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Abstract
Holographic cosmology offers a novel framework for describing the very early Universe in which

cosmological predictions are expressed in terms of the observables of a three dimensional quantum

field theory (QFT). This framework includes conventional slow-roll inflation, which is described

in terms of a strongly coupled QFT, but it also allows for qualitatively new models for the very

early Universe, where the dual QFT may be weakly coupled. The new models describe a universe

which is non-geometric at early times. While standard slow-roll inflation leads to a (near-)power-

law primordial power spectrum, perturbative superrenormalizable QFT’s yield a new holographic

spectral shape. Here, we compare the two predictions against cosmological observations. We use

CosmoMC to determine the best fit parameters, and MultiNest for Bayesian Evidence, comparing

the likelihoods. We find that the dual QFT should be non-perturbative at the very low multipoles

(l . 30), while for higher multipoles (l & 30) the new holographic model, based on perturbative

QFT, fits the data just as well as the standard power-law spectrum assumed in ΛCDM cosmology.

This finding opens the door to applications of non-perturbative QFT techniques, such as lattice

simulations, to observational cosmology on gigaparsec scales and beyond.
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I. INTRODUCTION

The current observational data in cosmology are fit very well by the six-parameter ΛCDM

model. This model is an empirical parameterization for cosmology, combining four param-

eters of the transfer function with two of the primordial power spectrum. For the transfer

function, the parameters correspond to the matter contents of the universe, the current rate

of expansion of the universe, and the optical depth (which is related to the time of reion-

ization). This part is well-understood in the context of the ΛCDM framework. The other

two parameters, ∆2
0 and ns, are those of the scalar primordial power spectrum P(q), which

is taken to have a power-law form:

P (q) = ∆2
0

(
q

q∗

)ns−1

, (1)

where q∗, the pivot scale, is an (arbitrary) reference scale.

Typically the primordial power spectrum is explained using slow-roll inflation in which

the early universe undergoes a phase of rapid accelerated expansion. This is used to explain

the homogeneity and isotropy of the universe by having the expansion increase the size of

the regions which were in causal contact after the big bang to our entire visible universe

as well as making it look flat by being large enough that the curvature is not visible. In

addition, starting from the quantum adiabatic vacuum, inflationary models typically predict

a primordial power spectrum well approximated by the power-law form (1). While inflation

is often considered to be the best scenario to explain cosmological observations, it suffers

from shortcomings such as predictivity and falsifiability, sparking a search for alternative

possibilities (e.g., [1]).

One of the main issues one is faced with when calculating the predictions of models for the

early universe is that quantum gravity effects become relevant, while we do not yet have a full

theory of quantum gravity. Inflation bypasses this by requiring the gravitational coupling

is weak enough so that only a quantum field theory on curved space-time is required. This

may be sufficient for explaining (1) but it still leaves open the question of what happens at

earlier times – inflation does not resolve the issue of the initial singularity. Moreover, the

theory is still generically sensitive to UV issues, as radiative corrections can significantly

alter the inflationary action. For these reasons, it is important to embed inflation into a UV

complete theory.
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Insight from the study of black hole entropy has long indicated that gravity might have a

holographic nature [2, 3], i.e. that there is a dual quantum field theory (QFT) in one lower

dimension without gravity. This principle, the holographic principle, should also apply to

the early universe. Explicit examples of holographic dualities were found in string theory

[4]. However, these cases tend to apply to theories with a a negative cosmological constant,

which is in contrast to cosmological observations.

The extension of the duality to de Sitter spacetime and cosmology was considered soon af-

ter the initial work on Anti-de Sitter space [5–9]. In the cosmological context, the statement

of the duality is that the partition function of the dual QFT computes the wavefunction

of the universe [9], using which, cosmological observables may be obtained. These dualities

are less understood than the standard AdS/CFT duality, in part because we currently have

no explicit realization in string theory. Nevertheless, one may set-up a holographic dictio-

nary [10–14] using a correspondence [15] between cosmological accelerating solutions and

holographic renormalization group (RG) flows, solutions that admit standard holographic

interpretation.

In this duality, time evolution is mapped to inverse renormalization group flow and the

physics of the early universe is mapped to the IR physics of the dual QFT. Thus, depending

on the nature of the IR, we have different cosmological scenarios. In this paper, we would

like to test theories for the very early Universe against CMB data, so more precisely we

would like to know what is the dual QFT which is relevant at the energy scales probed by

CMB.

One of the main properties of the holographic dualities is that they are strong/weak

coupling dualities. This means that when one of the two sides is strongly coupled, and

therefore difficult if not impossible to solve, the other side is weakly coupled, and solvable

perturbatively. Therefore a weakly coupled inflationary period is dual to a strongly coupled

quantum field theory. While work has been done in using holography in this setting (see

[16–33] for a sample of works in this direction) we will here mainly examine the opposite

case. This is the case of a strongly coupled gravitational theory. In this case, the early

universe does not have a well defined geometry. It can not be examined without quantum

gravity. However, the dual QFT not only can be examined, but is weakly coupled and

solvable perturbatively. This is the alternative model we will examine, which we will call
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FIG. 1. A sketch of the Penrose diagram describing holographic cosmology. The early Universe is

non-geometric and is described by a dual QFT, which is located at the end of the non-geometric

phase.

the holographic model or holographic cosmology here1. In this case the dual QFT is a super-

renormalizable three-dimensional QFT 2. This model for the very early Universe was first

proposed in [10] and it was subsequently analyzed in [11–14, 37, 38].

Previously, this holographic model had been compared to WMAP7. It was found to be

viable [39, 40] but mildly disfavoured relative to ΛCDM. With the release of the Planck data,

it is time to reexamine the viability of the holographic model for early universe cosmology.

Our results were announced in [41] and the purpose of this paper is to provide a more

detailed and comprehensive discussion of their derivation.

The structure of the paper is as follows. In Section II, we describe the two models we

are comparing. In Section III, we find and explain the best fit model. Section IV explains

how well the two models fit the data and compare to each other. Finally, in Section V we

present some concluding remarks.
1 As inflation is also holographic, this is a potentially confusing terminology. Here we want to distinguish

between a cosmology which has a conventional spacetime description (inflation) and one without such

description (holographic cosmology).
2 An example of such QFT is the worldvolume theory of coincident D2-branes. The holography nature of

this theory is well established [34–36].

4



II. MODELS

A. Holography for cosmology: basics

The idea of holography for cosmology is that the dual QFT computes the wavefunction

of the Universe [9]. Schematically, this works as follows: The wavefunction is equal to the

partition function of the dual QFT

ψ(Φ) = ZQFT [Φ], (2)

where Φ on left hand side denotes collectively gravitational perturbations and on the right

hand side sources that couple to gauge invariant operators. Note that we will consider

the wavefunction of perturbations only in this paper. Cosmological observables may be

computed using standard quantum mechanics

〈Φ(x1) · · ·Φ(xn)〉 =

∫
DΦ|ψ|2Φ(x1) · · ·Φ(xn), (3)

where the correlators are evaluated at end of the early universe phase (for example, at the

end of the inflationary phase, if inflation describes the very early universe). Using that

ZQFT [Φ] may be expressed in terms of correlation functions

ZQFT [Φ] = exp

(∑
n

(−1)n

n!
〈O(x1) · · ·O(xn)〉Φ(x1) · · ·Φ(xn)

)
, (4)

where O denotes the gauge invariant operators to which Φ couples3. We now may express

cosmological observables in terms of QFT correlation functions. If the QFT is strongly

coupled, then the bulk is described by Einstein gravity and these results should match those

coming from standard inflationary cosmological perturbation theory, while if the QFT is

weakly coupled the bulk is non-geometric.

There is currently no first principles derivation of the QFT relevant for cosmology but

one may use the domain-wall/cosmology correspondence [15] to map the cosmology problem

to that of standard gauge/gravity duality, then use the QFT dual to the domain-wall and

finally map the results back to cosmology [10, 11]4 . This leads to the following holographic

3 We take the QFT to be Euclidean, though this is not essential.
4 There is a proposed duality [42] where the QFT is defined a priori (i.e. without the need to map the

problem to the domain-wall first) but in this case the bulk involves Vasiliev’s higher spin gravity instead

of Einstein gravity.
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formulae for the scalar and tensor spectra, P and PT , respectively

P(q) = − q3

16π2

1

ImB(q)
, PT (q) = −2q3

π2

1

ImA(q)
, (5)

where A,B are extracted from the the momentum space 2-point function of the energy

momentum tensor Tij,

〈〈Tij(q)Tkl(−q)〉〉 = A(q)Πijkl +B(q)πijπkl. (6)

Here 〈Tij(q1)Tkl(q2)〉 = (2π)3δ3(q1 + q2)〈〈Tij(q1)Tkl(−q1)〉〉, πij = δij − qiqj/q2 is a transverse

projector and Πijkl = 1/2(πikπjl +πilπjk−πijπkl) is a transverse-traceless projector. In other

words, the scalar power spectrum is associated with the 2-point function of the trace of the

energy-momentum tensor while the tensor power spectrum is related with the transverse-

traceless part of the 2-point function. These formulae were derived for QFTs that admit a ’t

Hooft large N limit and they either become conformal in the UV or approach a QFT with a

generalized conformal structure (where generalized conformal structure is explained in the

next subsection). The imaginary part in (5) is taken after the analytic continuation,

q → −iq, N → −iN, (7)

where q is the magnitude of the momentum vector and we assume that we are dealing with

an SU(N) gauge theory coupled to matter in the adjoint representation, as it will be the

case below5. Similarly, one can relate the bispectra with 3-point functions of the energy

momentum tensor [12–14].

When the QFT is strongly coupled, the bulk is geometric and there is a conventional

description in terms of quasi-de Sitter or power law inflation. In these cases, (5) correctly

reproduce the results of cosmological perturbation theory [10, 11]. Here we focus on the

opposite regime where the QFT is weakly coupled.

B. Non-geometric models

In non-geometric models, the theory is defined by giving the dual QFT. Here we will

analyze the model proposed in [10, 11], in which the QFT is an SU(N) gauge theory coupled

5 In the case of a large N vector model, we need N → −N .
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to scalars ΦM and fermions ψL, where M,L are flavor indices. The action is given by

S =
1

g2
YM

∫
d3x tr

[
1

2
FijF

ij + δM1M2DiΦ
M1DiΦM2 + 2δL1L2ψ̄

L1γiDiψ
L2

+
√

2µML1L2Φ
M ψ̄L1ψL2 +

1

6
λM1M2M3M4Φ

M1ΦM2ΦM3ΦM4

]
, (8)

where all fields, ϕ = ϕaT a, are in the adjoint of SU(N) and trT aT b = 1
2
δab. Fij is the

Yang-Mills field strength, and D is a gauge covariant derivative. The Yukawa couplings µ

and the quartic-scalar couplings λ are dimensionless, while g2
YM has dimension 1.

This theory is superrenormalizable and has the important property that has a “generalized

conformal structure”. This means that if one promotes g2
YM to a new field that transforms

appropriately under conformal transformation, the theory becomes conformally invariant

[36, 43]. Related to this: if one assigns “4d dimensions” to the fields, [A] = [ΦM ] = 1, [ΦL] =

3/2, then all terms in the action scale the same way. While this is not a symmetry of the

theory, it still has implications.

In our case, the generalized conformal structure and the large N limit implies that the

2-point function takes the form

A(q,N) = q3N2fT (g2
eff), B(q,N) =

1

4
q3N2f(g2

eff) (9)

where fT (g2
eff) and f(g2

eff) are (at this stage) general functions of their argument and g2
eff =

g2
YMN/q is the effective dimensionless ’t Hooft coupling constant. The factor q3 reflects the

fact that the energy momentum tensor has dimension 3 in three dimensions and the factor

of N2 is due to the fact that we are considering the leading term in the large N limit. The

factor of 1/4 in B is conventional.

Under the analytic continuation (7)

q3N2 → −iq3N2, g2
eff → g2

eff , (10)

so for this class of theories one may readily perform the analytic continuation and (5)

becomes

P(q) =
q3

4π2N2f(g2
eff)

, PT (q) =
2q3

π2N2fT (g2
eff)

. (11)

We have thus now arrived in a relation between cosmological observables and correlators of

standard QFT.

Perturbation theory applies when g2
eff � 1. Since g2

eff = g2
YMN/q, g2

eff → 0, as q → ∞,

reflecting the fact that the theory is super-renormalizable. On the other hand the effective
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coupling grows in the IR, so the question of whether the theory is perturbative or not

depends on the scales we probe. In the perturbative regime, the functions f and fT up to

2-loops take the form

f(g2
eff) = f0

(
1− f1 g

2
eff ln g2

eff + f2 g
2
eff +O(g4

eff)
)
, (12)

fT (g2
eff) = fT0

(
1− fT1 g

2
eff ln g2

eff + fT2 g
2
eff +O(g4

eff)
)
. (13)

The coefficients f0 and fT0 come from 1-loop and have been computed in [10, 11]. The

2-loop computation will be discussed in detail in [44]. At 2-loops there are both UV and IR

divergences and these induce the log terms. Both A and B suffer from UV divergences and

these can be removed with a counterterm. If (some of) the scalars in (8) are non-minimally

coupled scalars6 then the B form factor (but not the A) also has an IR divergence. It is

believed that this class of theories are non-perturbatively IR finite, with the Yang-Mills

coupling effectively playing the role of an IR cut-off [45, 46]. In summary, f1 and f1T can be

computed unambiguously in perturbation theory, while f2, f2T are scheme dependent and f2

has also an IR ambiguity. As discussed in [41], we fix the scheme dependence by setting the

RG scale µ equal to the pivot scale q∗, µ = q∗, and the IR ambiguity of f2 by setting the IR

cut-off equal to gYM .

Following [40], we define new dimensionless variables g, β, gT , βT via 7

f1g
2
YMN = gq∗, ln β = −f2

f1

− ln |f1|, f1Tg
2
YMN = gtq∗, ln βt = −fT2

fT1

− ln |fT1| (14)

In terms of new variables

P (q) =
∆2

0

1 + (gq∗/q) ln |q/βgq∗|
PT (q) =

∆2
0T

1 + (gtq∗/q) ln |q/βtgtq∗|
(15)

where

∆2
0 =

1

4π2N2f0

, ∆2
0T =

2

π2N2fT0

. (16)

We emphasize that these formulae were derived using perturbation theory, so our first task

when fitting to data is to assess whether the perturbative expansion is justified at all scales

seen by Planck. We will use as an indication of the breakdown of perturbation theory the
6 When non-minimal scalars are coupled to gravity, their action contains a coupling to curvature,

∫
ξRΦ2.

Correspondingly, their energy-momentum tensor contains a new term proportional to the so-call improve-

ment term.
7 This parameterization assumes that f1 6= 0, f1T 6= 0. While generically this is true, there are also examples

where this does not hold. For example, (8) with only a scalars has f1 = 0. These cases require a separate

analysis.
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size of gq∗/q. Note that, unlike [40], we did not set β = 1. The theoretical computation

[44] shows that generically β 6= 1, and furthermore, β = 1 provides a bad fit to the data

(see Figure 6 or Table II). We are thus forced to use 3 parameters to fit of the primordial

spectrum, one more than need for ΛCDM in (1).

Note that the form of the power spectrum (15) is a universal prediction for this class

of theories, so if this form is disfavoured by the data then it would rule out this class of

holographic models. On the other hand, if (15) is consistent with data, one can further

analyze whether the best fit values can be reproduced by a specific choice of QFT within

this class.

C. Empirical models

To formalize the comparison we now define (following [40]) the empirical model of

holographic cosmology (HC) to be the model parametrized by the seven parameters

(Ωbh
2,Ωch

2, θ, τ,∆2
0, g, ln β), where Ωbh

2 and Ωch
2 are the baryon and dark matter den-

sities, θ is the angular size of the sound horizon at recombination and τ is the the optical

depth due to re-ionization.

This model is to be compared with ΛCDM, which is parametrized by six parameters,

(Ωbh
2,Ωch

2, θ, τ,∆2
0, ns) and ∆2

0, ns are the parameters entering in (1).

We will also compare HC with ΛCDM with running, which includes as a new parameter

the running αs = dns/d ln q. In this case the scalar power spectrum is given by

P (q) = ∆2
0

(
q

q∗

)(ns−1)+αs
2

ln( q
q∗ )

. (17)

The running is usually set to zero since it does not improve the fitting significantly. Here

we include this model so that we can also compare HC to a model with the same number of

parameters.

In inflationary models, ns typically has weak dependence on q and it may be Taylor

expanded around q∗. In ΛCDM, one keeps the leading order term in this expansion, while

in ΛCDM with running one keeps in addition the sub-leading term. In slow-roll inflation,

the running is second order in slow-roll parameters and higher order running is further

suppressed [47]. The holographic power spectrum (15) can be rewritten in the form (1) with

specific ns = ns(q) when gq∗/q � 1. In this case, however, αs/(ns − 1) = −1, and higher
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TABLE I. Priors for CosmoMC. The priors are the default for CosmoMC for the ΛCDM parameters.

g and β ranges were chosen to ensure viability of the primordial power spectrum.

Parameter Minimum Maximum

Ωbh
2 0.005 0.1

Ωch
2 0.001 0.99

100θ 0.5 10

τ 0.01 0.8

ln
(
1010∆2

0

)
2 4

ns (ΛCDM) 0.8 1.2

αs (ΛCDM running) −0.05 0.05

g (HC) −0.025 −0.001

lnβ (HC) −0.9 4

order runnings are not suppressed [11, 40].

All the cosmological parameters other than those quantifying the primordial specrtrum–

i.e. those in the transfer function - are the same in all three models. In addition, all three

models have a parameter ∆2
0 which determines the overall amplitude of the power spectrum.

These parameters will be accounted for in the data analysis using CosmoMC by fitting for:

100θ, τ , ln (1010∆2
0), Ωbh

2, and Ωch
2. In addition, all the nuisance parameters of Planck

are identical for both models. The values and details of these will be considered irrelevant

for the analysis. For the parameters not shared by the models, ΛCDM uses ns and αs

if running is included. Holographic cosmology uses g and ln (β). The priors used for the

relevant parameters are in Table I.

III. MATCHING THE MODEL TO DATA

A. Best Fit Parameters

In order to determine how well the models fit to data, we started by finding the best fit

parameters, median and expected ranges using CosmoMC [48–54]. Because we needed to

compare models with no variations besides the primordial power spectrum, we ran not only
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TABLE II. Planck 2015 and BAO best fit parameters and 68% ranges for holographic cosmology

and ΛCDM. Data for ΛCDM is from a separate run of CosmoMC, included to compare the χ2

numbers.

HC ΛCDM ΛCDM with running

best fit 68% range best fit 68% range best fit 68% range

Ωbh
2 0.02217 0.02215± 0.00021 0.02227 0.02225± 0.00020 0.02231 0.02229± 0.00022

Ωch
2 0.1173 0.1172± 0.0012 0.1185 0.1186± 0.0012 0.1184 0.1186± 0.0012

100θ 1.04112 1.04115± 0.00042 1.04103 1.04104± 0.00042 1.04108 1.04105± 0.00041

τ 0.081 0.082± 0.013 0.067 0.067± 0.013 0.069 0.068± 0.013

109∆2
0 2.126 2.126± 0.058 2.143 2.143± 0.052 2.151 2.149± 0.054

ns 0.9682 0.9677± 0.0045 0.9682 0.9671± 0.0045

αs −0.0027 −0.0030± 0.0074

g −0.0070 −0.0074+0.0014
−0.0013

lnβ 0.88 0.87+0.19
−0.24

χ2 11324.5 11319.9 11319.6

holographic cosmology (for which we needed to modify the code to use our primordial power

spectrum), but also ΛCDM using the same dataset. We ran ΛCDM both with and without

running. Running was used to ensure the likelihoods were compared between models with

the same number of parameters, while fitting to ΛCDM without running was done since

running has previously been found to not make a significant difference [55].

We fit the models to two different sets of datasets. For both cases, the datasets used

were identical for holographic cosmology and both ΛCDM models. The first case will be

marked as the standard, full Planck run, or will be not indicated as special. The data sets

used in this case were Planck 2015 (low TEB+high l [HM] TT) as well as lensing [55–61],

as well as Baryonic Acoustic Oscillations (BAO) [62–69] and BICEP2-Keck-Planck (BKP)

polarization [70]. The second case, called the high-l run or the run without low ls, uses

all the same data except does not use the portion of the Planck dataset corresponding to

l < 30.

After running CosmoMC to get the distribution of parameters, we ran the minimizer [71]

included with the code to find the best fit parameters as well as its likelihood.
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This procedure leads to the parameter ranges in Table II for the best fit and 68% region

of both models using the full Planck dataset. As can be seen, the difference in χ2 is 4.81.

This means the difference between the models is 2.2σ, favouring ΛCDM. The difference in

likelihood between ΛCDM with and without running is less than 1, so the case with fewer

parameters should be favoured. Our fit for ΛCDM is comparable to those found by the

Planck team.

As mentioned earlier, the perturbative expansion (15) requires |(gq∗)/q| � 1. How

large values of |(gq∗)/q| one is willing to accept, depends on the error one is willing to

tolerate. Certainly values of |(gq∗)/q| which are of order 1 are outside the regime of validity of

perturbation theory. In our case, as can be seen in Table II, the best fit value is g = −0.00703

and one can check that 2 × 10−3 ≤ |(gq∗)/q| ≤ 2.5, for the multipoles 2500 ≤ l ≤ 2 seen

by Planck. Therefore, |(gq∗)/q| is indeed very small for almost all multipoles, but it does

become large at very low multipoles (at l = 30 it is equal to 0.15, at l = 20 it is 0.25 and at

l = 2 it is 2.5). It follows that perturbation theory is valid at all scales seen in Planck, except

at very low multipoles. This is our first major conclusion: the data a posteriori justify the

perturbative treatment for all multipoles but the very low ones.

At very low multipoles one cannot trust the model: a non-perturbative computation of

the 2-point function of the energy-momentum tensor is needed in order to work out the

predictions of this model for these multipoles. In order to stay within the regime of validity

of the model, we therefore removed the low l data from our dataset and recalculated the

parameters. The exact boundary at l = 30 was determined by the datasets we had from

Planck, which offers the data already split between the l < 30 and l ≥ 30 data and it is

roughly in accordance with the estimate above. In [41] we further determined which model

within the class of (8) reproduces the best fit values and within that model one can make

a more precise estimate of the point where the perturbative treatment is not justified and

this lead to l ∼ 35.

Consequently, the results of the new fits can be found in Table III if we exclude l < 30.

For this case, the difference in χ2 is less than 1, indicating the models are within 1.0σ of

each other and that neither model is favoured. This is our second major conclusion: within

their regimes of validity HC and ΛCDM fit the data equally well.

Figure 2 shows the shape and degeneracies of the most likely region of parameter space.

The most obvious aspect of these figures is the irregular shape of ln (β) for the case when
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TABLE III. Same as Table II, but with l < 30 data removed for both holographic cosmology and

ΛCDM.

HC ΛCDM ΛCDM with running

best fit 68% range best fit 68% range best fit 68% range

Ωbh
2 0.02204 0.02202± 0.00022 0.02227 0.02224± 0.00020 0.02217 0.02212± 0.00024

Ωch
2 0.1187 0.1187± 0.0014 0.1187 0.1188± 0.0013 0.1186 0.1188± 0.0013

100θ 1.04097 1.04099± 0.00042 1.04108 1.04104± 0.00043 1.04101 1.04100± 0.00041

τ 0.067 0.066± 0.017 0.0703 0.068± 0.016 0.0695 0.067± 0.016

109∆2
0 2.044 2.043± 0.074 2.158 2.151± 0.064 2.151 2.139± 0.066

ns 0.9667 0.9660± 0.0048 0.9682 0.9666± 0.0047

αs 0.0083 0.0090± 0.0094

g −0.0130 −0.0127+0.0042
−0.0038

lnβ 1.01 0.90+0.32
−0.16

χ2 824.0 824.5 823.5

the low l data is removed. This is seen somewhat in the 1σ region, but more clearly in the

2σ region. This seems to imply ln (β) becomes less constrained and potentially consistent

with 0 when the low ls are removed. The rest of the figure is comparable to Figure 43 of

[57], although the degeneracy between ∆2
0 and g is in the opposite direction of that between

∆2
0 and ns in that figure.

Taking the parameters from the case with the low-l data removed, we show the TT

angular power spectra in Figure 3 for Planck 2015 data, as well as ΛCDM and holographic

cosmology. Both models appear to fit the data equally well, with the difference between

them being within the 68% region of Planck. Small l’s have the largest difference between

the models, however the difference still remains within the error as low ls were not part of

calculating the fit.

Similar plots for the TE and EE power spectra are shown in Figure 4. These plots do

not include the low-l data however. The goodness of fit is similar to the TT case. The units

for the Cl’s match those used in [55].
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FIG. 2. A triangle plot of the likelihoods of parameters for holographic cosmology. The blue plots

showing the case without low ls is less symmetric than the red plots with the full data set due to

the reduced amount of data. The contours show the 68% and 95% confidence levels.

B. Comparing Primordial Spectra

Now that we have the best fit parameters, we can examine the difference between the

two primordial power spectra. This can be seen in Figure 5. We use the best fit parameters

for holographic cosmology and ΛCDM without running found in Table III. This means we

again used the values for when the low l data was removed. The same plot with the best

fit values from Table II or from much of either tables’ indicated range for parameters would

look similar to what is seen. The error is approximated by assuming the same relative error

as Planck TT power spectrum, using l ≈ q × 14 Gpc.

The biggest difference between the two is seen at low l values. The cutoff used of l = 30
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is around q = 0.002 Mpc−1. This removes much of the very low values of the holographic

cosmology primordial power spectrum, but still occurs (in the middle of the insert) before

holographic cosmology’s spectrum has become larger than that of ΛCDM. Despite being

very similar in value for q & 0.002 Mpc−1, the HC and ΛCDM power spectra can be seen to

have different shapes.
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FIG. 3. TT power spectra of Planck 2015, ΛCDM and HC. Error bars shown for low l. In the insert

(l ≤ 40), the blue line (ΛCDM) is noticeably above the red one (HC). The green shaded region in

the difference plot shows the Planck relative error.
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FIG. 4. Plots of EE (left) and TE (right) polarization for Planck 2015 (black), ΛCDM (blue) and

HC (red). The green shaded region in the difference plot shows the Planck error.

C. Comparison to Previous Results

Comparing the results for WMAP in [40] to the results for Planck here, it appears that

g noticeably shifts to lower values, outside of the expected error. This shift remained when

we reran the code for WMAP, this time including β and the same external datasets as we

used for Planck8. The trend towards more negative values of g continues when the low l

dataset is removed from the data used to determine the parameters. This trend can be seen

in Figure 6. While it is possible that this indicates an issue with the model, the theory,

as stated previously, becomes non-perturbative when |gq∗/q| becomes relatively large. This

shift is believed to be compensating for the fact that the model is non-perturbative when

using the full dataset. To test if the choice of range of ls is the reason for the shift in g,

we also ran the Planck data without using any data for l above a chosen cutoff of l = 700

8 The parameter β was not used in [40] since it was (incorrectly) argued to be unimportant for the expected

values of g. When we ran WMAP again using β (not setting it to 1), we got β = 3.56 and g = −0.0027.

These values are used in Figure 6.
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FIG. 5. Plot of the primordial power spectrum for HC and ΛCDM . The parameters used to

produce the curves are the best fit values in Table III. The error (seen in the lighter shaded regions

above and below the curves) is determined by assuming the same relative error as the Planck cls.

It is included in order to give a sense of the error, not as the actual error. The red line indicating

holographic cosmology starts significantly lower and increases rapidly at low q values.

to mimic the uncertainty in the WMAP data for ls around that number. 9 Despite the

differences in the sharpness of the cutoff, the values found are close to those from WMAP.

A similar analysis for ΛCDM is shown in Figure 7. For this case, there is no similar shift

in ns and αs. However, there is a known shift in τ from WMAP to Planck for the ΛCDM

case: its best fit value went from 0.088 (WMAP) to 0.067 (Planck). Holographic cosmology

with the full dataset gives τ = 0.081 which goes down to 0.067 when we remove the l < 30

multipoles. The plot of ns vs τ for ΛCDM is in Figure 8.

What we can see in these figures is that the shift in τ for ΛCDM appears due to Planck

while the shift in g is at least partially due to the value of l. Since τ decreases to values
9 Because the data for l > 30 is binned every 30 ls, the cutoff point is not exactly l = 700. The code is then

told to ignore the data for ls above the cutoff. The data still remains available to be used, however. This

makes the cutoff imprecise. It is, however, sharper than WMAP, which has data for larger ls, but with a

very large error. See [72] for discussions on this type of cutoff.
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FIG. 6. Plot of 1σ and 2σ regions in parameter space for holographic cosmology g and ln(β) values

for WMAP (blue, right), Planck (red, middle), Planck with low l values removed (green, left), and

Planck with high l removed (purple, dashed).

similar to Planck when the low l data is removed (Table III), it appears that τ is decreased

by Planck, but increased to fit the erroneous holographic cosmology power spectrum to

compensate for the drop in the low l primordial power spectrum. We suspect the lower τ

value is real.

All other common parameters between the two models are compatible with each other.

D. Tensors

As in slow-roll inflation, holographic cosmology allows for the production of tensors.

There are also holographic cosmology models consistent with an absence of tensors. The

tensor will affect which holographic models are possible, so an analysis of the status of

tensors is required.

In holographic cosmology, the power spectrum for tensors is given in (15). The upper

limit for the ratio of tensors to scalars, r = ∆2
0T/∆

2
0, is 12.49% for 2σ and 17.12% for 3σ.

The data is consistent with r = 0. Figure 9 shows the triangle plot of these three parameters,

showing r = 0 is consistent with the data and consistent with any value of gt or βt. The

allowed value of r can be increased, but this requires the values of |gt| and βt to be increased
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past the point for which the perturbative expansion would be valid.

IV. MODEL EVIDENCE

In order to compare different models, one needs to determine which model is more likely

given the data. Typically one determines which models fit the data better, using for instance

the value of χ2 or its square root. While this has already been noted (in Tables II and III),

we will examine these likelihoods further here. However, if what we want to know is the

probability for the model given the data rather than the best fit of the model to the data we

should use Bayesian Evidence. We emphasise that what we compare here are the empirical

models introduced in Section IIC.

FIG. 7. Plot of 1σ and 2σ regions in parameter space of ΛCDM ns and αs values for WMAP (blue,

largest pair of curves), Planck (red, below the green), Planck with low l values removed (green,

above the red), and Planck with high l removed (purple, dashed).
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FIG. 8. Plot of 1σ and 2σ regions in parameter space of ΛCDM ns and τ values for WMAP (blue,

largest pair of circles), Planck (red, the smallest set of circles), Planck with low l data removed

(green, slightly larger than the red), and Planck with high l removed (purple, dashed).

A. Likelihoods

In order to compare the best fits of the two models, we calculate the difference in χ2. χ2

is given by χ2 = 2 (− lnL), where L is the likelihood of the model. When we take the square

root of the difference:
√

∆χ2, we can get the number of standard deviations one model is

from the other. We interpret results within 1σ as insignificant, but a model is considered to

be still viable at up to 3σ’s.

However, the likelihood does not account for the number of parameters in the model.

Since we had to include β in the holographic cosmology models, we have one more parameter

than standard ΛCDM. Instead of adding a term to compensate for the different number of

parameters as suggested in [40], we added running to ΛCDM so that it has the same number

of parameters. Increasing the number of parameters will decrease the minimum χ2. Since

this decrease, as seen in Table II, is less than 1, the extra parameter is disfavoured in

the model. It does, however, give us a model with the same number of parameters for

comparison.

The χ2 values given in Tables II and III are also presented here in Table IV and V for
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FIG. 9. A triangle plot of the likelihoods of parameters for tensors in holographic cosmology. The

contours show the 68% and 95% confidence levels.

holographic cosmology and ΛCDM with running. For the full Planck dataset, the difference

in χ2 is 4.81, corresponding to a difference of 2.2σ. However, as explained previously, our

holographic model breaks down at low l values and cannot be trusted. Table IV shows the

breakdown in the source of χ2 based on dataset. As can be seen, most of this difference

comes from low l data, which we do not expect to be accurate. Comparing instead the model

run without the unreliable portions of the data, ∆χ2 = 0.5. This is within 1σ, indicating
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TABLE IV. χ2 breakdown for different runs of CosmoMC: The table shows the χ2 values of the

holographic cosmology (HC) and ΛCDM with running from Table II (full Planck data) split by

dataset. The χ2’s are split into contributions from the high l dataset (l ≥ 30) the low l dataset

(l < 30) and all other contributions to χ2.

χ2 breakdown for full Planck run [Table II] HC ΛCDM with running

contribution of high l data (l ≥ 30) 767.4 766.6

contribution of low l data (l < 30) 10498.2 10494.1

contribution of other data 58.9 58.9

total contribution 11324.5 11319.6

TABLE V. χ2’s, excluding l < 30 data, using best-fit parameters from Tables II and III.

HC ΛCDM with running

χ2 for full Planck without low l data [from Table IV] 826.3 825.5

χ2 total for l ≥ 30 run [Table III] 824.0 823.5

that neither model is statistically preferred to the other.

B. Bayesian Evidence

In the previous subsection, we added a parameter (running) to ΛCDM in order to have

models with the same number of parameters when we use likelihood to compare them. In this

subsection, we will use a method that automatically accounts for the number of parameters:

we will compute the Bayesian evidence, the probability of each model given the data (rather

than that of the data given the model). A detailed exposition of this method can be found

in [73–75] and references therein. As reviewed in [40], application of Bayes’ theorem leads

to

E =

∫
dαMP (αM)P (D|αM), (18)

where αM is the set of parameters that specify the model and D is the data. Here, P (D|αM)

is the probability for obtaining the data D given parameters αM , which is the same as the

likelihood L (αM) calculated previously. P (αM) the prior probability for the parameters.
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Our aim is to compare the two empirical models introduced in Section IIC and in order

to be maximally agnostic about the underlying physical models we will proceed by using flat

priors, i.e. P (αM) = const. for all values of αM which we consider viable, while it vanishes

otherwise. Then, the evidence integral becomes

E =
1

VolM

∫
VolM

dαML (αM), (19)

where the integral is over the region of the parameter space in which the prior probability

distribution is non-zero and VolM is the volume of this region.

Alternatively, one could consider comparing physical models, for example a specific in-

flationary model versus the model specified by (8). In this case, the prior probabilities

would (in principle) be theoretically computable from the underlying model. For the case

of holographic model in (8) the parameters g and β are related by a 2-loop computation

to the parameters of the underlying model (the rank of the gauge group, the field content,

the couplings etc.) and assuming that all perturbative models are a priori equally likely10

one can in principle compute the prior probability for the parameters g and β by analyzing

how often given values of g and β are realized. It would be interesting to see whether such

analysis would lead to non-trivial prior distribution. We leave such analysis to future work

and proceed with flat priors, as is common.

To compute (19), we used MultiNest [76–78]. The priors are determined from the previous

fits of the same empirical models to data and are given in Table VI. These priors were chosen

to be consistent with the choices in [40]. However, the range of 100θ needed to be increased

to allow for the known best fit values. In addition, the range of gmin needed to be increased

to match the lower values of g. The range of g was chosen to be gmin < g < 0, with

gmin variable. The upper limit was set to 0 as g was found to be negative in [40] (and the

theoretical computation [41, 44] also shows that g is generically negative). The maximum

|gmin| reflects our expectation about the validity of the perturbative expansion. We will allow

for the possibility that the perturbative expansion is valid only for l > 30. We use as a rough

estimate for the validity of perturbation theory that gq∗/q is sufficiently small, taking this to

mean a value between 0.20 and 1 at l = 3011. This translates into −0.009 < gmin < −0.45.
10 Alternatively, one may use the partition function of the QFT (with no sources turned on) in order to

assign different probabilities to different perturbative models.
11 The momenta and multipoles are related via q = l/rh, where rh = 14.2 Gpc is the comoving radius of the

last scattering surface.
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TABLE VI. Priors used with MultiNest. gmin is variable and ranges from −0.009 to −0.65. The

priors are identical to those used for WMAP [40] except for 100θ and g which needed to be expanded

to accommodate the best fit results and β and αs which were not used originally.

Parameter Minimum Maximum

Ωbh
2 0.02 0.025

Ωch
2 0.09 1.25

100θ 1.03 1.05

τ 0.02 1.5

ln
(
1010 ∗∆2

0

)
2.9 3.3

ns (ΛCDM, asymmetric) 0.92 1.0

ns (ΛCDM, symmetric) 0.9 1.1

αs (ΛCDM running) −0.05 0.05

g (HC) gmin 0

lnβ (HC, small) 0 2

lnβ (HC, large) −0.2 3.5

The prior for β is fixed by using the results from (our fit to) WMAP data. We use two sets

of priors: one coming from the 1σ range (0 ≤ ln β ≤ 2) and the other from the 2σ range

(−0.2 ≤ ln β ≤ 3.5). The prior for the running was taken to be |αs| ≤ 0.05. This contains

the 1σ region of αs for all 1σ values of ns for WMAP. It also contains up to the 2σ region for

αs independent of other parameters. Both this and the case with no running were calculated

for ΛCDM.

In Figure 10, we present the results for the Bayesian evidence using the data without

the low multipole and for different choices of priors. We use the data without the l < 30

multipoles because only for this portion of the data the holographic model is perturbative.

The shading around each line indicates the error. As a guide [74], a difference lnE < 1 is

insignificant and 2.5 < lnE < 5 is strongly significant. We can see that the difference in

evidence between ΛCDM and holographic cosmology is insignificant.
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FIG. 10. Plot of Bayesian evidence when l < 30 data is removed. Priors are given in Table VI.

V. CONCLUSION AND OUTLOOK

In this paper, we confronted holographic cosmology against Planck CMB anisotropy

data, as well as other cosmological observations. In this work, holographic cosmology is

the empirical model obtained by replacing the primordial power-law power spectrum as-

sumed in ΛCDM by that obtained (holographically) by a perturbative computation in a

three-dimensional superrenormalizbale QFT with generalized conformal structure. We found

that the data a posteriori justifies the use of perturbation theory for all but the very low-

multipoles (l < 30). Restricting to this part of the data, we further found that this theory

fits just as well as ΛCDM. This follows both from the goodness of fit (the difference of χ2

is less than 1) and Bayesian evidence (the difference in log Bayesian evidence is less than

one). If we (incorrectly) use the holographic model over the entire data, then the model is

viable but disfavoured.

In order to include in the analysis the low-multipole data one would need a non-

perturbative evaluation of the 2-point function of the energy momentum tensor. One
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way to do this is to put the QFT on lattice and use the methods of lattice gauge theory;

such computation is currently in progress. Such non-perturbative results would allow us to

meaningfully compare this model with ΛCDM over the entire data, and may potentially

explain the large angle anomalies in the CMB sky (e.g., [79]). A lattice computation would

also allow us to formulate yet another new class of the holographic models, namely ones

based on a QFT with a coupling constant of intermediate strength. Such models could

potentially provide an even better fit than the models we analysed.

In the analysis in this paper we assumed an instant reheating: the data from the end of

the very early universe phase were the initial conditions for hot big bang cosmology. It would

be useful to develop a dynamical model describing the transition from the non-geometric

phase to Einstein gravity. This may be achieved by adding irrelevant operators that would

modify the UV sector of the QFT and induce an RG flow that would drive the theory to

strong coupling. Such terms could modify the high l part of the spectrum, but our ability

to fit the current data very well without such corrections suggest that that they are small.

However, future results from the next generation stage IV CMB experiments [80], as well

as future large scale structure surveys such as SPHEREX [81], are expected to reach up

to much higher wavenumbers, potentially probing the holographic reheating phase in our

model.

ACKNOWLEDGMENTS

We would like to thank Raphael Flauger for collaboration at early stages of this work.

KS is supported in part by the Science and Technology Facilities Council (Consolidated

Grant “Exploring the Limits of the Standard Model and Beyond”). NA and EG were sup-

ported in part by the University of Waterloo, Natural Sciences and Engineering Research

Council of Canada (NSERC), and Perimeter Institute for Theoretical Physics. Research at

Perimeter Institute is supported by the Government of Canada through the Department

of Innovation, Science and Economic Development Canada and by the Province of Ontario

through the Ministry of Research, Innovation and Science. This project has received fund-

ing from the European Union’s Horizon 2020 research and innovation programme under the

Marie Skłodowska-Curie grant agreement No 690575. We acknowledge the use of the Legacy

Archive for Microwave Background Data Analysis (LAMBDA), part of the High Energy As-

26



trophysics Science Archive Center (HEASARC). HEASARC/LAMBDA is a service of the

Astrophysics Science Division at the NASA Goddard Space Flight Center.

[1] Robert H. Brandenberger, “Inflationary Cosmology: Progress and Problems,” arXiv:hep-

ph/9910410 [hep-ph].

[2] Gerard ’t Hooft, “Dimensional reduction in quantum gravity,” in Salamfest 1993:0284-296

(1993) pp. 0284–296, arXiv:gr-qc/9310026 [gr-qc].

[3] Leonard Susskind, “The World as a hologram,” J. Math. Phys. 36, 6377–6396 (1995),

arXiv:hep-th/9409089 [hep-th].

[4] Juan Martin Maldacena, “The Large N limit of superconformal field theories and supergravity,”

Int. J. Theor. Phys. 38, 1113–1133 (1999), [Adv. Theor. Math. Phys.2,231(1998)], arXiv:hep-

th/9711200 [hep-th].

[5] C. M. Hull, “Timelike T duality, de Sitter space, large N gauge theories and topological field

theory,” JHEP 07, 021 (1998), arXiv:hep-th/9806146 [hep-th].

[6] Edward Witten, “Quantum gravity in de Sitter space,” in Strings 2001: International Confer-

ence Mumbai, India, January 5-10, 2001 (2001) arXiv:hep-th/0106109 [hep-th].

[7] Andrew Strominger, “The dS / CFT correspondence,” JHEP 10, 034 (2001), arXiv:hep-

th/0106113 [hep-th].

[8] Andrew Strominger, “Inflation and the dS / CFT correspondence,” JHEP 11, 049 (2001),

arXiv:hep-th/0110087 [hep-th].

[9] Juan Martin Maldacena, “Non-Gaussian features of primordial fluctuations in single field in-

flationary models,” JHEP 05, 013 (2003), arXiv:astro-ph/0210603 [astro-ph].

[10] Paul McFadden and Kostas Skenderis, “Holography for Cosmology,” Phys. Rev. D81, 021301

(2010), arXiv:0907.5542 [hep-th].

[11] Paul McFadden and Kostas Skenderis, “The Holographic Universe,” Classical and quantum

gravity. Proceedings, 1st Mediterranean Conference, MCCQG 2009, Kolymbari, Crete, Greece,

September 14-18, 2009, J. Phys. Conf. Ser. 222, 012007 (2010), arXiv:1001.2007 [hep-th].

[12] Paul McFadden and Kostas Skenderis, “Holographic Non-Gaussianity,” JCAP 1105, 013

(2011), arXiv:1011.0452 [hep-th].

[13] Paul McFadden and Kostas Skenderis, “Cosmological 3-point correlators from holography,”

27



JCAP 1106, 030 (2011), arXiv:1104.3894 [hep-th].

[14] Adam Bzowski, Paul McFadden, and Kostas Skenderis, “Holographic predictions for cosmo-

logical 3-point functions,” JHEP 03, 091 (2012), arXiv:1112.1967 [hep-th].

[15] Kostas Skenderis and Paul K. Townsend, “Hidden supersymmetry of domain walls and cos-

mologies,” Phys. Rev. Lett. 96, 191301 (2006), arXiv:hep-th/0602260 [hep-th].

[16] Juan M. Maldacena and Guilherme L. Pimentel, “On graviton non-Gaussianities during infla-

tion,” JHEP 09, 045 (2011), arXiv:1104.2846 [hep-th].

[17] James B. Hartle, S. W. Hawking, and Thomas Hertog, “Accelerated Expansion from Negative

Λ,” (2012), arXiv:1205.3807 [hep-th].

[18] James B. Hartle, S. W. Hawking, and Thomas Hertog, “Quantum Probabilities for Inflation

from Holography,” JCAP 1401, 015 (2014), arXiv:1207.6653 [hep-th].

[19] Koenraad Schalm, Gary Shiu, and Ted van der Aalst, “Consistency condition for inflation

from (broken) conformal symmetry,” JCAP 1303, 005 (2013), arXiv:1211.2157 [hep-th].

[20] Adam Bzowski, Paul McFadden, and Kostas Skenderis, “Holography for inflation using con-

formal perturbation theory,” JHEP 04, 047 (2013), arXiv:1211.4550 [hep-th].

[21] Ishan Mata, Suvrat Raju, and Sandip Trivedi, “CMB from CFT,” JHEP 07, 015 (2013),

arXiv:1211.5482 [hep-th].

[22] Jaume Garriga and Yuko Urakawa, “Inflation and deformation of conformal field theory,”

JCAP 1307, 033 (2013), arXiv:1303.5997 [hep-th].

[23] Paul McFadden, “On the power spectrum of inflationary cosmologies dual to a deformed CFT,”

JHEP 10, 071 (2013), arXiv:1308.0331 [hep-th].

[24] Archisman Ghosh, Nilay Kundu, Suvrat Raju, and Sandip P. Trivedi, “Conformal Invari-

ance and the Four Point Scalar Correlator in Slow-Roll Inflation,” JHEP 07, 011 (2014),

arXiv:1401.1426 [hep-th].

[25] Jaume Garriga and Yuko Urakawa, “Holographic inflation and the conservation of ζ,” JHEP

06, 086 (2014), arXiv:1403.5497 [hep-th].

[26] Nilay Kundu, Ashish Shukla, and Sandip P. Trivedi, “Constraints from Conformal Symmetry

on the Three Point Scalar Correlator in Inflation,” JHEP 04, 061 (2015), arXiv:1410.2606

[hep-th].

[27] Jaume Garriga, Kostas Skenderis, and Yuko Urakawa, “Multi-field inflation from holography,”

JCAP 1501, 028 (2015), arXiv:1410.3290 [hep-th].

28



[28] Paul McFadden, “Soft limits in holographic cosmology,” JHEP 02, 053 (2015), arXiv:1412.1874

[hep-th].

[29] Nima Arkani-Hamed and Juan Maldacena, “Cosmological Collider Physics,” (2015),

arXiv:1503.08043 [hep-th].

[30] Nilay Kundu, Ashish Shukla, and Sandip P. Trivedi, “Ward Identities for Scale and Special

Conformal Transformations in Inflation,” JHEP 01, 046 (2016), arXiv:1507.06017 [hep-th].

[31] Thomas Hertog and Ellen van der Woerd, “Primordial fluctuations from complex AdS saddle

points,” JCAP 1602, 010 (2016), arXiv:1509.03291 [hep-th].

[32] Jaume Garriga, Yuko Urakawa, and Filippo Vernizzi, “δN formalism from superpotential and

holography,” JCAP 1602, 036 (2016), arXiv:1509.07339 [hep-th].

[33] Jaume Garriga and Yuko Urakawa, “Consistency relations and conservation of ζ in holographic

inflation,” (2016), arXiv:1606.04767 [hep-th].

[34] Nissan Itzhaki, Juan Martin Maldacena, Jacob Sonnenschein, and Shimon Yankielowicz, “Su-

pergravity and the large N limit of theories with sixteen supercharges,” Phys. Rev. D58, 046004

(1998), arXiv:hep-th/9802042 [hep-th].

[35] H. J. Boonstra, K. Skenderis, and P. K. Townsend, “The domain wall / QFT correspondence,”

JHEP 01, 003 (1999), arXiv:hep-th/9807137 [hep-th].

[36] Ingmar Kanitscheider, Kostas Skenderis, and Marika Taylor, “Precision holography for non-

conformal branes,” JHEP 09, 094 (2008), arXiv:0807.3324 [hep-th].

[37] Claudio Corianò, Luigi Delle Rose, and Mirko Serino, “Three and Four Point Functions of

Stress Energy Tensors in D=3 for the Analysis of Cosmological Non-Gaussianities,” JHEP 12,

090 (2012), arXiv:1210.0136 [hep-th].

[38] Shinsuke Kawai and Yu Nakayama, “Improvement of energy-momentum tensor and non-

Gaussianities in holographic cosmology,” JHEP 06, 052 (2014), arXiv:1403.6220 [hep-th].

[39] Mafalda Dias, “Cosmology at the boundary of de Sitter using the dS/QFT correspondence,”

Phys. Rev. D84, 023512 (2011), arXiv:1104.0625 [astro-ph.CO].

[40] Richard Easther, Raphael Flauger, Paul McFadden, and Kostas Skenderis, “Constraining

holographic inflation with WMAP,” JCAP 1109, 030 (2011), arXiv:1104.2040 [astro-ph.CO].

[41] Niayesh Afshordi, Claudio Coriano, Luigi Delle Rose, Elizabeth Gould, and Kostas Skenderis,

“From Planck data to Planck era: Observational tests of Holographic Cosmology,” Phys. Rev.

Lett. 118, 041301 (2017), arXiv:1607.04878 [astro-ph.CO].

29



[42] Dionysios Anninos, Thomas Hartman, and Andrew Strominger, “Higher Spin Realization of

the dS/CFT Correspondence,” Class. Quant. Grav. 34, 015009 (2017), arXiv:1108.5735 [hep-

th].

[43] Antal Jevicki, Yoichi Kazama, and Tamiaki Yoneya, “Generalized conformal symmetry in

D-brane matrix models,” Phys. Rev. D59, 066001 (1999), arXiv:hep-th/9810146 [hep-th].

[44] Claudio Corianò, Luigi Delle Rose, and Kostas Skenderis, “Quantum Field Theory with gen-

eralized conformal structure,” (2017), to appear.

[45] R. Jackiw and S. Templeton, “How Superrenormalizable Interactions Cure their Infrared Di-

vergences,” Phys. Rev. D23, 2291 (1981).

[46] Thomas Appelquist and Robert D. Pisarski, “High-Temperature Yang-Mills Theories and

Three-Dimensional Quantum Chromodynamics,” Phys. Rev. D23, 2305 (1981).

[47] Arthur Kosowsky and Michael S. Turner, “CBR anisotropy and the running of the scalar

spectral index,” Phys. Rev. D52, 1739–1743 (1995), arXiv:astro-ph/9504071 [astro-ph].

[48] Uros Seljak and Matias Zaldarriaga, “A line of sight approach to cosmic microwave background

anisotropies,” Astrophys. J. 469, 437–444 (1996), astro-ph/9603033.

[49] Matias Zaldarriaga, Uros Seljak, and Edmund Bertschinger, “Integral solution for the mi-

crowave background anisotropies in nonflat universes,” Astrophys.J. 494, 491–502 (1998),

arXiv:astro-ph/9704265 [astro-ph].

[50] Antony Lewis, Anthony Challinor, and Anthony Lasenby, “Efficient computation of CMB

anisotropies in closed FRW models,” Astrophys. J. 538, 473–476 (2000), arXiv:astro-

ph/9911177 [astro-ph].

[51] Antony Lewis and Sarah Bridle, “Cosmological parameters from CMB and other data: A

Monte Carlo approach,” Phys. Rev. D66, 103511 (2002), arXiv:astro-ph/0205436 [astro-ph].

[52] Cullan Howlett, Antony Lewis, Alex Hall, and Anthony Challinor, “CMB power spec-

trum parameter degeneracies in the era of precision cosmology,” JCAP 1204, 027 (2012),

arXiv:1201.3654 [astro-ph.CO].

[53] Antony Lewis, “Efficient sampling of fast and slow cosmological parameters,” Phys. Rev. D87,

103529 (2013), arXiv:1304.4473 [astro-ph.CO].

[54] Antony Lewis, “CAMB Notes,” http://cosmologist.info/notes/CAMB.pdf.

[55] P. A. R. Ade et al. (Planck), “Planck 2015 results. XIII. Cosmological parameters,” (2015),

arXiv:1502.01589 [astro-ph.CO].

30



[56] P.A.R. Ade et al. (Planck), “Planck 2015 results. XV. Gravitational lensing,” (2015),

arXiv:1502.01591 [astro-ph.CO].

[57] N. Aghanim et al. (Planck), “Planck 2015 results. XI. CMB power spectra, likelihoods, and

robustness of parameters,” (2015), arXiv:1507.02704 [astro-ph.CO].

[58] P.A.R. Ade et al. (Planck), “Planck 2015 results. XXIV. Cosmology from Sunyaev-Zeldovich

cluster counts,” (2015), arXiv:1502.01597 [astro-ph.CO].

[59] C.L. Bennett et al. (WMAP), “Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP)

Observations: Final Maps and Results,” Astrophys.J.Suppl. 208, 20 (2013), arXiv:1212.5225

[astro-ph.CO].

[60] C.L. Reichardt, L. Shaw, O. Zahn, K.A. Aird, B.A. Benson, et al., “A measurement of sec-

ondary cosmic microwave background anisotropies with two years of South Pole Telescope

observations,” Astrophys.J. 755, 70 (2012), arXiv:1111.0932 [astro-ph.CO].

[61] Sudeep Das, Thibaut Louis, Michael R. Nolta, Graeme E. Addison, Elia S. Battistelli, et al.,

“The Atacama Cosmology Telescope: temperature and gravitational lensing power spectrum

measurements from three seasons of data,” JCAP 1404, 014 (2014), arXiv:1301.1037 [astro-

ph.CO].

[62] Florian Beutler, Chris Blake, Matthew Colless, D. Heath Jones, Lister Staveley-Smith, et al.,

“The 6dF Galaxy Survey: Baryon Acoustic Oscillations and the Local Hubble Constant,”

Mon.Not.Roy.Astron.Soc. 416, 3017–3032 (2011), arXiv:1106.3366 [astro-ph.CO].

[63] Chris Blake, Eyal Kazin, Florian Beutler, Tamara Davis, David Parkinson, et al., “The WiggleZ

Dark Energy Survey: mapping the distance-redshift relation with baryon acoustic oscillations,”

Mon.Not.Roy.Astron.Soc. 418, 1707–1724 (2011), arXiv:1108.2635 [astro-ph.CO].

[64] Lauren Anderson et al., “The clustering of galaxies in the SDSS-III Baryon Oscillation Spec-

troscopic Survey: Baryon Acoustic Oscillations in the Data Release 9 Spectroscopic Galaxy

Sample,” Mon. Not. Roy. Astron. Soc. 427, 3435–3467 (2013), arXiv:1203.6594 [astro-ph.CO].

[65] Florian Beutler, Chris Blake, Matthew Colless, D. Heath Jones, Lister Staveley-Smith,

et al., “The 6dF Galaxy Survey: z ≈ 0 measurement of the growth rate and sigma_8,”

Mon.Not.Roy.Astron.Soc. 423, 3430–3444 (2012), arXiv:1204.4725 [astro-ph.CO].

[66] Nikhil Padmanabhan, Xiaoying Xu, Daniel J. Eisenstein, Richard Scalzo, Antonio J. Cuesta,

Kushal T. Mehta, and Eyal Kazin, “A 2 per cent distance to z=0.35 by reconstructing baryon

acoustic oscillations - I. Methods and application to the Sloan Digital Sky Survey,” Mon. Not.

31



Roy. Astron. Soc. 427, 2132–2145 (2012), arXiv:1202.0090 [astro-ph.CO].

[67] Lauren Anderson et al. (BOSS), “The clustering of galaxies in the SDSS-III Baryon Oscillation

Spectroscopic Survey: baryon acoustic oscillations in the Data Releases 10 and 11 Galaxy

samples,” Mon. Not. Roy. Astron. Soc. 441, 24–62 (2014), arXiv:1312.4877 [astro-ph.CO].

[68] Lado Samushia, Beth A. Reid, Martin White, Will J. Percival, Antonio J. Cuesta, et al.,

“The Clustering of Galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS):

measuring growth rate and geometry with anisotropic clustering,” Mon.Not.Roy.Astron.Soc.

439, 3504–3519 (2014), arXiv:1312.4899 [astro-ph.CO].

[69] Ashley J. Ross, Lado Samushia, Cullan Howlett, Will J. Percival, Angela Burden, and Marc

Manera, “The clustering of the SDSS DR7 main Galaxy sample - I. A 4 per cent distance

measure at z = 0.15,” Mon. Not. Roy. Astron. Soc. 449, 835–847 (2015), arXiv:1409.3242

[astro-ph.CO].

[70] P.A.R. Ade et al. (BICEP2, Planck), “Joint Analysis of BICEP2/KeckArray and Planck

Data,” Phys.Rev.Lett. 114, 101301 (2015), arXiv:1502.00612 [astro-ph.CO].

[71] M.J.D. Powell, “The BOBYQA algorithm for bound constrained optimization without deriva-

tives,” http://www.damtp.cam.ac.uk/user/na/NA_papers/NA2009_06.pdf.

[72] N. Aghanim et al. (Planck), “Planck 2016 intermediate results. LI. Features in the cosmic

microwave background temperature power spectrum and shifts in cosmological parameters,”

(2016), arXiv:1608.02487 [astro-ph.CO].

[73] E Jaynes, “ProbabilityTheory: The Logic of Science,” Cambridge University Press (2003).

[74] Roberto Trotta, “Bayes in the sky: Bayesian inference and model selection in cosmology,”

Contemp. Phys. 49, 71–104 (2008), arXiv:0803.4089 [astro-ph].

[75] M. Hobson, A. Jaffe, A. Liddle, P. Mukherjee and D. Parkinson,, “Bayesian methods in cos-

mology,” Cambridge University Press (2010).

[76] Farhan Feroz and M. P. Hobson, “Multimodal nested sampling: an efficient and robust alter-

native to MCMC methods for astronomical data analysis,” Mon. Not. Roy. Astron. Soc. 384,

449 (2008), arXiv:0704.3704 [astro-ph].

[77] F. Feroz, M. P. Hobson, and M. Bridges, “MultiNest: an efficient and robust Bayesian inference

tool for cosmology and particle physics,” Mon. Not. Roy. Astron. Soc. 398, 1601–1614 (2009),

arXiv:0809.3437 [astro-ph].

[78] F. Feroz, M. P. Hobson, E. Cameron, and A. N. Pettitt, “Importance Nested Sampling and

32



the MultiNest Algorithm,” (2013), arXiv:1306.2144 [astro-ph.IM].

[79] P. A. R. Ade et al. (Planck), “Planck 2013 results. XXIII. Isotropy and statistics of the CMB,”

Astron. Astrophys. 571, A23 (2014), arXiv:1303.5083 [astro-ph.CO].

[80] Kevork N. Abazajian et al. (CMB-S4), “CMB-S4 Science Book, First Edition,” (2016),

arXiv:1610.02743 [astro-ph.CO].

[81] Olivier Dore et al., “Cosmology with the SPHEREX All-Sky Spectral Survey,” (2014),

arXiv:1412.4872 [astro-ph.CO].

33


