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Abstract

Realizing that couplings related by supersymmetry (SUSY) can be disentangled when SUSY is

broken, it is suggested that unwanted flavor and CP violating SUSY couplings may be suppressed

via quenched gaugino-flavor interactions, which may be accomplished by power-law running of

sfermion anomalous dimensions. A simple theoretical framework to accomplish this is exemplified,

where a strongly coupled CFT is achieved after SUSY is softly broken. The defeated constraints

are tallied. One key implication of the scenario is the expectation of enhanced top, bottom and

tau production at the LHC, accompanied by large missing energy. Also, direct detection signals of

dark matter may be more challenging to find than in conventional SUSY scenarios.
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I. INTRODUCTION

Low energy Supersymmetry (SUSY) is motivated as a solution to the weak-scale hierarchy

problem. However, one of the challenges this theory presents is the potential introduction

of new large flavor and CP violating contributions to observables that cannot accommodate

significant new additions from new physics. There are many excellent ideas to solve this

problem. In our work we explore yet another approach to solving the problem – the quench-

ing of gaugino-sfermion-fermion interactions. There are several reasons to investigate this,

as will become clearer throughout the discussion. It is a largely unexplored approach to

solving the flavor problem. It does not add additional finetuning or naturalness problems

compared to other conventional scenarios of supersymmetry that solve flavor only by fiat.

And there may be interesting new avenues of supersymmetry breaking that lead to this

approach.

Roughly speaking, approaches to supersymmetry have two extremes. One extreme is to

think of supersymmetry as non-existent or broken dramatically, such that there is no SUSY

in the low-scale spectrum that has much hope of being seen anytime soon by current colliders

and experiments. The other extreme is to maintain that supersymmetry is broken very softly,

and all superpartners are “nearby” in the spectrum with full coupling strengths, and are just

out of reach of experiment but could be discovered very soon by slight increases in energy

or luminosity at the LHC or by increased precision on low-energy flavor experiments.

However, nature may choose a middle way, where supersymmetry breaking dynamics

is much more rich than the very simple minded effective approaches we have employed in

most studies so far. Compactifications from higher dimensions, couplings to conformally

symmetric sectors, or other so-far unrecognized dynamics may lead to a supersymmetric

spectrum that has apparent unique patterns of couplings or hard-breaking interactions in

the low-scale spectrum. Often times such couplings lead to a form of supersymmetry that is

harder to see at high-energy colliders, but have the advantage of solving some outstanding

problem, such as the flavor and CP violation problems of SUSY. It is this middle way that

we propose to study, and our specific target is the elimination of gaugino-sfermion-fermion

couplings. Many salient phenomenological features arise by invoking this idea. Furthermore

there are reasonable theoretical approaches that may be able to accomplish exactly this

needed pattern. That is our goal.
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Any approach that preferentially quenches gaugino-flavor couplings necessarily involves

the dynamics and/or transmission of supersymmetry breaking to the MSSM sector, since it

is only through SUSY breaking that relations between couplings among SM particles can

be disentangled from those involving superparticles. The conventional RG running only

modifies the differences between couplings logarithmically [1–3]. So one must do something

much more. One can imagine many different ways to split the couplings by much more

than the standard logarithmic amount, but the approach that we used to illustrative the

approach in this study is power-law running. Fast power-law running can be obtained if

some superparticles are involved in a strongly coupled conformal field theory (sCFT) and

obtain large anomalous dimensions (AD).

In this article, we study the possibility of employing fast power-law running that dif-

ferentiates between particles and their superparticles as an illustrative means by which to

quench gaugino-flavor interactions, thereby eradicating flavor and CP violation problems in

supersymmetry. We show that these problems can be solved automatically with a reasonable

energy range of power-law running.

In Sec. II, we give a brief review of the Nelson-Strassler mechanism in which power law

running through RGE is used to generate a hierarchy among the Yukawa couplings. In

Sec. III, we emphasize that the power law running does not require supersymmetry; nev-

ertheless, we present a general framework of split-coupling SUSY where large suppressions

on couplings such as sqaurk-gluino-quark are achieved. Although supersymmetry is not

necessary, it helps to control the calculability of the theory, especially the estimation of

anomalous dimensions as well as mass spectra of superparticles if an approximate SUSY

exists in the strongly coupled CFT. Thus, within that section, we consider a scenario where

the MSSM is embedded in an N = 2 SUSY theory and the strongly coupled CFT maintains

an approximate N = 1 SUSY orthogonal to that associated with the MSSM.

In Sec. IV, we go through a very detailed QFT description on the running of coupling

constants and show how our theory is different from the NS mechanism. Especially, we

demonstrate the differences between gauge couplings and their SUSY related couplings to

explain where exactly the differences in RG running come from.

A particular subtlety one may be worried about in our scenario is whether the squarks

can still be naturally around TeV in our setup since we break SUSY at the (higher) scale

where sCFT begins. We address this point in Sec. V, where we argue that the soft mass
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terms can be dramatically suppressed by RG running in the conformal region and are not

necessarily large. This is especially relevant if there is an approximate SUSY existing in the

strong CFT, which shows up in the N = 2 embedding. In this case, soft masses of squarks

are expected to be lower than the scale where sCFT ends, so they can be naturally small.

Neither constraints nor theory require the third generation gaugino-flavor couplings to be

quenched. In the power-law scheme that we consider this means that the third generation

squarks and slepton do not need to obtain large anomalous dimensions like the other two

generations. When large anomalous dimensions are allowed for first two generations but not

for the third, the couplings in different generations become split, but this is not the case

for the squark masses themselves as occurs in other split family supersymmetry models [4,

5]. Suppressing the first two generation couplings alone can avoid flavor and CP violation

constraints of supersymmetry, and is at least as beneficial from the naturalness point of

view as other approaches. In Sec. VI, we discuss naturalness implications. We also compare

split family SUSY and our scenario. We show that with the same level of fine tuning, the

suppression on flavor/CP problems can be more efficient in our scenario.

In Sec. VII, we present the detailed calculations on how much quenching is needed in

order to get around the constraints from flavor and CP violation measurements. In Sec.

VIII, we also discuss interesting phenomenological implications including collider physics

signatures as well as DM direct detections. At last in Sec. IX, we present a benchmark

scenario and explicitly demonstrate the amount of suppression to be expected for various

couplings.

II. NELSON-STRASSLER MECHANISM

Our goal is to quench gaugino-flavor interactions, and one mechanism by which this may

be possible is through coupling SUSY to a sCFT to initiate power-law running. Induced

power-law running from a sCFT has been used in the past to address the flavor problem

in related ways. Nelson-Strassler (NS) [6, 7] was one of the original approaches to fully

exploit this feature. They targeted the fermion mass hierarchy problem as well as flavor-

violating mixings in the squark/slepton soft SUSY breaking mass matrices and A-terms.

Our illustrative approach targets different parts of the theory, namely the gaugino-sfermion-

fermion interactions, but it utilizes similar CFT-coupling techniques as NS. Let us first
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review NS.

Consider the SM gauge group S times another gauge group G. We assume that G runs to

a sCFT at a high scale. Label SM particles as X , which are gauge singlets under G. Label

exotic particles as Z, which are charged under G and may be charged also under S.

When G runs to its fixed point as a sCFT, dim(X) > 1 since X are G-singlet operators.

One can model build to give large AD to the first two generations and small ones for the

third generation and Hu/Hd. Thus, near the fixed point, the SM Yukawa coupling yX1X2X3

is irrelevant for the first two generations and almost marginal for the third generation. This

induces power law suppression to the Yukawa couplings for the first two generations while

keeping the third O(1).

III. SPLIT COUPLING SUSY

The significant lesson so far is that large AD over a wide energy range, induced by a sCFT,

can generate large suppression hierarchies from small initial differences. This is simply due

to the anomalous dimension induced by sCFT, and it does not require SUSY. If the coupling

of a SUSY theory to the CFT does not preserve SUSY, large SUSY breaking effects can

occur as well that might ameliorate the flavor and CP violation problems.1

Let us consider the case where superparticles (q̃) get large AD while SM particles (q) do

not. The fast power law running can introduce a large hierarchy between two couplings that

were originally related by SUSY. In order to achieve such a scenario, we couple the MSSM

to a sector G′ differently for particles than superparticles. For example, q and q̃ can couple

differently to particles in G′. If q̃ and G′ form a sCFT at a particular energy scale, q̃ can

obtain large AD while q does not.

To be more specific, the Lagrangian can be formally written as

L ⊃ κOq̃OG′ + aκOqOG̃′ + ... (1)

Here ... includes the source of SUSY breaking. The couplings are defined schematically such

that if a = 1 supersymmetry is preserved; i.e., the quarks and squarks both couple to the G′

sector in a manner demanded by supersymmetry invariance. In that case, SUSY is preserved

1 Here we emphasize that such SUSY breaking effects can be induced by soft SUSY breaking terms, as we

will discuss in detail at the end of this section. SUSY is restored above a certain energy scale.
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in the MSSM and supersymmetry breaking is achieved by some other, perhaps traditional,

approach. This a = 1 limit reduces to the NS scenario. In our proposal, we are suggesting

a different limit, a≪ 1. This breaks supersymmetry and gives dramatically different AD to

squarks vs. quarks.

To be more illustrative, let us consider the squark-gluino-quark coupling in the La-

grangian. In the MSSM with preserved SUSY, the coupling between quark and gluon is

correlated with the coupling between squark-gluino-quark,

L ⊃ −iq†σ̄µ(∂µ − ig3A
a
µT

a)q −
√
2λ3(q̃

∗T aqg̃a + c.c.) (2)

i.e., λ3 = g3. When SUSY is broken, these couplings become different. In ordinary scenarios,

the difference is controlled by a logarithmic running. However if either the squark or gluino

gains large AD from a sCFT, q̃∗T aqg̃a becomes an irrelevant operator. Thus λ3 enjoys a

power law running. Similarly, the couplings between squarks/sleptons and electroweakinos

can also be suppressed by power law running.

One subtlety we want to emphasize is that the gauge couplings between superparticles

will not be power-law suppressed. This is guaranteed by gauge symmetry. One can confirm

this principle by absorbing the gauge coupling into the kinetic term of the gauge boson.

The interaction between the gauge boson and a particle is then directly extracted from the

particle’s kinetic term constructed from the gauge-coupling-less covariant derivative. The

covariant derivative maintains itself without alteration upon canonically normalizing the

particle’s kinetic term.

The above are the generic aspects that can give rise to our scenario. For the rest of this

section we give some additional comments about possible specific directions one may wish to

pursue to build a specific and complete model. These comments are outside of the mainline

of our present work, and the reader may wish to skip to the next section. However, we find

the richness of realization possibilities encouraging for this scenario and wish to make a few

remarks on them.

First, we imagine SUSY breaking only happens in a soft manner. More explicitly, SUSY

is well preserved in the UV and the splitting of SUSY-related couplings is induced after

SUSY breaking at a certain energy scale.

To begin with, there are a few examples where a non-SUSY CFT can be constructed.

One is the λφ4 theory in (4− ǫ) dimension, which has been used as an example in conformal

6



sequestering models [8]. Another class of non-SUSY CFTs have been conjectured in [9], mo-

tivated by the AdS/CFT correspondence. As we argued previously, conformal symmetry is

the key to introduce power-law running of particular couplings, while SUSY is not essential.

With these non-SUSY CFT concepts in mind, one may even build models in which super-

particles can be embedded after soft SUSY breaking and obtain large anomalous dimensions

during conformal region.

In contrast to the non-SUSY approaches, one benefit of a SUSY CFT is that the anoma-

lous dimension is associated with the R-charge of field. This makes the theory well under

control computationally. Here we present a model where an approximate SUSY can be

applied in order to control the theory while still generating the desired feature for Split

Coupling SUSY.

Let us embed the MSSM into N = 2 SUSY content. For example, a quark comes

with a hypermultiplet as (q, q̃, q′, q̃′). We label this sector as MSSM2. There are two

ways to split the hypermultiplet in terms of N = 1 SUSY. One is ({q, q̃}, {q′, q̃′}) which

is compatible with the SUSY generators of the MSSM. The other way is to group the

hypermultiplet as ({q, q̃′}, {q′, q̃}), which respects the SUSY generators in N = 2 also, but

whose N = 1 embedding is orthogonal to that of the MSSM. The interactions in N = 2

are highly constrained. We explicitly break N = 2 SUSY in MSSM2 to N = 1 SUSY by

Yukawa couplings in the superpotential. Nevertheless, the N = 2 SUSY particle contents

still remain.

Now we introduce another sector labeled G. Assume G has also N = 2 particle content

and the interactions within this section preserve N = 2 SUSY. Here we emphasize that

the N = 2 SUSY in sector G is not exact because at least gravity can mediate the N = 2

SUSY breaking effects from sector MSSM2 to sector G. However, one generically expects

such effects to be small since the running of dimensionless couplings is logarithmic. And the

N = 2 SUSY is still approximately preserved.2

Let us assume that there is a relevant operator introducing additional couplings between

MSSM2 and G sectors. However, this relevant operator only preserves the N = 1 SUSY

2 Our model is essentially a dimension deconstructed version of extra dimension model with N = 2 SUSY

being explicitly broken at fixed points of orbifolds.
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which is orthogonal to that of the MSSM .

Orel =MnOGOMSSM2
(3)

where n is a positive number which is determined by the dimensions of OG and OMSSM2
. For

example, OMSSM2
could be identified as a chiral supermultiplet consisting of {q′, q̃}, which

preserves the SUSY generator in N = 2 SUSY orthogonal to the SUSY generators of the

MSSM. Here we emphasize that SUSY is still a good symmetry at energy scales higher than

M because the operator in Eq. (3) is a relevant operator. From the viewpoint of sector G,

when the energy is below M , the approximate N = 2 SUSY is dramatically broken by this

relevant operator, but there is still an approximate N = 1 SUSY which is orthogonal to the

N = 1 SUSY of the MSSM . If (G + Orel) runs to a strongly coupled CFT at a scale not

far below M , the anomalous dimension of q̃ can be calculated by its R-charge under the

approximate N = 1 SUSY in sector G.

One may worry that although q̃ obtains a large anomalous dimension and its coupling to

quark and gluino is power law suppressed, q̃′ can remain untouched. Especially, if N = 2

SUSY is preserved in the MSSM2 sector, q̃′ − ψA − q has to appear, where ψA is a fermion

paired with a gaugino in the N = 2 gauge supermultiplet. However, as discussed above, N =

2 SUSY is not preserved by interaction terms inMSSM2. Such operators do not necessarily

appear or do not have couplings comparable to the strong gauge coupling. Further, q̃′ does

not directly couple to our Higgs bosons. Therefore its mass can be large and does not

generate large soft mass terms to Higgs doublets at 1 loop.

IV. QFT DESCRIPTION

Let us describe in more detail the underlying QFT picture for the suppression and split-

ting of couplings. We start with a simplified Lagrangian, writing explicitly only the terms

that we are interested in:

L ⊃ −1

4
F 2 − |(∂µ − igAµ)q̃L/R|2 − iq†L/R /DqL/R

−
√
2λq̃∗L/RqL/Rγ̃ − y

2
φqLqR + ... (4)

Here we have kept the squark gauge coupling, the Yukawa coupling from the superpotential,

and the interaction between squark-gaugino-quark. For simplicity, we consider a U(1) gauge
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coupling with charge one. Generalizing to non-abelian gauge symmetry is straightforward.

λ is equal to the gauge coupling g if SUSY is exact.

Now let us integrate out an energy shell and renormalize the Lagrangian,

L ⊃ −1

4
ZAF

2 − Zq̃L/R
|(∂µ − iZggAµ)q̃L/R|2

−iZqL/R
q†L/R /DqL/R −

√
2λZλq̃

∗
L/RqL/Rγ̃

−y
2
ZyφqLqR + ... (5)

Here ZA, Zq̃L/R
and ZqL/R

come from wavefunction renormalization. Zg, Zλ and Zy are from

1-PI renormalization of the interaction vertices. If a field obtains a large AD, its wavefunction

renormalization Zi is power-law enhanced, Zi ∼ ( 1
ǫi
)2 ∼ (Mc,b/Mc,e)

2γi . Here Mc,b(Mc,e) is

the beginning (ending) energy scales of the conformal regime. γi is the anomalous conformal

dimension.

The 1-PI vertex renormalization factors depend on the details of how strongly the G′

sector couples; it is assumed to be O(1) or larger. After canonically normalization,

L ⊃ −1

4
F 2 − |Dµq̃L/R|2 − iq†L/R /D qL/R

−
√
2λ(ZλZ

−1/2
q̃L/R

Z−1/2
qL/R

Z
−1/2
γ̃ )q̃∗L/R qL/Rγ̃

−y
2
ZyZ

−1/2
qL

Z−1/2
qR

Z
−1/2
φ φqLqR + ... (6)

For gauge coupling terms, the factors of wavefunction renormalization from matter fields

cancel precisely the 1-PI interaction vertex correction in the covariant derivative terms.

This is required by gauge symmetry. If SUSY is preserved, the cancelation also happens in

the squark-quark-gaugino vertex, i.e. Zλ = Zg ∼ ( 1
ǫi
)2, which guarantees that the coupling

constant λ is the same as the gauge coupling g at all scales.

In contrast, within the NS scenario, cancelation does not occur for the Yukawa vertex.

Appealing to the non-renormalization theorem, Zy = 1 is fixed. Nevertheless, wavefunction

renormalization introduces a power-law suppression on the Yukawa couplings as yq ∼ ǫqLǫqR.

Now let us turn to our scenario where the squark and quark couple differently to the sector

G′. If squark+G′ runs to a sCFT at a particular scale, the squark may obtain a large AD, i.e.

Zq̃ ∼ (1/ǫq̃)
2 ≫ 1. Since SUSY is broken, Zλ no longer has a rigid supersymmetric relation

with Zg. This disconnect is maximal if G′ does not directly couple to quarks and gauginos,

but does couple to squarks. This results in Zλ, Zq and Zγ̃ expected to be O(1), whereas

9



q q g q q g

FIG. 1: Here we show a few examples of Feynman diagrams where a strongly coupled CFT may

contribute at 1-loop. Double lines indicate large renormalization from the strongly coupled CFT.

If sCFT only couples to squarks, both the squark propagator and its gauge coupling vertex receive

large corrections, as shown in the first two diagrams. However, there is no large 1-PI vertex

correction to q̃ − q − g̃ vertex as shown in the third diagram.

Z
−1/2
q̃L/R

∼ ǫq̃L/R
. Thus, the only significant suppression factors in our theory arise from wave

function renormalization factors on squarks and sleptons, and possibly higgsinos also, as will

be discussed later. This leads to quenching of the gaugino-flavor interactions and possibly

also the higgsino-flavor interactions. The mismatch between couplings of quarks/leptons vs.

squarks/sleptons is schematically illustrated in Fig. 1.

The considerations outlined in this section enable us to define various options of spectra

for the masses of the minimal supersymmetric particles. Various benchmark possibilities

will be discussed in detail later in sec. IX.

V. SOFT SUSY BREAKING TERMS

It is also important to understand how the soft mass terms run while in the conformal

region. Naively, one would expect that the soft mass terms are large in our scenario because

the SUSY relations among couplings are broken at the beginning of the conformal region,

i.e. Ec,b. Especially, one would generically expect that the squark soft mass square is

quadratically sensitive to Ec,b. However, the running of soft terms is quite subtle in the

conformal region and highly depends on how theMSSM couples to the sCFT. Such running

can be estimated explicitly if the CFT has an approximate supersymmetry. The details are

studied in [7].

Let us take our example where theMSSM is embedded into an N = 2 SUSY framework,
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as discussed in Sec. III. In such a model, from the viewpoint of sector G, an N ′ = 1 SUSY,

orthogonal to that of MSSM, is still an approximate symmetry due to strong couplings,

and the running of soft terms can still be estimated in the context of SUSY. In [7], the

authors show that some particular linear combinations of soft masses can be suppressed

during RG flow in the conformal region, while others are not, depending on the residual

global symmetries when coupling the two sectors.

The argument behind this claim is the following. The soft SUSY breaking terms can be

combined with coupling constants into a supermultiplet. For example, a general form of

superpotential can be written as

W =
∑

s

ys
∏

i

(φi)
pis. (7)

One can form a vector supermultiplet whose lowest component is a function of ys, whose θ
2

component is related to the A-term and whose θ4 component is a linear combination of soft

mass terms of φi’s,

m2
s ≡

∑

i

pism
2
i . (8)

Due to supersymmetry, the beta functions of these three terms are related to each other.

It can be shown that [7], by requiring the conformal fixed point to be stable, the linear

combination of the soft mass terms will be suppressed dramatically through RG running. A

similar argument can be applied to gauge couplings as well in order to prove that certain

linear combinations, related to the gauge charges of the fields, of soft mass terms can be

naturally small after RG running,

m2
λ ≡ TG|M |2 − Tr m2

−2π + αTG
. (9)

HereM is the gaugino mass which has no quadratic sensitivity to Ec,b. On the other hand, if

there is an exact global symmetry preserved in the Lagrangian when coupling to the sCFT,

there is a particular linear combination of soft mass squares unaffected by RG flow. A more

detailed discussion on the running of soft terms can be found in Appendix B of [7].

The point of the discussion above is to show that the soft mass terms of squarks in our

scenarios are not necessarily large, i.e. not quadratically sensitive to Ec,b, thanks to the

approximate N ′ = 1 SUSY preserved in the sCFT. Meanwhile, flowing into the IR after the

conformal region, the soft mass terms run as normal. Since the SUSY-related couplings do
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not match anymore, one expects the soft mass squares to be at least quadratically sensitive

to the end of conformal region, i.e. Ec,e. Thus in order to have squark at O(TeV), we expect

E2
c,e to be at most 1 loop factor larger than squark soft mass squared, i.e. Ec,e ∼ O(10) TeV.

To make our discussion more clear, as well as to illustrate that a large anomalous dimen-

sion with suppressed soft mass term can actually be achieved, let us present a simple toy

model.3 We label the N ′ = 1 supermultiplet which contains MSSM squark as Φa
1, where a is

the SU(3)c index. We further introduce two N ′ = 1 chiral supermultiplets Φa
2 and Φ3. Both

fields transform as fundamental representation of a strongly coupled SU(2)s gauge group.

Further, Φ2 transforms as anti-fundamental representation of SU(3)c. At last, we introduce

a gauge singlet Φ4. A superpotential is introduced to couple Φi as

W = λ1Φ
a
1Φ

a
2Φ3 + λ2Φ

2
3Φ4 + λ3Φ

3
4. (10)

Note that the gauge coupling of SU(3)c is small compared to the strong SU(2)s, thus SU(3)c

index should be treated as a flavor symmetry index. From superpotential, the RG running

of λi implies three relations among soft mass terms according to Eq. (8),

ma2
1 +ma2

2 +m2
3 → 0

2m2
3 +m2

4 → 0

3m2
4 → 0 (11)

at Ec,e, where the superscript a is the SU(3)c index (not part of the exponent). At the

meanwhile, from the running of SU(2)s gauge coupling, according to Eq. (9), we have

3ma2
2 +m2

3 → 0 (12)

Now we see that the soft mass term of the squark in Φ1 is forced smaller during the RG

running, which indicates that the squark mass is not quadratically sensitive to Ec,b.

Now let us consider the strongly coupled SU(2)s. We have Nc = 2 and Nf = 4 which

indicates that it confines. 4 One can further use Seiberg duality to describe the dual theory.

3 We refer readers who are interested in a more detailed model building to [6]. The authors in that paper

presented multiple ways to achieve a realistic model with detailed MSSM field embedding in an analogous

context that can be utilized for our new application here.
4 Although this theory never reaches exact conformal fixed point, it is well-enough approximately conformal

in the IR, aka below Ec,b, for the anomalous dimension to be large to drive our wanted dynamics. One

can construct another (more complicated) theory that is strictly conformal in the IR, if desired, by adding

another two states in fundamental representation of SU(2)s.
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Especially, the binary Φ2Φ3 becomes a mesonic field in the magnetic theory. The R-charge

of the mesonic field is 2(Nf − Nc)/Nf = 1 which implies its conformal dimension as 3/2.

Thus Φ1 obtains an anomalous dimension as large as 1/2 during the conformal region.

In summary, we show that it is possible to realize a scenario where squarks are as light

as TeV while their couplings dramatically deviate from their SUSY related ones. Thus the

SUSY flavor/CP problems are resolved through the coupling splitting but not the mass

splitting, and our scenario is very different from the split SUSY scenario.

VI. THE FIRST TWO GENERATIONS VERSUS THE THIRD

If squarks get large anomalous dimensions during the conformal region, all couplings

involving squarks, such as squark-gluino-quark or squark-higgs quatic couplings, dramati-

cally deviate from its SUSY required values. Thus the cancelations among contributions to

higgs soft mass terms fail, and fine tuning becomes a concern. In particular, the mis-match

on coupling constants starts at the scale Ec,b. The third generation quarks, especially top

quark, have relatively large Yukawa couplings to the higgs boson. If stop gets large anoma-

lous dimension, the corrections to higgs soft mass terms come in at 1-loop level. Given

the current status on stop and gluino searches at the LHC, O(1) ∼ O(10)% fine tuning is

already necessary in the MSSM [10]. If we take that as a benchmark point, Mc,b can only

be as large as O(1) ∼ O(10) TeV. This is phenomenologically unacceptable due to unseen

exotic colored resonances or unseen large deviations of precision electroweak measurements.

Fortunately, SUSY flavor/CP problems are mainly induced by the mixing among the

first two generation squarks. Thus one attractive scenario is to only give large anomalous

dimensions to the first two generation squarks, while keep the third generation weakly cou-

pled to the strong sector 5. The leading contributions to higgs soft mass terms appear at

2-loop level through electroweak gauge couplings. Again, by requiring less than O(10)% fine

tuning, Mc,b is required to be at most O(100) TeV. This result is comparable to that from

the naturalness concerns in split family SUSY because the scale where coupling constants

are different by O(1) is analogous to the scale where such super-particles are removed in

split family SUSY models.

5 We envision giving the same anomalous dimension to all superparticles within each generation in order

to avoid 1-loop quadratic sensitivities from D-terms.
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It is interesting to compare the efficiencies to resolve the flavor/CP problems in our

mechanism with split family SUSY where the first two generations of squarks are raised to

O(10) ∼ O(100) TeV. In the language of effective operators, squark masses are identified

as the suppression scale of the higher dimension operators responsible for flavor changing

or CP violating processes. For example, a dimension 6 operator is proportional to 1
m2

q̃
. In

split family SUSY, that is identified to be O(10) ∼ O(100) TeV. On the other hand, in our

scheme, the suppression scale is much lower, e.g. mq̃ ∼ O(1) TeV. However, as we will show

in the next section, the diagrams which generate such higher dimension operators may have

a high power dependence on coupling constants. For example, a box diagram generating

∆F by two units is proportional to the fourth power of the coupling constants. Thus the

efficiency on suppressing the flavor changing processes can be much higher in our scheme

than simply raising superparticles’ masses in split family SUSY.

VII. REMEDYING THE SUSY FLAVOR/CP PROBLEM

The primary motivation of our work is to suppress the flavor and CP problems of super-

symmetry via quenched gaugino-flavor couplings which can be accomplished, for example,

by power-law suppressions of squark/slepton couplings. We first review the constraints and

then apply those constraints to our scenario and show that reasonable parameters lead to

safe phenomenology.

Flavor and CP measurements put stringent constraints on the parameter space in super-

symmetry [11]. All these constraints can be characterized by flavor off-diagonal soft SUSY

breaking mass terms.

Let us first focus on hadronic systems. There are two classes of processes, characterized

by the change of flavor number, i.e. ∆F = 1 or 2.

∆F = 2 processes can be described by dimension 6 operators, e.g.

O =
1

Λ2
(d̄Lγ

µsL)(d̄LγµsL). (13)

These are induced by a box diagram with four squark-gluino-quark vertices. Since the flavor

number is changed by 2, we need at least two insertions of flavor off-diagonal soft mass

elements. Thus the suppression scale of such operators scales as

1

Λ2
∼ λ4

(δaij)
2
AB

m2
SUSY

(14)
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(δaij)AB =
(ma

ij)
2

AB

m2

SUSY
, assuming all flavor-diagonal squark masses and gluino mass equal to

mSUSY for simplicity. {A,B} label left/right squarks, {a} indicates up/down type, {i, j}
are generation indices. We also explicitly write the dependence on squark-gluino-quark

couplings (λ), without specifying flavors – flavor violations are all embedded in the δij

factors. If λ is much smaller than the gauge coupling g3, which power-law running can

accomplish (λ ∼ ǫq̃g3), the constraints from flavor/CP can be weakened.

Assuming flavor universality, the strongest constraints on ∆F = 2 processes are from

from K − K̄ mixing. This system also manifests a CP-violating phenomenon characterized

by the parameter ε. We suppress all indices of δ assuming all (δaij)AB are comparable and

complex. From K − K̄ system measurements, constraints become

(

λ

g3

)2

|Re(δ)| < 10−3
( mSUSY

500 GeV

)

(

λ

g3

)2

|Im(δ)| < 10−4
( mSUSY

500 GeV

)

. (15)

If λ
g3

is smaller than 10−2, which is easily accomplished by our power-law running scenario,

one can have O(1) flavor mixing with TeV scale squarks.

For ∆F = 1 processes, both box diagrams and penguin diagrams contribute. For illus-

tration, we show one operator for each kind:

Obox =
(d̄Lγ

µsL)(q̄LγµqL)

Λ2
box

;Open =
d̄Lσ

µνsRFµν

Λpen

. (16)

Since ∆F = 1, one only needs one flavor-changing mass insertion in the loop. Thus we have

1

Λ2
box

∼ λ4
(δaij)AB

m2
SUSY

. (17)

Penguin diagrams have subtlety on chirality. Depending on whether the chirality is changed

in the soft mass insertion, the operator effectively is either dimension 5 or 6:

1

Λpen
∼ c1λ

2
(δaij)AAmq

m2
SUSY

+ c2λ
2
(δaij)LR

mSUSY
. (18)

The strongest constraints on ∆F = 1 processes come from a CP-violating measurement

in Kaon system, ε′/ε. If the chirality is not changed by a soft mass insertion, i.e. by (δaij)AA,

the box and penguin contributions tend to cancel with each other when λ = g3. However

the box diagram has a different λ dependence from that of the penguin diagram, and when

λ≪ g3 the penguin diagrams always dominate.
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Assume all δ’s are comparable complex numbers,we have

(

λ

g3

)2

|Im(δ)AA| < 10−1
( mSUSY

500 GeV

)2

(

λ

g3

)2

|Im(δ)LR| < 10−5
( mSUSY

500 GeV

)

. (19)

When mSUSY is O(TeV), if λ
g3
< 3× 10−3, δ can be O(1).

Flavor-changing lepton decays, ℓi → ℓj +γ, especially muon decay, impose constraints on

the leptonic sector. Assuming ml̃ ∼ mγ̃ ∼ mSUSY ,

(

λ′

e

)2

|Im(δ)AA| < 10−2
( mSUSY

100 GeV

)2

(

λ′

e

)2

|Im(δ)LR| < 10−6
( mSUSY

100 GeV

)

. (20)

λ′ is the slepton-photino-lepton coupling. If λ′

e
< 10−3, one can get around the muon decay

constraint with O(1) mixing in the slepton soft mass matrix, even if the slepton and photino

are as light as 100 GeV.

Finally, the flavor diagonal soft mass matrix, i.e. (δii)LR, can be strongly constrained by

radiative mass corrections and electric dipole moments.

The radiative mass corrections scale as

∆mq ∼ λ2mSUSYRe(δ
q
ii)LR

∆ml ∼ λ′2mSUSYRe(δ
l
ii)LR. (21)

mSUSY refers to the gluino and photino masses for the quark and lepton mass corrections re-

spectively. The strongest constraint comes from the first generation. Requiring the radiative

masses to not exceed the quark/lepton mass, one gets

(

λ

g3

)2

Re(δq11)LR < 2× 10−3

(

500 GeV

mSUSY

)

(

λ′

e

)2

Re(δl11)LR < 8× 10−3

(

100 GeV

mSUSY

)

. (22)

The electric dipole moments of the neutron and electron scale as

dq
e

∼ λ2
Im(δq11)LR
mSUSY

;
de
e

∼ λ′2
Im(δl11)LR
mSUSY

. (23)
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The constraints are,

(

λ

g3

)2

Im(δq11)LR < 3× 10−6
( mSUSY

500 GeV

)

(

λ′

e

)2

Im(δl11)LR < 4× 10−7
( mSUSY

100 GeV

)

. (24)

If δ’s are O(1) complex numbers, one needs ( λ
g3
) or (λ

′

e
) smaller than O(10−3) for light

squarks and sleptons, which are readible accessible with power-law running suppressions.

VIII. SIGNATURES IN PHENOMENOLOGY

A. Collider signatures

One interesting phenomenological consequence is its unique collider signatures. First,

the production of superparticles are not dramatically suppressed because all squarks and

the gluino have unsuppressed gauge couplings. The production channels of squark/gluino

are mainly through gluon fusion and qq̄ → g∗, whereas quark-gluino associated production

is suppressed.

We assume the LSP is a neutralino which has suppressed couplings to the first two

generations of squarks. We also assume all squarks have comparable masses for simplicity.

When the gluino is heavier, the squark directly decays to neutralino. Interestingly the

dominant decay channel would be through mixing to the third generation squarks, ũ → t̃→
tχ̃0, where χ̃0 is a neutralino. Thus the signature would be mainly two third-generation

quarks plus missing energy (MET). If two gluinos are produced, the signature would be four

bottom/stop quarks plus MET.

If squarks are heavier, gluino production is dominant. They will decay through off-shell

squarks that will in turn produce four third-generation quarks plus MET. If squarks are

produced, there can be six third-generation quarks plus MET. However, it is possible that

the stop/sbottom-gluino-top/bottom vertices receive a stronger suppression than those with

neutralino, squarks then would decay to neutralino without passing through a gluino. The

detailed signatures depend on the UV model. Nevertheless, the main theme is clear: the

preponderance of third-generation quarks and leptons accompanied by missing energy.
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B. Dark matter and direct detection

In the MSSM, the lightest neutralino is a good candidate for DM. At tree level, they

can interact with nucleons through t-channel higgs exchange, t-channel Z exchange and s-

channel squark exchange, which potentially allows for their discovery in suitable laboratory

detectors.

The mixture among the neutralino interaction eigenstates to form mass eigenstates orig-

inates from their couplings to higgsinos, i.e. h†h̃b̃ and h†h̃w̃. If the mixing is small, a

neutralino barely couples to the Higgs and Z bosons. If either higgsinos or the gauginos

(bino/wino) obtain large AD, the mixing can be highly suppressed. Thus it is quite generic

to expect the lightest neutralino to be almost a pure state. If the LSP is a higgsino and all

neutralinos have mass O(TeV), the suppression factor needs to be no stronger than O(10−2),

in order for the higgsino to not be a Dirac fermion from the DM detection point of view.

However, a pure state like this creates experimental detection challenges. In particular, the

mixing is small even when the bino, wino and higgsino have comparable masses, and so DM

detection via Higgs or Z exchange is not effective method to problem the theory.

s-channel squark exchange may also induce scattering between DM and nucleons. How-

ever, a strongly coupled CFT can suppress such couplings efficiently. The conclusion remains

that the strong constraints on SUSY from lack of direct detection of DM do not apply here.

IX. COUPLING HIERARCHIES AND BENCHMARK SCENARIOS

Let us briefly summarize the physics effects introduced by the split coupling scenario.

For simplicity, we assume the strongly coupled sector does not introduce large 1-PI vertex

renormalization except for gauge vertices. After canonical normalization, power-law sup-

pression factors to non-gauge vertices arise from the external leg corrections, which include

squarks, sleptons and Higgsinos. We identify these factors ǫq̃, ǫℓ̃, and ǫh̃, all of which are

ǫ ≪ 1. However, we will assume that third generation squarks and sleptons do not receive

large power-law suppression factors, ǫt̃,b̃,τ̃ ∼ 1. This choice is not necessary for the viability

and unique attractiveness of the theory; however, it is allowed experimentally due to the

relatively weak flavor bounds on third generation processes and does not exacerbate the

naturalness problem.
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Here we write a few examples of how the vertices are altered:

h2ℓ̃2 → (ǫ2
ℓ̃
)h2ℓ̃2; q̃g̃q → (ǫq̃)q̃g̃q; hh̃w̃ → (ǫh̃)hh̃w̃, (25)

where we have ignored Lorentz indices, etc. Other interactions are not suppressed in our

approach, most notably hf̄f (where f = q, ℓ, ν) and all gauge interactions arising from

covariant derivative interactions, such as Aµf̄γ
µf , Aµf̃

∗∂µf̃ , etc. Furthermore, as we have

discussed earlier, one is likely to be able to build the soft supersymmetric masses to obtain

any value wanted. For this reason, we view them as unconstrained parameters from the

theory point of view, which enables one freely to pursue spectra that minimize the finetuning

of electroweak symmetry breaking, for example, and more importantly suggests that all

mass scales and hierarchies should be considered when constructing benchmark models and

searching for experimental signatures of the scenario.

X. DISCUSSION

In this article, we have discussed the possibility of quenching gaugino-flavor and higgsino-

flavor interactions for the purposes of remedying the flavor problem of SUSY. There are po-

tentially many different ways to achieve this phenomenological aim. For illustrative purposes

we have considered the prospect of coupling the MSSM to a SUSY-breaking sector G′ which

flows to a sCFT at a particular energy scale. The SUSY flavor/CP problems are naturally

solved by quenching the gaugino-flavor couplings. Such split coupling models are analogues

to split SUSY or split family models, depending on whether the third generation squarks

also get large anomalous dimensions. However, instead of having a split mass spectrum, it

is the SUSY-related couplings that develop large separations. Neutralino DM is likely to be

a pure state, whose direct detection signals are suppressed.

If only the first two generations of squarks get large anomalous dimensions, the collider

signatures are similar to those in the natural SUSY approach, where third generation quarks

and leptons dominate the final state, but with different signal rates. As for the SM fermion

mass hierarchy, it can be solved separately by applying the NS-mechanism. In that case,

the superparticle couplings would be further suppressed. Finally, it is also interesting to

consider the suppression of R-Parity violating vertices through a similar mechanism. We

leave the details of this possibility for future study.
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