for the genericness of signature change in models of loop quantum gravity. So far,
signature change has been avoided only by following three distinct procedures: (i) Using classical assumptions on the
structure of space-time and foregoing an analysis of anomaly freedom. (ii) Implementing modifications via canonical
transformations [19]. (iii) Using complex connections [20, 21]. The first option is problematic because it does not
guarantee anomaly freedom. The second option is problematic as well, as discussed in the appendix. The third
option needs to be explored further, in particular regarding the implementation of reality conditions. Furthermore,
for complex variables, the quantization scheme becomes rather important since depending on how one implements
holonomy corrections, one can still get signature change [22].
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Appendix A: An alternative modification scheme

A new “modification” scheme with bounded functions of curvature has been proposed in [19], using spherically
symmetric models. Instead of modifying the Hamiltonian constraint, the authors use a canonical transformation
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Kx → f(Kx) and Ex → Ex/ḟ(Kx), where the dot again represents the derivative of the function with respect to its
argument, here Kx. (We have translated the relations of [19] to the notation used in the main body of the present
paper. Instead of Kϕ in [19], we therefore write Kx.) In the specific case of [19], the function is chosen as the usual sine
function of models of loop quantum gravity, but we choose to keep the analysis more general. The Poisson brackets
indeed remain unchanged:

{

f(Kx(x)) ,
Ex

ḟ(Kx)
(y)

}

= {Kx(x) , E
x(y)} = Gδ(x, y) . (A1)

1. Constraints

Starting with the classical Hamiltonian and diffeomorphism constraints, (1) and (2), the canonical transformation
takes us to

H [N ] = − 1

2G

∫

dx N

[

(ε)−1/2 Ex

ḟ(Kx)
f(Kx)

2 + 4(ε)1/2Af(Kx)

−1

4
(ε)−1/2(ε′)2

(

Ex

ḟ(Kx)

)

−1

− (ε)1/2ε′′
(

Ex

ḟ(Kx)

)

−1

+(ε)1/2ε′
(

Ex

ḟ(Kx)

)

−2
(

Ex′

˙f(Kx)
− Ex ¨f(Kx)K

′

x

( ˙f(Kx))2

)]

. (A2)

D[Nx] =
1

2G

∫

dx Nx [2ExK ′

x −Aε′] . (A3)

(A dilaton potential could be included in (A2) but would not change the following arguments.) Viewed as a modified
expression, this H [N ] has not been included in our main analysis because it would require modification functions
gi(Kϕ) that do not just depend on ε.

Following the procedure outlined in the previous sections, we can calculate the Poisson bracket between these
constraints and find that the constraint algebra takes the form

{D[Nx], D[Mx]} = D[LNxMx], (A4)

{H [N ], D[Nx]} = −H [LNxN ], (A5)

{H [N ], H [M ]} = D

[

(NM ′ −MN ′)ε

(

Ex

ḟ(Kx)

)

−2
]

. (A6)

(More details of the derivation are given in the following subsection.) As expected, the new structure function
agrees with the usual one after applying the canonical transformation. One could interpret the last bracket as a
hypersurface-deformation bracket with structure function modified by a factor of 1/ḟ2. This function is positive and
therefore does not lead to signature change. According to the general results of [23], it can therefore be absorbed by
a field redefinition, which would just be the inverse of the canonical transformation.

Once one (partially) Abelianizes the system of (modified) constraints, following [4], the Abelianized constraints
remain Abelianized in spite of the modifications [19]. In fact, even in the presence of matter, the total constraints
(gravitational plus the matter parts) form a (partially) Abelianized algebra. However, if we go back to the original
hypersurface-deformation generators, the structure functions are deformed, as shown here.

This “modification” procedure suffers from several drawbacks. By applying a canonical transformation to the
classical constraints, one cannot arrive at modified dynamics. (There is then no actual modification at all.) It is
surprising how [19] can nevertheless make claims about singularity resolution. In fact, the canonical transformation
is one-to-one only in a range of Kx where f(Kx) is monotonic. For the common functions used in models of loop
quantum gravity, this excludes all values of Kx greater than a certain finite threshold. The classical singularity
(infinite Kx) is eliminated from these models only because the canonical transformation is valid in a limited part of
phase space.

Moreover, the form of the modification is in contradiction with the usual guiding principles followed in models of
loop quantum gravity, which suggest modifications of curvature terms in the Hamiltonian constraint, but no inverses
of ḟ(Kx) in triad terms.
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2. Derivation of the structure function

The modification procedure introduced in [19] is of the form Kx → f(Kx), E
x → Ex/ḟ(Kx). Instead of showing

the entire derivation of the constraint brackets after this transformation, we give a brief sketch. There are three types
of terms which we shall be confronting during this calculation. Of course, the brackets of the modified variables are
the same as for the classical ones, by construction. But one can also see this by an explicit calculation not based on
the fact that a canonical transformation has been performed.
In particular, we have terms of the form

{

g
Ex

ḟ(Kx)
, h

(

Ex

ḟ(Kx)

)

′

}

(A7)

which would be trivially zero in the original variables (where no Kx-terms are present in the corresponding bracket)
but could be expected to be non-zero here if the nature of the transformation were not known. However, an explicit
calculation, first writing

(

Ex

ḟ(Kx)

)

′

=
Ex′

ḟ(Kx)
− Exf̈

ḟ2
K ′

x (A8)

and then using the full dependence on Ex′ and Kx, results in
{

g
Ex

ḟ(Kx)
, h

(

Ex

ḟ(Kx)

)

′

}

= gh

(

{

Ex

ḟ
,
Ex′

ḟ

}

− {E
x

ḟ
,
Exf̈

ḟ2
K ′

x}
)

= gh

(

Ex{ḟ−1, Ex′} 1
ḟ
− 1

ḟ
{Ex,K ′

x}
Exf̈

ḟ2

)

+ · · ·

= gh

(

Ex

ḟ

(

− f̈

ḟ2

)

− 1

ḟ

(

−Exf̈

ḟ2

))

∂δ(x, y)

∂y
+ · · ·

= 0 + · · ·
where dots indicate additional terms proportional to delta functions but not their derivatives. Only derivatives of delta
functions contribute to the antisymmetric bracket of smeared Hamiltonian constraints, but the only coefficient of such
a term in (A9) is identically zero. A similar treatment of all other terms reveals that only brackets which are non-zero

in the original variables are non-zero after the transformation, and those non-zero terms differ only by a factor of ḟ2.

In the specific case of Gowdy LRS, just as in spherical symmetry, this implies ε/ (Ex)
2 → ε

(

ḟ(Kx)
)2

/ (Ex)
2
. Similar

arguments work even when a matter contribution (say, in the form of a minimally coupled scalar field) is taken into
account. Once again, the structure functions appearing in the brackets of the total constraints (gravitational plus the
matter contributions) have the same deformation as above.
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