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Abstract

The Twin Higgs model is the preeminent example of a theory of neutral naturalness, where the

new particles that alleviate the little hierarchy problem are Standard Model (SM) singlets. The

most promising collider search strategy, based on rare Higgs decays, is nevertheless not effective in

significant regions of the parameter space of the low energy theory. This underlines the importance

of phenomenological studies on ultraviolet completions of the Twin Higgs model, which must lie

at a scale lower than 5 -10 TeV. We pursue this course in the context of non-supersymmetric

completions, focusing on exotic fermions that carry SM electroweak and twin color charges, as well

as on exotic vectors that transform as the bi-fundamental of the electroweak or color groups. Both

Z2-preserving and Z2-breaking mass spectra are considered for the exotic fermions. In the former

case they must be heavier than ∼ 1 TeV, but can still be sizably produced in the decays of the

color bi-fundamental vector. In the Z2-breaking scenario, the exotic fermions can have masses in

the few hundred GeV range without significantly increasing the fine-tuning. Once pair-produced

through the electroweak interactions, they naturally form bound states held together by the twin

color force, which subsequently annihilate back to SM particles. The associated resonance signals

are discussed in detail. We also outline the phenomenology of the electroweak bi-fundamental

vectors, some of which mix with the SM W and Z and can therefore be singly produced in hadron

collisions.
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I. INTRODUCTION

Over the past few years, the increasingly stronger exclusion limits set by the Large Hadron

Collider (LHC) on colored top partners have put significant pressure on the classic solutions

to the hierarchy problem. The absence of beyond-the-Standard Model (BSM) signals has,

at the same time, sparked a renewed interest in models of neutral naturalness, where the top

partners do not carry Standard Model (SM) color charge. The prime example in this class

is the Twin Higgs (TH) model [1], where the top and gauge partners are complete singlets

under the SM, and the sensitivity to ultraviolet (UV) scales is softened thanks to a discrete

Z2 symmetry.

By construction, the collider phenomenology of the lowest-lying states in TH is very

challenging, and rare decays of the Higgs into long-lived twin particles typically constitute

the most promising signatures [2–4]. However, these signals display a strong sensitivity

to the unknown parameters of the model that limits to some extent their robustness. For

example, in the Fraternal TH model [2], where only the third generation of twin particles

is introduced1 to avoid the cosmological problems associated with light degrees of freedom,

the lightest twin glueball can be long-lived. It decays into SM particles through mixing with

the Higgs, with a width proportional to Λ−7, where Λ is the confinement scale of twin QCD.

As a consequence, the twin glueball displaced decays are observable at the LHC only in a

relatively narrow range of twin confinement scales, while naturalness considerations allow a

wider uncertainty on Λ. On the other hand, a robust deviation from the SM is provided by

Higgs couplings modifications proportional to v2/f 2 that arise due to the pseudo-Goldstone

nature of the Higgs, where f is the scale of spontaneous Z2 breaking and v is the electroweak

symmetry breaking (EWSB) Higgs vacuum expectation value (VEV). Still, the future LHC

precision on Higgs couplings measurements will be limited to f . 3 - 4 v [6]. Altogether,

these considerations suggest that it is not inconceivable that the LHC may remain blind to

a TH model with f ∼ 1 TeV.

The low-energy theory of TH, however, requires UV completion at a relatively low scale

< 4πf ∼ 10 TeV. The extended theory necessarily contains new particles, some of which

can give visible signals at colliders. While more model-dependent, these signatures may

turn out to be key to the discovery of the model. For example, non-supersymmetric UV

1 In the Fraternal TH, the twin tau and twin neutrino are introduced to cancel gauge anomalies. Alterna-

tively, one can consider models with vector-like twin quarks [5], where the twin leptons are not necessary.
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completions generically predict the existence of new exotic fermions, charged under both

the SM and twin gauge symmetries. These vector-like fermions were already introduced

in the original TH paper [1], to cut off the residual logarithmic divergences in the Higgs

potential. Furthermore, they appear in composite TH completions [7, 8], where they are

resonances of the strong sector, and in UV completions with extra dimensions [9–11], where

they are Kaluza-Klein (KK) excitations of bulk fields whose zero modes are removed through

boundary conditions or orbifold projections. Some of these fermions carry SM color (as well

as twin electroweak) charge and can therefore be produced with large rates at the LHC or at

a future 100 TeV collider, depending on their masses. The phenomenology of these ‘exotic

quarks’ was presented in Ref. [12], where it was shown that future searches for their signals

can test large regions of the parameter space of the Fraternal TH.2

In this paper we explore the phenomenology of other states that can be expected to ac-

company the exotic quarks (which were labeled by q̃A3 in Ref. [12]), in a non-supersymmetric

UV completion of TH. We focus primarily on the mirror partners of the exotic quarks,

which are vector-like ‘exotic fermions’ that carry twin color and SM electroweak charges

(labeled by q̃B3 in Ref. [12]). In addition we consider exotic vector particles, including both

bifundamentals under SU(2)A × SU(2)B, where A and B denote the SM and twin weak

groups, respectively, and bifundamentals under the color symmetries SU(3)A × SU(3)B.

The electroweak bifundamentals, which we label W , are necessary to restore at high energy

the SU(4) (or SO(8)) symmetry that protects the pseudo-Goldstone Higgs. On the other

hand, the SU(3) bifundamentals, dubbed X , appear in models where the SM and twin color

groups are embedded into an SU(6) symmetry. This is not strictly required for a consistent

UV completion, so the presence of X is somewhat more model-dependent.

As discussed in Ref. [12], stop searches based on tt̄ plus missing transverse energy (MET)

constitute a robust probe of the exotic quarks. Given the absence of any signals in the first

∼ 15 fb−1 of data collected by each of ATLAS and CMS at 13 TeV, we estimate that the

current lower bound on the vector-like mass of the q̃A3 is approximately M̃A & 1 TeV. If

the masses of the exotic fermions respect the Z2 symmetry, as we assume in the first part

of this paper, the same lower bound applies to M̃B, the mass of the q̃B3 . As a consequence

2 In weakly coupled UV completions, including supersymmetric ones [13–16], a rather robust phenomeno-

logical feature is provided by the scalar radial mode, which is expected to be narrow and relatively light.

It is produced through mixing with the SM-like Higgs and can be discovered through its decays to SM

dibosons [17].
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the uncolored exotic fermions have a very suppressed electroweak pair-production, even at

a 100 TeV collider. On the other hand, if the colored exotic vector X is heavier than the

exotic fermions, its decays can provide a sizable production rate for the q̃B3 . We sketch

the corresponding phenomenology, finding that it is qualitatively similar to that of the

exotic quarks: the most promising signature is bW b̄W , accompanied either by large missing

transverse energy (MET) or by the displaced decay of a twin particle [12]. We find that the

best strategy to pin down the presence of the X and q̃B3 would be to require an additional Z

boson in the final state, since this is generated very rarely in the decays of the exotic quarks.

We also outline the phenomenology of the electroweak bifundamental vectors, showing that

some of them can mix with the SM W and Z, and therefore be singly produced in the Drell-

Yan process. On the other hand, we find that the S parameter of electroweak precision tests

(EWPT) requires their masses to be at least ∼ 3 TeV, implying that they are likely out of

the LHC reach, but may be discovered at a 100 TeV collider.

Notice that from a phenomenological perspective, M̃A is independent from M̃B. Fur-

thermore, M̃A 6= M̃B breaks the Z2 only softly, thus preserving the cancellation of 1-loop

quadratic divergences in the Higgs mass. Since q̃B3 only couples to the SM through the

electroweak interactions, the experimental constraints still allow it to be relatively light. It

is therefore logical to analyze the region of parameter space where M̃B � M̃A ∼ TeV, to

which the second part of this paper is devoted. We find that for M̃B in the few hundred

GeV range, one of the exotic fermions, K−, naturally has a very suppressed decay width.

This implies that once produced through the electroweak interactions, K̄+K− pairs form

bound states held together by the twin strong force, which eventually annihilate back to

the SM. We study in detail the associated resonance signals, which provide a novel phe-

nomenological aspect of TH models. In addition, we consider the significant effects that a

relatively light color bifundamental vector may have on the bound state decays. A light X

is expected to be accompanied by a light excited gluon (for which we will use the name ‘KK

gluon’ in analogy to an extra-dimensional model) in realistic models, so for completeness,

we also summarize the main constraints on the KK gluon. Finally, we inspect closely the

consequences on naturalness of the Z2-breaking exotic fermion masses. While the 1-loop

effects are mild, we identify a 2-loop quadratically divergent contribution to the Higgs mass

that can be important for light X .

The remainder of the paper is organized as follows. In Sec. II we introduce the exotic
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states that are the subject of this paper. For concreteness we do this in the context of

a two-site model, which provides a convenient minimal description, but many of our re-

sults are general, and also apply to more elaborate constructions. Section III presents the

phenomenology of the scenario where the exotic fermion masses respect the Z2 symmetry.

In III A we compute the pair-production cross section of the color bifundamental vector,

and estimate the main signals arising from cascade decays that involve the q̃B3 . The salient

properties of the weak bifundamental vectors are discussed in III B. Section IV contains

the discussion of the Z2-breaking scenario, which gives the main novel results of our pa-

per. The phenomenology of (K̄+K−) bound states is studied in IV A, whereas IV B focuses

on the bound states containing the SU(2)A partner of K−, whose signals are more model-

dependent. In IV C we discuss the effects of a light X on the bound state physics, and in

IV D we summarize the main properties of the KK gluon, which is expected to have a mass

comparable to that of X . To conclude the section, the consequences on naturalness of the

Z2 breaking in the exotic fermion masses are presented in IV E. Finally, our conclusions are

drawn in Sec. V. For the sake of completeness, the detailed construction of a two-site model

for the electroweak sector is given in App. A. Appendix B contains some details about the

additional states that appear if the global symmetry of the TH is extended from SU(4) to

SO(8), which ensures custodial protection of the T parameter. The phenomenologies of the

new exotic states are qualitatively similar to the ones already considered.

II. EXOTIC PARTICLES IN TWIN HIGGS MODELS

The simplest way to introduce the exotic fermions is to follow the approach of the original

TH paper [1], where the symmetries of the top Yukawa were extended to SU(6)× SU(4)×

U(1)X . Adopting the notation of Ref. [12], where in particular the SM SU(2)A is embedded

in the lower right corner of SU(4), we have

−Lt = ytH
†Q3Lū3R + h.c.

= yt

(
H†B H†A

)qB3L q̃A3L

q̃B3L qA3L

uB3R
uA3R

+ h.c., (1)

where Q3L ∼ (6,4, 1/12), u3R ∼ (6,1, 1/3) and H ∼ (1,4,−1/4). The color and twin color

gauge groups are embedded in the diagonal of SU(6). The ‘exotic’ fermion doublets q̃A3 and
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q̃B3 are given vector-like masses,

−Lm = M̃Aq̃
A

3Rq̃
A
3L + M̃B q̃

B

3Rq̃
B
3L + h.c.. (2)

If the masses in Eq. (2) respect the Z2 symmetry, then M̃A = M̃B = M̃ cuts off the

logarithmic divergences in the Higgs potential arising from Eqs. (1), (2), leaving a finite and

calculable result. In this paper we also consider the Z2-breaking scenario M̃A 6= M̃B, in

which case the residual logarithmic divergences need to be cut off by additional states with

larger, Z2-symmetric masses.

The phenomenology of the states belonging to q̃A3 , which carry SM color and twin elec-

troweak charges, was extensively discussed in Ref. [12]. Inserting in Eq. (1) the expression

of the Higgs field in the unitary gauge,

H =
f√
2


cos h

f

0

sin h
f

0

 , (3)

leads to the mass mixing of the up-type component ũA3 with the top quark, and the corre-

sponding heavy mass eigenstate was labeled T . The down-type component does not mix,

and was labeled B. These exotic quarks are pair-produced through QCD and decay into

SM tops plus twin gauge bosons Ŵ , Ẑ (henceforth we denote the twin partners of the SM

particles with a hat), followed by the decay of the twin gauge bosons into twin fermions.

Thus the ‘irreducible’ signal of the exotic quarks is tt̄+MET, where the twin particles es-

cape detection. In addition, depending on the parameters in the twin sector, some of the

twin particles produced in the cascade can decay back to the SM with long lifetimes, giving

rise to tt̄+displaced vertex signatures. For example, the decay Ẑ → ¯̂
bb̂ is followed by twin

hadronization, and some of the resulting twin bottomonia or twin glueballs can have macro-

scopic lifetimes. The twin leptons that arise from the decay of Ŵ can also give displaced

signals, through mixing with the SM neutrinos. The reach of the searches for these exotic

signatures extends above 2 TeV at the LHC and above 10 TeV at a future 100 TeV collider,

often surpassing that of the searches for stop-like signals based on large MET [12].

Notice that the mass mixing between ũA3 and the top quark implies the theoretical lower

bound [12]

M̃A &
√

2mt
f

v
∼ ytf . (4)
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In addition, we estimate that stop searches currently set an experimental lower bound

M̃A & 1 TeV. (5)

In this paper we focus instead on the fermions contained in q̃B3 , which carry twin color and

SM electroweak charges and whose phenomenology was so far unexplored.

In a UV completion, it is also plausible that new vector particles exist, that allow for the

restoration of the full SU(6) × SU(4) [or × SO(8)] symmetry at high energies. For SU(6),

the new states include ‘exotic vectors’ which transform as the bifundamental representation

of SU(3)A × SU(3)B, denoted by Xµ in this work, as well as the excited state of the gluon

(labeled Gµ) and that of the twin gluon. For SU(4), among the new vectors we expect exotics

which transform as the bifundamental of SU(2)A × SU(2)B, denoted by Wµ, in addition to

excitations of the SM and twin gauge bosons. All these particles can be described, for

example, in a two-site model. On one site, there is a full SU(6) × SU(4) gauge symmetry.

All the fields in Eq. (1) live on this site, so the Yukawa interaction respects the symmetry.

On the second site, only SU(3)2×SU(2)2 is gauged. All the light SM and twin fermions, as

well as the right-handed exotic fermions q̃A,B3R , live on this second site. The gauge symmetries

on the two sites are broken down to the diagonal subgroup by the VEVs of link fields, which

also generate the mass terms for the exotic fermions in Eq. (2). For a strongly coupled

UV completion, the first site can be viewed as the hidden local symmetry from the strong

dynamics [18]. Its gauge coupling, which we denote gX for SU(6) and gρ for SU(4), is

expected to be very large and the particles living on that site are composite degrees of

freedom of the strong dynamics. The second site represents the elementary gauge fields and

fermions. By varying the hierarchy between the VEV f of the Higgs field H and fd of the

SU(4) link field, our two-site model interpolates between different UV realizations, along

the lines of Ref. [19]. In particular, for fd � f it can be viewed as a deconstruction [20, 21]

of an extra dimensional model [9, 10]. The details of the two-site model are given in App. A.

Notice that SU(4) does not contain the custodial symmetry that protects the T pa-

rameter, which therefore would generically receive large corrections at tree level. However,

this difficulty can be removed by extending the UV symmetry to SO(8) [22], which guar-

antees that T = 0 at tree level. Since SU(4) ⊂ SO(8), the exotic particles studied here

are automatically present also in the extended model. In addition, even though the SO(8)

model contains additional exotics, their phenomenology is qualitatively well captured by the
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SU(3) SU(2) U(1) U(1)em

A B A B Y D SM Twin

q̃A3 =

ũA3 ≈ T
d̃A3 = B

 3 1 1 2 2/3 −1/2

2/3

2/3

  0

−1


q̃B3 =

ũB3 ≈ K0

d̃B3 = K−

 1 3 2 1 −1/2 2/3

 0

−1

 2/3

2/3


X 3 3̄ 1 1 2/3 −2/3 2/3 −2/3

W =

W0
1 W

+
1

W0
2 W

+
2

 1 1 2 2 1/2 −1/2

0 1

0 1

  0 0

−1 −1



TABLE I. Quantum numbers of the exotic fields under the SM and twin gauge symmetries. (U(1)D

is the twin hypercharge.) The fields in the upper part of the table are Dirac fermions, while those

in the lower part are complex vectors.

analysis performed in this paper, as explained in App. B.

III. Z2 - PRESERVING PHENOMENOLOGY

In this section we outline the phenomenology of the exotic off-diagonal states, with the

exception of the exotic quarks q̃A3 , which were thoroughly studied in Ref. [12]. The quantum

numbers of the particles are collected in Table I. In this section we assume that the masses

of the exotic fermions respect the Z2 symmetry.

A. Exotic fermions and SU(6) vectors

In addition to the mixing of ũA3 with the SM top quark, the Lagrangian in Eqs. (1), (2)

yields a mixing of the top-component exotic fermion ũB3 with the twin top,

−
(
ūB3R ¯̃uB3R

)ytf√
2
ch

ytf√
2
sh

0 M̃B

uB3L
ũB3L

+ h.c. (6)
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where sh ≡ sin(h/f), ch ≡ cos(h/f). The mixing is diagonalized by the rotationsuB3L,R
ũB3L,R

→
−cL,R sL,R

sL,R cL,R

 t̂L,R

K0
L,R

 , (7)

where t̂ and K0 are mass eigenstates. For the remainder of this section we assume M̃A =

M̃B = M̃ > ytf/
√

2, so mt̂ < mK0 . The mixing angles are given by

sL =
mt̂

M̃
sR , sR '

M̃ytv/
√

2

M̃2 − y2
t f

2/2
+O(v3), (8)

while the masses read, at first order in v2,

m2
t̂ '

y2
t f

2

2

(
1− v2

f 2

M̃2

M̃2 − y2
t f

2/2

)
, m2

K0 ' M̃2

(
1 +

y2
t v

2/2

M̃2 − y2
t f

2/2

)
. (9)

On the other hand, K− ≡ d̃B3 does not mix with any other state.

The decays of the K ≡ {K0,K−} can be understood using the Goldstone equivalence

theorem. Plugging the expression of H expanded to O(1/f) [12] into the top Yukawa, we

find, for M̃ � ytf/
√

2 ,

Lt 3 − yt
[

1√
2

(
iπ3 − h+ i

v

2f
π7

)
¯̂tRK0

L + iπ+¯̂tRK−L
]

+ h.c., (10)

where π+ ≡ (π1 + iπ2)/
√

2 and π3 are the would-be Goldstone bosons eaten by the SM W

and Z, h is the physical Higgs boson, and π7 corresponds to the longitudinal component of

the twin Ẑ. Eq. (10) shows that the largest decay widths of K0 are those into t̂Z, t̂h, with

a small component of K0 → t̂Ẑ parametrically suppressed by v2/f 2.3 The K−, on the other

hand, decays to t̂W with unity branching ratio.

The theoretical and experimental constraints in Eqs. (4), (5) require M̃A & 1 TeV (we take

f = 1 TeV as benchmark in this paper). For a Z2-symmetric spectrum this constraint also

applies to M̃B, implying that the pair production of the K via the electroweak interactions is

suppressed even at a future 100 TeV collider. However, if mX > M̃ the decays of the exotic

vector X can provide a much larger production rate for the uncolored exotic fermions. The

X is a bifundamental of SU(3)A×SU(3)B, therefore it can be pair-produced in the process

gg → XX ∗. The couplings of X to the gluons arise from the kinetic Lagrangian

− (DµXν)†(DµX ν −DνX µ) + igsG
µν aX ∗ν taXµ, (11)

3 For smaller M̃ the couplings mediating the additional decays K0 → b̂Ŵ and K0 → K−W , which are ∝ sR,

cannot be neglected. Notice, however, that since mK0−mK− < mW , the latter is actually a 3-body decay.
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FIG. 1. QCD pair production cross sections at pp colliders for the exotic vector X and KK

gluon G. In addition, for comparison we show the cross section for a Dirac fermion T in the

fundamental representation of color. All cross sections were computed at LO with factorization

and renormalization scales set to µfact = µren =
√
ŝ/2, using MSTW08LO parton distribution

functions (PDFs). The ratio σ(GG)/σ(XX ∗) varies between 3.0 and 3.7 for the masses and energies

considered. Notice that σ(XX ∗) contains the factor Nc = 3 resulting from the sum over twin color.

The different scaling of σ(T T̄ ) with the mass is due to the qq̄-initiated component.

where the covariant derivative is defined as DµXν = ∂µXν− igsGa
µt
aXν . Here ta, a = 1, . . . , 8

are the generators in the fundamental of SU(3)A, and twin color indices and interactions are

understood but suppressed. Notice that the coefficient of the last term in Eq. (11) would

be arbitrary, if we were only imposing the low-energy SU(3)A gauge symmetry. We have

set this coefficient to the value that corresponds to X gauging part of the (spontaneously

broken) extended SU(6) gauge symmetry in the UV, as in the two-site model. Using the

couplings derived from Eq. (11), the cross section for pair production of X can be readily

computed

σ̂(gg → XX ∗) =
πα2

s

16ŝ3

[
βŝ

(
32

ŝ2

m2
X

+ 87ŝ+ 186m2
X

)
− 24(3ŝ2 + 4ŝ m2

X +m4
X ) log

1 + β

1− β

]
,

(12)

where β ≡
√

1− 4m2
X/ŝ and an extra factor of Nc = 3 was included, due to the twin color

sum. By convoluting with the gg parton luminosity, we obtain the hadronic cross section

shown in Fig. 1.

The X also couples, with strength gX , to the fermions transforming in the fundamental
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of SU(6), namely (q̃B3L q
A
3L)T , (qB3L q̃

A
3L)T and (uB3R u

A
3R)T . For example,

gX√
2
q̄A3Lγ

µq̃B3LXµ + h.c.. (13)

Notice that the exotic vector carries SM electric charge ±2/3, and twin electric charge ∓2/3.

The right-handed bottom quarks dA,B3R and exotic fermions q̃A,B3R , as well as the fermions

of the first two generations, live instead on the SU(3)2 site and therefore do not couple

directly to the exotic vector. Eq. (13) dictates the decay of the X : the main channels are

X → ¯̂tt, ¯̂tT , ¯̂bB, K̄0t, K̄+b, shown in the top panel of Fig. 2. In addition, fermion mixings

generate a small width for X → K̄0T .

If mX > M̃ , the QCD pair production of X followed by the decays X → K̄0t, K̄+b provides

the largest production mechanism for the K. A sketch of the corresponding spectrum is given

in the bottom panel of Fig. 2. On the other hand, if mX < M̃ the only kinematically allowed

decay of the exotic vector is X → ¯̂tt. Under the minimal assumption that the Ŵ and twin

bottom escape undetected, most decay patterns of XX ∗ lead to the bW b̄W+MET final state,

resulting in a ‘stop-like’ signal. Therefore it would be difficult to distinguish the X signal

from those of the exotic quarks T and B, which mostly produce tt̄+MET final states. In

addition, it would be challenging to tell the very existence of the exotic fermions K. For this

purpose the most promising channel seems to be X → K̄0t followed by K̄0 → ¯̂th, ¯̂tZ. These

decays yield an extra Z or h, resulting in signals with extra jets (b-tagged or not) and/or

leptons. Among these the tt̄Z+jets+MET signature is particularly interesting, because it

can arise from the exotic quarks only through the suppressed T → tZ decay [12].

B. Exotic SU(4) vectors

The off-diagonal vectors contained in SU(4) form a bidoublet of SU(2)A×SU(2)B, which

under the SM electroweak symmetry decomposes into two 21/2,W1 = (W+
1 , W0

1 )T andW2 =

(W+
2 , W0

2 )T . These particles can be described in a two-site model, where the gauge symmetry

on the ‘strong’ site is SU(4)×U(1)X , and on the ‘elementary’ site it is [SU(2)×U(1)]2. The

symmetries are broken to the diagonal subgroup by the VEV of a bifundamental link field Σ,

〈Σ〉 = fd14, whereas the Higgs H in Eq. (3) transforms in the fundamental representation of

the strong gauge symmetry. This leads to the following masses for the SU(4) exotic vectors
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FIG. 2. Top panel: main decay channels of the SU(6) exotic vector X . The superscripts indicate

the (SM, twin) electric charges. Bottom panel: sketch of the colored spectrum in the Z2-preserving

case M̃A = M̃B = M̃ , under the assumption that mX > M̃ . The small t -T and t̂ -K0 mixings are

neglected in the color scheme. The mass splittings among the exotic fermions are
√
m2
T −m2

B ∼

ytf/
√

2 and
√
m2
K0 −m2

K− ∼ ytv/
√

2 .

(see App. A for details)

m2
W1

=
g2
ρ

4
(f 2
d + f 2) , m2

W2
=
g2
ρ

4
f 2
d , (14)

where gρ is the gauge coupling on the strong site, and the small corrections due to EWSB

were neglected. An experimental lower bound on the masses of the W comes from the S

parameter of EWPT, for which the two-site structure leads to the result

Ŝ =
g2

g2
ρ

(
v2

f 2
d

+
v2

f 2 + f 2
d

)
. (15)

Requiring Ŝ < 2×10−3 implies, choosing for example our benchmark f = 1 TeV and gρ ∼ 5,

a lower bound fd & 0.85 GeV, or mW1 & 3.3 TeV and mW2 & 2.1 TeV. These can be taken
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as rough reference for the phenomenology. As we already remarked, SU(4) does not contain

the custodial symmetry that protects the T parameter. Therefore, tree-level corrections to

T would push the scale of the vector resonances much higher: as discussed in App. A, we

find T̂ ' v2/f 2
d , hence requiring that T̂ . 10−3 leads to fd & 8 TeV. However, this issue

can be solved by extending the UV symmetry to SO(8) ⊃ SU(4) [22], which guarantees

that T = 0 at tree level. In this case additional states are present both in the gauge and in

the fermion sector, to fill multiplets of the larger symmetry. While the new states include

some exotic ones, their phenomenology is not expected to be qualitatively different from

that discussed here, as outlined in App. B.

The real component of W0
1 , which we dub W0

1R ≡ (W0
1 + h.c.)/

√
2, and W+

1 have the

right quantum numbers to mix with the SM Z and W , respectively, and therefore can be

singly produced at hadron colliders in q̄q(′) annihilation. Their decays are mediated by the

couplings of the W to fermions, which arise from the kinetic term of Q3L ∼ (6,4, 1/12)

under the SU(6)× SU(4)× U(1)X symmetry on the strong site. Then

iTr[Q3Lγ
µDµQ3L] → gρ√

2
(q̄A3L /W

†
q̃A3L + q̄B3L /W q̃B3L) + h.c.. (16)

Expanding in components, retaining only couplings ofW0
1 andW+

1 and rotating to the basis

of mass eigenstate fermions, we arrive at

gρ√
2

[
(s

(A)
L t̄L + c

(A)
L T L) /W0

1(−c(A)
L tL + s

(A)
L TL) + (−cL¯̂tL + sLK̄0

L) /W0
1(sLt̂L + cLK0

L)

+ (s
(A)
L t̄L + c

(A)
L T L) /W+

1 bL + (−cL¯̂tL + sLK̄0
L) /W+

1 K−L
]

+ h.c., (17)

where s
(A)
L and c

(A)
L are the sine and cosine, respectively, of the mixing angle between the

top and the exotic quark T [12]. Depending on the relative hierarchy between the masses

of the exotic particles, we can envisage two situations:

• For mW1 � M̃ , the dominant decays are W0
1 →

¯̂tK0, t̄T and W+
1 → K̄+t̂, b̄T . It

follows that single production ofW0
1 leads to the Z, h+MET and t̄t+MET final states,

whereas single production of W+
1 leads to W++MET and b̄t+MET;

• For mW1 < M̃ only the direct decays into light states are open, W0
1 → t̄t, ¯̂tt̂ and

W+
1 → b̄t.

The main decays are summarized in Fig. 3. The lower bound mW1 & 3 TeV from the S

13



FIG. 3. Main decay channels of the exotic vectors contained in W1. The superscripts indicate the

(SM, twin) electric charges.

parameter suggests that these exotic vectors are likely out of the LHC reach, but may be

discovered at a future 100 TeV collider. On the other hand, the states contained in W2

carry a non-vanishing twin electric charge, therefore their mixing with the SM gauge bosons

is proportional to the breaking of the twin U(1)em, which is more model-dependent. If this

breaking is negligible or absent, W2 can only be pair-produced through the electroweak

interactions, with very suppressed cross section. Notice that in Ref. [7] the limit f � fd was

considered,4 in which case W1 decouples and only W2 remains in the low-energy spectrum.

Before concluding this section, we wish to comment on the assumption we have made

so far, that the twin particles produced in the cascade decays of the exotic vectors do not

give any signals in the LHC detectors, effectively contributing to the missing energy. In the

Fraternal TH scenario, in each event a
¯̂
bb̂ pair is produced, held together by a string of the

twin strong force. This bound state hadronizes either via string fragmentation, leading to

production of twin bottomonia, or via twin gluon emission, leading to production of twin

glueballs. Depending on the values of mb̂ and Λ, the resulting twin hadrons can travel a

macroscopic distance before decaying within the detector, giving rise to displaced signatures.

The twin leptons can also be produced through the decays of Ŵ , and have long-lived decays

trough mixing with the SM neutrinos. In these cases, the searches for long-lived particles in

association with SM objects provide a sensitivity complementary to (and possibly stronger

than) that of searches based on large missing energy, as thoroughly studied for the exotic

quarks in Ref. [12].

4 Neglecting EWSB, our fd corresponds to f in the notation of Sec. 2.1 of Ref. [7].
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FIG. 4. Sketch of the colored spectrum in the Z2-breaking case M̃A � M̃B. For definite-

ness we took mX � M̃A. The small t -T and t̂ -K0 mixings are neglected in the color scheme.

The mass splittings among the exotic fermions are
√
m2
T −m2

B ∼ ytf/
√

2 and
√
m2
K− −m

2
K0 ∼

(mK−/
√
y2
t f

2/2−m2
K− ) ytv/

√
2) .

IV. Z2 - BREAKING SCENARIO

In this section we consider a region of parameters where the vector-like masses of the

exotic fermions softly break the Z2 symmetry, M̃B � M̃A ∼ TeV. For small M̃B the mass

matrix in Eq. (6) is diagonalized byuB3L,R
ũB3L,R

→
−cL,R sL,R

sL,R cL,R

K0
L,R

t̂L,R

 . (18)

Here K0 and t̂ are mass eigenstates with mK0 < mt̂, where we have assumed M̃B < ytf/
√

2.

For example, for M̃B = 350 GeV we find mK0 ' 336 GeV, mK− = 350 GeV and mt̂ ' 714

GeV, with mixing angles sL ' 0.95 and sR ' 0.99. A sketch of the spectrum is given in

Fig. 4.

Since mK0 . mK− , the dominant decay of K− is into the three-body final state (W ∗ →

f̄f ′)K0. The partial width can be obtained by adapting the results for the decay of a chargino

into a neutralino and a pair of SM fermions in a supersymmetric standard model [23].

Summing over all f̄f ′ pairs, we find

ΓK− '
3G2

Fm
5
K−

160π3

(
1−

m2
K0

m2
K−

)5

, (19)
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where we neglected the small corrections due to the mixing angles, setting sL = sR = 1.

We find that for the parameter region M̃B < 600 GeV which we are interested in, ΓK− �

Λ ∼ GeV is always satisfied. As a consequence, when a K̄+K− pair is produced at the

LHC via the electroweak interactions, it forms a bound state held together by the twin

color force. Furthermore, as will be discussed in detail momentarily, the annihilation of

the (K̄+K−) bound states is much faster than the decay of the individual K−’s, leading to

resonance signals. On the other hand, K0 decays into Ŵ b̂, where the twin Ŵ can be on-shell

or off-shell. The corresponding width, being suppressed by c2
L, satisfies ΓK0 < Λ across all

parameter space, implying the formation of additional bound states containing K0. However,

if the Ŵ b̂ final state is on-shell, which occurs in a significant portion of parameter space,5 the

decay of the individual K0’s is faster than the annihilation of (K̄0K0) and (K̄0K−) bound

states. Thus we will first concentrate on the signals from (K̄+K−) bound states, which

appear to be more generic, and comment later about the observability of the (K̄0K0) and

(K̄0K−) bound states, which requires the K0 to have a 3-body decay, i.e. mK0 . mŴ +mb̂.

A. (K̄+K−) bound states

The s-wave (K̄+K−) bound states are a pseudoscalar and a vector, which we label η+−

and Υ+−, respectively, following the SM bottomonium conventions. At hadron colliders, the

Υ+− is produced in qq̄ annihilation via s-channel γ/Z, see the first diagram of Fig. 5. The

cross section is proportional to the width for the decay Υ+− → qq̄,6

Γ
Υ+−
qq̄ =N2

c

4πα2

3

|ψ(0)|2

m2
K−

×

(QK−Qq +
s−2
w c−2

w VK−Vq

1− m2
Z

4m2
K−

)2

+

(
s−2
w c−2

w VK−Aq

1− m2
Z

4m2
K−

)2
 , (20)

where ψ(0) is the wavefunction at the origin. We will return momentarily to the evaluation

of this quantity. The cross section for Drell-Yan (DY) production is then

σqq̄(pp→ Υ+−) =
12π2

N2
c

∑
q=u,d

Γ
Υ+−
qq̄

2mK−

Lqq̄(
4m2
K−
s

)

s
(21)

5 Recall that for f = 1 TeV we have mŴ ' 314 GeV.
6 The couplings of the fermion ψ = {K−, q} to the photon and Z are defined as eQψψ̄γ

µψAµ and

e/(swcw)ψ̄γµ(Vψ +Aψ)ψZµ, respectively.
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FIG. 5. Diagrams mediating the production and two-body decays of Υ+− . In the middle diagram

the W ’s are longitudinally polarized, and the amplitude is dominated by exchange of a virtual twin

top.

where Lqq̄(τ) =
∫ 1

τ
dx
x

[q(x)q̄(τ/x) + q(τ/x)q̄(x)] is the qq̄ parton luminosity. The parton

luminosities are computed using the MSTW08NLO [24] PDFs evaluated at µfact = mK− .

Since M̃B � Λ ∼ O(1-10) GeV, to evaluate ψ(0) we apply the standard Coulomb ap-

proximation, where the effects of confinement are neglected. Then for the ground state (see

for example Ref. [25] for a general discussion)

|ψ(0)|2

m3
K−

=
C3
F α̂

3
s(qrms)

8π
, (22)

where CF = 4/3 is the quadratic Casimir of the fundamental representation of SU(3), and

α̂s(qrms) is the running twin QCD coupling evaluated at qrms, the inverse of the average

distance between the two constituents, related to the Bohr radius a0 = 2/[CF α̂s(qrms)mK− ]

by qrms = (
√

3 a0)−1. Using Eq. (22) we compute the Υ+− production cross section at the

LHC: for example, for M̃B = 350 GeV, σqq̄(pp→ Υ+−) at 13 TeV varies between 3.9 and 31

fb for Λ ∈ [1, 10] GeV.

What are the main decays of Υ+−? As a consequence of twin color conservation, in the

perturbative approximation the leading contribution to the twin hadronic width comes from

Υ+− → 3ĝ. Thus, as for the SM J/ψ and Υ, the strong decays are suppressed, leading

to large branching fractions for the decays into fermion-antifermion pairs, mediated by the

weak interactions: the Υ+− decays into SM quarks about 60% of the time, see Fig. 6.7

Experimentally, the most promising decay is into SM dileptons, which provides a very clean

final state and benefits from a sizable branching ratio BR(Υ+− → ee+µµ) ' 0.12, with mild

dependence on M̃B. The signal cross section is shown in solid blue in the left panel of Fig. 7,

7 There is also a radiative decay Υ+− → η+−γ, whose width scales as E3
γ , where Eγ ' MΥ+− −Mη+− ∼

C4
F α̂

4
s(qrms)mK−/3, leading to a very suppressed branching ratio . 10−4, not shown in Fig. 6.
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FIG. 6. Branching ratios of the Υ+− as a function of MΥ+− ' 2M̃B. The twin confinement scale

is set to Λ = 5 GeV. Solid (dashed) curves denote decays into final states containing at least one

detectable SM particle (only twin particles or SM neutrinos).

as a function of MΥ+− ' 2M̃B, for three representative choices of the twin confinement scale:

Λ = 5 GeV is the approximately Z2-symmetric value, while for Λ = 1 GeV the lightest twin

glueball decays far out of the detector, and finally for Λ = 10 GeV the lightest twin glueball

decays promptly [2]. In the last two cases the displaced decay signatures [2, 3] of the twin

glueballs are washed out. Then the exotic fermion signals, such as Υ+− → ``, play an even

more important role in probing the TH model at colliders. We compare the signal cross

section to the current ATLAS exclusion [26], based on 13.3 fb−1 at 13 TeV, reported as a

solid orange curve. Interestingly, a non-trivial constraint, M̃B & 300 GeV, can already be

extracted for larger Λ = 10 GeV. In the same figure we also show the projected constraint

after 300 and 3000 fb−1, obtained by rescaling the current cross section bound ∝ 1/
√
L,

with L the integrated luminosity.

The amplitude for the decay of Υ+− into two transverse gauge bosons is velocity-

suppressed, and therefore negligible. Thus the only sizable decay width of the spin-1

bound state into two gauge bosons is Υ+− → WW (depicted in the middle diagram of

Fig. 5), mediated by the coupling of K− to the longitudinal W , which originates from the

top Yukawa

Lt 3 iyt π
+ūB3RK−L + h.c., (23)

where Lt was defined in Eq. (1).

The total width of the Υ+− is of O(1-10) MeV, which on the one hand is much smaller

18



L = 10 GeV

1

5
13.3 fb-1

300

3000

LHC 13 TeV

mK0 d mW
` + mb

`---

400 600 800 1000 1200

0.05
0.10

0.50
1.00

5.00
10.00

MU+ -
@GeVD

Σ
HU

+
-

LB
R

HU
+

-
®

{{
L@

fb
D

L = 10 GeV

1

5
13.3 fb-1

300

3000

LHC 13 TeV

--- mK0 d mW
` + mb

`

400 600 800 1000 1200
0.1

0.5
1.0

5.0
10.0

50.0
100.0

MU± 0 @GeVD

Σ
HU

±
0L

B
R

HU
±

0
®

{Ν
L@

fb
D

FIG. 7. Left panel: in solid blue, the cross section for Υ+− production at the 13 TeV LHC,

multiplied by the branching ratio into one family of SM leptons, as a function of MΥ+− . Three

different choices of the twin confinement scale Λ are considered. The dashed blue lines include also

the contribution of Υ00 → ``, which is expected only for mK0 . mŴ + mb̂; see text for details.

In orange, the current constraints from the ATLAS dilepton resonance search (solid), as well as

the projections to the end of Run 2 (dashed) and to the High-Luminosity LHC (dotted). Right

panel: similar to the left panel, but for Υ±0 → `ν. The Υ±0 annihilation signal is expected only if

mK0 . mŴ + mb̂. In the gray-shaded region, this condition requires mb̂ & 200 GeV, which leads

to a tuning worse than 10% in the Higgs mass for a cutoff of 5 TeV.

than the LHC experimental resolution, and on the other hand satisfies ΓΥ+− � ΓK− across

all parameter space considered here, guaranteeing that the bound state annihilation occurs

before the individual constituents can decay.

The pseudoscalar η+− is produced in photon fusion, with cross section

σγγ(pp→ η+−) = 8π2
Γη+−
γγ

2mK−

Lγγ(
4m2
K−
s

)

s
(24)

where

Γη+−
γγ = Nc4πα

2Q4
K−
|ψ(0)|2

m2
K−

, (25)

is the width for η+− → γγ, and Lγγ(τ) =
∫ 1

τ
dx
x
γ(x)γ(τ/x) is the γγ luminosity [27]. Nu-

merically, the production of η+− is roughly two orders of magnitude smaller than that of

Υ+−: for the benchmark M̃B = 350 GeV, σγγ(pp → η+−) varies from 0.033 to 0.26 fb for

Λ ∈ [1, 10] GeV. In addition, the η+− width is dominated by decays into twin hadrons.
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In the perturbative approximation, these can be parameterized by the η+− → ĝĝ process,

which has a branching ratio of 0.8 - 0.9 across the parameter space. This suppresses the

branching ratios into SM final states, among which γγ and WW would be most promising

experimentally, to the few percent level. Thus detection of the η+− appears challenging even

with high luminosity. The total width of η+− is a factor ∼ 5 - 10 larger than ΓΥ+− due to

the unsuppressed decay into twin hadrons.

We conclude this subsection with a comment on the validity of the Coulomb approxima-

tion for the bound states, which applies if

a0

Λ−1
� 1 , (26)

where a0 is the Bohr radius, defined below Eq. (22). In the entire parameter space shown

in Fig. 7 we have a0/Λ
−1 . 0.2, confirming the applicability of the Coulomb treatment. For

even larger Λ the effects of confinement become important, and the approximation will not

be valid.

B. Bound states containing K0

Next, we turn to the possible observation of bound states containing K0, in particular

the spin-1 (K̄0K0) state, labeled by Υ00, and the electrically charged (K̄0K−) vector, Υ−0.

If K0 decays into on-shell Ŵ b̂, its lifetime is in the range 1 MeV . ΓK0 . 1 GeV. Since

(barringO(1) factors) ΓΥ00 ∼ ΓΥ−0 ∼ ΓΥ+− = O(1-10) MeV, this implies that the constituent

K0’s likely decay before the bound states they form can annihilate. Conversely, for mK0 .

mŴ+mb̂ we find ΓK0 . 1 MeV, which guarantees signals from Υ00 and Υ±0. In the remainder

of this subsection we discuss the corresponding phenomenology.

The Υ±0 is produced in the charged DY channel, and decays primarily into SM fermion

pairs. Subleading decays are into Wĝĝ and into WV0, where V0 is a neutral electroweak

gauge boson. The Υ±0 → WV0 widths arise from the interaction in Eq. (23), after K0- t̂

mixing. The mixing also implies that the mass of Υ±0 is expected to be slightly smaller

than that of Υ+−, since mK0 < mK− . The most promising signal is Υ±0 → `ν, whose cross

section at the 13 TeV LHC is shown in the right panel of Fig. 7, together with the constraint

from the current ATLAS `ν resonance search [28] and its projections to the end of Run 2

and to the HL-LHC. For the sake of simplicity, in this figure the K0- t̂ mixing was neglected,
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leading to the simplifications MΥ±0 ' 2M̃B and Γ(Υ±0 → WV0) = 0. On the other hand, if

the decay K0 → Ŵ b̂ is fast, the electroweak production of a K̄0K− pair is followed by the

formation of a (
¯̂
bK−) bound state instead. Provided its angular momentum is not too large,

this bound state could annihilate on a time scale shorter than the K− lifetime. Electric

charge conservation forces the annihilation channel to be W−Ŵ+, thus giving rise to the

W+MET signature.

The Υ00 phenomenology is qualitatively similar to that of the Υ+−. One important

quantitative difference is that the mass of Υ00 is (MΥ+− −MΥ00)/MΥ+− ' 1 − mK0/mK−

smaller, which increases from 3% at MΥ+− = 400 GeV to 8% at MΥ+− = 1200 GeV for

f = 1 TeV. For comparison, the experimental resolution at dilepton invariant mass of 1

TeV is 1% in the ee channel and 6% in the µµ channel [26], suggesting that the two-peak

structure formed by the Υ+− and Υ00 would likely be resolved in the dielectron channel,

while a single broader peak would be observed in dimuons. For simplicity, here we ignore

the K0- t̂ mixing that generates the small mass splitting between the resonances, and simply

show in the left panel of Fig. 7 (dashed blue) the sum of the Υ+− and Υ00 dilepton signals

as a function of MΥ+− ' MΥ00 . The Υ00 contributes about half compared to the Υ+−, due

to a smaller branching ratio into dileptons. A comparison of the two panels of Fig. 7 shows

that for mK0 . mŴ +mb̂, the reach in the Υ+−, 00 → `` and Υ±0 → `ν final states is similar.

We conclude with a comment on the pseudoscalar states η00 and η±0, whose production

cross sections at the LHC are tiny. In fact, since K0 has zero electric charge, η00 is not

produced in photon fusion, while the production of η±0 in Wγ fusion is very suppressed by

the small W PDF.

C. The role of a light exotic vector

So far we have neglected the effects of the SU(6) off-diagonal vector X on the physics of

the bound states composed of exotic fermions. However, since the coupling gX is expected

to be naturally rather large, a relatively light X can have significant effects on the bound

state phenomenology, which will be discussed here.

Through the coupling in Eq. (13), the t-channel exchange of the exotic vector mediates
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FIG. 8. In the left (right) panel, the solid blue curve indicates the `` (bb̄) signal from the Υ+−, for

twin confinement scale Λ = 20 GeV. The dashed and dotted blue curves show the cross section in

presence of a light exotic vector. The orange curves show the current and projected experimental

constraints, similarly to Fig. 7.

the decay of Υ+− into bb̄, which is depicted in the last diagram in Fig. 5. The width is

Γ
Υ+−
bb̄

= N2
c

πα2
X

6

|ψ(0)|2

m2
K−

m4
K−

(m2
X +m2

K−)2

(
1 +

m2
K−

2m2
X

)2

, (27)

where the interference with the s-channel γ/Z exchange was neglected. Thus for sufficiently

light X the Υ+− acquires a large branching fraction into bb̄, which in particular dilutes

the dilepton rate. At the same time, the exotic vector also mediates Υ+− production in bb̄

annihilation, with cross section given by a formula similar to Eq. (21). The total effect on the

dilepton signal is shown in the left panel of Fig. 8, where Λ = 20 GeV was assumed.8 For this

larger confinement scale, which is at the upper edge of the plausible range in the Fraternal

TH [2], the increased Υ+− production cross section implies that masses MΥ+− . 650 GeV

8 For Λ = 20 GeV the condition in Eq. (26) is not satisfied, hence the bound states cannot be described

within the Coulomb approximation. In this case we replace Eq. (22) with the ansatz |ψ(0)|2 /m3
K− =

Λ2/m2
K− , which is motivated by the physical picture of a string with linear potential, and holds to

reasonable accuracy for the lowest-lying SM bottomonia. For example, from the measured value of the

electronic width of the Υ [29] one extracts |ψ(0)|2 /m3
b ' 3.7 (2.8)×10−3, where the number in parentheses

was obtained using our ansatz with ΛQCD = 250 MeV.
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are ruled out already at the time of writing, and the HL-LHC will be able to probe up to

MΥ+− ∼ 1.2 TeV. However, as shown by Fig. 8, an exotic vector with mass O(TeV) and

coupling gX ∼ 3 - 5 can suppress the dilepton rate significantly. This is accompanied by a

large increase of the Υ+− → bb̄ signal, shown in the right panel of Fig. 8 together with the

current [30] and projected experimental constraint.9 Interestingly, even for a very light and

strongly coupled X the Υ+− resonance in the bb̄ final state would remain hidden after the

HL-LHC. Notice also that, since X only couples to the left-handed q̃B3 , the exotic vector

exchange does not mediate the decay of the pseudoscalar η+− into bottom quarks.

A relatively light X also provides, through its decays, an additional mechanism for pro-

duction of exotic fermion bound states. In particular, the process pp→ (X → bK̄+)(X ∗ →

b̄K−), where the XX ∗ production is via QCD (see Eq. (12)), is followed by formation of a

twin QCD string between the K− and K̄+. Based on a simple counting of degrees of freedom,

we can estimate that the resulting bound state will be a Υ+− with probability ∼ 3/4, or a

η+− with probability ∼ 1/4. Then the dominant final state is expected to be 4b, stemming

from bb̄(Υ+− → bb̄). Notice that the total width of the exotic vector is ΓX = αXmX/4

(where we have assumed that M̃A is too large for X to decay into the exotic quarks q̃A3 ),

which for αX ∼ O(1) implies a broad resonance.

Although phenomenologically interesting, a light X is however potentially problematic

for two reasons. First, it should be accompanied by a light KK gluon, which is subject

to strong experimental constraints. Second, the Z2 breaking M̃A 6= M̃B leads to a 2-loop

quadratically divergent correction to the Higgs mass that is negligible for large mX , but can

become important if the exotic vector is light, thus increasing the fine-tuning. These aspects

are discussed in the next two subsections.

9 To compare our theoretical prediction with the experimental constraint reported in Ref. [30] we used the

following expressions for the b-tagging efficiency and kinematic acceptance: ε = 0.22−0.36(mbb̄/TeV−0.65)

and A = 0.22 + 0.88(mbb̄/TeV− 0.65) for mbb̄ < 0.8 TeV, A = 0.35 for mbb̄ > 0.8 TeV, valid in the range

mbb̄ ∈ [0.65, 1.1] TeV. We thank A. Coccaro for useful clarifications about Ref. [30].
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D. KK gluon

In the minimal version of the two-site model, from the kinetic term of the link field Σ6
10

one finds that the mass of the KK gluon G is related to the mass of X by mG = mX/ cos θA,

where sin θA = gs/gX (see App. A). Because gX � gs, this would give G a mass similar to,

but slightly higher than mX . However, this relation can be violated by higher dimensional

operators. For example, |Tr(Σ†6DµΣ6 Ω)|2 with a spurion Ω = diag(13,03) inserted on the

SU(3)2 site makes m2
G twice as big as m2

X (if one ignores gs). In summary, mG is expected

to be of the same order as mX , although with some freedom. Since the KK gluon, being a

SM color octet, has a very large production cross section at hadron colliders (see Fig. 1), it

is then important to take it into account in the discussion of a light SU(6) exotic vector.

The partonic cross section for gg → GG, which mediates KK gluon pair production, can

be found for example in Ref. [31], and has a structure similar to Eq. (12). The couplings of

G to fermions read approximately

gXGaµ(q̄A i3Lγ
µtaijq

Aj
3L + ūA i3Rγ

µtaiju
Aj
3R ), (28)

whereas the coupling to the bR is strongly suppressed by gs/gX . Therefore the KK gluon

decays into tt̄ and bb̄ with approximate branching ratios 2/3 and 1/3, respectively. Since the

total width is ΓG ' αXmG/4, the KK gluon, like the X , is expected to be a broad resonance.

The leading constraint on G pair production comes from the 4t final state, where the 51 fb

upper limit on the four tops cross section [32] translates into mG & 1.3 TeV.11 However, the

KK gluon can also be singly produced in bb̄ annihilation, with cross section

σbb̄(pp→ G) =
8π2αX

9

Lbb̄

(
m2
G
s

)
s

. (29)

The large coupling gX can compensate the suppressed bb̄ PDF, leading to competitive con-

straints from searches for tt̄ resonances. From the CMS analysis in Ref. [33] we obtain

mG & 1.6 (2.0) TeV for αX = 1 (2), see Fig. 9.

The couplings of G to the third-generation SM fermions, Eq. (28), could also lead to

constraints from flavor observables. We focus on the down-quark sector, which gives the

10 We denote the SU(6) link field by Σ6, to distinguish it from the SU(4) one that we labeled Σ.
11 Reference [32] quotes bounds on the four top cross section assuming several production mechanisms.

The 51 fb limit is for the case of a 4t contact interaction, which we believe to be the best available

approximation, because G is a broad resonance.
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FIG. 9. In light blue, the cross section for single KK gluon production in bb̄ annihilation, multiplied

by the branching ratio into tt̄, for two representative values of αX . The MSTW08LO PDFs were

used, evaluated at µfact = mG . In red, the CMS bound from the first 13 TeV data.

strongest bounds. Integrating out G and applying Fierz transformations, we obtain the

effective Lagrangian

Leff = − g2
X

6m2
G
b̄iLγ

µbiLb̄
j
Lγµb

j
L . (30)

We observe that since the coupling of G to the bR is very suppressed, only LL operators

are generated with relevant size, whereas experimentally, the strongest bounds are on the

coefficients of LR operators. Applying to the down-type quarks the rotation that diagonalizes

the mass matrix and selecting the ∆S = 2 operator that contributes to Kaon mixing, we

find (see for example Ref. [34])

Heff =
g2
X

6m2
G
|VtdVts|2d̄LγµsLd̄LγµsL , (31)

where Vij are elements of the Cabibbo-Kobayashi-Maskawa matrix, and we assumed the

coefficient of the operator to be real. Defining the coefficient of d̄Lγ
µsLd̄LγµsL as 1/Λ2

F, the

experimental bound reads [35] ΛF > 1.0 × 103 TeV. This can be translated into mG/gX >

0.14 TeV, which is weaker than the LHC constraints for a typical coupling gX ∼ 3 - 5. Notice,

however, that if the operator in Eq. (31) were generated with an unsuppressed phase, the

bound on the imaginary (CP -violating) part would read ΛF > 2.6 × 104 TeV [36], leading

to mG/gX > 3.7 TeV. Thus, to envisage a KK gluon lighter than ∼ 10 TeV we need to

postulate that its couplings respect CP invariance [34].
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E. Implications for naturalness

Since the Z2 symmetry is crucial in protecting the Higgs potential from large radiative

corrections, a Z2-breaking spectrum for the exotic fermions necessarily has implications on

naturalness. The contribution to the potential from the top sector of Eqs. (1), (2) is finite

for M̃A = M̃B [1], but if this relation is violated then the logarithmic divergences do not

cancel exactly, leading to an additional contribution

V
/Z2

top − V Z2
top =

− 3y2
t

16π2
h2

M̃4
A(M̃2

B−y
2
t f

2)log
Λ2

UV
M̃2
A

− (A↔B) + (M̃2
A−M̃

2
B)

[
(M̃2

A−y
2
t f

2)(M̃2
B−y

2
t f

2)+y4
t f

4log
Λ2

UV
y2
t f

2

]
(M̃2

A−y
2
t f

2)(M̃2
B−y

2
t f

2)
+O(h4),

(32)

where ΛUV is the cutoff. Unless the splitting between M̃A and M̃B is very large, this extra

term is of moderate size and does not require significantly more tuning. Notice also that

in the region of parameters studied here, M̃A > M̃B, the sign of the extra mass term is

negative and thus does not help to achieve 〈h〉 � f , which is needed for a realistic model.

An additional, small source of Z2 breaking is therefore still required. In passing we note

that in the opposite regime M̃A < M̃B, the Z2 breaking from the exotic fermion masses may

be sufficient for realistic EWSB.

Closer inspection reveals that the Z2-breaking M̃A 6= M̃B also gives rise to a 2-loop

quadratic divergence in the Higgs mass. This can be understood by noticing that due to

the couplings in Eq. (13), the wavefunction of uA3L is renormalized by a loop of X and ũB3L,

iūA3L/∂u
A
3L → i(1+δZL)ūA3L/∂u

A
3L, whereas the wavefunction of uB3L is renormalized by a loop of

X and ũA3L, with renormalization constant δẐL. For M̃A 6= M̃B we have δZL 6= δẐL, leading

to a 2-loop quadratic contribution to the physical Higgs mass,

δm2
h =

3y2
t

4π2
Λ2

UV (δẐL − δZL)

∼ 3y2
t

4π2
Λ2

UV

3NcαX
16π

M̃2
B − M̃2

A

m2
X

log
Λ2

UV

m2
X
. (33)

For light X , this correction is important and an increased fine-tuning is required to obtain

mh = 125 GeV: for example, taking mX = 1.5 TeV, αX = 1, M̃B = M̃A/2 = 500 GeV and

a cutoff ΛUV = 5 TeV, we find a tuning of ∼ 10% (we take y2
t ∼ 1/2 at scale ΛUV).12 This

12 Notice that to obtain the last equality in Eq. (33) we have assumed mt,t̂ � M̃A,B � mX , since in this

limit the result is most transparent. In our actual parameter space we have M̃B < mt̂, but Eq. (33) still

provides a reasonably accurate estimate of the fine-tuning.
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shows that large effects of the exotic vector on the physics of the exotic fermion bound states,

such as those illustrated by Fig. 8 in IV C, would be associated with a stronger fine-tuning.

It is important to stress, however, that the bound state signals discussed in IV A and IV B

do not need to carry a naturalness price tag, because the X may simply be heavy, strongly

suppressing the correction in Eq. (33).

An independent 2-loop tuning arises if the twin confinement scale Λ differs from the

Z2-symmetric value ' 5 GeV [2]. This requires a splitting of the standard and twin QCD

couplings at high scale, ĝs(ΛUV) 6= gs(ΛUV). The associated 2-loop contribution to the Higgs

mass can be roughly estimated as [2]

δm2
h ∼

3y2
t

8π4
(g2
s − ĝ2

s) Λ2
UV . (34)

For reference, if twin QCD is not gauged (ĝs = 0) this estimate gives ∼ 25% tuning, where

we used αs ∼ 0.07 at high scale.

V. CONCLUSIONS

In this paper we studied the collider phenomenology of the exotic states which appear

in the non-supersymmetric UV completions of the TH model. These exotic states carry

charges under both the SM and twin gauge groups, so they constitute a window to the

twin sector. They may also provide the first experimental hint of the TH, given that the

low energy effective theory is quite elusive and may even escape future LHC detection for

some range of underlying parameters. The exotic quarks q̃A3 that carry the SM color and

twin electroweak charges were the subject of a previous study [12]. Here we extended the

analysis to several other states, including the exotic fermions q̃B3 , which are charged under

the SM electroweak and twin color groups, as well as the exotic vectors W and X , which

transform in the bifundamental of SU(2)A × SU(2)B and SU(3)A × SU(3)B, respectively.

As in Ref. [12], due to naturalness considerations the low energy theory was assumed to be

approximately described by the Fraternal TH model.

The collider phenomenology of the exotic fermions q̃B3 crucially depends on their masses.

If the vector-like masses of the q̃A3 , M̃A, and of the q̃B3 , M̃B, are linked by the Z2 symmetry,

then theoretical and experimental constraints on the exotic quarks require M̃B & 1 TeV. In

this case the exotic fermions have very suppressed electroweak pair production, but they can
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still be produced with significant rate in the decays of X . We found that the ensuing signals

are qualitatively similar to those of the exotic quarks, consisting primarily in tt̄+MET. A

potential handle to pin down the q̃B3 is to require an additional Z boson, which is rarely

produced in the decays of the q̃A3 .

However, since the direct experimental constraints on the masses of the q̃B3 are rather

weak, because they only carry SM electroweak charges, it is interesting to consider the

case where M̃B � M̃A ∼ TeV. This soft Z2 breaking does not generate 1-loop quadratic

divergences for the Higgs mass, and hence does not introduce significant fine-tuning. The

second part of the paper is therefore devoted to the study of this scenario. We found

that in this case, at least one of the exotic fermions has a very suppressed decay width.

As a consequence, its pair production through the Drell-Yan process is followed by the

formation of twin QCD bound states, which then annihilate primarily into SM particles.

The associated resonance signals, typical of Hidden Valley models [38], provide a novel

aspect in the phenomenology of the TH. We also discussed the significant effects that a

relatively light SU(6) exotic vector can have on the bound state phenomenology. Notice

that while in this paper we focused on the decays of the bound states into SM particles,

which are dominant, mixed SM/twin decays may provide rare but striking signatures if some

of the twin particles are long-lived. For example, the charged bound state Υ±0 can decay

into W±ĝĝ. If the hadronization of the twin gluons produces the lightest twin glueball, the

latter can travel a macroscopic distance and decay through mixing with the Higgs, leading

to the W±+ (bb̄ displaced vertex) signature.

We also sketched the phenomenology of the SU(4) exotic vectors. Some of them have the

right quantum numbers to mix with the SM W and Z, and can therefore be singly produced

in hadron collisions. We found that their contribution to the S parameter of EWPT likely

puts them out of the LHC reach, but they could discovered at a future 100 TeV collider. To

avoid the large T parameter constraint that would further push up their masses, the SU(4)

group may be extended to an SO(8), which contains the custodial symmetry to protect

the T parameter. In this case there will be more exotic states, both in the vector and the

fermion sectors. However, as shown in App. B, their phenomenologies are not qualitatively

different and hence are well covered in this study.
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Appendix A: Two-site model

We describe here a two-site model where the gauge symmetry is SU(6)×SU(4)×U(1)X

on the first (‘strong’) site, and SU(3)2 × [SU(2) × U(1)]2 ⊂ SU(6)′ × [SU(4)′ × U(1)′X ] on

the second (‘elementary’) site. We begin by describing the electroweak sector, where the

gauge symmetries are broken to the diagonal subgroup by the VEV 〈Σ〉 = fd14 of a link

field Σ that transforms as Σ → UΣV †, where U ∈ SU(4) and V ∈ SU(4)′. The covariant

derivative for Σ is then

DµΣ = ∂µΣ− i(T aW a
s µ)Σ + iΣ(T ′ aW a

el µ). (A1)

The strong gauge fields are defined as

(T aW a
s µ) = gρ

σaW̃a
B

2
W√

2

W†√
2

σaW̃a
A

2

+ gρT
SU(4)
d S̃ + gXXΣ

√
214X̃ , (A2)

where the 2× 2 matrix W was defined in Table I together with the quantum numbers of its

components, and T
SU(4)
d = diag(12,−12)/(2

√
2). Setting gX = gρ and XΣ = −1/4, Eq. (A2)

can be rewritten as

(T aW a
s µ) = gρ

σaW̃a
B

2
W√

2

W†√
2

σaW̃a
A

2

− gρ
 B̃B

2

B̃A
2

 (A3)

where B̃B,A ≡ (∓S̃ + X̃)/
√

2. It is immediate to see that the SM and twin hypercharges

are identified with Y = X + Td/
√

2 and D = X − Td/
√

2 (for fields neutral under SU(6)),

matching the normalization of Ref. [12]. The elementary gauge bosons read instead

(T ′ aW a
el µ) =

g2
σaWa

B

2
− g1

BB
2

g2
σaWa

A

2
− g1

BA
2

 . (A4)
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The kinetic term of Σ is LΣ = Tr[(DµΣ)†(DµΣ)]/4, which setting Σ to its VEV yields

LΣ =
g2
ρf

2
d

4

2∑
i=1

(W0
iW0∗

i +W+
i W−i ) +

f 2
d

8

[
(g2
ρW̃

3 2
A + g2

ρB̃
2
A + 2g2

ρW̃
+
A W̃

−
A ) + (g2

2W
3 2
A + g2

1B
2
A

+ 2g2
2W

+
AW

−
A )− 2(gρg2W̃

+
AW

−
A + h.c.+ gρg2W̃

3
AW

3
A + gρg1B̃ABA)

]
+ (A→ B). (A5)

Thus the W acquire a mass gρfd/2, while the mixing between strong and elementary states

is diagonalized by, for example for the charged ‘A’ states:W̃−
A

W−
A

→ 1√
g2
ρ + g2

2

 gρ g2

−g2 gρ

 W
′−
A

W SM−
A

 (A6)

which leaves the W SM−
A massless, while m2

W ′A
= (g2

ρ + g2
2)f 2

d/4. Similar rotations diagonalize

the mixing of the neutral ‘A’ and all the ‘B’ fields.

We also need to take into account the symmetry breaking due to the VEV of H, which

lives in the strong site and also has XH = −1/4. Its covariant derivative is DµH = ∂µH −

i(T aW a
s µ)H, with (T aW a

s µ) defined in Eq. (A3). In the vacuum of Eq. (3), the kinetic term

LH = (DµH)†DµH gives

LH =
g2
ρf

2

4

{
c2
h(W0

1W0∗
1 +W+

1 W−1 ) + s2
h(W0

1W0∗
1 +W0

2W0∗
2 )

+ 1
2
c2
h[(W̃

3
B − B̃B)2 + 2W̃+

B W̃
−
B ] + 1

2
s2
h[(W̃

3
A − B̃A)2 + 2W̃+

A W̃
−
A ]

+ shch[(W̃
3
B − B̃B)W0

1R + W̃+
BW

0
2 + h.c.]

+ shch[(W̃
3
A − B̃A)W0

1R + W̃−
AW

+
1 + h.c.]

}
(A7)

where we have defined W0
1R ≡ (W0

1 + h.c.)/
√

2. Notice that the imaginary counterpart of

W0
1R does not mix with any other field. The masses of the W resulting from LΣ + LH

were given in Eq. (14), neglecting small corrections due to EWSB (i.e. proportional to

sh). At O(s2
h), the W and Z masses have the standard expressions m2

W (0) = g2v2/4 and

m2
Z(0) = (g2 + g′ 2)v2/4 , provided we identify the SM parameters as

g ≡ gρg2√
g2
ρ + g2

2

, g′ ≡ gρg1√
g2
ρ + g2

1

, v ≡ ffd√
f 2 + f 2

d

sh ' 246 GeV. (A8)

The contribution to the S parameter is computed from [37]

Ŝ =
g

g′
Π′3B(0) , (A9)
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where Π3B is the self-energy between the states W 3
A and BA, defined through the following

effective Lagrangian in momentum space (the W±
A is omitted for brevity)

−Leff =
1

2
Π33W

3
AW

3
A+

1

2
ΠBBBABA+Π3BW

3
ABA , Πij = Πij(0)+p2Π′ij(0)+ . . . . (A10)

Notice that it is natural to assume that the light SM fermions live on the elementary site.

Therefore the strong (tilded) fields do not couple to light fermions, and once they are inte-

grated out, only oblique corrections are generated [37]. To integrate them out we proceed

diagrammatically, noticing that at O(s2
h) only exchange of the states W̃ 3

A, B̃A and W0
1R is

relevant. The result was given in Eq. (15).

The T parameter can be computed from the corrections to the W,Z masses at O(s4
h),

m2
W (0) + δm2

W and m2
Z(0) + δm2

Z . For g2
1,2/g

2
ρ � 1 we find

δm2
W '

g2

g2
ρ

g2

4

f 4f 2
d (f 2 + 2f 2

d )s4
h

(f 2 + f 2
d )3

, δm2
Z ' −

(g2 + g′ 2)

4

f 4f 2
ds

4
h

(f 2 + f 2
d )2

, (A11)

leading to

T̂ =
δm2

W

m2
W (0)

− δm2
Z

m2
Z(0)

' v2

f 2
d

, (A12)

where in the last equality we took the leading order in g2/g2
ρ � 1, and employed the definition

of v in Eq. (A8). Quantitatively, requiring T̂ < 10−3 gives fd & 7.8 TeV.

In the color sector, the link field Σ6 transforms as Σ6 → UΣ6V
†, where U ∈ SU(6)

and V ∈ SU(6)′, and its VEV 〈Σ6〉 = fc16 breaks the gauge symmetries to the diagonal

subgroup. Its kinetic term reads Tr[(DµΣ6)†(DµΣ6)]/4, where

DµΣ6 = ∂µΣ6 − igX

λiG̃iBµ
2

Xµ√
2

X †µ√
2

λiG̃iAµ
2

Σ6 + igsΣ6

λiGiBµ
2

λiGiAµ
2

 , (A13)

with λi denoting the Gell-Mann matrices. Notice that in writing the fields on the strong site,

we have neglected a singlet that is also contained in the adjoint of SU(6). In the vacuum,

the exotic vectors X acquire a mass mX = gXfc/2, whereas the mass mixing between the

G̃A and GA is diagonalized by the rotationG̃A

GA

→ 1√
g2
X + g2

s

 gX gs

−gs gX

G
g

 , (A14)

after which the SM gluon g remains massless, while the mass of the KK gluon G is mG =√
g2
X + g2

sfc/2. The ‘B’ fields are diagonalized in the same way.
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The masses of the exotic fermions in Eq. (2) arise from the following non-renormalizable

operators

−Lm =
1

F
(yAξ̄

Ii
A + yB ξ̄

Ii
B ) Σ†ij Σ†IJ6 QjJ

3L + h.c., (A15)

where yA,B are couplings and F is a scale. For convenience, we have written Eq. (A15) as

formally respecting a full SU(6)×SU(4) symmetry on each site, by introducing the spurions

ξ̄ IiA ≡ ¯̃qA3R δ
IAδiB and ξ̄ IiB ≡ ¯̃qB3R δ

IBδiA on the elementary site. The indices i, j ∈ {B,A} run

over the two SU(2) subgroups of SU(4), while I, J ∈ {B,A} correspond to the two SU(3)

subgroups of SU(6). Setting the link fields to their diagonal VEVs, we obtain M̃A,B =

yA,Bfdfc/F .

Appendix B: Extension to SO(8)

In this appendix we comment about the additional states that are present in TH models

where the global symmetry is extended from SU(4) to SO(8). In the gauge sector, the

adjoint representation of SO(8) decomposes under the SO(4)A×SO(4)B subgroup as 28 ∼

(6,1) + (1,6) + (4,4). The (6,1) contains (W a
AL,W

a
AR) (a = 1, 2, 3), where the W a

AL are the

gauge bosons of SU(2)LA, identified with the W̃ a
A of Eq. (A2), while the W a

AR are new vectors

that gauge SU(2)RA. The phenomenology of the latter has been studied in the context of

custodial composite Higgs models, see for example Ref. [39]. The decomposition of the (1,6)

is entirely analogous, with A→ B. The (4,4) contains the exotic vectors, that include both

the W and additional states. However, there will still be only one linear combination of the

exotic vectors that mixes with the SM W and Z, and can therefore be singly produced at

hadron colliders. Its phenomenology will be qualitatively similar to the one we outlined for

the W .

In the fermion sector, the number of fields in Q3L needs to be doubled to form a funda-

mental representation of SO(8). In our formalism, this can be done by extending the fields

carrying twin color as follows

qA3L →
(
qA3L XL

)
, q̃A3L →

(
q̃A3L q̃′A3L

)
,

qB3L →
(
qB3L X̂L

)
, q̃B3L →

(
q̃B3L q̃′B3L

)
, (B1)

where the fields in each set of parentheses transform in the same way under the SU(3)A ×

SU(3)B × SU(2)A × SU(2)B gauge group, but have different hypercharges or twin hyper-
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charges. All fields except qA3L, qB3L acquire vector-like masses with their vector-like partners,

as in Eq. (2). The SM and twin electric charges of these fields are

(
qA3L XL

)
∼

 2
3

5
3

−1
3

2
3


SM

⊕

0 0

0 0


twin

,
(
q̃A3L q̃′A3L

)
∼

2
3

2
3

2
3

2
3


SM

⊕

 0 1

−1 0


twin

, (B2)

with the SM and twin charges swapped for (qB3L X̂L) and (q̃B3L q̃
′B
3L).

The phenomenology of the X doublet is familiar from custodial composite Higgs models,

see for example Ref. [40] and references therein. For the extra copy of the exotic quarks,

the upper component of q̃′A3 has twin electric charge +1 and behaves similarly to B, whereas

the lower component has zero twin electric charge and can mix with the SM top, in analogy

with T . Therefore the phenomenology of the additional exotic quarks is not expected to

differ qualitatively from the one presented in Ref. [12]. Likewise, the upper component of

q̃′B3 has SM electric charge +1 and behaves similarly to K−, whereas the lower component

has zero SM electric charge and can mix with the twin top, in analogy with K0. Thus

the phenomenology of the exotic fermions is qualitatively well captured by restricting the

attention to the q̃B3 , as we did in this paper.
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