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Abstract

We present a dynamical cosmological solution that simultaneously accounts for
the early inflationary stage of the Universe and solves the supersymmetric little
hierarchy problem via the relaxion mechanism. First, we consider an inflationary
potential arising from the D-term of a new U(1) gauge symmetry with a Fayet–
Iliopolous term, that is independent of the relaxion. A technically natural, small
U(1) gauge coupling, g . 10−8, allows for a low Hubble scale of inflation, HI .
105 GeV, which is shown to be consistent with Planck data. This feature is then
used to realize a supersymmetric two-field relaxion mechanism, where the second
field is identified as the inflaton provided that HI . 10 GeV. The inflaton controls
the relaxion barrier height allowing the relaxion to evolve in the early Universe and
scan the supersymmetric soft masses. After electroweak symmetry is broken, the
relaxion settles at a local supersymmetry-breaking minimum with a range of F -term
values that can naturally explain supersymmetric soft mass scales up to 106 GeV.



1 Introduction

A natural solution to the hierarchy problem in the Standard Model (SM) has motivated
the development of particle physics for decades with predictions of new states near the
electroweak scale. However, to date, the experimental results at the Large Hadron Collider
(LHC) have begun to call into question of whether naturalness is a relevant guide for
physics beyond the Standard Model. For example, in supersymmetric (SUSY) models,
colored superpartner masses need to be heavier than the TeV scale to evade LHC searches
[1–3], exacerbating the tuning, while constraints on other models addressing naturalness
(such as composite Higgs models [4]) lead to a similar conclusion.

Recently a new approach to naturalness, that evades the LHC constraints, uses the
idea of cosmological relaxation [5] (for previous studies with a similar idea, see Refs. [6–8]).
In this process, an axion-like particle (the “relaxion”) associated with a shift symmetry,
is coupled directly to the Higgs field during a nearly de-Sitter phase of the Universe. This
coupling contributes to the mass-squared of the Higgs field, since initially the relaxion
has a very large field value. During the cosmological evolution of the relaxion, caused by
an explicit breaking of the shift symmetry, the field value changes and the Higgs mass-
squared is reduced. Eventually the Higgs mass-squared reaches a critical value where it
flips sign, triggering electroweak symmetry breaking with the Higgs field developing a
vacuum expectation value (VEV). The generation of the Higgs VEV then back reacts on
the relaxion potential, causing the relaxion to stop at a local minimum. The slope of
the relaxion potential, which is proportional to the shift-symmetry breaking parameter,
can then be chosen so that the Higgs VEV is naturally set to be at the weak scale. This
provides a technically natural solution to the hierarchy problem.

However, the relaxion process itself is not a completely satisfactory explanation of
the hierarchy problem. First, it can only address radiative corrections to the Higgs mass
that depend on a cutoff scale which is generally much lower than the Planck scale [5].
The hierarchy problem is therefore only partly alleviated. Second, it requires a very low
inflation scale in order to naturally realize a weak scale Higgs VEV. However low-scale
inflation models often introduce some new tuning which is not solved by the relaxion
process [9]. The first problem is not a concern if the relaxion process is instead embedded
into a supersymmetric framework. Supersymmetric models with soft mass scales near
the PeV scale (106 GeV) are meso-tuned, but can easily accommodate a 125 GeV Higgs
boson mass [10–17]. Thus if the relaxion actually scans the supersymmetric soft masses,
then the cutoff scale in the relaxion mechanism can be identified with the soft mass scale.
This naturally provides an explanation for the tuning using just the relaxion [18], or
else a two-field relaxion mechanism [19] can be generalized to supersymmetry [20], which
preserves the QCD axion solution to the strong CP problem. For other recent studies on
the relaxion mechanism, see Refs. [21–33].

In this paper we address the second problem in the context of D-term inflation [34–37]
and identify the second field in the two-field relaxion mechanism with the inflaton. In
order to realize an inflationary model with a very low Hubble scale [38], the potential
must be very flat or else the density perturbations will not satisfy the cosmic microwave

1



background (CMB) constraints [39]. One way of accomplishing this is to take small-field
inflation and tune the initial condition so that the potential is very flat. Although this
may work, it is not a very appealing approach to inflation since it is difficult to justify why
the initial value of the field is so tuned. Furthermore, when applied to relaxion models,
this tuning destroys the naturalness of the relaxion process and the tuning of the Higgs
sector has merely been transferred to the inflationary sector.

Large field inflation, on the other hand, is in general fairly insensitive to the initial field
value. However, it is difficult to naturally obtain a sufficiently flat potential to realize the
density perturbations if the scale of inflation is too low. A model that combines low scale
inflation with the insensitivity to initial conditions, typical of large field inflation, can be
found in supersymmetry. In D-term inflation [34–37], the Fayet–Iliopoulos (FI) term of
some new U(1) gauge symmetry is responsible for inflation, and therefore at tree-level
the potential is completely flat. Although this flatness is broken at the loop-level, it will
provide the right conditions to obtain low-scale inflation. We will show that a successful
model of D-term inflation occurs for a U(1) gauge coupling, g ' 7× 10−9, corresponding
to a Hubble scale HI ' 105 GeV. Such a low value of g is technically natural since
radiative corrections vanish in the limit g → 0. With this low Hubble scale, CMB modes
are produced approximately 39 e-folds before the end of inflation (contrary to the 50–60
e-folds required in typical models). Within D-term inflation this produces a spectral tilt
in agreement with observations. However after inflation ends, there is the possibility that
cosmic strings will form because the U(1) phase has different values across different patches
in the sky. This problem can be evaded if one considers a dynamical generation of the
FI term [40], where the U(1) gauge symmetry is broken during inflation, by an amount
that negligibly affects the inflationary evolution. This is achieved via a superpotential
coupling which induces a spatial alignment of the phase of the U(1) breaking field that
prevents the formation of topological defects at the end of inflation. Finally, we show that
the fields responsible for this breaking, together with two additional U(1) singlets, allow
for a sufficiently fast conversion of the inflationary energy to Standard Model fields (a
decay through the D-term potential is not fast enough, due to the smallness of the gauge
coupling g).

With a naturally flat, low-scale inflation model, the inflaton in D-term inflation can
now be identified with the second field (the “amplitudon”) of the supersymmetric two-field
relaxion model [20]. In this model the inflaton is coupled to the relaxion and controls the
barrier height of the relaxion potential, and also helps to avoid a potential isocurvature
problem in the original two-field relaxion model. The slow roll evolution of the inflaton
periodically eliminates the relaxion barrier, allowing the relaxion to move in a step-wise
fashion until, after electroweak symmetry is broken, it is eventually trapped at a local
supersymmetry-breaking minimum. A quadratic potential with shift-symmetry breaking
mass parameter, mS controls the slope of the relaxion potential. For a soft mass scale,
mSUSY = 105 GeV this parameter is constrained to be 10−9 . mS . 10−6 GeV, provided
that the Hubble scale satisfies HI . 10 GeV. This leads to a model that simultaneously
incorporates low-scale D-term inflation consistent with Planck data, and solves the little
hierarchy problem in supersymmetric models, while preserving the QCD axion solution
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to the strong CP problem.
The plan of the paper is as follows. In Section 2 we present a phenomenologically

viable D-term inflation model with a low Hubble scale that is consistent with the CMB
data, does not form cosmic strings, and has a successful reheating to Standard Model
fields. This low-scale inflation model is then combined with the supersymmetric relax-
ion mechanism in Section 3. In Section 4, we summarize our results and provide some
concluding remarks. The paper ends with two Appendices that contain further details
of our model. In Appendix A we present the details of the dynamical generation of the
D-term, which provides the breaking of the U(1) symmetry during inflation, preventing
the formation of cosmic strings, and helps to facilitate reheating. Other details concerning
the quantum and thermal corrections arising from the U(1) symmetry breaking are then
discussed in Appendix B.

2 D-term Inflation

2.1 D-term inflation model

Let us begin by reviewing theD-term inflation model [34–37] in light of recent cosmological
observations. The basic model of D-term inflation contains three chiral superfields, T , Φ+,
and Φ− which have charges of 0, +1, and −1 under a U(1) gauge symmetry, respectively.
This model takes advantage of the FI term of the U(1) gauge symmetry, with which the
auxiliary field of the U(1) gauge field is given by

D = g
(
|φ+|2 − |φ−|2 − ξ

)
, (1)

where g is the U(1) gauge coupling, ξ is the FI term, and φ± are the scalar components
of Φ±. We take ξ > 0 in what follows. The superpotential for this model is

W = κTΦ+Φ− , (2)

where κ is a dimensionless parameter, which is taken to be real and positive. We write
the scalar components of T as

T =
1√
2

(τ + iσ) + . . . . (3)

In the following discussion, we regard σ as the inflaton and consider the case where
|σ| � |τ |.1 The tree-level scalar potential for this model is then

Vtree = κ2

[
τ 2 + σ2

2

(
|φ−|2 + |φ+|2

)
+ |φ+φ−|2

]
+
g2

2

[
|φ+|2 − |φ−|2 − ξ

]2
. (4)

1The imaginary part is chosen to be the inflaton so that when the relaxion mechanism is discussed,
it can more readily be identified with the amplitudon [20], i.e., the second field in the two-field relaxion
scenario [19].
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This potential has a SUSY-preserving minimum at τ = σ = φ− = 0 and |φ+| =
√
ξ with

Vtree = 0.
If σ has a large field value, however, we can find a local minimum with Vtree > 0 at

which φ+ = φ− = 0, and the charged fields φ± have a mass squared

m2
± =

κ2σ2

2
∓ g2ξ . (5)

This local minimum becomes unstable when |σ| is below the critical field value

σc ≡
g

κ

√
2ξ . (6)

Thus, the initial field value of σ must satisfy σ � σc. As long as this condition is satisfied,
the initial value of the inflaton field is unimportant, like all large-scale inflation models.
At this local minimum, the tree-level potential for σ is completely flat: Vtree = g2ξ2/2.

However, in order to realize a phenomenologically acceptable model, the slope of the
inflaton potential must be non-zero. Fortunately, the correct slope is provided by the
quantum corrections encoded in the Coleman–Weinberg term [41]. Since we will consider
the case σ � σc, we can expand the Coleman–Weinberg potential keeping the leading
order term in g2ξ/(κ2σ2). In this limit, we find that the potential is well approximated
by

V ' g2ξ2

2

[
1 +

g2

8π2
ln

(
κ2σ2

2Q2

)]
, (7)

where Q is a renormalization scale. Using this potential, the slow-roll parameters are
found to be

ε ≡ M2
P

2V 2

(
∂V

∂σ

)2

' g4

32π4

(
MP

σ

)2

, (8)

η ≡ M2
P

V

∂2V

∂σ2
' − g2

4π2

(
MP

σ

)2

, (9)

where MP = 2.4×1018 GeV denotes the reduced Planck mass. At this point, it is already
clear that ε� |η|, which we will later see is important for realizing an acceptable inflation
model in this context.

2.2 CMB constraints on D-term inflation

To determine the value of ε and η, which are constrained by the CMB data, we need to
obtain the value of σ at the time when the CMB modes left the horizon. This value can
be determined in terms of the number of e-folds of inflation that occurred after the CMB
was set,

NCMB =

∫
HI dt =

∫ σCMB

σc

dσ

MP

√
2ε

=
2π2

g2M2
P

(
σ2

CMB − σ2
c

)
, (10)
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where HI is the Hubble parameter during inflation, and σCMB and σc are the field values
when the CMB was set and inflation ends, respectively. We find that for κ � 10−2, η is
suppressed and ns − 1 ≡ d lnP/d ln k is too large (where P is the scalar power spectrum
and k is the wavenumber). We therefore assume that κ is large enough so that σCMB is
not near the critical point σc. In this case, σCMB � σc, and thus the expression (10) can
be solved to give

σCMB '
gMP

π

√
NCMB

2
. (11)

Notice that if g � 1, we do not need super-Planckian excursions for inflation to work. As
we will show below, low-scale inflation requires g to be very small and inflation occurs for
field values well below MP .

Equation (11) allows us to determine the slow-roll parameters in terms of NCMB:

εCMB =
g2

16π2

1

NCMB

, ηCMB = − 1

2NCMB

. (12)

Using these expressions, the spectral tilt is then found to be

ns − 1 = 2ηCMB − 6εCMB ' 2ηCMB = − 1

NCMB

, (13)

where we can neglect εCMB since it is loop suppressed relative to ηCMB. As can be seen
from this expression, ηCMB, and therefore ns, only depends on NCMB. Typically for large-
scale inflation the number of e-folds is ' 50–60. For this model, this would give a spectral
tilt ns & 0.98, which is already excluded by current Planck results [42]. However, since
we now consider low-scale inflation, NCMB is modified. In fact, the number of e-folds of
inflation after the CMB is set, is significantly altered if the scale of inflation is much lower
than that assumed in ordinary large-scale inflation models.

Let us determine the number of e-foldings after the CMB is set for low-scale inflation.
The number of e-foldings Ne(k) which corresponds to a wave-number k is defined by

eNe(k) ≡ aend

ak
, (14)

where aend is the value of the scale factor at the end of inflation, and ak ≡ k/HI . Then,
we obtain [43–45]

Ne(k) = − ln k + lnHI + ln

(
aend

areh

)
+ ln

(
areh

aeq

)
+ ln

(
aeq

a0

)
= − ln k + lnHI +

1

3
ln

(
ρreh

ρend

)
+

1

4
ln

(
ρeq

ρreh

)
+ ln

(
aeq

a0

)
, (15)

where ρend, ρreh, ρeq are the energy densities at the end of inflation, at the end of reheating,
and at the time of matter-radiation equality, respectively; aeq and a0 are the scale factors
at the time of matter-radiation equality and the present Universe, respectively. In this
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derivation, we have assumed instantaneous reheating with a sudden transition from matter
to radiation domination (where the matter domination is due to the coherent oscillations
of the field φ+ before it decays;2 changes in the thermalization during reheating modify
the value of Ne(k), as discussed in [46]). This radiation-dominated Universe persists until
the time of matter-radiation equality. Note that this estimation suffers from uncertainty
that originates from the assumption on the cosmological history; for instance, we obtain
a smaller Ne(k) if there is an additional matter-dominated period between reheating and
Big-Bang Nucleosynthesis.

Now we set k equal to the default pivot scale taken by the Planck collaboration [42],
k = 0.05 Mpc−1. We then obtain

NCMB ≡ Ne(k = 0.05 Mpc−1) ' 38.9 +
1

3
ln

(
HI

105 GeV

)
+

1

3
ln

(
ρ

1/4
reh

100 GeV

)
, (16)

where ρreh should be understood as the energy density at the time at which the equation of
state of the plasma formed at reheating becomes w = 1/3. We also note that we can dis-

regard the very small variation of the Hubble parameter, and thus fix HI ' ρ
1/2
end/(

√
3MP )

at Ne = NCMB.
Using the expression (16) for the number of e-folds after the CMB is set and the

expression for the spectral tilt in Eq. (13), we show in Fig. 1 the contours of the spectral
tilt as a function of the reheating energy density and Hubble parameter. The blue area in
this figure depicts the Planck+BICEP2+Keck Array combined 1σ range for the spectral
tilt [47]. The limit obtained from only the Planck TT+lowP [42] data, extends the allowed
1σ region into the pink area. The entire parameter space shown in Fig. 1 falls within the
2σ error bands of both results. The gray shaded region is theoretically excluded since
ρreh exceeds the energy density of the inflation potential. We thus find that the D-term
inflation model, with a low Hubble scale HI . 105 GeV, can actually explain the observed
value of ns with a sufficiently high (& 100 GeV) reheating temperature for baryogenesis.

Now that we have seen that an acceptable spectral tilt can be realized for low-scale
inflation, we next need to verify that this model can generate cosmological perturbations
of the right amplitude. The size of the cosmological perturbations are determined by the
power spectrum which is related to the inflation scale through

As '
V

24π2M4
P εCMB

' ξ2

3(1− ns)M4
P

, (17)

where we have used the expression for εCMB in Eq. (12). Therefore, the observational
value of As determines

√
ξ:√

ξ ' 9.0× 1015 GeV ×
(

1− ns
0.03

) 1
4
(

As
2.1× 10−9

) 1
4

. (18)

The gauge coupling g is determined from the Hubble parameter during inflation via the
relation

3M2
PH

2
I '

g2ξ2

2
, (19)

2As we discuss later, this field carries most of the inflationary energy right after inflation.
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> ρ

end

Figure 1: A plot of the reheating temperature (more precisely, ρ
1/4
reh ) as a function of the

Hubble parameter, HI , for various contours of ns (0.975, 0.97, and 0.965 from top to
bottom, which correspond to NCMB = 40, 33.3, and 28.6, respectively). The blue area
shows the 1σ range given by the Planck+BICEP2+Keck Array combined results [47]. If
one considers only the Planck TT+lowP result [42], also the pink area is included at 1σ.
The gray shaded region is theoretically excluded since ρreh exceeds the energy density of
the inflation potential.

which, using (18), becomes

g '
√

6
MPHI

ξ
' 7.4× 10−9 ×

(
HI

105 GeV

)(
1− ns
0.03

)− 1
2
(

As
2.1× 10−9

)− 1
2

. (20)

Note that this very small value for g is technically natural since the gauge coupling
quantum corrections vanish in the limit g → 0. This means that a small gauge coupling
at a high energy scale will remain small at low energies, and there is no need to tune the
coupling against radiative corrections.

Finally, we study the mass spectrum of this model after the U(1) gauge symmetry is
spontaneously broken. After inflation, φ+ develops a VEV of 〈φ+〉 =

√
ξ. This causes

T and Φ− in the superpotential (2), to form a vector-like mass term with a mass, κ
√
ξ.

Notice that since 〈Φ+〉 does not break supersymmetry, the superfield description still
holds. As a consequence, the scalar and fermionic components of T and Φ− have an
identical mass of κ

√
ξ. On the other hand, Φ+ is absorbed by the U(1) gauge vector

superfield to form a massive vector superfield with a mass of

mZ′ = g
√

2ξ = 9.4× 107 GeV ×
(

HI

105 GeV

)(
1− ns
0.03

)− 1
4
(

As
2.1× 10−9

)− 1
4

. (21)
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More specifically, a massless Nambu–Goldstone boson that originates from φ+ is absorbed
by the U(1) gauge boson via the gauge interaction, while the massless fermionic component
of Φ+ combines with the U(1) gaugino via the gaugino interaction to form a massive
Dirac fermion. The radial component of φ+ acquires a mass, g

√
2ξ, which is required by

supersymmetry to form a massive vector superfield. As a result, after inflation, we have
a vector-like chiral superfield with a mass of κ

√
ξ and a massive vector superfield with a

mass of mZ′ = g
√

2ξ.

2.3 Cosmic Strings

2.3.1 Cosmic String Problem

One complication of D-term inflation is the generation of cosmic strings after inflation
ends. When the U(1) symmetry is broken, the phase of the U(1) breaking field takes
different values in different patches of the sky. This leads to the formation of cosmic strings
[48, 49]. Since the U(1) symmetry is broken at the end of inflation, these cosmic strings
contribute to the CMB anisotropies, and thus are stringently constrained by the CMB
data [50–55]. The contribution of cosmic strings to the CMB angular power spectrum

C
(str)
` is approximately given by

`(`+ 1)C
(str)
` = O(100)× T 2

CMB(Gµ)2 , (22)

where TCMB is the CMB temperature, G is the gravitational constant, and µ is the mass
per unit length of the string, which is given by3

µ = 2π〈φ+〉2 = 2πξ . (23)

Therefore, in our model, the size of Gµ is predicted from Eq. (18) to be

Gµ ' 3.4× 10−6 ×
(

1− ns
0.03

) 1
2
(

As
2.1× 10−9

) 1
2

. (24)

On the other hand, the Planck 2015 data [42] gives a severe bound on this quantity:
Gµ < 3.3×10−7. This clearly shows that the minimal D-term inflation model is disfavored
due to the formation of cosmic strings.4

There are several proposed ways to solve this problem, however, it is difficult to im-
plement many of them in the context of low-scale inflation. One possible solution [50] is

3As discussed in Sec. 2.2, the masses of the scalar boson and the U(1) gauge boson are equal, and
thus the cosmic strings that are generated after the U(1) symmetry breaking are Bogomol’nyi–Prasad–
Sommerfield (BPS) strings.

4It was previously argued [50] that this constraint may be evaded by taking a very small κ. In this
case, inflation occurs in the vicinity of the critical value σc given in Eq. (6), and thus σCMB ' σc. On
the other hand, Eq. (17) shows that if ns is very close to one, we can obtain a sufficiently small ξ to
evade the cosmic string bound. Such a value of ns can be obtained by taking a very small κ, which
makes σCMB ' σc very large and thus |η| very small. Nevertheless, this possibility is now excluded by
the Planck result, as it restricts the value of ns and thus ξ cannot become sufficiently small.
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to assume that the cosmological fluctuations are due to some curvaton. This mechanism,
however, will not end up working for the relaxion process, since there is also F -term
SUSY breaking during inflation which generically gives too large of a mass to the curva-
ton. Another possible solution is to take a non-minimal Kähler potential [51, 56, 57]. In
these scenarios, either ns is too large [51, 56] or the power spectrum scales down with g
[57], and so the low-scale implementation is ruled out by CMB measurements. Another
solution is to consider D-term inflation on the part of the potential below the critical
point [58]. In this regime, inflation occurs after the U(1) charged field, φ+ obtains a VEV
and so no cosmic strings can form. However, this does not work for low-scale inflation
since ε is much too large. A more elaborate solution is to supplement the U(1) gauge
symmetry by a global SU(2) symmetry so that the vacuum manifold is simply connected.
In this case, instead of topologically stable cosmic strings, semilocal strings are produced
when the symmetry is broken [59], which are in general less dangerous compared with
stable strings. It turns out, however, that CMB measurements can restrict even semilocal
strings [60], and in fact this solution is disfavored by the Planck result [42]. In addition,
the presence of a global SU(2) symmetry leads to the formation of textures, which are
again severely constrained by the Planck data.

Instead in the next subsection we will present one solution that works for our parameter
choices, and that we will later be able to use in the context of the relaxion mechanism.

2.3.2 Dynamical D-terms

Cosmic strings form because the U(1) gauge symmetry breaks after inflation is over and
each patch of the sky has a different phase for the U(1) breaking field. This can be
remedied by breaking the U(1) symmetry before the CMB modes exit the horizon during
inflation. This can occur in models where the D-term is dynamically generated [40], due
to a hidden sector breaking of the U(1) which generates the FI-term. Note that the
breaking of this symmetry must be sufficiently large, so that Hubble fluctuations do not
restore the symmetry in the inflationary sector. This will be accomplished by adding a
marginal coupling in the superpotential. Dynamically generated D-terms are appealing,
since they can more naturally explain a FI-term much smaller then the Planck scale. If
the hidden U(1) breaking is appropriately coupled to the visible sector, it will prevent
string formation. The details of how this works are given in Appendix A, however, we
will summarize the main features below.

Let us add the following superpotential terms to Eq. (2):

∆W = κ+TM+Φ− + κ−TM−Φ+ , (25)

where M± are the hidden sector fields, which develop VEVs of O(
√
ξ) with 〈M+〉 6=

〈M−〉 to generate the FI-term dynamically. In order not to deform the D-term potential
considerably, we take |κ±| to be much smaller than the U(1) gauge coupling g.5 Then,

5Since the couplings κ± explicitly break the shift symmetry for the T field, a mass term for the σ
field will be induced. However, this contribution can be sufficiently small compared with the Coleman–
Weinberg effects (7) for |κ±| � g. See Eq. (A.15) for more a detailed condition.
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using Eq. (A.5), we have a linear term for φ+ during inflation,

V ⊃ σ2

2

(
κκ∗+φ+M

∗
+ + h.c.

)
. (26)

Because of this linear term, φ+ has a non-zero VEV during inflation, with the minimum
of the potential occurring for a particular phase. Since this is the only minimum of the
potential until inflation ends, κ2σ2/2 ' g2ξ, the VEV in all patches of the sky is driven to
the same phase, as shown in Appendix B.1.2. This prevents the formation of CMB-size
cosmic strings, provided that the fluctuations in the phase direction are sufficiently small.
As discussed in Appendix B.1.3, this requirement gives an upper bound, (B.15) on the
Hubble parameter during inflation which becomes

HI < 1× 109 TeV ×
(
|κ+|

10−12

)(
|M+|

1016 GeV

)( κ

10−2

)− 1
2

(
As

2.1× 10−9

)− 1
4
(

1− ns
0.03

)− 1
2

.

(27)

Thus for the values of HI satisfying the CMB constraints (see Figure 1), we can always
find a value6 of |κ+| � g, which satisfies this condition for M+ '

√
ξ.

Once inflation ends, the universe is reheated. If the reheat temperature is large enough,
thermal fluctuations could generate strings which are much smaller than the CMB size.
Although these will not appear in the power spectrum, they could form stable energy
configurations which could overclose the universe. However for this model, as the end
of inflation nears, the VEV of φ+ grows. By the time inflation ends, it is large enough
that the VEV of φ+ is always larger than the maximum reheat temperature. Since the
temperature sets the size of the thermal fluctuations of the VEV, no cosmic strings will
form from thermal fluctuations. See Appendix B.2 for the relevant details.

2.4 Reheating

With knowledge of the mass spectrum of the fields in the inflaton sector obtained in sub-
section 2.2, we can now discuss reheating after inflation. In Refs. [61, 62], kinetic mixing
between the gauge fields associated with the SM hypercharge and the U(1) symmetry
driving inflation was used to reheat to SM fields. However, since the U(1) gauge coupling
is very small, this kinetic mixing is too small to reheat the SM above the weak scale.7

In Ref. [63], inflation is driven by the quadratic part of the D-term potential. Inflation
models driven by a mass term are no longer compatible with experimental results. Fur-
thermore, the method of reheating used there depends on the gauge coupling g, and in
our case it would lead to a reheat temperature lower than the weak scale.

Since our low-scale inflation model is a hybrid inflation model, the energy after inflation
is divided between the inflaton, σ, and the radial part of φ+. This second component is by

6The actual constraint on the relative size of these couplings can be found in Eq. (A.15) and the
discussion that follows. As g, and thus HI , increases this constraint becomes weaker, and therefore
CMB-sized cosmic strings can always be prevented by choosing κ+ appropriately.

7We assume that the reheating temperature is above the electroweak scale to facilitate baryogenesis.

10



far the dominant contribution for g � κ. We thus neglect the energy associated with the
inflaton oscillations in this analysis.8 Therefore, in order to transfer the vacuum energy of
inflation into radiation energy, the field φ+ needs to decay to lighter states. Because the
mass of φ+ is much smaller than the scale of its VEV, it is difficult to find viable decay
modes.9 In fact, generically decay of φ+ to fields which couple with a strength greater
than g will be kinematically forbidden. On the other hand, couplings of φ+ smaller than
g would be kinematically allowed but would give a reheating temperature smaller than
the weak scale.

Non-renormalizable couplings do not help. These non-renormalizable operators would
arise from integrating out some heavier fields. The mass of these heavier fields would,
in general, be large since they would couple directly to φ+ which has a large VEV. A
non-renormalizable operator with a mass scale of order the VEV of φ+ would lead to a
suppression of (mφ+/〈φ+〉)2(n−4), where n is the dimension of the operator, in the decay
width. Even for n = 5, this gives too much suppression to obtain a reheating temperature
above the weak scale. If the field couples weakly to φ+ it could lead to a smaller mass
scale when the particle is integrated out. However, since it couples weakly to φ+ this
non-renormalizable interaction gets additional suppression from the small coupling it has
with φ+, making it difficult to obtain a reheating temperature larger then the weak scale.

The problem persists when we consider couplings in the D-term potential. In the
D-term, other fields couple with |φ+|2 − ξ, and so do not receive a large mass from the
VEV of φ+. However, these couplings are proportional to g, and, due to the smallness
of this parameter, they lead to a reheating temperature smaller than the weak scale.
Nevertheless, this holds the key to reheating for our model. If we couple particles to φ+

in a combination where the VEV cancels, it is possible to reheat above the weak scale.
A simple example of this method of solving this rather difficult problem can be found

if we again use the fields, M±, which generate the dynamical D-term. Using these fields
we can couple φ+ to a singlet in the following way

∆W = κ1RΦ+M− + κ2RHuHd +mRRR̄ , (28)

where both R and R̄ are singlets and Hu,d are the MSSM Higgs superfields. These new
couplings modify the F -term of φ+ and M− as can be seen in Appendix A.10 These effects
are small because R is stabilized quite close to the origin. However, they also give new
contributions to the potential11

∆VF =
∣∣κ1φ+M− + κ2HuHd +mRR̄

∣∣2 + |mRR|2 . (29)

8The energy stored in the inflaton can be easily dissipated by adding an inflaton coupling to the
right-handed neutrinos, if necessary. Since the inflaton is quite heavy after inflation, this decay mode can
easily thermalize the remaining energy.

9In this context, we use the VEV to mean the time-evolving homogeneous background value of the
field. Because the VEV of φ+ begins small, some vacuum decay of φ+ would be possible for couplings
larger than g. However, this decay channel would shut off once the VEV becomes large enough, leaving
the majority of the energy left in 〈φ+〉.

10We assume that additional superpotential couplings among these fields are negligibly small. This
still maintains technical naturalness.

11During inflation, R has a non-zero VEV. However, this VEV is less than about a GeV for the
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The cross terms of the above equation gives an interaction for φ+ of the form

−L ⊃ κ2

(
κ1〈M−〉φ+ +mRR̄

)
H†uH

†
d + h.c. (30)

The potential in Eq. (29) gives an additional contribution to the mass of φ+ plus a
mixing mass for φ+ and R̄. If κ1〈M−〉,mR . g

√
2ξ, the mass eigenstates discuss in

Section 2.2 are fairly unchanged. In this case, the contribution from R̄ can be removed
from the interaction in Eq. (30) since φ+ and R̄ are approximately orthogonal fields. If
either κ1〈M−〉 or mR is larger than g

√
2ξ, decays coming from this interaction become

suppressed. For κ1〈M−〉 & g
√

2ξ, the mass of the lightest mass eigenstate coming from
R and φ+ becomes quite light and so cannot decay to Higgs bosons. If mR is large, R
decouples and all interactions in the superpotential become suppressed by m−1

R , again
leading to suppression of this decay mode.

Given that κ1〈M−〉 . mφ+ , we obtain the constraint κ1 . g. Although this means κ1

is a very small coupling, its smallness is offset by a large mass scale 〈M−〉, and therefore
the trilinear coupling of φ+ can be as large as mφ+ .

Since the only state in Hu,d that is light enough for φ+ to decay to is the SM like Higgs
boson, this interaction becomes

−L ⊃ 1

2
κ1κ2 sin 2β〈M−〉φ+h

2 , (31)

where h is the SM-like Higgs boson, 〈Hu,d〉 = vu,d, and tan β = vu/vd. The interaction
(31) then gives a decay rate for the radial part of φ+

Γφ+ =
|κ2|2

64π
sin2(2β)

∣∣∣∣κ1〈M−〉
mφ+

∣∣∣∣2mφ+ . (32)

Recall that the radial part of φ+ holds the remaining energy of inflation, and therefore
the decay produces the reheating temperature

TR = 485 GeV ×
(

106.75

gρ

)1/4( 〈M−〉
1016 GeV

)(
108 GeV

mφ+

)1/2 ( κ1

10−9

)( κ2

10−8

)
, (33)

where gρ is the number of relativistic degrees of freedom and we have taken sin 2β = 1.
Now, if the mass of φ+ is lighter then 2mh, φ+ can no longer decay to Higgs bosons.

The φ+ mass is also given by (21), where it is clear that if HI . 0.1 GeV, the decay mode
to Higgs bosons shuts off. In this case, depending on its mass, φ+ decays into ZZ, WW ,
bb̄, etc, at tree level via the mixing with the Higgs boson. Although these decay modes
are suppressed by a small mixing angle, it can still be sufficiently large to allow a reheat
temperature above the weak scale.

If R̃, the fermionic component of R, is lighter than the Higgsinos, then R̃ could be
produced via the Higgsino decay, in addition to the annihilation of the Higgs fields. Since

parameters we consider. This, plus the fact that κ2 generally will be quite small in order to prevent
overclosing the universe, leads to a very small correction to the Higgs bilinear mass. This small correction
to µ will have a negligible effect on the relaxion process.
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R̃ is stable in this case, it may overclose the universe. There are two ways this can be
avoided. Since, as we discussed above, R̃ can be as heavy as φ+, it will have a mass as
heavy as that in Eq. (21). Experimental constraints allow a bino mass which is lighter

than this, especially if HI is pushed beyond the weak scale to make φ+, and thus R̃ as well,
be heavy enough. In this case, R̃ can decay into bino through the Higgsino exchange. In
the relaxion model below, this type of spectrum is only realized for some of the parameter
space where the bino mass can be as light as 102 GeV.

The other way to prevent overclosure of the universe from Higgsinos decaying to R̃ is
to suppress the reheat temperature below the Higgsino mass. In this case, the universe
will never produce Higgsinos and so there would be no R̃ produced from Higgsino decays.
If the reheat temperature is larger than the bino mass, R̃ could still be produced from
bino decays due to bino-Higgsino mixing. Since the bino can be produced in processes
like hh → B̃B̃, its production cannot be suppressed if the SM reheats to a temperature
above the bino mass. The simplest way to avoid these problems is to just reheat below
the bino mass which requires κ2 . 10−9 for HI = 105 GeV.12 However, it may be possible
to reheat above the bino mass in this scenario if the decay of the bino to R̃ is suppressed
so that it happens after the bino freezes out. In this case the relic density of the bino
could be suppressed during freeze out by some process such as coannihilation. Since this
will effectively reduce the number of R̃ produced from bino decays, it may be possible to
get a relic density of R̃ which does not overclose the universe and may even be the dark
matter candidate.13 In the relaxion model we discuss below, only gauginos can be much
lighter than the SUSY-breaking scale. Thus, candidates for the coannihilation partner
of the bino are the gluino or wino. For the bino-gluino coannihilation case, the bino
abundance falls into a desirable value if the mass difference between the bino and gluino
is . 100 GeV and squark masses are . O(100) TeV [64–66]. In the case of the bino-wino
coannihilation, on the other hand, the bino-wino mass difference should be . O(10) GeV
[67]. These coannihilation scenarios may be probed at the LHC by searching for displaced
vertex signals [65, 67, 68]. For detailed discussions on these coannihilation scenarios, see
Refs. [64–67] and references therein. Another option is to assume that there is a wino
with a mass of & 500 GeV [69, 70] or a gluino14 with a mass of & 2 TeV [1–3], and
the bino is heavier than these particles. In this case, the bino mainly decays into these
particles, while the abundance of these particles are sufficiently suppressed. A few TeV
gluino can be probed at the LHC in the multi-jets plus missing energy channel [71], while
an O(100) GeV wino can be probed in the disappearing-track searches [72, 73]. Even in

these cases, we need to take κ2 to be a small value to suppress the direct R̃ production
process hh→ R̃R̃.

12Such a small κ2 also suppresses the hh→ R̃R̃ process.
13This is only possible when the gravitino is heavier than R̃ which is not always the case.
14If gluino is lighter than bino, wino or gravitino needs to be lighter than the gluino in order to make

it decay into these particles.
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3 The Inflaton as an Amplitudon

The above D-term inflation model provides a technically natural realization of low-scale
inflation that is consistent with the current Planck results. Since low-scale inflation is
needed for the relaxion process and requires a very flat potential, it suggests that the
inflaton of this D-term inflation model can be identified with the second (amplitudon)
field in the supersymmetric two-field relaxion model discussed in Ref. [20]. We next
present a relaxion model that combines these two ideas, thereby relating inflation with
solving the supersymmetric little hierarchy problem. In fact, regarding the amplitudon
as the inflaton is also desirable from the phenomenological point of view; in the minimal
setup discussed in Ref. [20], the light amplitudon field may cause an isocurvature problem,
but we can evade this once we identify it with the inflaton.

In the supersymmetric relaxion mechanism, supersymmetry breaking in the visible
sector is determined by the F -term of the relaxion superfield. Because of this, the de-
terminant of the Higgs mass matrix is dependent on the relaxion field value. Initially,
the relaxion field value is large and the determinant of the Higgs mass matrix is positive.
As the relaxion field rolls, the determinant of the Higgs mass matrix eventually becomes
negative and electroweak symmetry breaking occurs. Electroweak symmetry breaking
generates an additional contribution to the relaxion potential which stops the relaxion
from rolling. For properly chosen parameters, the relaxion stops in a local minimum that
corresponds to a weak scale Higgs VEV.

3.1 The Inflaton-Relaxion Model

In Ref. [20], a two-field relaxion model was considered with an additional field coined
the amplitudon. This field was responsible for controlling the relaxion barrier height
and allowing the relaxion to roll. If we now identify the inflaton of the previous section
(contained in T ) with this amplitudon, the superpotential for this scenario becomes

W = κTΦ+Φ− +
1

2
mTT

2 +
1

2
mSS

2 +

(
mN + igSS + igTT +

λ

ML

HuHd

)
NN̄ , (34)

where the imaginary scalar component of the superfield S is the relaxion, N, N̄ are su-
perfields charged under a strongly-coupled gauge group (SU(N)) and Hu,d are the Higgs
superfields. The couplings λ, κ, gS,T are dimensionless (where κ was already introduced in
eq. (2)) and mN,S,T ,ML are mass parameters. Note that mS is a shift-symmetry breaking
parameter that causes the relaxion to roll, and Φ± are again charged under some addi-
tional U(1) so that inflation proceeds as it did in the previous section. In addition mT

is a shift symmetry breaking parameter that controls the inflaton evolution during the
relaxion epoch. We also consider an identical D-term to the one in Eq. (1). Comparing
this to the model in Ref. [20], the only difference in the superpotential is the addition of
the coupling of the amplitudon with two scalar fields, φ±. This is the same interaction
that we studied in the previous section for the inflaton.
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In addition to these superpotential interactions, the relaxion superfield, S, is coupled
to the gauge kinetic function,

L ⊃
∫
d2θ

(
1

2g2
a

− i Θa

16π2
− caS

16π2fφ

)
Tr(WaWa) + h.c. , (35)

in a similar way to the QCD axion15, where fφ is the global symmetry breaking scale, ca is
an order one constant and a runs over the SM gauge symmetries as well as an additional
confining SU(N). When this SU(N) confines, the fermionic components of N and N̄
condense and generate a cos(φ/fφ) potential, which is the back reaction that stops the
relaxion.

Writing the scalar field components as S = s+iφ√
2

and T = τ+iσ√
2

, the relevant parts of

these superfields for our discussion are the relaxion φ, and the amplitudon (inflaton), σ.
The relaxion and amplitudon correspond to the Nambu-Goldstone boson of some broken
symmetry, and therefore transform under a shift symmetry. If these shift symmetries are
exact, the potential for these fields would be completely flat. This flatness is lifted by the
explicit breaking of the shift symmetry16 due to the couplings mS, mT , and κ in Eq. (34).
The scalar potential is then17

Vexplicit =
1

2
|mS|2φ2 +

1

2
|mT |2σ2 +

g4ξ2

16π2
ln

[
|κ|2 σ2

2Q2

]
. (36)

The explicit breaking of the shift symmetry for the amplitudon arises from the mass term
and from integrating out the φ±, which are heavy during both the relaxion and inflation
epochs. As we will see below, the shift-symmetry breaking mass terms |mS| and |mT | are
taken to be very small; such small shift-symmetry breaking effects may be explained by
means of the “clockwork” mechanism [74–76].18

To combine these two theories, we need the explicit mass term for the inflaton to dom-
inate during the relaxion epoch and the loop induced mass to dominate during inflation,
as schematically depicted in Fig. 2. The ratio of these two masses is

Rm =
g4ξ2

8π2σ2

1

|mT |2
. (37)

15The theta term, Θa can be neglected since it is subdominant compared to the effective value obtained
in the early universe from the large (� fφ) field value of φ.

16This shift symmetry will preserve the very flat potential for the inflaton, σ. Higher-order shift
symmetric terms in the Kähler potential, K = K(S + S†, T + T †), stabilize s and τ near the origin.

17For parameters which require super-Planckian excursions, we consider a no-scale structure to prevent
problematic unbounded from below directions arising from the −3|W |2/M2

P contribution to the potential.
For a more detailed discussion, see [20].

18A similar idea was first considered in the context of inflation model building [77].
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Figure 2: Schematic description of the scalar potential as a function of the infla-
ton/amplitudon field, σ. The dashed (dotted) lines represent the pure Coleman-Weinberg
(quadratic) potential, while the solid line is the sum of the two potentials.

During the relaxion epoch the ratio is

Rm =
3

4π2

1

As(1− ns)
H4
I

m2
SUSYf

2
φ

' 10−11 ×
(

As
2.1× 10−9

)−1(
1− ns
0.03

)−1(
HI

1 GeV

)4(
105 GeV

mSUSY

)4 (rSUSY

1

)2

, (38)

where we have used m2
Tσ

2 ∼ m2
Sφ

2 ∼ m2
SUSYf

2
φ which comes from the constraints19 on

the relaxion mechanism in Section 3.2, and Eq. (17) and Eq. (20) for g4ξ2. From this
expression, it is clear that mT dominates in this regime. Note that we have changed our
normalization of HI in this section since HI ∼ 105 GeV will no longer be compatible with
the relaxion process (see Eq. (58)). During the CMB epoch, on the other hand, the ratio
is

Rm =
3

4
(1− ns)

(
HI

|mT |

)2

' 2× 1012 ×
(

1− ns
0.03

)(
HI

1 GeV

)2(
10−7 GeV

|mT |

)2

, (39)

where we have used Eq. (11), or, σCMB = HI/(π(1 − ns)A
1
2
s ). For this regime of the

potential, the loop induced mass dominates. This is just the correct behavior that is
needed to use the σ field as both the amplitudon and the inflaton. Therefore, we can
ignore the Coleman-Weinberg contribution to the mass during the relaxion epoch and the
constraints reduce to those found in Ref. [20], which will be summarized in Section 3.2.

The back reaction potential for the relaxion is generated by the fields N, N̄ in Eq. (34).
The N, N̄ fields are charged under the same SU(N) gauge theory that S is coupled to in
Eq. (35). When the fermionic components of N, N̄ confine at the scale ΛN , they give a

19Note that we have introduced the scale mSUSY ∼ F/fφ where F ∼ mSφ is the dominant
supersymmetry-breaking contribution. See reference [20] for further details.
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contribution to the scalar potential of the form

A(φ, σ,HuHd) =

[
mN −

1√
2

(gSφ+ gTσ) +
λ

ML

HuHd

]
,

Vperiod = A(φ, σ,HuHd)Λ
3
N cos

(
φ√
2fφ

)
, (40)

where we have assumed ca = 1. For the model we consider, we take gS > 0 and gT < 0.
When the σ field value is very large, the above potential (40) provides a large barrier
for the relaxion and therefore the relaxion is initially stabilized at some very large field
value. However the inflaton, σ, is free to roll. As σ rolls, the barrier height is reduced
until the mass term in Eq. (36) dominates and φ begins to roll, tracking σ. This evo-
lution continues until the determinant of the Higgs mass matrix becomes negative and
electroweak symmetry is broken. As the Higgs VEV increases, a new barrier develops in
the relaxion potential (from the λ term in Eq. (40)) eventually stopping the relaxion at
a local minimum. The explicit symmetry breaking parameter, mS, is chosen so that this
minimum corresponds to a Higgs field with a weak scale VEV.

3.2 The Constraints on the Cosmological Evolution

Next we examine the constraints on the cosmological evolution that will limit the param-
eter space of the relaxion. To determine these constraints, the relevant part of the scalar
potential is given as

V = Vexplicit + Vperiod , (41)

which are given, respectively, in eq. (36) and (40). However, as we argued above, we
can ignore the Coleman-Weinberg contribution during the relaxion epoch. The main
constraints on the parameter space are as follows:20

• Inflaton/Amplitudon slow roll: In order for the relaxion process to work, we first
need the slow roll of the inflaton, σ, to proceed unimpeded, with little effect from the
coupling to the relaxion. The equations of motion for σ in the slow roll regime are

dσ

dt
= − 1

3HI

∂V

∂σ
= − 1

3HI

[
m2
Tσ −

gT√
2

Λ3
N cos

(
φ

fφ

)]
. (42)

Since we need the inflaton rolling to be unaffected by the periodic potential piece in
Eq. (42), we require that

m2
Tσ �

gT√
2

Λ3
N . (43)

We can remove the σ field dependence in this expression by using the fact that right before
electroweak symmetry breaking (EWSB), gSφ∗ ∼ −gTσ∗ (which follows from taking the

20For the discussion of other conditions which lead to weaker constraints, see Ref. [20].
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expression in the square brackets of Eq. (40) to be zero) and µ0 ∼ mSUSY ∼ mSφ∗/fφ
(which follows from having a negative determinant of the Higgs mass matrix, see Ref. [20]),
with φ∗ and σ∗ the field values when the relaxion stops rolling. Using these relationships,
the condition (43) becomes

g2
T

gS
� mSUSYfφ

Λ3
N

|mT |2

|mS|
. (44)

• Relaxion initial condition: Next, we examine the initial condition for the relaxion, φ
which we require to be trapped at a local minimum. This requires that the contribution to
the mass of φ coming from Vexplicit is subdominant compared to the contribution coming
from Vperiod. This results in the following constraint

|mS|2 � gS
Λ3
N

fφ
, (45)

where we have again used the fact that right before EWSB, gSφ∗ ∼ −gTσ∗.
• Stability of relaxion minimum: The next constraint we consider comes from re-
quiring that the Higgs VEV does indeed provide a barrier to eventually stop φ from
rolling, and stabilize the relaxion at a local minimum. This expression is found from the

minimization condition with the following inequality arising from taking sin
(
φ
f

)
= 1

|mS| .
|λ| sin 2β

4ML

v2Λ3
N

mSUSYf 2
φ

, (46)

where v =
√
v2
u + v2

d is the electroweak VEV. In addition, the term in Vperiod proportional
to λ generates a contribution to the soft SUSY breaking Bµ term, which causes the
determinant of the Higgs mass matrix to oscillate. Requiring that the amplitude of this
oscillation be smaller than the electroweak scale gives the constraint

|λ| . 4MLv
2

Λ3
N sin 2β

. (47)

Combining this with Eq. (46), we find

|mS| .
v4

mSUSYf 2
φ

. (48)

• Classical rolling condition: Another relevant constraint to this scenario comes from
requiring that the relaxion, φ, and the inflaton, σ, undergo classical rolling. The classical
rolling conditions are determined from σ̇/HI > HI , leading to the constraint

|mT |2

|mS|
gS
|gT |

mSUSYfφ � 3H3
I . (49)
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• φ tracks σ after EWSB: In order for φ to settle in its minimum with the Higgs VEV
of order the weak scale, A(φ, σ,HuHd) needs to grow quickly enough with the Higgs VEV
so that φ can stop tracking σ. By examining the evolution of A(φ, σ,HuHd) as the Higgs
VEV develops, we find that as along as21.

gS
sin 2β

m2
h

m2
SUSY

Λ3
N

fφ

v2

f 2
φ

.
|mS|2

1− |mT |2
|mS |2

, (50)

is satisfied, φ will discontinue its tracking of σ with the Higgs VEV of order the weak
scale.

• Loop corrections to inflaton mass: A new constraint, which is only present when
the amplitudon is identified as the inflaton, comes from loop corrections to the mass of
σ. First, because the coupling κ breaks the shift symmetry, the Kähler potential will be
affected by this shift-symmetry breaking at the loop-level,

∆K ' κ2

16π2
|T |2 . (51)

Since κ is the order parameter of this shift-symmetry breaking, it will control the size of
all shift-symmetry breaking in the Kähler potential. Because of the inflation constraints
discussed above, this parameter must satisfy, κ & 10−2. If we include this loop-corrected
Kähler contribution in the supergravity scalar potential,

VSUGRA = e
K

M2
P

(
DiWKij̄Dj̄W̄ − 3

|W |2

M2
P

)
, (52)

we see that there can be important affects on the amplitudon. With the vacuum energy
non-zero during the relaxion process, the exponential exp(K/M2

P ), which now depends
on σ because of the shift-symmetry breaking, will generate a mass for the inflaton. The
exponential piece can be important because the vacuum energy during the relaxion process
changes at least by an amount of order

∆V = m2
Sφ

2
∗ = m2

SUSYf
2
φ . (53)

Expanding the exponential in Eq. (52), and using Eq. (53) for the vacuum energy, we
obtain an inflaton mass of order

∆mσ '
κ

4π

mSUSYfφ
MP

= 3.3× 10−12 GeV ×
( κ

10−2

)( mSUSY

105 GeV

)( fφ
105 GeV

)
. (54)

Now in order for the relaxion process to be viable, this correction to the σ mass must be
smaller than mT in the superpotential.

21The additional factors in Eq. (50) as compared to the corresponding expression in Ref. [20] come
from considering the contribution to Bµ originating in the Higgs dependent part of A(φ, σ,HuHd). This

oscillatory contribution to Bµ gives the dominant contribution to φdD(φ)
dφ ∼ m4

SUSY

f2
φ

v2 sin 2β . Following

the same calculation as in Ref. [20], with this single change, gives the constraint in Eq. (50).
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Higgs VEV too large
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Figure 3: The allowed parameter region in the mSUSY–mS plane, where ζ = 10−8, rTS =
0.1, rΛ = 1, rSUSY = 1, and κ = 10−2.

Second, the soft SUSY-breaking effects in the φ± fields can induce the σ mass term
via the Coleman–Weinberg potential of order

∆mσ '
κ

4π
m̃φ± , (55)

where m̃φ± denote the soft masses of φ±. If m̃φ± is induced by the Planck suppressed φ±–
relaxion operators, then we expect m̃φ± ∼ mSUSYfφ/MP and thus the contribution (55) is
of the same order as (54). If, on the other hand, there is another source of SUSY-breaking
and it gives a larger contribution to m̃φ± , then this gives a more severe constraint, as we
see in Appendix A.

3.2.1 Combined constraints

The relevant constraints can now be combined to restrict the parameter space of the
inflaton-relaxion model. However, to simplify the parameter space, we will redefine the
parameters in a similar manner as was done in Ref. [20]:

gS = ζ
mS

fφ
, gS = ζ

mT

fσ
, f ≡ fφ = fσ,

rTS ≡
mT

mS

, rΛ ≡
ΛN

f
, rSUSY ≡

mSUSY

f
, ML = mSUSY , (56)

where ζ is a dimensionless parameter. Using this parameterization, we display the con-
straints in the mSUSY–mS plane. Recall that the parameter mSUSY represents the “cutoff
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Figure 4: The allowed parameter region in the mSUSY–mS plane, where ζ = 10−14, rTS =
0.1, rΛ = 1, rSUSY = 1, and κ = 10−2.

scale” of the model while mS is the explicit shift-symmetry breaking parameter. In Fig. 3,
we have taken ζ = 10−8, rTS = 0.1, rΛ = 1, rSUSY = 1, and κ = 10−2. The gray shaded
region is excluded because the periodic barrier formed when the Higgs VEV develops,
cannot stop the relaxion rolling (Eq. (48)). The blue shaded region is excluded because
φ never decouples from σ (Eq. (50)). In the red region, the shift-symmetry breaking
correction to the Kähler potential generates an inflaton mass larger than mT ((54)). The
green-shaded region is disfavored since the scalar potential may become unstable in the
direction of NN̄ , as discussed in Ref. [20]. Above the dash-dotted line, φ∗ < MP , and thus
sub-Planckian field values may be realized. The figure shows that supersymmetric soft
masses up to 3× 105 GeV can be obtained for the range 10−10 GeV . mS . 10−4 GeV.
We see that the PeV-scale SUSY region is now constrained by the condition ∆mσ < |mT |,
which is a consequence of combining the low-scale D-term inflation model with the two-
field relaxion model.

In Fig. 4, we take ζ = 10−14, rTS = 0.1, rΛ = 1, rSUSY = 1, and κ = 10−2. The color
coding of the excluded regions in Fig. 4 is the same as in Fig. 3. For these parameter
choices the allowed region now corresponds to supersymmetric soft mass scales up to 106

GeV and 10−12 GeV . mS . 10−8 GeV. It is found that the new condition, ∆mσ < |mT |
gives a very severe limit on the parameter space in this case.

Finally, in the allowed region, we can always find a value of HI which satisfies the
above constraints. The lower bound on HI is given by

HI > max

{
|mS|, 4× 10−9 GeV×

( mSUSY

105 GeV

)2
(

1

rSUSY

)}
, (57)
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which comes from requiring that the slow roll of φ, and the relaxion vacuum energy is
subdominant compared to that of the inflaton. The upper bound on the Hubble scale is

HI < 4.6 GeV ×
(rTS

0.1

) 1
3

(
1

rSUSY

) 1
3
(
|mS|

10−7 GeV

) 1
3 ( mSUSY

105 GeV

) 2
3
, (58)

which comes from Eq. (49). In addition, we have upper limits on HI to evade the cosmic
string problem as discussed in Appendix B.1.3.

4 Conclusion

In this paper, we have presented a low-scale inflationary model embedded in a super-
symmetric framework that seeks to address the hierarchy problem and be consistent with
experimental data. Specifically, we consider a D-term inflationary model, characterized
by a new U(1) symmetry with a FI term. There are three parameters of the model that
are relevant for the CMB phenomenology: the U(1) gauge coupling, g, the FI scale,

√
ξ,

and the energy density ρreh at reheating (assuming an instantaneous transition between
matter domination and radiation domination). To determine the constraints on these pa-
rameters we trade the FI scale for the Hubble scale, HI , at the moment at which the CMB
modes were produced. The measured values of the amplitude and the spectral tilt of the
primordial scalar perturbations can then be used to obtain g and HI as a function of ρreh.
By requiring ρ

1/4
reh to be above the electroweak scale (in order to facilitate baryogenesis),

we find that a value of ns compatible with the experimental limits (namely, a sufficiently
red scalar spectrum) can be achieved provided g . 10−8 and HI . 105 GeV. For this low
scale of inflation, the CMB modes are produced approximately NCMB ' 39 e-folds before
the end of inflation (contrary to the 50–60 e-folds typically required in high scale models
of inflation). In D-term inflation, this relatively low value of NCMB is used to match the
observed value of ns, since deviations from scale invariance are inversely proportional to
NCMB.

Another issue typically associated with D-term inflation is the formation of cosmic
strings due to the spontaneous breaking of the U(1) symmetry at the end of inflation.
We prevent this from occurring by introducing a tiny breaking of the U(1) symmetry
throughout the entire inflationary epoch, due to a dynamical D-term mechanism. This
mechanism also allows the generation of an FI scale much below the Planck scale. Finally,
a low value of g is typically problematic for reheating. For such a value, most of the energy
density after inflation is actually stored in the field that spontaneously breaks the U(1)
symmetry (leading to the end of inflation). This field obtains a VEV much greater than
its mass, and therefore typically gives a large effective mass to any field that it is coupled
to with a strength greater than g, preventing its decay into these fields. A way to avoid
this kinematic barrier, is to introduce superpotential couplings which cancel the VEV,
so as to allow the decay into the MSSM Higgs fields, and the eventual reheating into
Standard Model fields. Thus, with the technically natural superpotential couplings and
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the U(1) gauge coupling g, a low-scale model of supersymmetric inflation can be made to
be consistent with Planck data.

This low-scale D-term inflation model leads to an interesting application. It can be
combined with the relaxion mechanism in order to identify the inflaton with the second
field (amplitudon) of a supersymmetric two-field relaxion model that preserves the QCD
axion solution to the strong CP problem. The inflaton now also controls the barrier height
of the relaxion periodic potential. As the inflaton rolls, it periodically reduces the barrier
height causing the relaxion to move and scan the supersymmetric soft masses. Eventually
electroweak symmetry breaking occurs, which produces a new contribution to the relax-
ion barrier height and traps the relaxion in a supersymmetry-breaking local minimum.
The correct electroweak VEV can be obtained for supersymmetric soft masses up to the
PeV scale, provided the explicit shift-symmetry breaking parameter mS . 10−4 GeV,
and the Hubble scale satisfies HI . 10 GeV. This dynamics takes place well before the
production of the CMB, at a time in which the energy density of the inflaton was dom-
inated by a quadratic (mass) term, rather than by the Coleman–Weinberg term which
instead controls the motion of the inflaton at NCMB. The switchover between these two
potential terms is a natural consequence of the flatness associated with the logarithmic
Coleman-Weinberg term, and it distinguishes our model from other implementations of
the relaxion mechanism. Also by identifying the amplitudon as the inflaton, a potential
isocurvature problem in the original two-field relaxion model is avoided. Therefore, the
supersymmetric inflaton-relaxion model, successfully combines low-scale D-term inflation,
which is technically natural, with a solution to the supersymmetric little hierarchy prob-
lem. This intriguing connection between the inflaton and the relaxion provides a new way
to address the hierarchy problem and deserves further study.
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Appendix

A Dynamical D-terms

Here, we review the dynamical generation of D-terms. We basically follow the arguments
in Ref. [40, 78] where the dynamical generation of D-terms is discussed based on the
IYIT model [79, 80]. We focus on the case of the SP (1) ∼= SU(2) strongly-interacting
gauge theory with Nf = 2 quark flavors. For more generic cases, see Ref. [40]. In this
case, we have four chiral quark superfields Qi (i = 1, . . . , 4) which are in the fundamental
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representation of SP (1), and six singlet chiral superfields Zij = −Zji (i, j = 1, . . . , 4).
We assign the U(1) gauge charge +1/2 (−1/2) to Q1,2 (Q3,4), −1 to Z− ≡ Z12, +1 to
Z+ ≡ Z34, and 0 to Z13, Z14, Z23, Z24, respectively. The superpotential terms for these
fundamental fields are then given by

Wfund =
1

2

∑
i,j

λijZijQ
iQj , (A.1)

with λij = −λji dimensionless Yukawa couplings. We also couple T and Φ± to this sector
via the higher-dimensional operators TΦ−Q

1Q2 and TΦ+Q
3Q4. In order to facilitate re-

heating, we will include another shift symmetric singlet, R, and couple it to this strongly
coupled sector through the higher dimensional operator RΦ+Q

1Q2 as well. There are
other renormalizable couplings allowed by the gauge symmetries, such as TZ+Z−, Z±Φ∓,
Φ−Q

1Q2, etc.—we simply assume that all of these unwanted terms are negligible in the
following discussion. Such a situation may be realized by geometrically separating the
SP (1) sector from the inflation/relaxion sector by means of, say, branes in extra dimen-
sions.

Below the confinement scale of the SP (1) gauge interaction, Λ, the low-energy dy-
namical degrees of freedom are given by the meson fields M ij = −M ji ∼ QiQj/Λ. The
U(1) charge assignment for these meson fields follows from those for the constituent quark
fields; M+ ≡ M12 has +1, M− ≡ M34 has −1, and the other meson fields are neutral.
The meson fields are subject to the constraint [81]

Pf(M ij) = M12M34 −M13M24 +M14M23 = Λ2 . (A.2)

As in Ref. [40], we assume that λ13, λ14, λ23, and λ24 are much larger than λ+ ≡ λ12 and
λ− ≡ λ34 in order to make sure that all of the neutral fields except T remain at the origin.
In this case, the condition (A.2) leads to

M+M− = Λ2 , (A.3)

and the relevant part of the low-energy effective superpotential is given by

Weff = κTΦ+Φ− +
mT

2
T 2 + κ+TM+Φ− + κ−TM−Φ+

+ λ+ΛM+Z− + λ−ΛM−Z+ + κ1RΦ+M− + κ2RHuHd +mRRR̄ , (A.4)

where the third, fourth and seventh terms in the right-hand side of this equation come
from the higher-dimensional operators introduced above. Since these terms are generated
by non-renormalizable interactions and/or break the shift symmetry with respect to T or
R, the couplings κ± and κ1,2 can be parametrically small.
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From the superpotential (A.4), we obtain the F -term scalar potential as

VF =
∣∣∣κφ+φ− +

i√
2
mTσ + κ+M+φ− + κ−M−φ+

∣∣∣2
+

∣∣∣∣i σ√2
(κφ− + κ−M−) + κ1RM−

∣∣∣∣2 +

∣∣∣∣i σ√2
(κφ+ + κ+M+)

∣∣∣∣2
+
∣∣∣iκ+√

2
σφ− + λ+ΛZ−

∣∣∣2 +
∣∣∣iκ−√

2
σφ+ + λ−ΛZ+ + κ1Rφ+

∣∣∣2
+
∣∣∣κ1φ+M− + κ2HuHd +mRR̄

∣∣∣2 + |mRR|2

+ |λ+ΛM+|2 + |λ−ΛM−|2 , (A.5)

where we have assumed |σ| � |τ | as in Section 2.1. There is also a D-term contribution
to the scalar potential

VD =
g2

2

(
|φ+|2 − |φ−|2 + |Z+|2 − |Z−|2 + |M+|2 − |M−|2 − ξtree

)2
, (A.6)

where ξtree denotes the tree-level FI term, which can be taken to be zero when the dy-
namical sector generates a large enough contribution for D-term inflation to work. This
amounts to the difference of the VEVs of M± being large enough.

Now to leading order22 in κ±, κ1 and g, the F -terms vanish in the vacuum except for
Z± and T with the fields having the following VEVs,23

〈M±〉 =

√
λ∓
λ±

Λ , (A.7)

〈φ±〉 = −κ±
κ

√
λ∓
λ±

Λ , (A.8)

〈Z±〉 =
iκ+κ−

κ
√

2λ+λ−
σ , (A.9)

〈R〉 = −i κ1κ−λ+σΛ2

κ2
1λ+Λ2 + λ−m2

R

, (A.10)

and R̄ can be found by solving FR. We have assumed g � λ± as in Ref. [40]. This
condition can easily be satisfied in the case of low-scale D-term inflation as can be seen
from Eq. (20). The details of the calculation for the VEVs of M± can be found in Ref. [40].
By using Eq. (A.7), we then obtain the dynamically generated FI term:

ξdyn =

(
λ+

λ−
− λ−
λ+

)
Λ2 . (A.11)

22We have checked this perturbatively in the limit where g, κ±, and κ1 are small.
23The leading order contributions to the VEVs of all fields except φ+ and M± can be taken to be zero

in the limit κ− → 0. This has no adverse effect on the model we consider.
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This can explain the required value shown in Eq. (18) if Λ ' 1016 GeV. Such a dynamically-
generated FI term has several advantages. First, this can naturally explain why the FI
term is much smaller than the fundamental scale, such as the Planck scale. In addition,
this allows the model to couple with supergravity in a consistent manner, which is very
difficult if the theory possesses a constant FI term.24 It also provides a means to sup-
press cosmic strings and facilitate reheating through additional couplings of the dynamical
sector to the inflaton sector.

As mentioned above, the fields Z± develop F -terms

FZ± = −
√
λ+λ−Λ2 . (A.12)

Note that since we have assumed g � λ±, this F -term VEV is much larger than the
dynamically generated D-term gξdyn ∼ gΛ2. The size of FZ± can, however, be much
smaller than Λ2 if one takes λ± to be very small.

Since this setup introduces another source of SUSY-breaking as well as the shift-
symmetry breaking, this sector may give rise to a sizable shift-symmetry breaking effect
on the inflaton/amplitudon field. For example, if FZ± induces the gravity-mediated soft
masses of φ±, this generates a mass for σ via the Coleman-Weinberg potential as in
Eq. (55) of order

∆mσ '
κ

4π

|FZ±|
MP

, (A.13)

and thus the requirement 25 of ∆mσ < mT restricts
√
λ+λ− as26

√
λ+λ− < 3× 10−18 ×

(
|mT |

10−7 GeV

)( κ

10−2

)−1
(

Λ

1016 GeV

)−2

. (A.14)

This may be in contradiction with the condition g � λ±. However, if we consider the
no-scale Kähler terms for φ±, the gravity-mediated mass terms may vanish and thus the
dominant contribution comes from anomaly mediation [85, 86]. In this case, ∆mσ is
suppressed by another factor of κ2/(16π2), which allows λ± to be larger than the gauge
coupling constant.

If Z± were to couple to T too strongly, their F -terms, FZ± , would generate a large
mass for σ. However, Z does not interact with T even at one-loop level, and thus FZ± do
not give sizable effects on σ through radiative corrections. The F -terms for M± vanish at
the leading order with respect to the small couplings g, λ±, and κ±, and thus their effects
are very tiny and can be completely neglected. On the other hand, there are non-zero

24As pointed out in Refs. [82, 83], the Ferrara–Zumino current multiplet [84], which contains the
energy-momentum tensor and the supersymmetry current, becomes gauge-variant in the presence of a
constant FI term, and thus cannot be well-defined. This prevents the theory from coupling to minimal
supergravity.

25Note, this constraint is only important if we wish to identify the inflaton as the amplitudon. However,
there is still a restriction on the couplings λ± but it is much weaker.

26Although FZ± may be larger than FS , FZ± effects are only communicated gravitationally and so give
a subdominant contribution to the MSSM soft masses.
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contributions to the F -terms of φ±, which can induce a mass term for the σ field through
the terms in the second line of Eq. (A.5). From a straightforward calculation, we find
that this effect is smaller than the Coleman–Weinberg effect if

[
|κ+M+|2 + |κ−M−|2

] 1
2 <

κg
√
ξ

4π
. (A.15)

Because 〈M±〉 ∼
√
ξ, this roughly places a constraint of

√
|κ+|2 + |κ−|2 . κg

4π
. Because g

grows with the inflation scale, this constraint on κ± becomes weaker for larger inflation
scales. Thus, we find that there is a sufficient range of parameter space where both (27)
and (A.15) are satisfied.

B Cosmic Strings and Inflation

In this section, we discuss the effects of quantum and thermal corrections on the U(1)
symmetry breaking during inflation. This breaking can prevent the generation of cosmic
strings after inflation.

B.1 Quantum Fluctuations and Cosmic Strings

B.1.1 General Model of Cosmic Strings

First, we discuss the effects of quantum fluctuations on the U(1)-breaking scalar field
during inflation. To that end, we consider a simple toy model which is described by the
following Lagrangian:

L = |∂µφ|2 − V (φ) , (B.1)

with

V (φ) =
ḡ2

2

(
|φ|2 − ξ̄

)2 − φC − φ∗C∗ + |κ̄|2|I|2|φ|2 , (B.2)

where I is the inflaton. In the limit that C = 0, the theory has a global U(1) symmetry,
and the vacuum corresponds to φ = 0 for |κ̄I|2 > ḡ2ξ̄. Instead, when |κ̄I|2 < ḡ2ξ̄ we
obtain

|φ|2 = ξ̄ . (B.3)

In this case, the global U(1) symmetry is spontaneously broken, and the vacuum manifold
is U(1) ∼= S1 as seen in Eq. (B.3). Since the first homotopy group of this manifold is
π1(U(1)) ∼= Z, vortices and strings can form in three and four spacetime dimensions,
respectively. Here, we consider four spacetime dimensions and take the z axis parallel to
the string. We use polar coordinates (r, θ) in the x–y plane, with the origin located at
the center of the cosmic string.27

Let us explicitly see how strings form after the U(1) symmetry is broken. In order for
the energy per unit length of the string, or string tension, to be finite, it is necessary that

27The translational invariance in the theory is also spontaneously broken.
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|φ| →
√
ξ̄ as r → ∞. However, the phase of φ at infinity is not necessarily the same in

different directions; for instance, we may have

φ(x)→
√
ξ̄einθ (r →∞) , (B.4)

with n an integer. Such non-trivial field configurations (for n 6= 0) correspond to the
formation of strings in the system.

So far, we have considered global strings. It turns out, however, that the string tension
in this case diverges if the spatial volume is infinite. On the other hand, if the U(1)
symmetry is a gauge symmetry, then the tension becomes finite thanks to non-trivial field
configurations of the U(1) gauge field. In this case, the winding number n corresponds to
the magnetic flux in the string core. If the U(1) charge times the gauge coupling of φ is
given by ḡ, then the masses of the U(1) gauge boson and φ in the broken phase are equal;
in this case, we have BPS strings whose string tension is given by

µ = 2πξ̄n . (B.5)

The model discussed in Section 2.3 assumes a U(1) gauge symmetry which gives rise to
BPS strings. The behavior of the U(1) symmetry breaking itself can, however, be captured
with the simplifed model in Eq. (B.1), and thus we focus on this in what follows.

B.1.2 Effects of the Linear Term

Here we examine in detail what happens if C 6= 0, which explicitly breaks the U(1)
symmetry. To that end, let us take

φ = vre
iα . (B.6)

Then, Eq. (B.2) leads to

V (φ) =
ḡ2

2

(
v2
r − ξ̄

)2 − vreiαC − vre−iαC∗ + |κ̄|2|I|2v2
r , (B.7)

with the vacuum conditions

2ḡ2vr
(
v2
r − ξ̄

)
+ 2|κ̄|2|I|2vr = eiαC + e−iαC∗ , (B.8)

e2iα =
C∗

C
. (B.9)

From Eq. (B.9), we see that the phase of 〈φ〉 is uniquely selected by the phase of the U(1)
symmetry breaking term such that

α ≡ −arg(C) (mod 2π) , (B.10)

and therefore strings never form. We use this mechanism to evade the formation of cosmic
strings.
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With the condition (B.10), Eq. (B.8) leads to

2ḡ2vr
(
v2
r − ξ̄

)
+ 2|κ̄|2|I|2vr = 2|C| . (B.11)

Assuming that ḡ is very small so that we can neglect the first term, as justified in our
D-term inflation model, we obtain vr as

vr '
|C|
|κ̄I|2

. (B.12)

In order for strings not to form, we require that this VEV is larger than quantum fluctu-
ations in vr induced by inflation and thermal fluctuations. This would guarantee that all
patches of the sky will have the same phase of 〈φ〉 in the end, so no strings could form.

B.1.3 Cosmic Strings For Our Model

If the quantum fluctuations around the time inflation ends are large enough, cosmic strings
could still form since there could be fluctuations of φ which spoil the phase alignment im-
posed by the U(1)-breaking term.28 Here we evaluate the size of the quantum fluctuations
in α from inflation; if the fluctuation δα can be as large as π, then strings can form after
inflation. During inflation, the size of the fluctuations depends on the size of the fields
mass in the α direction, mα, relative to the Hubble parameter during inflation, HI . The
mass mα can be obtained from Eq. (B.7) as29

m2
α =

1

2v2
r

∂2V

∂α2

∣∣∣∣
α=−arg(C)

=
|C|
vr
' |κ̄I|2 , (B.13)

where we have used Eq. (B.12). Since the cosmic strings that can be see in the CMB have
lengths that are of order the current horizon size, the variations in the phases must be in
place when the inflaton has the field value corresponding to NCMB. The fluctuations in
the α direction at this time is then estimated as [87]

〈δα2〉 =
H3
I

24π2mαv2
r

' H3
I |κ̄ICMB|3

24π2|C|2
, (B.14)

where ICMB denotes the field value of I at the time when the CMB is set. The condition√
〈δα2〉 < π imposes a lower bound on |C|, given an inflation model.
We now apply this result to the model discussed in Appendix A. This model can be

mapped on to the simplified model we considered above by setting ḡ = g, ξ̄ = ξ, κ̄ = κ,

28This may not be a necessary condition for no strings, but it is sufficient. As long as there is only one
minimum of the potential for some time after the CMB is set, the quantum fluctuations will no longer
be correlated on superhorizon scales and large strings will not form. Smaller strings may still form, but
they lead to different problems, such as overclosure, and are not constrained by the CMB.

29To obtain a mass term for the canonically normalized field, we need to rescale by
√

2vr.
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φ = φ+, I = iσ/
√

2, and C = κκ∗+M
∗
+σ

2/2. Note that from Eqs. (11), (13), (17), (18),

and (20), we have σCMB = HI/(πA
1/2
s (1− ns)). The limit

√
〈δα2〉 < π then reads

HI <

[
24π2|κ+|2|M+|2
√

2κA
1
2
s (1− ns)

] 1
2

. (B.15)

We can easily find a set of parameters which satisfy this condition as well as Eq. (A.15).
Since the mass of φ+ approaches zero at the end of inflation, it is possible that strings

with size much smaller than the current horizon could have formed if the fluctuations
during this period are too large. To verify that this is not a problem, we examine the
same constraint but in the case that mα = 0, which leads to fluctuations of order 〈δα2〉 =
H2
I /(8π

2v2
r). In this case the constraint becomes

HI < 23/2π2 |κ+|
κ
|M+| = 2.8× 107 GeV ×

(
|κ+|

10−12

)(
|M+|

1016 GeV

)( κ

10−2

)−1

. (B.16)

This is again compatible with the condition (A.15). Since the constraints on strings
with sizes much smaller than the CMB scale may not be problematic, we only cite the
constraint in Eq. (B.15) in the main text. However, since (B.16) scales with κ+, just like
the constraint in Eq. (B.15), this constraint can be satisfied for any HI by choosing an
appropriate κ+ that is consistent with Eq. (A.15).

B.2 Thermal Fluctuations After Inflation

Finally, we need to consider the effect that thermal fluctuations can have on the formation
of cosmic strings. Since we are only interested in an order of magnitude estimate, we will
use

〈δα2〉therm ' T 2/v2
r , (B.17)

where the fluctuations are probably a bit more mild than this. By requiring
√
〈δα2〉

therm
<

π, we then obtain an upper bound on the reheating temperature as TR < πvr. This
corresponds to TR < π|〈φ+〉| in the D-term inflation model.

During most of inflation, the non-zero VEV for φ+ is determined by the linear term
and the mass term as we have seen above. However, towards the end of inflation,

|κTc|2 =
κ2

2
σ2
c = g2ξ , (B.18)

and so the φ+ mass approaches zero. When Eq. (B.18) is satisfied, the mass term is zero,
and the VEV is set by the quartic term and the linear term, which can be read from
Eq. (B.8) as

|〈φ+〉| =
∣∣∣∣κ+M+ξ

κ

∣∣∣∣ 13 . (B.19)
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Thus, the upper bound on TR is given by

TR < π

∣∣∣∣κ+M+ξ

κ

∣∣∣∣ 13
= 6.5× 1014 GeV ×

(
|κ+|

10−12

) 1
3
(
|M+|

1016 GeV

) 1
3
(

κ

10−2

)− 1
3
(

1− ns
0.03

) 1
6
(

As
2.1× 10−9

) 1
6

,

(B.20)

where we have used Eq. (18). For the values of HI we are considering, the reheating
temperature can easily satisfy this constraint. However, above we have assumed that the
field is not displaced from its minimum as the location of the minimum moves near the
end of inflation. If the field can indeed track its minimum, there will be no cosmic strings
from thermal fluctuations.

Now we need to verify that φ+ can track the minimum as the inflaton approaches
the critical value, or at least track it sufficiently long that thermal fluctuations do not
cause strings to form. The minimum begins to move once |κσ|2 ∼ g2ξ. To approximate
the actual size of the VEV of φ+ once σ hits its critical value, we estimate how far φ+

will track its minimum. The field φ+ will track its minimum until its mass mφ+ becomes
equal to 3HI/2, a well-known relationship. During inflation, the VEV of φ+ has plenty of
time to settle into its minimum of |κ+M+/κ|, where the mass of φ+ (both the radial and
phase directions) is given by m2

φ+
= κ2σ2

2
− g2ξ. The value of σ where φ+ ceases to track

its minimum can then be found from mφ+ = 3HI/2. At this point, the φ+ VEV is (see
Eq. (B.12)) given by

|〈φ+〉| '
|C|
m2
φ+

=
2|κκ+M+σ

2|
9H2

I

' 4g2ξ|κ+M+|
9κH2

I

' 8

3
√

3As(1− ns)

∣∣∣∣κ+M+

κ

∣∣∣∣ , (B.21)

where we have used κ2σ2

2
' g2ξ, Eq. (17), and Eq. (19). The upper bound on TR is then

given by

TR <
8π

3
√

3As(1− ns)

∣∣∣∣κ+M+

κ

∣∣∣∣
= 1.5× 1019 GeV ×

(
|κ+|

10−12

)(
|M+|

1016 GeV

)(
κ

10−2

)−1(
1− ns
0.03

)− 1
2
(

As
2.1× 10−9

)− 1
2

.

(B.22)

This bound is satisfied for the entire parameter space that is compatible with the CMB
observation. Indeed, we can show that the maximum possible reheat temperature is
always smaller than the VEV of φ+.
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