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Abstract

Cosmic acceleration is widely believed to require either a source of negative pressure (i.e., dark energy), or

a modification of gravity, which necessarily implies new degrees of freedom beyond those of Einstein gravity.

In this paper we present a third possibility, using only dark matter and ordinary matter. The mechanism

relies on the coupling between dark matter and ordinary matter through an effective metric. Dark matter

couples to an Einstein-frame metric, and experiences a matter-dominated, decelerating cosmology up to the

present time. Ordinary matter couples to an effective metric that depends also on the DM density, in such

a way that it experiences late-time acceleration. Linear density perturbations are stable and propagate with

arbitrarily small sound speed, at least in the case of ‘pressure’ coupling. Assuming a simple parametrization

of the effective metric, we show that our model can successfully match a set of basic cosmological observables,

including luminosity distance, BAO measurements, angular-diameter distance to last scattering etc. For the

growth history of density perturbations, we find an intriguing connection between the growth factor and

the Hubble constant. To get a growth history similar to the ΛCDM prediction, our model predicts a higher

H0, closer to the value preferred by direct estimates. On the flip side, we tend to overpredict the growth of

structures whenever H0 is comparable to the Planck preferred value. The model also tends to predict larger

redshift-space distortions at low redshift than ΛCDM.

1 Introduction

There is a folk theorem which, roughly speaking, states that late-time cosmic acceleration can

arise in only one of two ways: either it is due to dark energy, i.e., a source of negative pressure,

such as a cosmological constant or ‘quintessence’ [1–4]; or it is due to a modification of Einstein

gravity [5], such as in massive gravity, which necessarily implies new degrees of freedom beyond

the standard helicity-2 gravitons. Naturally people have considered hybrid models that do both,

e.g., dark energy scalar fields interacting with dark matter (DM) [6] as well as normal matter, as

in chameleon [7, 8], symmetron [9, 10]. But it appears that either dark energy or new degrees of

freedom is necessary to explain cosmic acceleration.

In this paper we present a loophole in the theorem. There is a third possibility: cosmic acceleration

arising from suitable interactions between DM and baryons, without sources of negative pressure (in

the Einstein frame) or new degrees of freedom beyond DM and ordinary matter. The mechanism

relies on dark matter and baryons coupling to different metrics. Our approach is purposely agnostic

about the microphysical nature of DM and applies equally well to WIMPs [11], axions [12–14], ultra-

light scalar field DM [15–27] or superfluid DM [28–31]. In particular the coupling described below
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through an effective metric is above and beyond other allowed WIMP-like or axion-like couplings

the DM may have with ordinary matter. For concreteness we therefore ignore such additional

model-independent couplings, since they have negligible impact on late-time cosmology.

It must be emphasized that our model is an effective field theory with high-dimensional operators

and as such it does propagate additional degrees of freedom at the cut-off. However, as we will

see, the spice of our model lies in the fact that these degrees of freedom are much heavier than the

Hubble scale. That is, the late-time cosmology is governed by the dynamics at energy scales much

below the cut-off, where a direct coupling between DM and baryons is induced by integrating out

the heavy degrees of freedom.

For the moment let us put aside the particle physics model construction at high energy, and

focus on the effective field theory for cosmology: Dark matter couples to an Einstein-frame metric

gµν and experiences a decelerating, approximately matter-dominated expansion up to the present

time. Baryons instead couple to a physical (or ‘Jordan-frame’) metric g̃µν , constructed from gµν
and the physical parameters of the DM component. As discussed in Sec. 2, treating DM in the

hydrodynamical limit as a perfect and vorticity-free fluid, DM can be described effectively as a

P (X) scalar theory, where X = −gµν∂µΘ∂νΘ. The variables at our disposal for g̃µν are the DM

4-velocity uµ =
∂µΘ√
−X and X. Its most general form is therefore

g̃µν = R2(X) (gµν + uµuν)−Q2(X)uµuν . (1)

Hereinafter we will use letters with (without) tilde to denote quantities in the Jordan (Einstein)

frame. In a microscopic model of DM, one can think of Q and R to be functions of some scalar

composite operator made of DM fields, e.g. the energy density. In the present case, these scalar

functions R and Q are chosen such that: i) they tend to unity at high DM density, in order to

reproduce standard evolution at early times; ii) they grow at late times (roughly, at redshift ∼
a few) to generate apparent cosmic acceleration for ordinary matter. Thus at the level of the

background evolution it seems straightforward to obtain cosmic acceleration for judicious choice of

R and Q. One can even fine-tune these functions to exactly match the ΛCDM expansion history,

though in our analysis we will consider more general functional forms. See Sec. 3 for an overview

of the mechanism and Sec. 4 for a discussion of the background evolution.

It is worth pointing out that incidentally condition i) enforces a screening mechanism, so that the

direct coupling between DM and ordinary baryon particles will not result in any violation of the

Equivalence Principle. That is, no “fifth force” on ordinary matter due to the mediation of DM

will be detected in local gravity experiments. Our condition i) and ii) on R and Q implies that the

direct interaction between DM and baryon particles is not turned on until the ambient DM density

is sufficiently low.1 As we will see in Section 6 this seemingly counter-intuitive fact arises naturally

from a microscopic model.

We would like to stress that our model for late-time cosmology does not fit into the paradigm of

quintessence theories, although there are similar features such as the presence of two metrics. The

key difference is that there are no additional light fields in our model. Said differently, cosmic

acceleration in our model is due to composite operators made of DM. As we mentioned above, the

origin of these composite operators can be traced back to integrating out heavy degrees of freedom.

1We thank David E. Kaplan for discussions on this point.
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What about the growth of density perturbations? Because the Einstein-frame scale factor evolves

as approximately dust-dominated, a ∼ t2/3, and since DM couples minimally to this metric, den-

sity perturbations grow as in standard CDM δ ∼ a. Naively this would seem to rule out the

model, since an important consequence of cosmic acceleration is that it slows down the growth of

structures, consistent with observations. However in our model the observed growth rate should

be measured relative to the physical scale factor ã = Ra, resulting in an effective growth function

∼ a
ã = R−1. Thus the same function R that grows at late times to mimic cosmic acceleration also

serves to suppress the growth of structures. More physically, this can be understood as a time

dilation effect. Although perturbations grow unimpeded in the Einstein frame, the Einstein-frame

universe is younger than the ‘Jordan-frame’ universe experienced by ordinary matter. Hence, from

the perspective of ordinary matter, cosmic structures appear less developed than in a pure CDM

universe. Thus the observed growth history matches that of a universe with dark energy, though in

general it is not identical to ΛCDM.

A critical test for the viability of the model is the stability of linear perturbations. In Sec. 5

we carefully study perturbations, in the limit that modes are well-inside the horizon, such that

mixing with gravity can be ignored. Even in this simplified regime, because DM and baryons are

coupled through g̃µν , their perturbations are kinetically-mixed. Perturbative stability requires that

kinetic and gradient matrices both be positive-definite, and we find that the resulting conditions

on Q and R are easy to satisfy. A more stringent constraint, however, comes from imposing that

the sound speed be sufficiently small, cs � 1, to avoid unwanted oscillations in the matter power

spectrum [32, 33]. Of the two propagating scalar modes, we find that one mode propagates with a

sound speed that vanishes identically as a result of baryons being pressureless. The sound speed for

the second mode is more complicated and depends explicitly on the form of DM-baryon interactions.

For the conformal coupling (Q = R), in which case (1) reduces to g̃µν = Q2gµν , demanding that

Q varies sufficiently fast to drive cosmic acceleration generically leads cs becoming relativistic at

late times. This case is therefore phenomenologically disfavored. Thus we are led to consider the

‘maximally-disformal’ or ‘pressure’ coupling Q = 1, for which (1) implies that the background

metric in the Jordan frame takes the form of ds̃2 = −dt2 +R2a2(t)d~x2. In this case we show that

the sound speed can be made arbitrarily small, as desired. This is the coupling “de choix” for the

rest of our analysis.

Although our scenario does not require any additional degree of freedom beyond DM and ordinary

matter, for some applications it is conceptually helpful to “integrate in” additional fields. Section 6

provides such a formulation, by introducing a scalar φ and vector Aµ. In the limit that these fields

are very heavy, and therefore approximately auxiliary, their expectation value is fixed by the DM

density and 4-velocity respectively as φ ∼ ρDM and Aµ ∼ uµ. This formulation is particularly

helpful to discuss constraints from direct detection experiments. Treating DM as fermions for

concreteness, we find that the DM-baryon coupling reduces to an effective, density-dependent 4-

fermion vertex. The effective Fermi constant can be made arbitrarily small as cs → 0, and in fact

vanishes in the maximally-disformal case Q = 1.

In Sec. 7 we derive the observational predictions for our model and compare the result to the

ΛCDM model. We focus on the phemenologically-viable maximally-disformal case Q = 1, leaving

us with a single function R(ã) to fully specify the model. For concreteness in Sec. 7.1 we choose

a simple, Taylor-series parametrization of this function, in terms of two constants α and β. We
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begin by imposing two conservative restrictions on the (α, β) parameter space. First, we demand

that the cosmological proper distance H̃0dP(z̃), where H̃0 is the observed Hubble constant, agree

with the ΛCDM prediction to within 3% over the redshift range 0 ≤ z̃ ≤ 3. Second, by matching

to the angular diameter distance to the cosmic microwave background (CMB), we demand that

our predicted Hubble constant H̃0 lies between 65 and 75 km s−1Mpc−1. This range is chosen to

include, at the lower end, the Planck best-fit ΛCDM value [34] HΛCDM
0 = 66.93±0.62 km s−1Mpc−1,

and, at the upper end, the direct Hubble Space Telescope (HST) [35] measurement of Hdirect
0 =

73.24 ± 1.74 km s−1Mpc−1.

With these two priors, we then go on to calculate various cosmological observables, including

the luminosity distance relation (Sec. 7.2), Baryon Acoustic Oscillations (BAO) (Sec. 7.3), and

the growth function of density perturbations (Sec. 7.4). In the process we discover an intriguing

connection between the growth factor and the Hubble constant. In the region of (α, β) parameter

space where the predicted σ8 is comparable to the Planck best-fit ΛCDM value of σ8 = 0.83,

the predicted Hubble constant tends to be on the high side, closer to the direct HST estimate.

(Although there is agreement on σ8, the quantity fσ8 probed by redshift-space distortions, where

f is the growth rate, is systematically higher than in ΛCDM at low redshift.) On the other hand,

in the region of (α, β) parameter space where H̃0 is comparable to the Planck preferred value, then

we predict higher values of σ8 (and fσ8), which tends to exacerbate the existing mild tension with

weak lensing and cluster counts [36]. Thus to get a sensible growth history our model predicts

a higher Hubble constant than ΛCDM, in better agreement with direct estimates. It remains to

be seen whether this conclusion holds generally or is specific to the simple (α, β) parametrization

adopted here.

One observable we do not consider here is the CMB angular power spectrum, as this requires

modifying the CAMB numerical code. The full derivation of the CMB spectrum will be presented

elsewhere [37]. However, since by design the two metrics gµν and g̃µν coincide at early times,

resulting in decoupled DM-baryon sectors at recombination, we expect negligible impact on the

CMB spectrum on small angular scales. As with dark energy, the main impact on the CMB is

felt on large angular scales, through the integrated Sachs-Wolfe (ISW) effect. In Sec. 7.5 we give a

preliminary estimate of the ISW contribution and find that it may be problematic for our model.

Specifically, the predicted ISW signal is strongly scale-dependent and peaks on small scales, which

naively implies a large ISW signal. On the other hand, this may be a good thing — the observed

cross-correlation is larger than the ΛCDM prediction by about 2σ, e.g., [38]. This warrants further

study.

Our model is not the first attempt to “unify” DM and DE. The most famous example is the

Chaplygin gas [39, 40], which proposes that DM is a substance with an unusual equation of state

P ∼ −ρ−α. This component therefore behaves as dust (P ' 0) at high density and as dark energy

(P < 0) at low density. However, in this model the sound speed cs ∼ α can become significant at late

times, resulting in either large oscillations or exponential blow-up in the matter spectrum [32, 33].

In our case, the DM has cs ' 0 at all times (just like CDM), and the matter power spectrum is

consistent with observations. Closer in spirit to our model is the ‘abnormally weighting energy’

model [41], in which DM and baryons couple differently to a Brans-Dicke scalar field. DM sources

the time-evolution of the scalar field, which in turn results in the baryon metric undergoing cosmic

acceleration. A key difference is that our model does not need any new degrees of freedom, scalar
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or otherwise, beyond DM and ordinary matter.2 For other attempts to unify dark matter and dark

energy see [43–45].

2 Set Up

Our mechanism is most intuitive in the ‘Einstein frame’, where the gravitational action is the

standard Einstein-Hilbert term:

L =
1

16πGN

√
−gR+ LDM[gµν ] + Lb[g̃µν ] . (2)

Dark matter, described by LDM, couples to gµν . Ordinary matter (‘baryons’), described by Lb,

couples to a different metric g̃µν to be defined shortly.

Let us first discuss the DM component. We will be primarily interested in cosmological observables

on linear scales, which are determined by the expansion and linear growth histories. On those

scales, all we really know about the dark matter is that it behaves to a good approximation as a

pressureless perfect fluid. Thus, to remain agnostic about the DM microphysics, we shall treat DM

in the hydrodynamical limit as a perfect fluid. This description of course breaks down on non-linear

scales, where the microphysical nature of DM becomes important. However, as we will see it is

straightforward to “complete” our fluid model with any microphysical theory of DM, be it WIMPs,

axions, Bose-Einstein Condensate, superfluid etc. In other words the fluid approximation is made

for simplicity, not out of necessity.

We therefore treat DM within the effective field theory description of perfect fluids [46–49]. At low

energy, a fluid is described by three Lorentz scalars φI(xµ), I = 1, 2, 3, specifying the comoving po-

sition of each fluid element as a function of laboratory space-time coordinates xµ. The ground state

configuration is φI = xI , while small perturbations above this state describe phonon excitations.

In the absence of vorticity, the description simplifies to a single degree of freedom Θ, corresponding

to the longitudinal degree of freedom responsible for laminar flow. This truncation is consistent at

the classical level, thanks to Kelvin’s theorem. In the presence of the direct coupling between DM

and baryons, two fluid descriptions strictly speaking are not equivalent, see the Appendix for de-

tails. However, since we are interested in the laminar cosmological evolution of DM, the simplified

description in terms of a single scalar field will suffice. Specifically, the large scale evolution of dark

matter can be conveniently described by

LDM =
√
−gP (X) , X = −gµν∂µΘ∂νΘ . (3)

Here we take Θ to have mass dimension [Θ] = M−1 and the function P (X) to have [P ] = M4. The

stress tensor of the action LDM is given by

Tµν = 2P,X∂µΘ∂νΘ + Pgµν . (4)

This matches to the perfect fluid form Tµν = (ρDM + PDM)uµuν + PDMgµν , with the identification

ρDM = 2P,X(X)X − P (X) , PDM = P (X) , uµ = − 1√
X
∂µΘ . (5)

2The idea of having different cosmologies in Einstein and Jordan frames has been explored in the context of the

early universe cosmology in [42].
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For our analysis we will not need to specialize to a P (X). All we need is for P (X) to describe

non-relativistic particles, such that PDM � ρDM. This amounts to XP,X � P , in which case

ρDM ' 2P,XX . (6)

2.1 Baryon action

Baryons couple to the metric g̃µν , constructed from gµν and the various parameters of the DM

component: in the hydrodynamical limit, these are the DM density, pressure, 4-velocity, bulk

viscosity and shear viscosity. However, since the DM fluid is treated as approximately perfect and

assumed nearly pressureless, the only quantities at our disposal are the 4-velocity uµ and density,

or equivalently X. Therefore, the most general form for g̃µν is

g̃µν = −Q2(X)uµuν +R2(X) (gµν + uµuν) , (7)

where R and Q are thus far arbitrary functions. The tensor gµν +uµuν is recognized as the 3-metric

orthogonal to the DM velocity. The inverse metric is

g̃µν = −Q−2(X)uµuν +R−2(X) (gµν + uµuν) . (8)

The determinants are related by
√
−g̃ = QR3√−g. Equivalently, the metric (7) can be expressed

as

g̃µν = R2(X)gµν + S(X)∂µΘ∂νΘ , (9)

where we have introduced

S(X) ≡ R2(X)−Q2(X)

X
. (10)

This latter form will be helpful when varying the action to obtain the Einstein field equations.

2.2 Equations of Motion

Our action (2) is given by

L =
1

16πGN

√
−gR+

√
−gP (X) + Lb[g̃µν ] , (11)

with g̃µν given in (7). The equation of motion for DM can be obtained by taking the functional

derivative of the action with respect to the dark matter field Θ. Explicitly it is given by

∂ν

([(
2P,X +QR3T̃αβb (2RR,Xgαβ + S,X∂αΘ∂βΘ)

)
gµν −QR3S T̃µνb

]√
−g∂µΘ

)
= 0 , (12)

where T̃µνb is the Jordan-frame energy-momentum tensor for baryons,

T̃µνb =
2√
−g̃

δLb

δg̃µν
. (13)
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The equation of motion for baryons sector follows from the conservation equation for this stress-

tensor:3

∇̃µT̃µνb = 0 . (14)

The Einstein field equations are obtained as usual by varying the action with respect to gµν . For

this purpose it is useful to note the relation between the variations of the two metrics:

δg̃µν = R2δgµν + (2RR,Xgµν + S,X∂µΘ∂νΘ) gακgβλ∂αΘ∂βΘ δgκλ . (15)

The result is

Gµν = 8πGN

[
Tµν +QR3T̃ κλb

(
R2gκµgλν +

(
2RR,Xgκλ + S,X∂κΘ∂λΘ

)
∂µΘ∂νΘ

)]
, (16)

where the DM stress-energy tensor Tµν was given in (4).

3 Overview of the Mechanism

Before diving into a detailed description, it is worth giving a simplified overview of the mechanism we

have in mind. On a spatially-flat cosmological background, ds2 = −dt2 +a2(t)d~x2, the cosmological

densities are functions of the scale factor. In other words, in this case (7) reduces to

g̃µν = diag
(
−Q2(a), R2(a)a2, R2(a)a2, R2(a)a2

)
. (17)

There is much freedom in specifying the functionsR andQ. In general it must satisfy two conditions.

First, to ensure that gravity is standard in the early universe, the coupling must become trivial in

the limit of high DM density: R, Q→ constant. By rescaling coordinates we can set the constant

to unity without loss of generality, hence

R, Q→ 1 as ρDM →∞ . (18)

Switching for a moment to a microphysical description, with ρDM → mψ̄ψ (for fermionic DM) or

m2φ2 (for bosonic DM), this condition also ensures that gravity is standard in high density regions

in the present universe, such as galactic halos. Thus (18) enforces a screening mechanism of a

remarkably simple kind — unlike other screening mechanisms [5], which generally involve solving

the intricate non-linear dynamics of a scalar field, here the deviations from standard gravity are

directly determined by the (suitably coarse-grained) local DM density.

The second condition is that R and Q should behave at late times in such a way that baryons

experience accelerated expansion.4 Although the Einstein-frame scale factor is always decelerating,

the expansion history inferred by baryons is governed by the physical scale factor

ã = Ra . (19)

3The conservation equation in the Jordan frame follows from the fact that the baryon action
∫

d4xLb(g̃µν) is

invariant under coordinate transformations, see e.g. [59].
4We mention in passing that the future asymptotic behavior of R and Q (as ρDM → 0) is of course not constrained

by observations. One could for instance impose that the coupling function once again becomes trivial in this limit:

R, Q → constant as ρDM → 0, where the constant is larger than unity. In this case the present phase of cosmic

acceleration would be a transient phenomenon.
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which will be accelerating if R grows sufficiently fast at the present time. In fact for suitable R and

Q this can exactly match the ΛCDM expansion history. For future purposes, it will be convenient

to define a “rate function”,

f ≡ d ln a

d ln ã
= 1− d lnR

d ln ã
, (20)

whose physical meaning will become clear shortly. Since R increases with time, we see that f ≤ 1.

Furthermore, the Hubble parameters in the two frames are related simply by

H̃ =
H

Q

dln ã

dln a
=

H

fQ
. (21)

A comment about the Einstein-frame expansion history. Clearly, in the approximation that one

ignores the backreaction of baryons, the Einstein-frame scale factor describes standard Einstein-de

Sitter evolution:

a(t) ∼ t2/3 . (22)

Remarkably, as we will see this result remains true when including the contribution of baryons, for

any choice of Q(a) and R(a), to the extent that DM and baryons are separately pressureless fluids.

What about the growth of density perturbations? Since DM experiences Einstein-de Sitter expan-

sion, density perturbations in the linear regime grow as usual proportional to the scale factor,

δ ≡ δρDM

ρDM
∼ a . (23)

This is at first sight worrisome, since a key role played by dark energy is to slow down the growth

of structures, consistent with observations. However in our model the observed growth rate should

be measured relative to the physical scale factor ã. Following [50] we define a rescaled growth factor

as

g ≡ δ

δiã
=
a

ã
=

1

R
. (24)

Here δi is the initial density perturbation. In other words, the rescaled growth factor increases at

late times, g becomes less than unity, as desired. Similarly, the observed growth rate is

d ln δ

d ln ã
=

d ln δ

d ln a

d ln a

d ln ã
=

d ln a

d ln ã
= f . (25)

This nicely matches the function f introduced in (20). Thus the growth rate is less than unity at

late times, as if there were dark energy.

Physically speaking, this can be understood as a time dilation effect. Although perturbations grow

unimpeded in the Einstein frame, the Einstein-frame universe is younger than the ‘Jordan-frame’

universe experienced by baryons. Hence, from the perspective of ordinary matter, cosmic structures

appear less developed than in a pure CDM universe, as if there were dark energy. We will come

back in Sec. 7 to a more quantitative analysis of cosmological observables.

4 Background Cosmology

We specialize the equations of motion (12)−(16) to a cosmological background, ds2 = −dt2 +

a2(t)d~x2. For this purpose, we will remain general and not assume anything about the DM and

baryonic equations of state until Sec. 4.2, where we will specialize the results to the physically-

relevant case of non-relativistic matter.
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4.1 Background expansion: general results

By symmetry the DM field depends only on time, Θ = Θ(t), such that X = Θ̇2(t). The physical

metric is given by

g̃µν = diag
{
−Q2 , R2a2(t) , R2a2(t) , R2a2(t)

}
. (26)

As usual the baryon component can be treated as a perfect fluid, with

T̃µνb =
(
ρ̃b + P̃b

)
ũµbũ

ν
b + P̃bg̃

µν , (27)

where the baryon fluid 4-velocity ũµb is unit time-like with respect to g̃µν :

g̃µν ũ
µ
bũ

ν
b = −1 . (28)

The conservation equation (14) implies

dρ̃b

d ln ã
= −3

(
ρ̃b + P̃b

)
, (29)

where ã = Ra. In particular, if the baryons have negligible pressure, then ρ̃b ∼ 1
ã3 = 1

R3a3 . To keep

the treatment general in what follows we will allow for arbitrary baryon equation of state.

Meanwhile, the DM equation (12) reduces to

d

dt

([
−P,X +QR3

(
Q,X
Q

ρ̃b − 3
R,X
R

P̃b

)]
a3Θ̇

)
= 0 , (30)

where we have used gκλT̃
κλ
b = −Q−2ρ̃b +3R−2P̃b. Without loss of generality, we can assume Θ̇ > 0,

hence for the background Θ̇ =
√
X. Then, recalling from (5) that ρDM = 2P,XX − P , the above

can be integrated to give

ρDM = Λ4
DM

√
X

Xeq

(aeq

a

)3
− P + 2XQR3

(
Q,X
Q

ρ̃b − 3
R,X
R

P̃b

)
, (31)

where the ‘eq’ subscript indicates matter-radiation equality. Since by assumption Q ' R ' 1 in

the early universe, and since P will soon be assumed negligible for non-relativistic DM, Λ4
DM will

be identified as the DM mass density at equality.

The (0, 0) component of the Einstein equations (16) yields the Friedmann equation:

3H2 = 8πGN (ρDM + ρb) , (32)

where we have defined an effective, Einstein-frame baryon density:

ρb ≡ QR3

(
ρ̃b

(
1− 2X

Q,X
Q

)
+ 6X

R,X
R

P̃b

)
. (33)

Substituting (31), the Friedmann equation becomes

3H2 = 8πGN

[
Λ4

DM

√
X

Xeq

(aeq

a

)3
− P +QR3ρ̃b

]
. (34)
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The (i, j) components, on the other hand, give the ‘pressure’ equation:

2
ä

a
+
ȧ2

a2
= −8πGN (P + Pb) , (35)

where the effective baryon pressure is

Pb ≡ QR3P̃b . (36)

In particular, if the baryons are pressureless with respect to the physical metric, they are also pres-

sureless with respect to the Einstein-frame metric. Finally, as a check it can easily be verified that

any two of the DM equation of motion (30), Friedmann equation (34) and pressure equation (35)

imply the third, as it should.

4.2 Specializing to pressureless components

The above equations simplify tremendously when specialized to the physically-relevant case of

nearly pressureless matter components:

P̃b ' 0 ; P � 2XP,X . (37)

As noted before, for baryons the conservation equation (29) in this case implies ρ̃b ∼ ã−3, i.e.,

ρ̃b =
Λ4

b

R3

(aeq

a

)3
. (38)

Since R ' 1 in the early universe, Λ4
b is identified with the baryon mass density at equality.

More importantly, since the right-hand side of the ‘pressure’ equation (35) vanishes in this limit,

the background is identically matter-dominated

a(t) ∼ t2/3 . (39)

This result holds from matter-radiation equality all the way to the present time, irrespective of

the coupling between the two species. In particular, the total energy density that can be read off

from (34),

ρtot ≡
3H2

8πGN
'

[
Λ4

DM

√
X

Xeq
+Q(X)Λ4

b

](aeq

a

)3
, (40)

where we have neglected the P term and substituted (38), redshifts exactly as dust,

ρtot ∼
1

a3
. (41)

It is worth stressing that, remarkably, this result holds for any choice of Q(X) and R(X)! This

means that the dynamical equation dictates the combination in the square bracket of (40) to be

time independent, for any Q(X).
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5 Linear Perturbations and Stability

In this Section we study the stability of linear perturbations about the cosmological background.

To simplify the analysis, we focus on modes that are well-inside the horizon, such that mixing

with gravity can be ignored. In this regime, the Einstein-frame metric can be treated as a flat,

unperturbed metric.

Our criteria for stability include the usual requirements that the kinetic and gradient matrices

be positive-definite. But there is more. Of the two propagating scalar modes, we will find that

one mode propagates with a sound speed that vanishes identically, as a result of the baryon fluid

being pressureless. The expression for the sound speed of the second mode, however, is more

complicated and depends explicitly on the form of DM-baryon interactions. In the absence of

interactions, it reduces to the DM sound speed, which is arbitrarily small given our assumption of

nearly pressureless DM. The presence of interactions, however, generically modifies the result and

can give rise to relativistic sound speed. In particular, this is unavoidable in the case of conformal

coupling Q(X) = R(X).

A relativistic sound speed is undesirable, for it can give rise to unwanted oscillatory features in

the matter power spectrum [32, 33]. As we will show in Sec. 5.2, this seems unavoidable in the

particular case of conformal coupling Q(X) = R(X). However, the key point is that this conclusion

is special to the conformal limit. More general, disformal couplings (with Q 6= R) do allow stable

perturbations with arbitrarily small sound speeds. We will demonstrate this emphatically in Sec. 5.3

with the ‘maximally disformal’, or ‘pressure’ coupling, corresponding to Q = 1.

5.1 General demixing

For simplicity, we once again model the baryon component as pressureless, P̃b = 0. Since the

Einstein-frame metric is approximated as flat in this analysis, the background baryon physical

density (38) is approximately constant. Without loss of generality we can set the scale factor at

the time of interest to unity: a∗ = a(t∗) = 1. Similarly the DM conservation (30) tells us that the

background value of the DM field can be treated as time independent, — i.e. X̄ = X(t∗) = const.

in our approximation, — and hence that ρ̄DM ' 2X̄P,X(X̄) = const. as well. By a trivial rescaling

of Λb, we will write the background baryon density at the time of interest as

ρ̃b =
Λ4

b

R̄3
. (42)

We perturb the DM field as Θ = Θ̄(t) + θ(t, ~x), such that X = X̄ + 2 ˙̄Θθ̇ at linear order. Dropping

bars to simplify notation, the linearized perturbation of the physical metric is given by

δg̃µν =
(

2R,XRgµν + S,XXδ
0
µδ

0
ν

)
2
√
Xθ̇ + 2S

√
Xδ0

(µ∂ν)θ , (43)

where, in anticipation of ignoring the mixing with gravity, we have fixed the Einstein-frame metric

to its unperturbed, FRW form gµν = diag
(
−Q2

∗, R
2
∗, R

2
∗, R

2
∗
)
. The baryon variables are the density

perturbation δ̃b ≡ δρ̃b
ρ̃b

= Λ−4
b δρ̃bR

3 and velocity perturbation ub
i .
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The linearized DM equation reads(
−2P,X − 4XP,XX + 2Λ4

b

(
Q,X + 2XQ̄,XX +

6XQ,XR,X
R

))
θ̈

+

[
2P,X − Λ4

b

(
S

Q
+ 2Q,X

)]
~∇2θ + 2Λ4

b

√
XQ,X

˙̃
δb −

Λ4
b

√
XS

R2
∂iu

b
i = 0 . (44)

Meanwhile, the energy and momentum conservation equations for baryons reduce to

˙̃
δb + 6

√
X
R,X
R

θ̈ +
Q

R2
∂iu

b
i = 0 ,

∂tu
b
i +
√
X

(
2Q,X +

S

Q

)
∂iθ̇ = 0 . (45)

Thus we have a system of three coupled partial differential equations for three variables θ, δ̃b and

ub
i . By solving the first of (45) for

˙̃
δb and substituting the result into (44), the problem is reduced

to two coupled equations for θ and ub
i . Focusing on the longitudinal mode ub

i = ∂iu
b, and working

in Fourier space, these two equations combine into a matrix equation:(
−A11ω

2 −B11k
2 A12k

2

A12ωk A22ωk

)(
θ

ub

)
= 0 , (46)

where

A11 = −2P,X − 4XP,XX + 2Λ4
b (Q,X + 2XQ,XX) ;

B11 = 2P,X −
Λ4

b

Q
(S + 2Q,XQ) ;

A12 = Λ4
b

√
X

R2
(S + 2Q,XQ) ;

A22 = Λ4
b

Q

R2
. (47)

Diagonalizing this matrix, it follows immediately that the dispersion relations for the decoupled

modes are

ω = 0 ; and ω2 =
P,X −

Λ4
b

2R2 (Q− 2XQ,X)(S + 2QQ,X)

P,X + 2XP,XX − Λ4
b (Q,X + 2XQ,XX)

k2 . (48)

Thus we see that one mode propagates with zero sound speed, irrespective of the choice of coupling

functions. The vanishing of cs in this case traces back to our pressureless assumption for the baryon

component; indeed, it is straightforward to show that allowing for P̃b 6= 0 would make cs non-zero,

though the expression is fairly complicated and therefore not particularly illuminating.

Our main interest, however, is in the second mode. At sufficiently early times, when R ' Q ' 1

and the components are decoupled, the dispersion relation reduces to the standard expression for

cs derived from P (X). At late times, however, when cosmic acceleration kicks in and the functions

R(X) and Q(X) grow by order unity, there is no reason a priori for the sound speed to remain small

(or even real, for that matter). Instead, these functions must be selected such that 0 < c2
s � 1, as

desired. Below we consider two special cases for the coupling: the conformal case, corresponding

Q(X) = R(X), and the ‘maximally disformal’ or ‘pressure’ coupling, corresponding to Q = 1.
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5.2 Conformal Coupling

The conformal coupling Q(X) = R(X), being the simplest, deserves separate consideration. In this

case S = 0, and the non-zero sound speed read off from (48) reduces to

c2
s =

P,X − Λ4
bQ,X + 2Λ4

bX
Q2
,X

Q

P,X − Λ4
bQ,X + 2X(P,XX − Λ4

bQ,XX)
. (49)

For stability we need both numerator and denominator to be positive. Furthermore we require that

0 < c2
s � 1. These conditions amount to

P,X > Λ4
bQ,X

(
1− 2X

Q,X
Q

)
;

P,XX � Λ4
bQ

(
Q2
,X

Q2
+
Q,XX
Q

)
. (50)

It is straightforward to argue, however, that these conditions are incompatible with our goal of

achieving cosmic acceleration. To see this, recall that P (X) is chosen such that, in the absence of

coupling to baryon, the would-be DM sound speed,

c2
DM ≡

P,X
P,X − 2XP,XX

, (51)

is always small. This is an intrinsic property of P (X) that remains true even when we turn on the

coupling of baryons, the only difference being that c2
DM no longer represents the propagation speed

of physical modes. Nevertheless, it is useful to cast the argument below in terms of c2
DM � 1.

For starters, we note that by definition

c2
DM =

dP

dρDM
=
P,X
ρDM

d ln a

d ln ρDM

dX

d ln a
' 1

2

d ln a

d ln ρDM

d lnX

d ln a
, (52)

where in the last step we have used ρDM ' 2XP,X . Although DM-baryon interactions alter the

usual scaling ρDM ∼ 1/a3 — see (31) — it is nevertheless reasonable to assume that
∣∣∣d ln ρDM

d ln a

∣∣∣ ∼ O(1)

to obtain a reasonable cosmology. In that case we learn that∣∣∣∣d lnX

d ln a

∣∣∣∣ ∼ c2
DM � 1 , (53)

in other words X(a) is almost constant. Furthermore, in order to mimic cosmic acceleration for the

physical scale factor ã = Qa, clearly it is necessary that d lnQ
d ln a ∼ O(1) at late times. Combining

this with (53), we obtain ∣∣∣∣ d lnQ

d lnX

∣∣∣∣ ∼ 1

c2
DM

� 1 . (54)

Thus, barring any cancellation the second of our desired inequalities (50) amounts to

X2P,XX �
Λ4

bQ

c4
DM

. (55)
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Meanwhile, from the definition (52) of c2
DM it is easy to see that, in the limit c2

DM � 1, we have

X2P,XX '
XP,X
2c2

DM

' ρDM

4c2
DM

, (56)

where we have used (6). Furthermore, using the relation (42) with R = Q, the inequality (55)

simplifies to

ρDM � Q4 ρ̃b

c2
DM

>
ρ̃b

c2
DM

. (57)

Here it is understood that ρ̃b and ρDM are the baryon and DM energy density at the time of

interest. It is easy to see that the above inequality is impossible to satisfy. For any reasonable

cosmology we expect ρDM and ρ̃b to differ by at most an order of magnitude (see (31)), which is

clearly insufficient to overcome the factor of 1/c2
DM on the right hand side.

What we have learned is that, for conformal coupling, the stability/phenomenological requirement

0 < c2
s � 1 embodied in (50) does not allow Q to vary sufficiently to drive late-time cosmic

acceleration. Instead Q must remain approximately constant. Possible loopholes in this argument

are that Q may be fine-tuned to keep the right-hand side of (50) artificially small and/or
∣∣∣d ln ρDM

d ln a

∣∣∣
artificially large. Although there may exist special functional forms for Q(X) for which this is the

case, we will not pursue the conformal case further. Instead we turn to the more promising case of

disformal coupling, Q 6= R.

5.3 Maximally-Disformal Coupling

It should be clear from the dispersion relation in (48) that the requirement cs � 1 forces Q(X) to be

a slowly-varying function. This is what spelled doom for the conformal case — since everything is

controlled by Q in that case, a nearly constant Q(X) implies a negligible impact on the background

evolution. In the disformal case Q 6= R, however, it is in principle possible to keep Q approximately

(or even exactly) constant, while R(X) can have arbitrary time-dependence.

To simplify the discussion, let us focus on the maximally-disformal case where Q remains exactly

constant, i.e., Q ≡ 1 at all times. In this case (48) implies after some manipulation the sound

speed:

c2
s =

1− Λ4
b

2XP,X

(
1− 1

R2

)
1 +

2XP,XX
P,X

, (58)

where we have substituted (10) for S. Next, using the definition of c2
DM, in particular (56), as well

as ρDM ' 2XP,X the sound speed becomes

c2
s ' c2

DM

(
1−

Λ4
b

ρDM

(
1− 1

R2

))
= c2

DM

(
1− ρ̃b

ρDM
R
(
R2 − 1

))
, (59)

where in the last step we have substituted (42).

Thus in this case the sound speed is proportional to c2
DM, which can be made arbitrarily small. It

remains to show that c2
s is also positive. To see this, note that (31) with Q = 1, P � ρDM and
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P̃b = 0, implies ρDM = Λ4
DM

√
X
Xeq

(aeq

a

)3
. Combined with (38), we get

ρ̃b

ρDM
'

Λ4
b

Λ4
DM

√
Xeq

X

1

R3
. (60)

Substituting into (59) gives

c2
s ' c2

DM

(
1−

Λ4
b

Λ4
DM

(
1− 1

R2

)√
Xeq

X

)
. (61)

By definition Λ4
b and Λ4

DM set the baryon and DM density at matter-radiation equality, hence
Λ4

b

Λ4
DM
' 1

6 . Meanwhile, as argued earlier X(a) is nearly constant in the limit c2
DM � 1 — see (53).

Therefore, it follows that c2
s is positive, as desired.

6 Integrating in Fields

Although our scenario does not require any additional degree of freedom beyond DM and ordinary

matter, it is sometimes conceptually helpful to “integrate in” additional fields to make contact with

a language perhaps more familiar to the readers. In case of the conformal coupling, it is sufficient

to introduce a massive scalar scalar field φ for this purpose. In the generic case, on the other hand,

the introduction of an additional massive vector field Aµ is required. Furthermore, for concreteness,

and to make contact with particle physics theories of DM, we shall model the DM field as a fermion

ψ. (The generalization to bosonic DM is of course straightforward.)

6.1 Scalar-Vector-Tensor Formulation

Consider the (Einstein-frame) theory

L =
√
−g
(

R

16πGN
− 1

2
(∂φ)2 − 1

2
m2
φφ

2 − 1

4
F 2
µν +

1

2
m2
AA

2
µ

)
−
√
−g
((

1− φ

M

)
mψψ̄ψ + αAµψ̄γ

µψ

)
+ Lb[g̃µν ] , (62)

where Fµν = ∂µAν − ∂νAµ is the field strength for Aµ, M is some arbitrary mass scale, α is a

dimensionless constant, and

g̃µν ≡ R2(φ)

(
gµν −

AµAν
A2

)
+Q2(φ)

AµAν
A2

. (63)

Ignoring the contribution from baryons for a moment, the equations of motion for φ and Aµ are

�φ = m2
φφ−

mψ

M
ψ̄ψ ;

∇µFµν = −m2
AA

ν + αψ̄γνψ . (64)

For the purpose of solving (64) we imagine coarse graining the DM distribution over scales much

larger than the interparticle separation, which amounts to a hydrodynamical approximation. In
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this regime mψ〈ψ̄ψ〉 reduces to the DM energy density ρDM, whereas 〈ψ̄γµψ〉 represents the aver-

aged current and is therefore proportional to the 4-velocity of the fluid element uµ. Furthermore,

assuming that φ and Aµ are sufficiently heavy, we can ignore their gradients and treat them as

auxiliary fields. Thus, by averaging (64) we obtain the expectation value of the auxiliary fields on

large (i.e., cosmological) scales, with result

φ =
mψ

Mm2
φ

〈ψ̄ψ〉 ' ρDM

Mm2
φ

;

Aµ =
α

m2
A

〈ψ̄γµψ〉 ∼ uµ . (65)

It is straightforward to convince oneself that this implies the equivalence of (62) and the original

action (2), in the regime that baryons are negligible.

For self-consistency, we should check our approximation of neglecting baryons in the above equa-

tions. The baryonic contribution to (64) can be readily computed

δLb

δφ
:

dLb

dg̃µν

dg̃µν
dφ

=
dLb

dg̃µν

[
2RR,φ(φ)

(
gµν −

AµAν
A2

)
+ 2QQ,φ(φ)

AµAν
A2

]
;

δLb

δAα
:

dLb

dg̃µν

dg̃µν
dAα

= − dLb

dg̃µν

(
R2 −Q2

) δαµAν + δανAµ − 2AµAνA
α/A2

A2
. (66)

This expressions can be greatly simplified, if we notice that

dLb

dg̃µν
=

√
−g̃
2

T̃µνb =

√
−g̃
2

ρ̃bũ
µ
bũ

ν
b , (67)

for the pressureless baryon fluid. Moreover, at the background level the velocity ũµb is aligned with

the dark matter velocity uµ, and consequently with Aµ. After combining everything we get the

remarkably simple result

δLb

δφ
:

dLb

dg̃µν

dg̃µν
dφ

= −R3Q,φ(φ)ρ̃b ;

δLb

δAα
:

dLb

dg̃µν

dg̃µν
dAα

= 0 . (68)

Therefore, our solution for Aµ (second of (65)), is correct even when including baryons, whereas

our solution for φ (first of (65)) is accurate to the extent that

ρDM

M
� R3 |Q,φ(φ)| ρ̃b . (69)

This is trivially satisfied for the maximally-disformal coupling, Q = 1, telling us that in that case

the solution for φ continues to apply with baryons. More generally, it is helpful to cast it in terms

of the X variable using the chain rule

Q,φ =
dρDM

dφ

dP

dρDM

Q,X
P,X

' 2Mm2
φc

2
DM

XQ,X
ρDM

, (70)

where we have used (65), the definition of c2
DM ≡ dP/dρDM, and ρDM ' 2XP,X . Furthermore,

using the fact that Q,R ≥ 1, our criterion (69) reduces to

ρDM

M2m2
φ

� ρ̃b

ρDM
c2

DM

∣∣∣∣ d lnQ

d lnX

∣∣∣∣ . (71)
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On the other hand, since ρDM evolves cosmologically on a Hubble time, then we must require

mφ � H (as well as mA � H) in order for (65) to remain true adiabatically. Hence (71) implies

ρDM

H2M2
� ρ̃b

ρDM
c2

DM

∣∣∣∣ d lnQ

d lnX

∣∣∣∣ . (72)

Even in the conformal case (which, in any case, is undesirable at the level of perturbations as

discussed earlier), where c2
DM

∣∣∣ d lnQ
d lnX

∣∣∣ ∼ O(1) (see (54)), this inequality is easily satisfied by taking

M �MPl. In the maximally-disformal case Q = 1, the bound is of course trivially satisfied.

6.2 Local Constraints

The scalar-vector-tensor formulation given by (62) is particularly useful to derive the predicted

signals for DM-nucleon scattering (direct detection) and DM annihilation (indirect detection). For

this purpose we must determine the field values φ̄ and Āµ assumed in the local environment.

Averaging over the local (galactic) DM density, the answer is given by (65) (again ignoring baryons).

We are interested in four-body effective interaction vertex between DM particles and baryons.

Expanding about the background values, φ = φ̄ + ϕ and Aµ = Āµ + aµ, the part of the action

relevant for local experiments is

L = −1

2
(∂ϕ)2 − 1

2
m2
φϕ

2 − 1

4
f2
µν +

1

2
m2
Aa

2
µ +

mψ

M
ϕψ̄ψ − αaµψ̄γµψ

+
Q,φ(φ̄)

Q(φ̄)
mbϕb̄b+

Q2 −R2

R2Q2
mb

ai
Ā0
b̄γib+ . . . (73)

where mb denotes the mass of baryon particle and fµν ≡ ∂µaν − ∂νaµ is the field strength for

the vector perturbation. By integrating out ϕ and aµ we can write down effective Fermi vertices

describing DM-baryon interactions. This is done as usual by evaluating the DM-baryon scattering

amplitude mediated by ϕ and aµ exchange. In the limit of large mφ and mA, the scalar and vector

propagators just become 1/m2
φ and 1/m2

A respectively, and the effective Lagrangian reduces to

Leff ∼ GϕFψ̄ψb̄b+GaFψ̄γ
iψb̄γib . (74)

The effective Fermi’s constants are given by

GϕF =
mψmb

Mm2
φ

Q,φ(φ̄)

Q(φ̄)
= 2

mψmb

ρDM
c2

DM

d lnQ

d lnX
, (75)

GaF =
Q2 −R2

R2Q2

mψmb

ρDM
, (76)

where in the last step of (75) we have substituted (70).

These effective coupling constants exhibit screening firstly because they are inversely proportional

to ρDM, and secondly because R → Q → 1 at high density. Both factors tend to suppress GF

and weaken DM-baryon interactions in regions of high density. Moreover, GϕF is further suppressed

by c2
DM, which can be made arbitrarily small. We leave to the future a detailed discussion of

direct and indirect detection constraints. As mentioned earlier our primary interest lies in the

maximally-disformal case Q = 1, for which GϕF vanishes.
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We would like to finish this section by stressing that we are dealing with the effective field theory.

Therefore, we should expect the presence of new degrees of freedom in the spectrum, with mass

of the order of the cut-off of the theory. Their presence is required by unitarity, as otherwise the

scattering amplitudes would diverge at the cut-off. Therefore, in order to justify the novelty of

our scenario, claimed throughout the paper, we need to make sure that these additional degrees of

freedom are much heavier than the Hubble scale. At late times the Q and R dependent factors of

the Fermi’s constants can be approximated as unity, resulting in

GF ∼
mψmb

ρDM
. (77)

It is easy to see that the suppression scale of this coupling is greater than H, as long as

ρDM � mψmbH
2 . (78)

Taking into account that at late times DM density is approximately equal to the total energy

density, we can use the Friedmann equation ρDM ' H2M2
Pl to rewrite (78) as

M2
Pl � mψmb . (79)

Obviously, this inequality is easily satisfied. In order to give a numerical estimate of the coupling

strength let us assume mψ = eV, mb ∼ GeV and ρDM ∼ meV4, resulting in

GF ∼
1

10−21eV2 . (80)

Therefore, the cut-off of our effective theory is many orders of magnitude bigger than the Hubble

constant today. This means that all the additional degrees of freedom in our model are much

heavier than the curvature scale, manifesting the novelty of our scenario.

7 Cosmological Observables

In this Section we derive various cosmological observables for our model and compare the results

to ΛCDM predictions. For concreteness, we focus on the maximally-disformal case, Q = 1, since as

discussed in Sec. 5.3 the sound speed of fluctuations in this case is consistently small and positive.

This case is also more predictive, since we are left with a single function R(X) to fit against data.

For illustrative purposes we will focus on a simple parametrization for this function, involving two

parameters, and choose parameter values that give a reasonable fit to the data, without attempting

a full likelihood analysis to derive a best-fit model. This is left for future work. One observable we

will not consider here is the CMB angular power spectrum, as this requires modifying the CAMB

numerical code. The full derivation of the CMB spectrum will be presented elsewhere [37].

First let us set some conventions. Instead of R(X) it turns out to be convenient to work in terms

of its inverse, the rescaled growth factor defined in (24):

g ≡ a

ã
=

1

R
. (81)
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By rescaling coordinates, we can set the physical scale factor to unity at the present time, ã0 = 1,

but then in general the present-day Einstein frame scale factor is left unfixed, a0 = g0 6= 1. Redshift

factors can be defined in both frames as follows:

ã =
1

1 + z̃
; a =

g0

1 + z
. (82)

The present time corresponds to z̃ = z = 0, as it should. We also recall the rate function f ≡ d ln a
d ln ã ,

introduced in (20). This can be expressed in terms of redshift as

f(z̃) = 1− (1 + z̃)
d ln g

dz̃
. (83)

We will work in the approximation that baryons are pressureless, P̃b = 0. As discussed in Sec. 4.2,

it follows that the Einstein-frame scale factor behaves exactly as a dust-dominated universe, a(t) ∼
t2/3, all the way to the present time. In other words,

H(a) = H0

(a0

a

)3/2
. (84)

7.1 Fiducial model

In principle to fix a model we should specify a DM function P (X) and a coupling function R(X), and

then solve the DM equation of motion (30) to obtain X(a). Equivalently, we can assume that this

has been done already and specify R(a) directly. This gives us an expression for ã(a) = R(a)a, with

which we can calculate various observables. In practice, however, the fitting procedure is simpler

if we have an analytic expression for the inverse, a(ã). While there is a one-to-one correspondence

between the latter and the former, this may require numerically solving a transcendental equation.

To short-circuit these complications, we will follow an easier route by directly specifying the function

a(ã), or in other words, g(ã). This suffices for the purpose of this section, namely to present a proof

of principle for the existence of DM-baryon coupling functions that give a reasonable fit to data.

Specifically we consider as fiducial function the following polynomial form:

a(ã) = ã+ αã2 + βã3 . (85)

The corresponding rescaled growth function follows immediately:

g(ã) = 1 + αã+ βã2 . (86)

The coefficient of the linear term was fixed by the requirement that a ' ã at early times (i.e.,

for ã � 1). We have explored the effect of including higher-order terms as well, but this turns

out to make little difference in terms of improving the fit to data. One should keep in mind that

this simple functional form is only meant to be valid up to the present time, ã ≤ 1. This may be

appropriately modified at larger values of ã, in order to get suitable future asymptotic behavior.

The next step is to determine the values of α and β for which our model provides a reasonable fit to

data. For starters we impose two conservative restrictions on the predicted expansion history. The
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Figure 1: The white region represents the allowed region in (α, β) parameter space, where α and β are

coefficients of our fiducial the polynomial function a(ã) = ã + αã2 + βã3. The region is determined by

two requirements: i) the proper distance dP(z̃) agrees with the ΛCDM prediction (with Planck best-fit

parameters) to within 3% over the redshift range 0 ≤ z̃ ≤ 3; ii) the Hubble constant H̃0 lies within the 2σ

range from direct measurements. The blue shaded region is excluded by the dP prior, the orange region is

excluded by the H̃0 prior, and the purple region represents the overlap. The red dots within the allowed

region (labeled as Cases 1, 2 and 3) are three representative choices of coefficients for which we later derive

observable predictions.

first condition is that the proper distance dP, normalized to H̃0, agrees with the ΛCDM prediction

to within 3% over the redshift range 0 ≤ z̃ ≤ 3. Specifically, the quantity of interest is

H̃0dP(z̃) =

∫ z̃

0
dz̃′

H̃0

H̃(z̃′)
. (87)

The expression in ΛCDM cosmology is

HΛCDM
0 dΛCDM

P (z̃) =

∫ z̃

0

dz̃′√
ΩΛCDM

m (1 + z̃′)3 + 1− ΩΛCDM
m

, (88)

where we will assume ΩΛCDM
m = 0.315, corresponding to the Planck best-fit value [36]. The 3% con-

straint is a conservative requirement that ensures good agreement with low-redshift geometric tests,

such as Type Ia supernovae (Sec. 7.2) and Baryonic Acoustic Oscillations (Sec. 7.3).

The second restriction pertains to the normalization of the cosmic ladder, set by the angular

diameter distance to the CMB at z̃CMB ' 1090:

dA(z̃CMB) =
1

1 + z̃CMB
dP(z̃CMB) . (89)

In ΛCDM cosmology with ΩΛCDM
m = 0.315, the result is dΛCDM

A (CMB) ' 3×10−3

HΛCDM
0

. Matching this

to CMB data, the Planck mission can indirectly determine the Hubble constant, with result [34]:
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HΛCDM
0 = 66.93± 0.62 km s−1Mpc−1. This is well-known to be in tension (at the ∼> 3σ level) with

the direct estimate with the Hubble Space Telescope [35] of Hdirect
0 = 73.24 ± 1.74 km s−1Mpc−1.

See [51, 52] for a nice discussion of this tension.

Similarly in our model we must match the predicted dA(z̃CMB) to Planck, which fixes H̃0.5 Since

our expansion history is generally different than ΛCDM, however, so is our value of H̃0. We impose

as a prior that our predicted H̃0 lies within the range 65 to 75 km s−1Mpc−1. This range is chosen

to include, at the lower end, the Planck best-fit ΛCDM value [34], and, at the upper end, the direct

Hubble Space Telescope (HST) [35] measurement.
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Figure 2: Left panel: Normalized Hubble parameter as a function of the redshift, H̃(z̃)

H̃0
, for our 3 fidu-

cial sets of parameters. The grey band represents the Planck ΛCDM 1σ range, Ωm = 0.315±0.026,

with the black curve corresponding to the central value. Right Panel: The fractional difference

between our results and the ΛCDM prediction with Ωm = 0.315, i.e., ∆H̃
H̃
≡

H̃
H̃0
−H

ΛCDM

HΛCDM
0

HΛCDM

HΛCDM
0

.

The allowed region in (α, β) parameter space satisfying both requirements is shown as the white

region in Fig. 1. The blue shaded region is excluded by the dP prior, the orange region is excluded

by the H̃0 prior, and the purple region represents the overlap. Within the white region we have

selected 3 sample choices of coefficients, one central value (Case 2) and two extreme values (Cases

1 and 3):

Case 1: α = −0.16 , β = −0.038 ;

Case 2: α = −0.08 , β = −0.09 ; (90)

Case 3: α = −0.02 , β = −0.12 .

These are shown as red dots within the allowed region. For illustrative purposes, in the remaining

subsections we will calculate various observables and compare the results to the ΛCDM prediction

for three sample choices of coefficients. For the record, the predicted Hubble constant in each case

5The CMB constraint on H0 does not solely come from the sound horizon at last scattering, but also from the

photon diffusion length scale which affects the Silk damping tale [53]. For the purpose of this preliminary analysis,

we limit ourselves to matching dA(z̃CMB). We thank Adam Lidz for pointing this out to us.
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is

H̃Case 1
0 = 74.1 km s−1Mpc−1 ;

H̃Case 2
0 = 72.3 km s−1Mpc−1 ;

H̃Case 3
0 = 67.5 km s−1Mpc−1 . (91)

Figure 2 compares the normalized Hubble parameter as a function of the redshift, H̃
H̃0

, in each case

together with the ΛCDM prediction HΛCDM

HΛCDM
0

, over the redshift range 0 ≤ z̃ ≤ 3. The grey band

represents the Planck ΛCDM 1σ range, Ωm = 0.315± 0.026, with the black curve corresponding to

the central value. The right panel shows that in all cases the difference with ΛCDM is ∼< 3% over

this range.
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Figure 3: Left panel: The luminosity distance as a function of redshift, with the same con-

ventions as in Fig. 2.Right Panel: The fractional difference with ΛCDM, defined as ∆dL
dL
≡

H̃0dL(z̃)−HΛCDM
0 dΛCDM

L (z̃)

HΛCDM
0 dΛCDM

L (z̃)
.

7.2 Luminosity distance

Consider the luminosity distance dL(z̃) to Type Ia supernovae (SNIa). This is related to the physical

distance (87) as usual by

dL(z̃) = (1 + z̃)dP(z̃) . (92)

Type Ia observations offer tight constraints on dL(z̃) over the redshift range 0 ∼< z̃ ∼< 1.5 [54].

An important constraint on our model is that our luminosity distance H̃0dL agrees well with the

corresponding ΛCDM expression HΛCDM
0 dΛCDM

L over this redshift range. Figure 3 compares our

model predictions for the three fiducial cases listed above and the ΛCDM prediction over the redshift

range 0 ≤ z̃ ≤ 2. The right panel shows that in all cases the difference with ΛCDM is ∼< 2% over

the entire range.
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Figure 4: Left panel: The distance relation dV(z̃) probed by BAO observations, with the same

conventions as in Fig. 2.Right Panel: The fractional difference with ΛCDM, defined as ∆dV
dV
≡

H̃0dV(z̃)−HΛCDM
0 dΛCDM

V (z̃)
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.

7.3 Baryon Acoustic Oscillations

Observations of Baryon Acoustic Oscillations (BAO) in large-scale structure surveys constrain the

combination rdrag/dV(z̃), where rdrag is the comoving sound horizon at the end of the baryon drag

epoch [55], and dV is given by

dV(z̃) =

(
d2

P(z̃)
z̃

H̃(z̃)

)1/3

. (93)

More precisely, galaxy surveys now have the statistics to decompose transverse and line-of-sight

clustering information, thereby placing constraints on dA and H separately [56]. However, for the

purpose of this preliminary analysis we will contend ourselves with the comparison to the angle-

averaged observable, dV. Various surveys constrain rdrag/dV(z̃) to within 5-10% percent of the

ΛCDM best-fit prediction from Planck over the redshift range 0 ∼< z̃ ∼< 1, as summarized nicely in

Fig. 14 of [36]. Figure 4 compares our model predictions for H̃0dV(z̃) for our 3 fiducial parameter

sets with the ΛCDM prediction HΛCDM
0 dΛCDM

V for 0 ≤ z̃ ≤ 1. The right panel shows that in all

cases the difference with ΛCDM is ∼< 3% over this range.

7.4 Growth history of linear perturbations

Next we consider the growth history of DM linear perturbations. For simplicity let us ignore the

contribution from baryons, in which case the function g(ã) given by (86) matches the rescaled

growth function defined in [50]. Figure 5 plots this growth factor as a function of redshift for our

three sets of fiducial parameters, together with the ΛCDM fitting function proposed by [50]:

gΛCDM = e
∫ a
0 d ln a′ [Ωm(a′)0.545−1] . (94)
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Figure 5: The rescaled DM growth factor, g(z̃), defined in (86), is plotted as a function of redshift

for the 3 fiducial sets of parameters, and compared to the ΛCDM prediction, calculated from

Linder’s fitting formula (94).

The predicted σ8 in each case is

σCase 1
8 = 0.84 ;

σCase 2
8 = 0.87 ;

σCase 3
8 = 0.90 . (95)

Clearly Case 1 offers the closest match to the ΛCDM best-fit normalization σ8 = 0.831±0.013 [36].

Interestingly, recall from (91) that this case also predicts the largest value of the Hubble constant,

H̃0 = 74.1 km s−1Mpc−1, in good agreement with direct estimates. Conversely, the Hubble constant

for Case 3 is closest to the Planck ΛCDM value, but it is clear from Fig. 5 that this case overpredicts

the growth of structures.
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Figure 6: The observable fσ8(z̃), which is constrained by redshift-space distortions measurements,

is plotted for our model and the ΛCDM.

Redshift-space distortions, e.g., [57, 58], constrain the combination fσ8, where f is the growth

rate defined in (20). This quantity is plotted in Fig. 6, together with the ΛCDM prediction.

Our model agrees well with ΛCDM at z̃ ∼ 1, but we systematically predict a larger fσ8 at low
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redshift. This seems in tension with the most recent constraints from the completed SDSS-III BOSS

survey [58], which measured fσ8 = 0.430± 0.054 at zeff = 0.38, fσ8 = 0.452± 0.057 at zeff = 0.51,

and fσ8 = 0.457 ± 0.052 at zeff = 0.61. We leave a more detailed comparison to redshift-space

observations to future work.

7.5 Integrated Sachs-Wolfe effect

One observable that is potentially problematic for us is the Integrated Sachs-Wolfe (ISW) effect,

both through its impact on the low-multipole tail of the CMB power spectrum and on the cross-

correlation with galaxy surveys. The ISW signal is determined by the rate of change of the effective

gravitational potential Φ + Ψ felt by photons integrated along the null trajectory:(
δT

T

)
ISW

=

∫ τ0

τrec

dτ
∂

∂τ
(Φ + Ψ) , (96)

where τrec and τ0 are respectively the conformal time at recombination and at present.

In our case the scalar potentials experienced by photons are those of the physical metric g̃µν , i.e.,

ds̃2 = −(1 + 2Φ̃)dt2 + (1− 2Ψ̃)ã2d~x2 . (97)

In the maximally-disformal case of interest (Q = 1), they are related to the Einstein-frame potentials

by

Φ̃ = Φ ;

Ψ̃ = Ψ− δR

R
= Ψ− d lnR

d lnX

δX

X
. (98)

where we have used the fact that the spatial metrics are related by g̃ij = R2(X)gij , and expanded

R(X) to linear order. An argument similar to that given for the conformal case in Sec. 5.2 leads

us to conclude that d lnR
d lnX ∼

1
c2DM

at late times in order for the R(X) coupling to have a significant

impact on the expansion history. Similarly it follows from the argument given around (53) that
δX
X ∼ c

2
DM

δρDM
ρDM

. Putting everything together, our ISW potential is

Φ̃ + Ψ̃ = Φ + Ψ +O(1)
δρDM

ρDM
, (99)

and thus receives a contribution proportional to δρDM
ρDM

. (It is worth emphasizing that (99) only

holds at late times, when R is significantly different from unity and drives cosmic acceleration.)

The issue comes from the fact that δρDM
ρDM

∼ k2Φ is strongly scale-dependent and peaks on small

scales. This naively implies a large ISW signal, which may be problematic. On the other hand,

it is worth noting that observations favor (at the ' 2σ level) a larger ISW effect than predicted

by standard ΛCDM cosmology [38]. Meanwhile, the contribution from Φ + Ψ is expected to be

small. Indeed, at least to the extent that baryons are negligible, the (Einstein-frame) gravitational

potentials experience a matter-dominated universe to the present time, and hence are constant on

linear scales. Therefore only the δρDM/ρDM term is expected to contribute significantly to (96).

A quantitative treatment of the ISW effect, together with detailed predictions for the CMB and

matter power spectrum, is currently in progress and will be presented in a future paper [37].
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Another observable that is determined by the combination Φ + Ψ is the large-scale weak lensing

power spectrum measured by Planck.6 This could similarly be affected by the density-dependent

contribution, though its impact will ultimately depend on the behavior of R(X) where the lensing

kernel peaks. This also deserves further study.

8 Discussion

In this paper we presented a third avenue for generating cosmic acceleration, without a source

of negative pressure and without new degrees of freedom beyond those of Einstein gravity. The

mechanism relies on the coupling between DM and baryons through an effective metric. Dark matter

couples to an Einstein-frame metric, and experiences a matter-dominated, decelerating cosmology

up to the present time. Ordinary matter, meanwhile, couples to an effective metric that depends

both on the Einstein-frame metric and on the DM density. By construction this effective metric

reduces to the Einstein-frame metric at early times, but describes an accelerating cosmology at late

times. Interestingly, the fact that the Jordan-frame metric reduces to the Einstein-frame metric at

large dark matter densities screens the violation of the Equivalence Principle from a local observer.

To be more specific, the local dark matter densities are of order of the cosmological densities at

redshift z ' 50. Therefore, the level of obscurity of the Equivalence Principle for the short scale

observer will be determined by the cosmological evolution at z ' 50. Fortunately, observations

require the significant departure of Einstein- and Jordan-frame metrics only from redshift of order

few. Although the detailed analysis of the nonlinear dynamics is beyond the scope of this paper,

this qualitative argument about screening should be applicable to the nonlinear regime of structure

formation. In other words, the coupling functions could be selected in such a way that the Einstein-

and Jordan-frame metrics coincide at virial densities.

Linear perturbations are stable and propagate with arbitrarily small sound speed, at least in the

case of maximally-disformal or pressure coupling Q = 1. The case of conformal coupling, on

the other hand, generically results in a relativistic sound speed at late times, and is therefore

observationally disfavored [32]. As the name suggests, the case of pressure coupling Q = 1 implies

that pressureless sources (i.e., non-relativistic particles) are in fact decoupled from the DM. The

DM only affects relativistic particles, in particular all observational consequences derive from the

effect of the ambient DM background on the propagation of photons. In this sense our proposal is

spiritually similar to the old idea of “tired light”, proposed long ago by Zwicky as an alternative to

the expanding universe. In our case the accelerating universe is a consequence of photons interacting

with the DM medium along the line of sight.

In general, baryonic and dark matter perturbations experience different growth history in our

scenario. However, taking into account that the cosmological structure is dark matter dominated,

we expect the cumulative growth rate to be close to one of dark matter. However, for the pressure

coupling Q = 1 (for which the detailed fitting was performed) the situation simplifies. In this case,

as they decouple from DM, the non-relativistic baryons share the same growth history as DM.

We do not claim that our model is somehow better-motivated from a particle physics standpoint

than existing explanations for cosmic acceleration. After all we have at our disposal a prior two free

6We thank Paolo Creminelli for discussions of this point.
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functions Q(X) and R(X) (one function in the maximally-disformal case) that must be engineered

to reproduce standard evolution at early times and generate an accelerating universe at late times.

This is similar to the tuning inherent to quintessence models, where one specifies a scalar potential

to obtain the desired evolution. Nevertheless the mechanism is sufficiently novel and different

than existing explanations on the market that it is definitely worth exploring its observational

consequences.

As a sanity check, we have performed a preliminary check for a few key cosmological observables,

focusing on the maximally-disformal coupling, and compared the results to ΛCDM predictions.

For a simple parametrization of the R(X) coupling function, our model can successfully reproduce

various geometric constraints, including the luminosity distance relation and BAO measurements.

For density perturbations, our model predicts an intriguing connection between the growth factor

and the Hubble constant (which is fixed by matching the angular diameter distance to the CMB).

To get a growth history similar to the ΛCDM prediction, our model predicts a higher H0, closer

to the value preferred by direct estimates. On the flip side, we tend to overpredict the growth of

structures whenever H0 is comparable to the Planck preferred value.

One observable that may be problematic is the ISW effect, both through its impact on the CMB

power spectrum at low multipoles and on the cross-correlation with galaxy surveys. The form

of our coupling implies a density-dependent contribution to this observable, which may yield too

large a signal on small scales. On the other hand, as mentioned already, there is a 2σ excess

in the observed cross-correlation relative to the ΛCDM prediction [38]. In ongoing work we are

modifying the CAMB code to calculate the CMB and matter power spectra. This will allow us

to make rigorous predictions and check, in particular, whether the ISW signal is compatible with

observations.
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Appendix: Equivalence Between Fluid Descriptions

In this Appendix we elaborate on the points briefly mentioned in Sec. 2 regarding the equiva-

lence of DM effective theories in the hydrodynamical regime. In particular we clarify the physical

implications of neglecting DM vorticity.

The most general effective field theory description of a fluid/solid continuum includes not only

the longitudinal mode but also the transverse degrees of freedom. Specifically, following [46, 49] a

fluid/solid is described by 3 Lorentz scalars φI(xµ), I = 1, 2, 3, specifying the comoving position of

each fluid element as a function of laboratory space-time coordinates xµ. For a homogeneous and

isotropic fluid/solid, the action should be invariant under internal translations φI → φI + aI and

rotations φI → RIJφ
J . Furthermore, in the case of a perfect fluid, shear deformations come at no
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cost in energy, hence the action should also be invariant under volume-preserving diffeomorphisms:

φI → φ̂I ; det
∂φ̂I

∂φJ
= 1 . (A-I)

At lowest number in derivatives, this implies that the action is a function of the determinant:

LB = −
√
−gρ(B) ; B ≡ det

(
gµν∂µφ

I∂νφ
J
)
. (A-II)

The φI ’s have units of length, hence B is dimensionless.

The equation of motion following from this action reads

∂µ

(√
−gρ,B(B)B(B−1)IJg

µν∂νφ
J

)
= 0 . (A-III)

Therefore, an isolated fluid (no external source) in the flat spacetime (gµν = ηµν) allows the

following ground state configuration:

φ̄I = αxI , (A-IV)

with α being a dimensionless constant. We parameterize the fluctuations around this ground state

by

πI = φI − φ̄I . (A-V)

It is straightforward to show that the stress tensor of this action can be cast into a form of a perfect

fluid

Tµν = (ρ+ P )uµuν + Pgµν , (A-VI)

where the energy density ρ and pressure P are given by

ρ(φ) = ρ(B) , P (φ) = 2Bρ,B(B)− ρ(B) , (A-VII)

and the velocity field uµ by

uµ(φ) =
1

6
√
B
εµαβγεIJK∂αφ

I∂βφ
J∂γφ

K . (A-VIII)

The three degrees of freedom can be regrouped into a longitudinal phonon field and a vortex field.

At linear order in fluctuations, they are just the longitudinal and transverse parts of the vector πI .

When there is no vertex field excited, the number of degrees of freedom reduces to one. Therefore

it is not surprising that the fluid action (A-II) enjoys a simpler dual description involving only one

scalar field:

LX =
√
−gP (X) , X = −∂µΘ∂νΘgµν . (A-IX)

We briefly review the proof of the equivalence between two effective descriptions of fluids. The

stress tensor of the action LX also takes the perfect fluid form (A-VI), with

ρ(Θ) = 2P,X(X)X − P (X) , P (Θ) = P (X) , uµ(Θ) = − 1√
X
∂µΘ . (A-X)

The precise statement of the equivalence between ρ(B) and P (X) description says that, one can

establish some relation between φI and Θ, such that

ρ(φ) = ρ(Θ) ; P (φ) = P (Θ) ; uµ(φ) = uµ(Θ) . (A-XI)
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We will prove this by constructing an explicit map.

The key point of this construction lies in finding the correct condition to eliminate the extra degree

of freedom present in the ρ(B) language. It turns out that this is possible in the absence of vorticity.

Let us begin by defining the following form

V = Vµdxµ = −ρ,B(B)
√
Buµ(φ)dxµ , (A-XII)

then the relativistic version of vorticity of the fluid is given by the two form dV. Vanishing vorticity

implies that the one-from V must be closed, thus

Vµ = −ρ,B(B)
√
Buµ(φ) = Λ4∂µΘ . (A-XIII)

The proportionality constant is introduced to match dimensions on both sides.

It follows immediately from (A-XIII) that

X = Bf,B(B)2 , f(B) ≡ −Λ−4ρ(B) . (A-XIV)

Moreover, if one define P (X) = Λ4p(X) with

p
(
X(B)

)
= f(B)− 2Bf,B(B) , (A-XV)

then all the equalities in (A-X) are satisfied. That completes our construction.

To get some intuition about this duality, let us work out the relation between fluctuation φ and Θ.

Writing Θ = ct+ θ, (A-XIII) becomes

(c+ θ̇, ∂iθ) = −f0
,B

[
1 +

(
1 +

2f0
,BB

f0
,B

)
∂Iπ

I

]
(1, πI) +O(π2) , (A-XVI)

where we have rescaled the coordinate in such a way that α = 1 and B0 = α3 = 1, and denoted by

f
(n)
0 = f (n)(1) . Therefore one obtains that

c = −f0
,B , (A-XVII)

cπ̇I = ∂Iθ , (A-XVIII)

θ̇ = c

(
1 +

2f0
,BB

f0
,B

)
∂Iπ

I . (A-XIX)

The second equation implies that πI must be a gradient mode πI = ∂I√
−∂2

πL , while the second and

third equation combined require that

π̈L =

(
1 +

2f0
,BB

f0
,B

)
∂2πL = c2

s∂
2πL , (A-XX)

which is nothing but the linearized equation of motion for longitudinal πI . That is, the no-vorticity

condition can only be satisfied for on-shell configurations; the duality between ρ(B) and P (X) is a

classical equivalence.
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On the other hand, the above construction does not work for fluids coupled to external source. For

instance, the action in B language

L =
√
−g
(
− ρ(B) + Ω(B)Lbaryon

)
(A-XXI)

is not simply equivalent to that in the X language

L′ =
√
−g
(
P (X) +Q(X)Lbaryon

)
, (A-XXII)

where P (X) and ρ(B) are related by (A-XV). This is because in the presence of external source

(i.e., baryons in the above example), the vorticity is no longer conserved: dV 6= 0 . In order to

establish the equivalence, one would need to find a new, conserved vortex vector V̂ by including

baryon fields. For concreteness, we have chosen to formulate our theory in the X language.
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