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Abstract

We construct a model in which the cosmological constant is canceled from the gravitational

equations of motion. Our model relies on two key ingredients: a nonlocal constraint

on the action, which forces the spacetime average of the Lagrangian density to vanish,

and a dynamical way for this condition to be satisfied classically with arbitrary matter

content. We implement the former condition with a spatially-constant Lagrange multiplier

associated with the volume form and the latter by including a free four-form gauge field

strength in the action. These two features are enough to remove the cosmological constant

from the Einstein equation. The model is consistent with all cosmological and experimental

bounds on modification of gravity and allows for both cosmic inflation and the present

epoch of acceleration.
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1 Introduction

The cosmological constant problem is the task of explaining the large hierarchy between the
low observed value of the energy density of empty space and the high Planck scale of quantum
gravity. One way of thinking about this problem is that, in a quantum field theory with a cutoff
scale µ, the energy density of the vacuum ρΛ = Λ/8πG gets a contribution of order µ4 in the
absence of tuning or some symmetry (e.g., supersymmetry). Famously, the discrepancy between
the value of the cosmological constant Λobs inferred from cosmic distance measurements [1,2] and

the Planck scale MPl = 1/
√
8πG is Λobs/M

2
Pl ∼ 10−120. While the presence of supersymmetry

can ameliorate this tuning somewhat, even low-scale supersymmetry at O(TeV) would still leave
a hierarchy of ∼ 10−60.

Many attempts have been made to solve the cosmological constant problem (see Refs. [3–5]
for reviews). Approaches have included allowing the cosmological constant to dynamically relax
to (nearly) zero [6–10] and anthropic arguments [3,11–13] positing a large multiverse populated
with different local values of the vacuum energy. Other notable treatments of the problem
include universe multiplication [14], dividing the action by the volume of the universe [15]
(see also Ref. [16]), the fat graviton [17], self-tuning brane-world models [18], and the higher-
dimensional bulk Casimir effect [19, 20]. Any proposed solution to the cosmological constant
problem that involves classical fields adjusting a bare vacuum energy to some lower value must
face up to a no-go theorem due to Weinberg [3], which implies that no local field equations
including gravity can have Minkowski solutions for generic values of the parameters.

One idea that has received considerable attention involves the introduction of a three-form
gauge field Aµνρ with four-form field strength Fµνρσ, which in four spacetime dimensions contains
no propagating degrees of freedom and contributes to the total vacuum energy [21–25]. The
inclusion of such a gauge field in the action effectively makes the cosmological constant a constant
of integration, since the value of the momentum of the three-form is completely free. Moreover,
the gauge field can induce membrane nucleation, in which the cosmological constant is reduced
in a stepwise fashion [7, 8]; this mechanism suffers the drawback that the instanton tunneling
rate is exponentially suppressed, with the result that by the time the cosmological constant has
been neutralized, the universe is devoid of matter and radiation [5]. Other approaches, such as
unimodular gravity (which degravitates the cosmological constant) [26–30] and treating gravity
as an equation of state [31] similarly make the cosmological constant a constant of integration.

While making the value of the cosmological constant a free parameter arguably represents
progress, it still leaves the open problem of explaining the large hierarchy—why should this
free parameter take on such a small value? An additional ingredient is needed. One possible
such ingredient comes from Euclidean quantum cosmology [22–24, 32]. There, one considers
the Euclidean path integral SE over all of spacetime, positing that the probability of a given
field configuration goes as e−SE , setting the wave function for the universe to the exponential of
the Euclidean effective action. For universes dominated by a cosmological constant, the action
goes as −1/Λ, so for Λ > 0 the Euclidean path integral is dominated by small Λ, provided one
invents a dynamical mechanism whereby Λ can achieve different values, rather than being a fixed
parameter. In the approach of Refs. [22–24], a four-form field strength constitutes the requisite
mechanism for allowing Λ to vary. In the approach of Ref. [32], the dynamics of wormholes
connecting larger universes were argued to make all constants of nature sample a distribution of
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possible values [33, 34], effectively making Λ a free parameter. Unfortunately, attempts to put
the Euclidean path integral for gravity on a firm footing seem to run into problems [35–37].

Still other approaches to the cosmological constant problem have included explicitly intro-
ducing nonlocality, as in Ref. [38], which suggested a long-distance nonlocal modification of the
field equations, and in the “sequester” approach of Refs. [39–42]. In the sequester models, the
contributions of matter fields to the cosmological constant are avoided by coupling the matter
sector to gravity through a rescaled metric whose scaling acts as a Lagrange multiplier. This
Lagrange multiplier self-couples through a global term in the action that is not integrated over
spacetime. As shown in Ref. [41], such models can be made local by promoting Λ and G to
local fields and recasting the global terms as integrals over spacetime with respect to a different
volume form.

In this paper, we describe a model for the cancellation of the cosmological constant that
is classical, but nonlocal. While our approach is somewhat ad hoc and phenomenological, it
may serve as a pointer toward a more comprehensive theory. We use an arbitrary matter
Lagrangian with the addition of a four-form field. For the action, we assume that its spacetime
average value vanishes, which can be attained using a Lagrange multiplier that is constant over
spacetime. Interestingly, this model achieves the removal of the cosmological constant from the
gravitational field equations, while still allowing for the present era of accelerated expansion and
without running afoul of any tests of general relativity or the equivalence principle. We present
the model and its dynamics in Sec. 2, discuss its implications in Sec. 3, and conclude in Sec. 4.

2 Theory and Dynamics

2.1 The model

Any four-manifold with a Lorentzian metric gµν comes equipped with a natural volume form
given by the Levi-Civita tensor ǫ =

√−g d4x, where g = det(gµν). In components, ǫµνρσ =√−gǫ̂µνρσ, where ǫ̂µνρσ is the Levi-Civita symbol, a density of weight 1 with ǫ̂0123 = +1. Since ǫ
is a top form, any other four-form µ can be written as a scalar field η(x) times ǫ and in principle
any such four-form can be used as a volume element.

Our model is based on the assumption that the correct physical volume form used for defining
the action of the theory is not necessarily the Levi-Civita tensor, but some other four-form that
is also covariantly constant with respect to the metric:

∇λµαβγδ = ∇λ(ηǫαβγδ) = 0. (1)

It is immediate that this requirement is equivalent to the parameter η being a constant, rather
than a spacetime-dependent field:

∇λη = 0. (2)

We will discuss possible motivation for this model later, but for now we simply take as input this
modification of the standard rules of the action formulation of general relativity. The upshot of
this assumption is that there is a Lagrange multiplier η in front of the action of the universe,

S = η

∫
d4x

√
−gL, (3)
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enforcing that the total action vanish,

∫
d4x

√
−gL = 0. (4)

Had we instead allowed η to be a spacetime-dependent field multiplying the Lagrangian density
in Eq. (3), this would have been equivalent to removing the requirement that the volume form µ

be covariantly constant with respect to the metric. Doing so would have resulted in an equation
of motion for η that sets the Lagrangian density to zero, rather than its spacetime integral, and
moreover would have introduced propagating degrees of freedom into the four-form terms in the
action, allowing for Fµνρσ to vary with spacetime and hence not act as a cosmological constant.

Let’s see what effect this mechanism has on the dynamics. Consider a general matter La-
grangian Lm plus gravity, with an arbitrary cosmological constant Λ. As usual, the cosmological
constant is defined such that the on-shell Minkowski vacuum value of the action describing the
matter and gravitational fields, given by Lm and the Einstein-Hilbert term but not Λ, vanishes.
To the action of the matter and gravitational fields we add the action for a free three-form A

with a boundary term and with the coefficients fixed by canonical normalization,

SF =
1

2

∫

M

F ∧ ⋆F−
∫

∂M

A ∧ ⋆F. (5)

Here, ⋆ is the Hodge dual defined with respect to the four-form µ of Eq. (1), so an overall
factor of η is implicit. Such n-form gauge fields are generic in string theory and a classic
item in the toolbox of the theorist wishing to address the cosmological constant. For a universe
without boundary, we could imagine regularizing the action by integrating it up to some specified
boundary surface. As noted in Ref. [25], Eq. (5) is the appropriate form of the four-form action
to use when we are considering labeling the vacua by the value of ⋆dA on the boundary, which
will be appropriate given the equation of motion we eventually derive for A. Here, F = dA or,
in components, Fµνρσ = (dA)µνρσ = 4∇[µAνρσ].

The full action for our model is thus1

S = η

∫
d4x

√
−g

[
1

16πG
(R− 2Λ) + Lm − 1

48
FµνρσF

µνρσ +
1

6
∇µ (F

µνρσAνρσ)

]
. (6)

The term Λ appearing in Eq. (6) is the total low-energy cosmological constant in the action, other
than the contribution from F. That is, in vacuum, Lm vanishes on-shell, since the contribution
of matter fields to the cosmological constant have already by definition been absorbed into Λ.
It will be useful to define LF = − 1

48
FµνρσF

µνρσ and LDJ = 1
6
∇µ (F

µνρσAνρσ), after Duncan and
Jensen [25].

The basic effect of the Lagrange multiplier η will be to force Fµνρσ to take on a value such
that it cancels the cosmological constant Λ in the final equations of motion. We now proceed
to see how this happens in practice.

1We could also have added a boundary term to the gravitational part of the action, the Gibbons-Hawking-York

term, which depends on the extrinsic curvature of the boundary of the manifold; however, as this term does

not qualitatively affect our results, we drop it.
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2.2 Equations of motion

We will now analyze the equations of motion one obtains from the model (6) and ascertain their
implications for gravitation. Let us introduce a regularization procedure for the volume of the
spacetime M, so that

∫
d4x

√−g = V . The equation of motion for η in Eq. (4) can be rewritten
as

1

V

∫
d4x

√
−gL = 〈L〉 = 0, (7)

where angle brackets denote spacetime averages of the on-shell value. We can then extend this
formalism to consider solutions with an infinite universe by taking the V → ∞ limit in Eq. (7).
For our action (6), the dynamics of η thus require

1

16πG
(〈R〉 − 2Λ) + 〈Lm〉 −

1

48
〈FµνρσF

µνρσ〉+ 1

6
〈∇µ (F

µνρσAνρσ)〉 = 0. (8)

The cosmological constant, by definition, equals its own spacetime average value and hence does
not require angle brackets.

We could have relaxed the assumption of the appearance of η in Eq. (3). To obtain our results,
we only need the constraint in Eq. (8), which can be obtained from the weaker assumption that
the spacetime average value of the action vanishes. For example, we could allow S to take on
some finite value, as long as the spacetime volume of the universe is infinite, and still reproduce
Eq. (8).

Having concluded the preliminaries, which established the condition in Eq. (8), we now turn
to the problem of deriving the dynamics of this model. The equation of motion for A is

∇µF
µνρσ = 0. (9)

At this point, we could consider dualizing F to a scalar θ via

Fµνρσ = θ ǫµνρσ. (10)

The equation of motion (9) implies that θ is a constant, ∇µθ = 0. The addition of LDJ means
that this constant is (for the moment) arbitrary and not determined by the boundary values of
A. Upon dualizing and using the identity ǫµνρσǫ

µνρσ = −24, we have the on-shell Lagrangians
after substituting in the equation of motion (9):

LF =
1

2
θ2,

LDJ =
1

6
(∇µF

µνρσ)Aνρσ +
1

24
FµνρσF

µνρσ = −θ2.
(11)

Under the dualization (10), the constraint equation (8) becomes

1

16πG
(〈R〉 − 2Λ) + 〈Lm〉 −

1

2
θ2 = 0, (12)

where Eq. (9) means that we can drop the angle brackets on θ, as it is constant.
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For now, we will keep the action for the four-form written in terms of the gauge field Fµνρσ

for the purposes of computing the Einstein equation, i.e., the equation of motion for gµν :

1√−g
δ(
√−gL)
δgµν

=
1

16πG

(
Rµν −

1

2
Rgµν + Λ gµν

)
− 1

2
Tµν

+
1

96
gµνFαβγδF

αβγδ − 1

12
FµαβγF

αβγ
ν

= 0.

(13)

We used that

1√−g
δ

δgµν
(√−gFαβγδF

αβγδ
)
= −1

2
gµνFαβγδF

αβγδ + 4FµαβγF
αβγ

ν (14)

and we did not need to consider the total derivative term ∇µ (
√−gFµνρσA

νρσ), as its variation

automatically vanishes. In Eq. (13), Tµν = −2 (−g)−1/2 δ(
√−gLm)/δg

µν as usual.
Let us now dualize the four-form in Eq. (13) according to Eq. (10). Using the identity

ǫαβγµǫαβγν = −6δµν , we have FµαβγF
αβγ

ν = −6θ2gµν and hence the Einstein equation becomes

1

16πG

(
Rµν −

1

2
Rgµν + Λ gµν

)
− 1

2
Tµν +

1

4
gµνθ

2 = 0. (15)

Finally, we may substitute the spacetime average condition in Eq. (12) into the Einstein equation
(15) to cancel the cosmological constant:

Rµν −
1

2
Rgµν +

1

2
〈R〉 gµν = 8πG (Tµν − 〈Lm〉 gµν) . (16)

This is the important result of our model: a set of gravitational field equations in which the
cosmological constant has been dynamically removed.

2.3 Solutions in general relativity

Let us assess the effects of the modified Einstein equation (16). First, we note that all quantities
in angle brackets are by definition constants, as they are averages over the entire spacetime. As
a result, conservation of Tµν—i.e., ∇µTµν = 0—follows in Eq. (16) from the Bianchi identity
∇µRµν = ∇νR/2 in the same way as in the usual Einstein equation. Furthermore, due to the
constancy of 〈R〉 and 〈Lm〉, they could not have any local gravitational effect and therefore
are immune to, e.g., solar system tests of general relativity and do not induce any equivalence
principle violation. Effectively, 〈R/2 + 8πGLm〉 acts as a cosmological constant, but one that
would vanish for vacuum configurations of the matter field, since by Eq. (16), we have

〈
1

2
R + 8πGLm

〉
= 8πG

〈
1

2
T − Lm

〉
, (17)

where T = gµνTµν . Thus, Minkowski space is a consistent solution of Eq. (16). Moreover,
since this is truly a cosmological constant, the Friedmann equations and other general relativity
solutions are unmodified in Eq. (16).
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2.4 Spacetime averages of the gravity and matter actions

Let us now consider what values 〈R〉 and 〈Lm〉 would realistically take.
By definition, Lm vanishes on-shell in vacuum, since we explicitly pulled out the cosmolog-

ical constant in the action (6). Moreover, for a universe dominated by fermionic matter and
radiation, one has the Lagrangian for quantum electrodynamics (and possibly the gluon kinetic
terms, which we will ignore in this discussion). For radiation, Lm = −1

4
FµνF

µν and so vanishes

on-shell for a thermal bath, in which Lm = 1
2
(E2 − B2) = 0. Further, for massive fermionic

matter, Lm = Ψ̄(i 6D −m)Ψ. Varying the Lagrangian with respect to Ψ̄, we obtain the Dirac
equation (i 6D −m)Ψ = 0; since this is linear in Ψ it is straightforward to substitute back into
Lm, from which we find that Lm also vanishes on-shell for massive fermionic matter (e.g., bary-
onic matter). The only situation relevant to cosmological tests of gravity in our universe where
Lm 6= 0 is a background (non-radiation) electromagnetic field, which is a very subdominant
contribution to the energy budget of the universe at the present epoch and would be negligible
for a universe that keeps expanding for a long time. Indeed, for matter content that is eventually
diluted away by the expansion of the universe (i.e., anything other than a cosmological constant
or some phantom-energy-like field), 〈Lm〉 would vanish if the universe keeps expanding forever.
Further, if the on-shell value of Lm is nonzero only in a measure-zero portion of the universe,
e.g., in a finite region of a spatially-infinite universe, then 〈Lm〉 also vanishes.

Therefore ignoring 〈Lm〉, we turn to the question of 〈R〉, which for vanishing 〈Lm〉 satisfies
〈R〉 = 8πG〈T 〉. For a perfect fluid, T = −ρ + 3p. As long as w ≤ 1

3
and ρ ≥ 0, at least

averaged over all of spacetime, then 〈T 〉 ≤ 0 and we effectively have a negative cosmological
constant in Eq. (16), which corresponds to an effectively negative vacuum energy density. Of
course, if T is only nonzero over a finite spacetime region and if the universe’s spacetime volume
is infinite, then 〈R〉 vanishes and we simply have the Einstein equation with no cosmological
constant, Rµν − 1

2
Rgµν = 8πGTµν . This would not be in conflict with the observed acceleration

of the universe, since the present acceleration could be driven by a quintessence field that will
eventually (though at arbitrary late time) turn off, leaving a finite 〈R〉 despite exponentially
expanding the universe for an arbitrarily long, but not infinite, time. In exactly the same way,
a finite period of inflation is completely possible in our model and further would manifest no
differences from inflation in standard general relativity.

Moreover, if the universe undergoes phase transitions in a given cosmology, the exponential
expansion associated with the false vacuum still occurs in our model via Eq. (16), since these
temporary effects do not impact spacetime-averaged quantities. The present weak apparent
cosmological constant observed in our own universe then has two possible interpretations in
our model. Either the universe is in its true vacuum and the accelerated expansion is being
driven by some quintessence field, the dynamics of an as-yet-undetected ultralight sector, or the
universe is in a false vacuum with (fine-tuned) energy very close to the true vacuum. Even in
the latter case, our model has the merit of changing the cosmological constant problem from
the twofold question of why we are in a false vacuum with very low energy and why the true
vacuum has vanishing energy to the single fine-tuning problem of a false vacuum with energy
very close to that dictated by the generic cosmological constant Λ in the action. Note that all of
these statements require that the classical dynamics of our model, in particular the constraint
equation (12), can be solved exactly, a requirement that engenders subtleties that we will discuss
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in Sec. 3.4.

3 Implications and Discussion

We now address some of the subtleties of our model, including locality, quantization, and the
dimensionality of spacetime. We further consider its implications for the evolution of the universe
and its relation to unimodular gravity.

3.1 Weinberg’s no-go theorem

An important hurdle to be faced by any model addressing the cosmological constant problem
is Weinberg’s celebrated no-go theorem [3]. Briefly, the no-go theorem forbids the existence of
any solution to the cosmological constant problem within local quantum field theory that does
not contain tuning. Let us briefly sketch the proof of the Weinberg no-go theorem as well as
observe how the model presented in this paper evades the theorem.

The proof of the theorem proceeds by first assuming a theory described entirely by an action

S =
∫
d4xL̂, where L̂ is a local functional that encodes the dynamics of the metric gµν and N

matter fields ψi. Assuming the theory solves the cosmological constant problem, one then posits
the existence of a translation-invariant field configuration (so that the spacetime is Minkowski
and the fields are constant), for which the field equations satisfy

∂L̂
∂ψi

= 0 and
∂L̂
∂gµν

= 0. (18)

Weinberg then argues that despite the N + 6 equations of motion and the same number of
unknown field values, one cannot obtain a generic (untuned) solution to Eq. (18). In particular,
after imposing translation invariance, diffeomorphism symmetry is reduced to GL(4), under

which the Lagrangian must transform as L̂ → detML̂ for M ∈ GL(4). With Eq. (18), one then
finds that the Lagrangian must satisfy

L̂ =
√
−gV0, (19)

where V0 is a constant independent of the metric. Setting V0 to zero is not accomplished by any
equation of motion and the cosmological constant problem thus cannot be solved, within the
hypotheses of the theorem, without explicitly assuming a tuning.

In essence, the Weinberg no-go theorem is the statement that the equations of motion of
the metric and local matter fields do not set the zero point of the potential within quantum
field theory. However, the model presented in this paper evades the hypotheses of the no-go
theorem by including a nonlocal parameter, η, which couples to the entire action as in Eq. (3).
The equation of motion for this field, Eq. (4), constitutes an additional constraint. Importantly,
however, it does not add an additional unknown, since as we have seen the value of η itself is
arbitrary. The equation of motion for η thus provides the constraint necessary to set V0 to zero
for translation-invariant solutions.
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The inclusion of η in the action is different than simply tuning V0 to zero, since η does
more than merely act on the cosmological constant. Indeed, η couples to the entire action in
the egalitarian manner of Eq. (3), which in principle could have induced observable changes to
cosmological predictions. However, as we have seen, the presence of η proves to be compatible
with cosmological observations and in fact yields predictions for the nature of the present epoch
of accelerated expansion, as noted in Sec. 2.4. In essence, one should view η as a convenient
mechanism for enforcing the vanishing of the action, integrated over all of spacetime. If the
vanishing of the action is indeed to be a fundamental principle, its origin must come from some
deeper mechanism, about which we remain agnostic in this paper.

3.2 Locality

The question of locality arises naturally in a model that contains averages of fields over all of
spacetime. Any constraint on the action that does not come from a local field is necessarily
nonlocal, in the sense that the constraint is an integral equation over all of spacetime. Whether
this is an issue for causality should in practice be a question of whether one can use this fact to
construct a causal paradox (i.e., form a closed signal trajectory or have noncommuting operators
outside the lightcone). As we have shown, however, the theory obeys energy conservation, leaves
tests of gravity unmodified, and, for an infinite universe, when spacetime averages over the
matter fields vanish, reduces to the standard Einstein equation with zero cosmological constant.
Hence, the model seems to yield no ability to produce a causal paradox or indeed even give an
observable test. In particular, the only place that acausality/nonlocality is present in our model
is in setting the value of the effective cosmological constant equal to 〈R/2 + 8πGLm〉.

While the presence of spacetime averages in equations of motion is unusual, field equations
containing spacetime averages, as in Eq. (16), have been obtained in other contexts, such as
Ref. [38] (which proposed addressing the cosmological constant problem by effectively turning
Newton’s constant into a high-pass filter), Ref. [39] (which replaced the metric in the matter
sector with one rescaled by a Lagrange multiplier akin to our η), and Ref. [15] (which replaced
the action to be varied over by an effective action that was divided by the spacetime volume).

Interestingly, in a universe with positive curvature, matter, and nothing else, our model
predicts an observed negative cosmological constant with magnitude equal to 4πG times the
matter density averaged over the life of the universe, which for universes that recollapse soon
enough would be observable; however, our universe, by its observed expansion and vanishing
curvature, does not fall into this category.

3.3 Relation to unimodular gravity

It is useful to consider the relationship between our model and another paradigm for addressing
the cosmological constant problem, namely, unimodular gravity [26–30]. The similarity between
our model and unimodular gravity lies in the fact that both rely on the idea of treating the
volume form differently than the spacetime metric.

In our model, the volume form is dynamical and is simply required to be a four-form µ that
is covariantly constant with respect to the spacetime metric. As we have seen, the extra freedom
in the overall scale of the volume form produces an equation of motion that acts as a constraint
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on the spacetime average of the Lagrangian. Due to the presence of the four-form gauge field F,
this constraint equation can be straightforwardly satisfied without appreciably interfering with
the usual behavior of gravity on cosmological and astrophysical scales, as we saw in Secs. 2.3
and 2.4. In particular, the constraint sets the effective value of the cosmological constant to
zero, while still allowing for finite periods of inflation.

In contrast, in unimodular gravity, one requires that the volume form be entirely nondy-
namical. Thus, in computing the equation of motion by varying the metric by δgµν , one must
restrict to traceless variations for which gµνδgµν = 0. As a result, the equation of motion one
obtains is the trace-subtracted Einstein equation

Rµν −
1

4
Rgµν = 8πG

(
Tµν −

1

4
gµνT

)
. (20)

The cosmological constant term in the action, which couples to gravity only through its mul-
tiplication by the volume form, thus entirely decouples in unimodular gravity. Furthermore,
unlike in general relativity, conservation of energy-momentum ∇µT

µν = 0 does not follow au-
tomatically from the Bianchi identity ∇µRµν = ∇νR/2, but rather is imposed independently;
taking the derivative of both sides of Eq. (20), we have ∇µR+8πG∇µT = 0, so one can identify
R + 8πGT as a constant of integration that can be suggestively labeled 4Λint. Then Eq. (20)
reduces to the Einstein equation,

Rµν −
1

2
Rgµν + Λintgµν = 8πGTµν , (21)

but where, instead of containing the bare cosmological constant in the action, simply contains a
constant of integration. One could then apply the typical anthropic or Euclidean path-integral
arguments for why Λint should take a particular value.

In contrast, our model selects an effective zero cosmological constant via the dynamics of the
volume form itself, so the cosmological constant as an arbitrary constant of integration does not
arise. Interestingly, taking the trace of the field equation for our model (16) and then taking
the spacetime average, we have

〈Lm〉 =
1

4

(
〈T 〉 − 1

8πG
〈R〉

)
, (22)

so plugging this back into Eq. (16), we have

Rµν −
1

2
Rgµν +

1

4
〈R〉gµν = 8πG

(
Tµν −

1

4
〈T 〉gµν

)
. (23)

Taking the trace once more, we find that

R + 8πGT = 〈R + 8πGT 〉, (24)

so we are able to eliminate the spacetime averages from Eq. (23), recovering the equation

Rµν −
1

4
Rgµν = 8πG

(
Tµν −

1

4
Tgµν

)
. (25)
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That is, our model predicts the trace-free Einstein equation (20) and is thus just as consistent
with observations as unimodular gravity. However, rather than finding that the cosmological
constant is a constant of integration as in Eq. (21), our model predicts that it is constrained by
the dynamics to equal 〈R+ 8πGT 〉/4 = 〈R/2+ 8πGLm〉. That is, in addition to the trace-free
Einstein equation, our model yields the additional equations of motion given by Eqs. (12), (23),
and (24).

3.4 Four-form quantization

The preceding discussion has been entirely about the classical theory. We now turn to the
question of quantization of the four-form, as discussed in Ref. [43], and its relation to the
dynamics of our model. In a spacetime of purely four dimensions (i.e., four-dimensional on all
length scales), the four-form F = F4 is nondynamical to arbitrarily short wavelengths and its
dual −θ = F0 = ⋆4F4 can take on a continuum of values, allowing the constraint equation (8)
to be satisfied exactly. Here, we denote the Hodge dual in D dimensions as ⋆D, which in this
section for clarity we define with respect to the conventional volume form ǫ, not µ. A spacetime
of exactly D = 4 is of course compatible with what we know about the world, in which case the
predictions of our model regarding the vacuum discussed at the end of Sec. 2.4 are in force.

However, if there are more than four dimensions, as for example in string theory, then
the story changes somewhat. In eleven spacetime dimensions, one has a four-form F4 and
its dual F7 = − ⋆11 F4. If the spacetime geometry is K ⊗M4, where M4 is a four-dimensional
noncompact geometry andK is a spacelike seven-dimensional compact manifold, then the eleven-
dimensional four-form can remain a four-form in the effective field theory on M4, while the
seven-form becomes a zero-form in the compactified theory. Moreover, string theory naturally
produces 5-branes and 2-branes, to which the gauge fields A6 and A3 respectively couple, where
Fn = dAn−1. As a result, the usual Dirac quantization condition applies, meaning that if we
look at solutions in which the seven-form wraps K, we require

∫

K

F7 = 2πn for some n ∈ Z, (26)

where in this subsection we absorb the charge into the definition of the gauge field for simplicity.
The equation of motion for F7 implies that F7 = f7ǫ7, where ǫ7 is the seven-dimensional volume
form, so f7VK = 2πn, where VK is the volume of K. The four-form becomes

F4 = ⋆11F7 = f7ǫ4 =
2πn

VK
ǫ4. (27)

Thus, the value of the four-form is quantized, in units set by the volume of the compactified
space.

Naively, this quantization condition on the allowed classical values of the four-form is an
obstacle to our mechanism, in which the four-form adjusts to cancel the cosmological constant
exactly. On closer examination, however, such quantization can be completely compatible with
our approach.

In Ref. [43] it was shown that by adding multiple four-forms to the theory, there existed
solutions in which the effective step size of the quantization—and hence the effective minimal
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size of the cosmological constant for fixed VK—could be decreased. Let us suppose that in our
model we have O(102) different four-form fluxes, which Ref. [43] argued is both plausible in string
theory and sufficient to cancel the bare cosmological constant to within the value suggested by
observations, and let ∆Λ be the difference, i.e., the minimal effective cosmological constant in
the action. The equations of motion in our model, in particular the constraint equation (8)
coming from the dynamics of η, arise from the usual assumption that the principle of least
action dictates that the classical dynamics must be a saddle point of the action as a functional
of the fields. While this is valid classically, it does not take into account the possibility explored
in this section that quantum mechanics may dictate a discretuum of field values, in this case
for the four-form flux. This means that the principle of least action, as applied to this system,
selects field configurations in which the variation of S is nonvanishing, but minimized.

Typically, the dominant contribution to the path integral comes from trajectories for which
the action is stationary, so that the phases for nearby paths do not destructively interfere.
However, if quantization of the four-form flux makes it impossible for the equation of motion for
η in Eq. (8) to be exactly satisfied, then these saddle points are forbidden and the path integral
will be dominated by field configurations for which nearby paths interfere least destructively, i.e.,
those for which δS is minimized. That is, the equation of motion for η requires field strengths
for the four-forms that minimize the effective cosmological constant. We then have δS ∝ ∆Λ

when the fields are varied. Replacing the zero on the right side of Eq. (12) with O(∆Λ) adds
a cosmological constant of order ∆Λ to the field equation (16). For a positive cosmological
constant, the matter Lagrangian and energy-momentum vanish as the universe expands, so
taking the spacetime average of Eq. (16) leads to 〈R〉 ∼ ∆Λ and thus de Sitter space is a
consistent solution.

3.5 Generalization to top forms in D dimensions

We can generalize our model to a spacetime M of arbitrary dimension D > 4, which will
eventually be compactified on a manifold K of D− 4 dimensions. Consider a model with a top
form FD = dAD−1 coupled to gravity, with bare D-dimensional cosmological constant Λ and
an overall Lagrange multiplier field η,

S = η

∫
dDx

√
−g 1

16πG
(R− 2Λ) +

1

2
η

∫

M

FD ∧ ⋆DFD − η

∫

∂M

AD−1 ∧ ⋆DFD, (28)

where ⋆D is defined here with respect to the volume form associated with the metric, ǫ. The
equation of motion for FD is ∇a1F

a1···aD = 0, where we use Latin indices for the D-dimensional
spacetime. Hence, Fa1···aD = θǫa1···aD for θ = constant. We have Fa1···aD = D∇[a1Aa2···aD ].

The equation of motion for η sets the spacetime average of the Lagrangian density to zero.
The canonical normalization of the D-form in terms of its components is

LF + LDJ = − 1

2 ·D!
Fa1···aDF

a1···aD +
1

(D − 1)!
∇a1 (F

a1···aDAa2···aD) , (29)
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so dualizing, we have the on-shell Lagrangians just as in Eq. (11),

LF =
1

2
θ2

LDJ =
1

(D − 1)!
∇a1 (F

a1···aD)Aa2···aD +
1

D!
Fa1···aDF

a1···aD = −θ2,
(30)

where we used the fact that ǫa1···aDǫ
a1···aD = −D! in mostly-plus signature. Thus, the constraint

from η becomes
1

16πG
(〈R〉 − 2Λ)− 1

2
θ2 = 0. (31)

Meanwhile, the equation of motion for gab is

1

16πG

(
Rab −

1

2
Rgab + Λgab

)
+

1

4 ·D!
gabFa1···aDF

a1···aD − 1

2 (D − 1)!
Faa2···aDF

a2···aD
b = 0, (32)

so dualizing using the identity ǫaa2···aDǫ
ba2···aD = −(D − 1)!δba, we have

1

16πG

(
Rab −

1

2
Rgab + Λgab

)
+

1

4
gabθ

2 = 0. (33)

Hence, putting together Eq. (33) with Eq. (31), we end up with the same equation of motion as
in Eq. (16), which for vacuum solutions is

Rab −
1

2
Rgab +

1

2
〈R〉 gab = 0. (34)

Adding matter would proceed in exactly the same way as in Sec. 2.
Let us now compactify the spacetime on K. We define VK =

∫
K
dD−4x

√−g. We assume a
product metric for simplicity and ignore the degrees of freedom associated with the components
that mix compact and noncompact directions, so that Rab is block-diagonal and thus we can
define R = (4)R +RK , where RK goes as the contraction of the components of the Ricci tensor
along K. The low-energy gravitational sector action becomes

SG =
VK

16πG

∫
d4x

√
−(4)g

(
〈RK〉+(4)R − 2Λ

)
, (35)

where 〈RK〉 is the value of RK averaged over K, which is equivalent to its value averaged
over all spacetime, since RK is by definition independent of the noncompact directions. The
on-shell value of the Lagrangian for the D-forms in the four-dimensional effective theory is
VKθ

2/2. That is, everything except the matter action is rescaled by VK , so the cancellation
of the bare cosmological constant works the same as in the purely four-dimensional model of
Sec. 2. However, there is now an additional term to the cosmological constant, namely, 〈RK〉, the
average of the Ricci scalar on the compact space, which to the four-dimensional effective theory
appears as a constant. This additional contribution is canceled along with the bare constant Λ
by the equation of motion for η.
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We can arrive at this result in another way, by considering the D-dimensional Einstein equa-
tion (34), evaluated on the noncompact four-dimensional subspace (which we will parameterize
with Greek indices),

(4)Rµν −
1

2

(
(4)R + 〈RK〉

)
gµν +

1

2

〈
(4)R + 〈RK〉

〉
gµν = 0, (36)

where we consider vacuum solutions for simplicity. (If we added matter, the coupling would go
as G4 = G/VK .) That is,

(4)Rµν −
1

2
(4)Rgµν +

1

2

〈
(4)R

〉
gµν = 0. (37)

Now, the value of θ is not quantized, unlike the situation in Sec. 3.4, since the top form FD can
take on arbitrary values (as its dual, a zero-form, does not wrap any manifold).

4 Conclusions

We have presented a simple model in which a Lagrange multiplier parameter η allows the
energy density of a four-form gauge field strength to exactly cancel the cosmological constant.
The model is unusual in that η is not a dynamical field and therefore its effects are nonlocal.
In particular, the equations of motion involve averages over all of spacetime. Perhaps most
obviously, there is no especially good motivation for including such a Lagrange multiplier, other
than that it gives us the answer we want.

On the other hand, the model has a number of attractive features. It cancels the low-energy
cosmological constant exactly, at least up to possible corrections due to quantization of the four-
form field strength. It does so while remaining compatible with Weinberg’s no-go theorem and
in a way that seems compatible with all known observations. It has the consequence that the
late-time vacuum energy is exactly zero, so that our current period of acceleration is necessarily
temporary. We therefore think the model is worth considering on purely phenomenological
grounds.

Models that adjust the cosmological constant to zero are often viewed with suspicion, with
some justification. Even if such a such a mechanism sets the vacuum energy to zero classically,
it is generally difficult to protect such a value against radiative corrections. The situation here
is somewhat unusual in that respect. The heavy lifting in our model is done by the Lagrange
multiplier η, which is nondynamical. We therefore do not expect its dynamics to be subject to
loop corrections.

Perhaps a more pressing question is that of the naturalness of the form we chose for how η
enters the action in Eq. (3). We motivated that choice by deriving it from the requirement that
the volume form µ be covariantly constant, which is admittedly ad hoc. One could certainly
imagine, for example, more general actions of the form f(η)

∫
d4x

√−gL, in which case the
constraint that comes from varying with respect to η could be satisfied either by setting the
conventional action to zero (as in the version we’ve been considering) or by setting df/dη = 0.
The latter choice is simply equivalent to having no constraint in the first place. Alternatively,
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one could imagine different functions of η multiplying different terms in the Lagrangian:

S =

∫
d4x

√−g
[
∑

i

fi(η)Li

]
. (38)

Then the constraint from varying η would generically not match the condition that the vacuum
energy vanish and we would still have a cosmological constant problem.

There is therefore undoubtedly a choice that we made while constructing the model: that
the η constraint enforce the vanishing of an otherwise conventional action (with a four-form
gauge field). In our view, this is best understood as a phenomenological approach to a true
dynamical mechanism that is yet to be understood, rather than as a complete theory in its
own right. For example, given that the Feynman path integral sums over terms of the form
exp(−iS/~), perhaps our action-minimization procedure could be derived from a principle that
treated Planck’s constant ~ as a Lagrange multiplier. We leave exploration of this and other
possible underlying principles for future work.
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