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Abstract

We use effective field theory and thermal field theory to study the dynamical screening effect

in the QED plasma on the α-α scattering at the 8Be resonance. Dynamical screening leads to an

imaginary part of the potential which results in a thermal width for the resonance and dominates

over the previously considered static screening effect. As a result, both the resonance energy and

width increase with the plasma temperature. Furthermore, dynamical screening can have a huge

impact on the α-α thermal nuclear scattering rate. For example, when the temperature is around

10 keV, the rate is suppressed by a factor of about 900. We expect similar thermal suppressions of

nuclear reaction rates to occur in those reactions dominated by an above threshold resonance with

a thermal energy. Dynamical screening effects on nuclear reactions can be relevant to cosmology

and astrophysics.
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I. INTRODUCTION

Within a QED plasma consisting of electrons and positrons, the photon effectively gains

a mass called the Debye mass, mD, that screens the Coulomb interaction by an exponential

factor, e−mDr, which is known as static screening. Its effect on the α-α resonant scattering,

where the resonant state is the 8Be nucleus, was recently studied by applying effective field

theory (EFT) and thermal field theory [1]. The 8Be nucleus has isospin I = 0 and lies at

the center-of-mass (CM) energy E0 = 91.84± 0.04 keV with a width Γ0 = 5.57± 0.25 eV in

vacuum. Inside the QED plasma it was found that the energy of the 8Be resonance decreases

and its lifetime increases with the plasma temperature [1].

However, static screening is not the only plasma effect that modifies low energy α-α

scattering. In addition, the medium particles constantly collide with the α particle and

change its momentum. This leads to an imaginary part of the α-α interaction potential,

which accounts for the Landau damping rate for an α-α state with given momenta. This

is called dynamical screening. The imaginary part of the potential in a plasma has been

derived in Ref. [2, 3] for the quark-anti-quark color interaction and in Ref. [4] for the electric

interaction. Later, the resultant complex potential was used in phenomenological studies of

quarkonia spectral functions [5] and quarkonia dynamics [6–8] in the quark-gluon plasma

(QGP), which is assumed to be produced in relativistic heavy ion collisions.

The imaginary potential can also be interpreted in terms of the open quantum system

formalism, where a system is coupled with a thermal medium and they evolve as a whole

in time. When the medium part is traced out, the system evolves non-unitarily. The non-

unitary evolution can be related to the influence of an imaginary potential. In this way the

medium effect on the time evolution of the system can be studied more generally. This idea

has been pursued to study the quarkonium evolution in the QGP [9–11], where it was shown

how the spatial decoherence of the quarkonium wave function leads to the suppression of

the quarkonium state in the QGP [11].

Inspired by the studies of dynamical screening effects on quarkonia, we study their effects

on α-α resonant scattering. We show that the dynamical screening effects are much larger

than the static ones, and as a result, the energy and width of the 8Be resonance increase with

the plasma temperature. We also compute the thermally averaged α-α nuclear scattering

rate and find that at temperatures just below the vacuum resonance energy, dynamical
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screening can drastically change the thermal nuclear scattering rate. The effect is most

significant in the range 1 keV < T < 75 keV. These temperatures are relevant to both

cosmology, especially Big Bang Nucleosynthesis, and stellar astrophysics. The framework

developed here for including dynamical screening effects in thermal rates can be applied to

nuclear reactions relevant to cosmology and astrophysics.

The article is organized as follows. In Sect. II the EFT describing the α-α interaction is

briefly reviewed and the scattering amplitude is derived. In Sect. III the imaginary part of

the interaction potential is derived using the thermal photon propagator. By including the

imaginary potential, the modified resonance energy and width are calculated in Sect. IV.

Then the dynamical screening effect on the α-α thermal nuclear scattering rate is discussed

in Sect. V. Finally, conclusions are drawn in Sect. VI.

II. EFFECTIVE LAGRANGIAN AND SCATTERING AMPLITUDE

The effective Lagrangian for low-energy α-α scattering is [12–15]

L = N †
(

iDt +
D2

2M

)

N − C0

4
N †N †NN +

C2

32

(

N †←→∇ 2N †NN + h.c.
)

+ · · · , (1)

where the field N represents the α particle and M ≈ 3727.38 MeV is its mass. The four-

point vertex with an incoming momentum p in the CM frame is −i∑∞
n=0C2np

2n. The

propagator of a single α particle is i
E−p2/(2M)+iǫ

. The scattering amplitude T (p′,p) can be

written as two parts: one is the pure Coulomb scattering amplitude TC(p
′,p) and the other

the Coulomb-modified strong scattering amplitude TSC(p
′,p). The latter has a Lippmann-

Schwinger expansion

TSC(p
′,p) = 〈ψ(−)

p′ |VS|Ψ(+)
p
〉 =

∞
∑

n=0

〈ψ(−)
p′ |VS

(

Ĝ
(+)
C (E)VS

)n|ψ(+)
p
〉 , (2)

where the scattering in-state (+) and out-state (−) are defined as (H0+VC)|ψ(±)
p 〉 = E|ψ(±)

p 〉
and (H0 + VC + VS)|Ψ(±)

p 〉 = E|Ψ(±)
p 〉. Here, VC is the Coulomb potential (in vacuum,

VC = Z1Z2α/r) and VS is the strong interaction potential. (For α-α, Z1 = Z2 = 2, but

we will leave Z1 and Z2 arbitrary so our results can be applied to more general reactions.)

Inserting a complete set of position eigenstates and using the fact that VS is a delta function

in position space (with a coefficient depending on the energy) leads to

TSC(p
′,p) = −

ψ
(−)∗
p′ (0)ψ

(+)
p (0)

(
∑

nC2np2n)−1 −G(E, 0, 0) , (3)
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where the negative sign is a convention in quantum field theory Feynman diagram calcula-

tions. The Coulomb wave function can be expressed as

ψ(+)
p

(r) = e−πη/2Γ(1 + iη)M(−iη, 1; ipr − ip · r)eip·r

ψ(−)
p

(r) = e−πη/2Γ(1− iη)M(iη, 1;−ipr − ip · r)eip·r , (4)

where M(a, b; z) is the confluent hypergeometric function and η = Z1Z2αM/2p. The Som-

merfeld factor is defined as |ψ(±)
p (0)|2 = C2

η = 2πη
e2πη−1

. Then the numerator ψ
(−)∗
p′ (0)ψ

(+)
p (0)

with the elastic condition |p′| = |p| is equal to C2
ηe

2iσ0 where σ0 = arg Γ(1 + iη) is the phase

shift caused by the Coulomb interaction only. The retarded Coulomb Green’s function in

the spatial representation is given by

G(E, 0, 0) =
〈

r′ = 0
∣

∣

∣
Ĝ

(+)
C (E)

∣

∣

∣
r = 0

〉

=

〈

0

∣

∣

∣

∣

1

E − Ĥ0 − VC + iǫ

∣

∣

∣

∣

0

〉

=
Z1Z2αM

2

4π

(

1

ǫ
−H(η) + ln

µ
√
π

Z1Z2αM
+ 1− 3

2
γ

)

, (5)

where the second line is the expression in the MS renormalization scheme with scale µ [14].

Here, γ is the Euler constant and H(η) = ψ(iη) + 1
2iη
− ln (iη), where ψ(z) is the digamma

function. Expanding the first term in the denominator of Eq. (3) to order p4 (which preserves

unitarity) leads to

TSC =
C2

ηe
2iσ0

− 1
C0

+ C2

C2
0
p2 −

(

C2
2

C3
0
− C4

C2
0

)

p4 +G(E, 0, 0)
. (6)

We follow the conventions and renormalization scheme in Ref. [1], where the divergent and

energy-independent terms in G(E, 0, 0) are absorbed into the definition of C0, and obtain

the following expression for TSC :

TSC =
4π

M

C2
ηe

2iσ0

− 1
a
+ r0

2
p2 − P0

4
p4 − Z1Z2αMH(η)

, (7)

where TSC is expressed in terms of the effective range expansion parameters: the scattering

length a, the effective range r0 and the shape parameter P0. The relationship between the Ci

and the effective range expansion parameters can be found in Ref. [1], which also fitted the

parameters to reproduce the resonance properties and measured S-wave phase shift, which

dominates in the low-energy scattering, up to ECM = 3 MeV. (A similar fit was performed

in Ref. [15].) The result of the fit is shown in Table I, these parameters will be used in our

calculations for the remainder of this paper.
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TABLE I. Best fit parameters from Ref. [1]

Parameter a (103 fm) r0 (fm) P0 (fm3)

Best fit value (accurate to 10−3) -2.029 1.104 -1.824

e−(e+)

e−(e+)

+

FIG. 1. Leading order Feynman diagrams contributing to the damping rate of an α-pair. The

dashed line indicates an α particle.

III. IMAGINARY PART OF POTENTIAL

Generally, when a charged particle moves in a QED plasma, its momentum will no longer

be a constant because the medium particles (electrons or positrons) constantly scatter with

it. This elastic scattering can change the relative momentum of an α pair but not their total

kinetic energy. This leads to an imaginary part in the potential, which describes the rate

for losing a charged particle state with a given momentum in the plasma, a phenomenon

known as Landau damping. It can be calculated at leading order (LO) from Fig. 1 by taking

the square of the scattering amplitude, summing over the final state of the α particles and

averaging thermally over the medium particles. According to unitarity and the cutting rules,

this corresponds to the imaginary part of the α-α forward scattering amplitude, shown in

Fig. 2. We will extract the imaginary potential from these diagrams and then compute

the α-α particle Green’s function including this imaginary potential. Fig. 2 also shows the

thermal loop corrections to the single α propagators and the Coulomb exchange interaction.

Both corrections contribute to the Coulomb potential, which is long-ranged and sensitive to

the Debye mass because it is the typical momentum transferred between medium particles

and the α particle. Therefore, when studying the thermal loop corrections of the Coulomb

potential, one expects the loop momentum |q| ∼ mD and the loop energy q0 ∼ q
2/M ≪ mD.
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For temperatures T < 1 MeV, the hierarchy of scales q0 ≪ |q| ≪ T,me is valid and one can

make the hard thermal loop (HTL) approximation including a finite electron mass me. The

time-ordered thermal photon propagator under this approximation has been calculated in

Ref. [16]:

D00(q0 = 0, q) =
i

q2 +m2
D

+
16αg(meβ)

|q|(q2 +m2
D)

2β3
. (8)

The error on the imaginary potential introduced by this approximation is discussed in the

Appendix. The Debye mass is given by [16]

m2
D =

8m2
e

(2π)2
e2(2f(meβ) + h(meβ)) , (9)

where the functions f , g and h are defined as

f(meβ) =
1

m2
e

∫ ∞

0

dk
k2

√

k2 +m2
e(e

β
√

k2+m2
e + 1)

= −
∞
∑

n=1

(−1)nK1(nβme)

nβme
(10)

h(meβ) =

∫ ∞

0

dk
1

√

k2 +m2
e(e

β
√

k2+m2
e + 1)

= −
∞
∑

n=1

(−1)nK0(nβme) (11)

g(meβ) = β2

∫ ∞

0

dk
k

eβ
√

k2+m2
e + 1

= meβ ln (1 + e−meβ)− Li2(−e−meβ) , (12)

where K0(x) and K1(x) are the modified Bessel functions and Li2(x) is the dilogarithmic

function. For low temperatures meβ ≫ 1, these functions are approximated by

m2
D = 8α

√

m3
e

2πβ
e−meβ

[

1 +O
(

1

meβ

)]

, (13)

g(meβ) = (meβ + 1)e−meβ +O(meβe
−2meβ) . (14)

In the limit meβ → 0 we recover the standard HTL result with massless electrons, m2
D =

4παT 2/3, g(0) = π2/12, and the second term in D00(q0 = 0, q) becomes
πm2

DT

q(q2+m2
D)2

.

In the infinite α particle mass approximation, we neglect the kinetic energy term in the

α particle propagator. Then each of the first two diagrams in Fig. 2 contributes to the α

particle (time-ordered) self energy

iΣ1(2) = (iZ1(2)e)
2

∫

d4q

(2π)4
i

q0 + iǫ
D00(q0, q)

= i(iZ1(2)e)
2

∫

d4q

(2π)4

[

P 1

q0
− iπδ(q0)

]

D00(q0, q)

= −1
2
(Z1(2)e)

2

∫

d3q

(2π)3
D00(q0 = 0, q) = iZ2

1(2)

(

1

2
αmD + i

8α2g(meβ)T
3

πm2
D

)

, (15)
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+ +

FIG. 2. Loop corrected α-α forward scattering amplitude, which contains the lowest-order contri-

bution to the imaginary potential. The solid line in loops indicates electron or positron. These

diagrams can also represent the loop corrections to single α propagators and the Coulomb exchange

interaction.

(E1 + q0,p1 + q)

(E2 − q0,p2 − q)

(E1,p1)

(E2,p2)

FIG. 3. A loop correction to the two-α propagator for arbitrary energy and momentum. The white

circle can be either a strong interaction vertex or a screened Coulomb exchange.

where in the second line the principle value vanishes because D00(q0, q) = D00(−q0, q) and
the integrand is odd in q0. In the last line a linear divergence that survives in the zero-

temperature limit has been absorbed into a renormalization of the α particle mass. Then

the single α particle propagator becomes

i

E − p2

2M
+ iǫ+ Σ1(2)

=
i

E − p2

2M
+ iǫ+ Z2

1(2)

(

1
2
αmD + i8α

2g(meβ)T 3

πm2
D

)
. (16)

The third diagram modifies the Coulomb exchange potential

VC(r) = i(iZ1e)(iZ2e)

∫

d3q

(2π)3
eiq·rD00(q0 = 0, q)

=
Z1Z2α

r
e−mDr − iZ1Z2e

2

∫

d3q

(2π)3
eiq·r

16αg(meβ)T
3

q(q2 +m2
D)

2
, (17)

where the first term is the static screened Coulomb potential while the second term is the

dynamical screening contribution.

The damping rate comes from collisions with medium particles as in Fig. 1 which change

both the CM and relative momenta of the α particle pair. However, only the effect on the
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relative motion is relevant for the resonance properties. One needs to figure out how Σ1(2)

modifies the Green’s function associated with the Hamiltonian of the relative motion. This

can be seen as follows: consider the one-loop correction to the two-α propagator in Fig. 3,

where the energies and momenta of incoming particles are labelled in an arbitrary reference

frame, which is proportional to
∫

d4q

(2π)4
i

E1 + q0 − (p1 + q)2/2M + Σ1 + iǫ

i

E2 − q0 − (p2 − q)2/2M + Σ2 + iǫ

= i

∫

d3q

(2π)3
1

E1 + E2 − (p1 + q)2/2M − (p2 − q)2/2M + Σ1 + Σ2 + iǫ

= i

∫

d3q

(2π)3
1

E1 + E2 − (p1 + p2)
2/(4M)− q2/M + Σ1 + Σ2 + iǫ

=

∫

d3q

(2π)3
i

ECM − q2/M + Σ1 + Σ2 + iǫ
. (18)

Contributions in Fig. 3 from the white circles that can be either a strong interaction vertex

or a screened Coulomb exchange, both of which are independent of q0 (the q0-dependent part

in the Coulomb case is suppressed by the large mass factor), are omitted in this expression.

The second line follows from a contour integral and the third line from a shift in q which

is allowed because the integration is over all q. The combination of Ei and pi appearing

in the denominator of the third line is the Galilean invariant combination that corresponds

to the energy of the two α particles in their center of mass, ECM . In what follows we will

drop the subscript in ECM with the understanding that this is the relevant energy for the

Green’s function. Eq. (18) also shows that the self-energy correction of each single α particle

propagator enters the Green’s function as a sum.

Let Ĥ0 represent the kinetic energy operator for the relative motion. Then the Green’s

function for the relative motion between two free α particles, including their individual

widths, is

Ĝ+
0 (E) =

1

E − Ĥ0 + Σ1 + Σ2 + iǫ
. (19)

The Coulomb Green’s function is given by the Lippmann-Schwinger series

Ĝ+
C(E) = Ĝ+

0 (E) + Ĝ+
0 (E)VCĜ

+
0 (E) + Ĝ+

0 (E)VCĜ
+
0 (E)VCĜ

+
0 (E) + · · ·

=
1

E − Ĥ0 + Σ1 + Σ2 − VC + iǫ

=
1

E − Ĥ0 − Z1Z2α
r

e−mDr + 1
2
(Z2

1 + Z2
2)αmD + iW (r) + iǫ

, (20)
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where

W (r) = e2
∫

d3q

(2π)3

(1

2
(Z2

1 + Z2
2 ) + Z1Z2e

iq·r
)16αg(meβ)T

3

q(q2 +m2
D)

2

=
16α2g(meβ)T

3

πm2
D

φ(mDr, Z1, Z2) , (21)

and

φ(mDr, Z1, Z2) = 2

∫ ∞

0

xdx

(1 + x2)2

(

1

2
(Z2

1 + Z2
2 ) + Z1Z2

sin (xmDr)

xmDr

)

. (22)

First it is interesting to consider the behavior of the potentials in the limit r → 0. Except

for the unscreened Coulomb interaction Z1Z2α/r, the real contribution from the self-energies

combines with the contribution from the static screening of the Coulomb potential to give a

negative shift of the potential of (Z1 + Z2)
2αmD/2. It is also easy to see from Eqs. (21,22)

that W (0) ∝ (Z1+Z2)
2. This shows that both potentials vanish at the origin when the two

particles have equal and opposite charges. Two oppositely charged particles placed at the

same point appear to the plasma like a neutral particle, in which case the plasma will have

no effect on their energy.

Henceforth we restrict ourselves to the case Z1 = Z2 = Z, then φ(mDr, Z, Z) = Z2φ(mDr)

and the function φ(mDr) is plotted in Fig. 4. It can be seen that φ(0) = 2 and φ(∞) = 1.

When the two α particles are far separated, the total damping rate is the sum of the

individual damping rate of each α particle while when they are close, the damping rate is

doubled due to their interactions.

Finally we would like to understand the relative importance of static versus dynam-

ical screening effects. Ref. [1] emphasized that for static screening the energy shift of

the resonance is to a good approximation linear in the Debye mass, and to a good ap-

proximation the temperature dependent corrections can be obtained by expanding the

screened potential to lowest order in mD which simply adds a constant to the unscreened

Coulomb potential of −Z2αmD. When T ≪ me, the real static screening correction is

Z2αmD ∼ Z2α3/2(m3
eT )

1/4e−me/2T . In the same limit, the coefficient of φ(mDr) in the

imaginary part of the potential scales as Z2α
√

T 3

me
. We see that the static screening is

suppressed relative to dynamical screening by α1/2(me/T )
5/4e−me/2T for me ≫ T . In the

opposite limit, me → 0, the coefficient of φ(mDr) is Z
2αT , while static screening correction

to the potential is Z2αmD ∼ Z2α3/2T , so static screening is suppressed relative to dynamical

screening by a factor of
√
α. Thus, in either limit dynamical screening should be expected
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0.0
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2.5

φ
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D
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FIG. 4. The r-dependence part of the imaginary potential φ(mDr).

to be more important. In our calculations below, which are restricted to T . me, dynamical

screening dominates.

IV. THERMAL WIDTH

The renormalized Coulomb Green’s function is known analytically in vacuum,

4π

M
Gren(E, 0, 0;T = 0) = −Z2αMH(η). (23)

In the plasma,

G(E, 0, 0;T 6= 0) =
〈

r′ = 0

∣

∣

∣

1

E − Ĥ0 − Z2α
r
e−mDr + Z2αmD + iW (r) + iǫ

∣

∣

∣
r′′ = 0

〉

. (24)

The complex potential induced by the plasma screening depends on the dimensionless com-

bination mDr. The characteristic size of the resonance is r ∼ 1/p0, where p0 =
√
ME0, and

p0 ≈ 18.5 MeV. Since mD ≪ p0 when T < 1 MeV, it is a good approximation to expand

in mDr to lowest order and keep only the r = 0 contribution. Despite p0 ≫ T , the HTL

approximation is still valid. The resonance property comes from the interplay between the

contact strong and Coulomb interactions. The thermal correction of the Coulomb potential

(both self energies and exchange) is controlled by the infrared scale mD, which is much less

than T . So the HTL approximation is valid when one considers the thermal correction on

the Coulomb potential. Here, p0 is the typical momentum transferred through the contact

strong interaction rather than that of the Coulomb. The effect of the Coulomb interaction
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is felt over the entire path of the particles from infinity to nuclear contact, and thus not only

sensitive to the momentum scale p0. Therefore

G(E, 0, 0;T 6= 0) =
〈

0

∣

∣

∣

1

E − Ĥ0 − Z2α
r

+ 2Z2αmD + iZ2 32α2g(meβ)T 3

πm2
D

+ iǫ

∣

∣

∣
0
〉

(25)

= G(Ẽ, 0, 0;T = 0) , (26)

where

Ẽ = E + 2Z2αmD + iZ2 32α
2g(meβ)T

3

πm2
D

. (27)

Thus, in this approximation, we obtain the screened Coulomb Green’s function in the plasma

by analytically continuing the vacuum Coulomb Green’s function from E to Ẽ. The function

C2
η also needs to be analytically continued in the same way since the Coulomb wave function

is the solution to an analogous analytic continuation of the Schrödinger equation. The

scattering amplitude in the plasma can be written as

TSC =
4π

M

C2
η̃e

2iσ0

− 1
a
+ r0

2
p2 − P0

4
p4 − Z2αMH(η̃)

, (28)

where η̃ is computed from Ẽ. Then the scattering amplitude squared is computed at different

energies and fitted to the Breit-Wigner formula:
(

4π

M

)2∣
∣

∣

∣

C2
η̃e

2iσ0

− 1
a
+ r0

2
ME − P0

4
M2E2 − Z2αMH(η̃)

∣

∣

∣

∣

2

=
1

p2
A0

(E −Er)2 + Γ2/4
, (29)

where Er is the resonance energy and A0 is a constant. An arbitrary constant A0 appears

in the numerator of our parametrization because the potential has an imaginary part which

violates unitarity so the maximum amplitude is no longer the unitary limit. The total width

Γ is the sum of the thermal width, Γthermal, caused by collisions with medium particles and

the intrinsic width, Γintrinsic, due to the spontaneous decay into two α particles. Γintrinsic

is defined as the width when only the static screening has been included, which has been

calculated in Ref. [1]. This contribution to the total width can be similarly calculated

from the Coulomb Green’s function with a real shift in the energy: G(E, 0, 0;T 6= 0) =

G(E + Z2αmD, 0, 0;T = 0).

In Fig. 5 we plot the resonance energy up to T = 10 keV since in this temperature range

the resonance is well described by a Breit-Wigner form. The resonance energy is the red line

and the green dotted line shows the resonance energy when only static screening effects are

included. The resonance energy increases with plasma temperature due to the dynamical
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FIG. 5. The resonance energy, Er, as a function of the temperature, T . The solid red line is the

resonance energy with dynamical screening included and the dotted green line is the energy when

only static screening is included.
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FIG. 6. The total width (red solid line) and the thermal width (green dotted line) as a function of

plasma temperature, T , for 0 < T < 300 eV (left) and 0 < T < 10 keV (right).

screening effect. When only static screening is included, the resonance energy decreases

with temperature, but only very slightly in the temperature range shown. In Fig. 6 the

solid red line shows the total width of the resonance as a function of temperature and the

green dotted line shows the thermal width. The total width is an increasing function of the

temperature and for temperatures of O(keV) the width is dominated by the thermal width

due to dynamical screening.

That the resonance energy increases with the plasma temperature after taking into ac-

count the dynamical screening can be understood as follows: The imaginary potential de-
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scribes the probability loss in the elastic channel as the two α particles move toward each

other, which leads to the suppression of the wave function. This suppression is similar

to that caused by a repulsive real potential. The imaginary potential and the associated

suppression effect increase with the plasma temperature. As a result, it requires a higher

kinetic energy to bring the two α particles into the nuclear interaction range. Therefore

the resonance energy increases. The resonance also becomes wider. This effect obviously

vanishes when T = 0 and increases with the plasma temperature. Its value is comparable

to the intrinsic width Γ0 = 5.57 eV when T ≈ 160 eV, and for temperatures of O(keV) the
thermal width completely dominates the total width of the resonance.

Although the resonance line shape is no longer well-fitted by a Breit-Wigner above T =

10 keV, we can still calculate the scattering amplitude and thus the cross section accurately

at any temperature. In the next section we calculate the thermally averaged α-α nuclear

scattering rate up to a temperature of 200 keV.

V. THERMAL NUCLEAR SCATTERING RATE

The thermal nuclear scattering (or reaction) rate is defined as the thermally averaged

product of the cross section and the relative velocity.

〈σv〉T =

∫

d3p
(2π)3

σ(p, T ) p
M/2

e−p2/MT

∫

d3p
(2π)3

e−p2/MT
=

4√
πM

1

T 3/2

∫

dEEσ(E, T )e−E/T . (30)

Traditional calculations of the reaction rate use the cross section in vacuum, i.e., σ(E, T ) =

σ(E, 0) or just include the static screening by shifting the resonance energy, which has little

effect on the reaction rate. But now we have a way to estimate σ(E, T 6= 0) including

both static and dynamical screening. As an example, we study the dynamical screening

effect on the α-α thermal nuclear scattering rate. We use the term “scattering rate” since

the process is elastic scattering of α particles, not a nuclear reaction. In the calculation of

the cross section, we only use the scattering amplitude from the Coulomb modified nuclear

interaction, TSC , since the pure Coulomb contribution to the low-energy scattering amplitude

is not expected to be important, especially in the resonance region.

When computing the thermal α-α scattering rate in the temperature range T ∈ [1, 200]

keV, we numerically integrate E from 10 keV to 3 MeV in Eq. (30). The cross section is

almost vanishing when E < 10 keV since the phase shift there is almost zero. The energy

13



region beyond 3 MeV is omitted because for the temperatures we consider, the exponential

factor e−E/T is extremely small. Physically, this means that at low temperatures, high energy

cross sections contribute little to the scattering rate because the probability of having such

high energy particles is exponentially suppressed. The calculated thermal scattering rate

with σ(E, T 6= 0), including dynamical screening, and that with σ(E, T = 0) are shown in

the left panel of Fig. 7 as the red solid and green dotted lines, respectively. The ratio of

these thermal rates is shown in the right panel of Fig. 7. The ratio approaches unity as

the temperature goes to zero and also at high temperatures. The behavior in either limit is

easy to understand. As the temperature goes to zero, the thermally averaged rate should

be dominated by the threshold cross section which is below the resonance and is very small

in either vacuum or plasma case. For high temperatures, the thermal scattering rate is

dominated by high energy scattering. For high energies of O(100 keV), the complex shift in

Ẽ in Eq. (29) is very small compared to E, so the effect of screening on the cross section

is negligible. The ratio is far away from unity in the temperature range 1-75 keV, with the

maximum suppression occurring at T ∼ 10 keV. At this temperature the thermal scattering

rate is almost 900 times smaller once the screening effects are included. Our results indicate

that dynamical screening effects have the greatest impact on the thermal scattering rate at

temperatures just below the vacuum resonance energy. While here we demonstrate this for

α-α scattering we expect this will also be the case for nuclear reactions that are dominated

by above threshold resonances in the thermal domain.

VI. CONCLUSION

We studied the QED plasma dynamical screening effect on the α-α resonant scattering,

where the resonant state is the 8Be nucleus. Collisions with medium particles result in an

imaginary part of the α-α potential, which leads to a thermal width of the resonance and

the loss of unitarity in the scattering amplitude. Dynamical screening effects dominate over

static screening effects and both the resonance energy and the width increase with the plasma

temperature. Due to the loss of unitarity and increased width, the resonant cross section is

highly suppressed and it is found that the α-α thermal nuclear scattering rate is suppressed

by a factor of ∼ 900 when T ∼ 10 keV. Our calculations indicate that the dynamical

screening effect in the plasma can be very large for nuclear reaction rates when those rates
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FIG. 7. Thermal α-α nuclear scattering rate computed with σ(E,T 6= 0) (red solid line) and that

with σ(E,T = 0) (green dotted line) as a function of the temperature (left). The ratio of the two

thermal scattering rates as a function of temperature (right).

are dominated by above threshold resonances in the thermal domain. Such reactions can be

important for nuclear astrophysics and cosmology. For example, a reaction that is critical

in Big Bang Nucleosynthesis (BBN) predictions for the primordial 7Li abundance is 7Be(n,

p)7Li. This reaction is dominated by a resonant state of 8Be with (JP , I) = (2−, 0). The

resonance exists approximately 0.01 MeV above the 7Be+n threshold and thus lies well

inside the thermal domain. A significant modification due to the dynamical screening on its

reaction rate is expected and could have a significant impact on the prediction for the 7Li

abundance, which is currently over-predicted by a factor of∼ 3, with a statistical significance

of 4-5 σ [17–19]. In future work, we plan to investigate the effect of dynamical screening on

the 7Be(n, p)7Li and other resonance dominated reactions that are important for cosmology

and astrophysics.
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Appendix A: Justification of HTL Photon Propagator

In thermal field theory, the time-ordered propagator can be written in terms of the

retarded and advanced propagators

Dµν(q0, q) =
1

2

(

DR
µν(q0, q) +DA

µν(q0, q)
)

+
(1

2
+ nB(q0)

)(

DR
µν(q0, q)−DA

µν(q0, q)
)

.(A1)

For a photon propagator in a QED plasma, their form in the Coulomb gauge is

D
R(A)
00 (q0, q) =

i

q2 −Π
R(A)
00 (q0, q)

, (A2)

where the polarization tensor for q0 ≪ T,me, |q| is given by

Π
R(A)
00 (q0, q) = −

e2

π2

∫ ∞

0

p2 dp

Ep
nF (Ep)

[

2 +
( |q|
2p
−

2E2
p

p|q|
)

ln
∣

∣

∣

|q| − 2p

|q|+ 2p

∣

∣

∣

]

(A3)

+(−)i q0|q|
2e2

π

∫ ∞

|q|/2
p dp nF (Ep) .

Due to the non-relativistic feature of the system, q0 can be set to be zero (see Eqs. (15,17)),

so this is a valid approximation. The Debye mass is defined as m2
D ≡ −ReΠ

R(A)
00 (q0 =

0, q → 0). One can expand the retarded and advanced propagators as

D
R(A)
00 (q0, q) =

i

(q2 +m2
D)

(

1− m2
D+ReΠ

R(A)
00 (q0,q)+i ImΠ

R(A)
00 (q0,q)

q2+m2
D

)

(A4)

=
i

q2 +m2
D

+
q0

|q|(q2 +m2
D)

2

2e2

π

∫ ∞

|q|/2
p dp nF (Ep) +O

(

q20,
m2

D + ReΠ
R(A)
00 (0, q)

q2 +m2
D

)

.(A5)

The expansion is valid because we will set q0 = 0 in the end and
m2

D+ReΠ
R(A)
00 (0,q)

q2+m2
D

is tiny for

all values of |q|. Then we have

D00(q0 = 0, q) =
i

q2 +m2
D

+
T

|q|(q2 +m2
D)

2

4e2

π

∫ ∞

|q|/2
p dp nF (Ep) . (A6)

Since the dominant effect is the imaginary part of the potential, we will focus on the error

in the imaginary potential caused by the HTL approximation. The imaginary potential with
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and without making the HTL approximation are given by

W (r) = −C
∫

d3q

(2π)3
(1 + eiq·r)

T

|q|(q2 +m2
D)

2

∫ ∞

|q|/2
p dp nF (Ep) (A7)

WHTL(r) = −C
∫

d3q

(2π)3
(1 + eiq·r)

T

|q|(q2 +m2
D)

2

∫ ∞

0

p dp nF (Ep) , (A8)

where C = 64α2Z2π. Rescaling the integral variables: |q| = mDx, p dp = Ep dEp and

Ep = Ty, and doing the angular integral on q, one obtains

W (r) = −C ′ T
3

m2
D

∫ ∞

0

x dx

(1 + x2)2

(

1 +
sin(xmDr)

xmDr

)

∫ ∞
√

m2
e+x2m2

D
/4

T

y dy

ey + 1
(A9)

WHTL(r) = −C ′ T
3

m2
D

∫ ∞

0

x dx

(1 + x2)2

(

1 +
sin(xmDr)

xmDr

)

∫ ∞

me
T

y dy

ey + 1
, (A10)

where C ′ = 32α2Z2

π
. The error is defined as ∆W (r) ≡W (r)−WHTL(r)

∆W (r) = C ′ T
3

m2
D

∫ ∞

0

x dx

(1 + x2)2

(

1 +
sin(xmDr)

xmDr

)

∫

√
m2

e+x2m2
D

/4

T

me
T

y dy

ey + 1
. (A11)

In the main text we show that the resonance size scales as r ∼ 1/(18.5 MeV) and for the

temperature range considered T . 200 keV, mDr ≪ 1 and one can set r = 0. So

WHTL(r = 0) = −C ′ T
3

m2
D

[

me

T
ln
(

1 + e−me/T
)

− Li2(−e−me/T )

]

= −C ′ T
3

m2
D

(

1 +
me

T

)

e−me/T +O(e−2me/T ) . (A12)

Next we consider ∆W (r). The integrand is positive and sinx
x

is decreasing with x, so we

have

∆W (r) < C ′ T
3

m2
D

∫ ∞

0

2x dx

(1 + x2)2

[

−
√

m2
e + x2m2

D/4

T
ln
(

1 + e−
√

m2
e+x2m2

D/4/T
)

(A13)

+Li2(−e−
√

m2
e+x2m2

D/4/T ) +
me

T
ln
(

1 + e−me/T
)

− Li2(−e−me/T )

]

.

Making a change of variable z = x2 and defining m̃e = me/T and m̃D = mD/T , we find

∆W (r) < C ′ T
3

m2
D

∫ ∞

0

dz

(1 + z)2

[

−
√

m̃2
e + zm̃2

D/4 ln
(

1 + e−
√

m̃2
e+zm̃2

D/4
)

(A14)

+Li2(−e−
√

m̃2
e+zm̃2

D/4) + m̃e ln
(

1 + e−m̃e
)

− Li2(−e−m̃e)

]

.

Integrating by parts dz
(1+z)2

= − d 1
1+z

and noticing that the boundary terms vanish, we obtain

∆W (r) < C ′ T
3

m2
D

∫ ∞

0

1

1 + z
d

[

−
√

m̃2
e + zm̃2

D/4 ln
(

1 + e−
√

m̃2
e+zm̃2

D/4
)

+Li2(−e−
√

m̃2
e+zm̃2

D/4) + m̃e ln
(

1 + e−m̃e
)

− Li2(−e−m̃e)

]

. (A15)
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We then expand the logarithm and dilogarithm functions

∆W (r) < C ′ T
3

m2
D

∫ ∞

0

dz

1 + z

d

dz

[

− (
√

m̃2
e + zm̃2

D/4 + 1)e−
√

m̃2
e+zm̃2

D/4

]

+O(e−2me/T )

= C ′ T
3

m2
D

∫ ∞

0

dz

1 + z

m̃2
D

8
e−
√

m̃2
e+zm̃2

D/4 +O(e−2me/T ) (A16)

= C ′ T
3

m2
D

e−me/T
m̃2

D

8

∫ ∞

0

dz

1 + z
e
−
√

1+z
m2

D
4m2

e +O(e−2me/T ) . (A17)

Taking the ratio gives

∆W (r)

|WHTL(0)| .
m2

D

8T (T +me)

∫ ∞

0

dz

1 + z
e
−
√

1+z
m2

D
4m2

e +O(e−me/T ) . (A18)

Since λ ≡ m2
D

4m2
e
is small, the integral over z can be approximated analytically. We want to

evaluate

I ≡
∫ ∞

0

dz

1 + z
e−

√
1+zλ . (A19)

Changing the variable from z to w = 1 + zλ leads to

I =

∫ ∞

1

dw

w − 1 + λ
e−

√
w . (A20)

We cannot set λ = 0 so far because it leads to a divergent integral. But we can do an

integration by parts

I =

∫ ∞

1

e−
√
w d ln(w − 1 + λ) (A21)

= e−
√
w ln(w − 1 + λ)

∣

∣

∣

∞

1
−

∫ ∞

1

ln(w − 1 + λ)e−
√
w dw

−2√w (A22)

= − lnλ
e

+

∫ ∞

1

ln(w − 1)e−
√
w dw

−2√w +O(λ) (A23)

=
ln
(

1
λ

)

e
+ 0.176 +O(λ) (A24)

Finally we have

∆W (r)

|WHTL(0)| .
m2

D

8T (T +me)

(2

e
ln

2me

mD
+ 0.176

)

+O
(m2

D

m2
e

, e−me/T
)

. (A25)

We find that the error introduced by the HTL approximation is suppressed by
m2

D

Tme
ln me

mD

when T is small (T . 200 keV).

Physically, the resonance property is determined by both the contact strong and the

Coulomb interactions. The Coulomb interaction is long-ranged and thus sensitive to low-

energy scales. The scale of the screened Coulomb interaction is set by the Debye mass,
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which is much smaller than the temperature. When studying thermal corrections on the

Coulomb potential, one can make use of the HTL approximation. The fact that the resonance

momentum p0 is much larger than the Debye mass indicates that one can set r = 0 for the

thermal correction of the potential in the calculation of the Green’s function.
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