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Abstract

The measured B̄ → D(∗)lν̄ decay rates for light leptons (l = e, µ) constrain all B̄ → D(∗)

semileptonic form factors, by including both the leading and O(ΛQCD/mc,b) subleading Isgur-Wise

functions in the heavy quark effective theory. We perform a novel combined fit to the B̄ → D(∗)lν̄

decay distributions to predict the B̄ → D(∗)τ ν̄ rates and determine the CKM matrix element |Vcb|.

Most theoretical and experimental papers have neglected uncertainties in the predictions for form

factor ratios at order ΛQCD/mc,b, which we include. We also calculate O(ΛQCD/mc,b) and O(αs)

contributions to semileptonic B̄ → D(∗)`ν̄ decays for all possible b→ c currents. This result has not

been available for the tensor current form factors, and for two of those, which are O(ΛQCD/mc,b),

the corrections are of the same order as approximations used in the literature. These results allow

us to determine with improved precision how new physics may affect the B̄ → D(∗)τ ν̄ rates. Our

predictions can be systematically improved with more data; they need not rely on lattice QCD

results, although these can be incorporated.
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I. INTRODUCTION

Heavy quark symmetry [1, 2] plays an essential role in understanding exclusive semilep-

tonic b → c`ν̄ mediated transitions, by providing relations between hadronic form factors.

At leading order in ΛQCD/mc,b, the symmetry also determines the absolute normalization

of form factors at the “zero recoil” point, vB = vD(∗) , corresponding to maximal invariant

mass, q2, of the outgoing lepton pair. Incorporating small corrections to the symmetry limit

permits a (hadronic) model-independent determination of |Vcb| from exclusive decays. Re-

cently, the Babar [3, 4], Belle [5–7], and LHCb [8] measurements of the |Vcb|-independent

ratios

R(D(∗)) =
Γ(B → D(∗)τ ν̄)

Γ(B → D(∗)lν̄)
, l = µ, e , (1)

renewed interest in these decays. The world average of R(D) and R(D∗) is in tension with the

SM expectation at the 4σ level [9]. This is intriguing as it occurs in a tree-level SM process,

while most new physics (NP) explanations require new states at or below one TeV [10].

Besides the search for new physics, understanding b→ c`ν̄ mediated semileptonic decays

as precisely as possible is also important for future improvements of the determinations of

the CKM elements |Vcb| and |Vub|, both from exclusive and inclusive B decays, which exhibit

some tensions [9]. Depending on the particular measurement, some decay modes contribute

to the signals, some to the backgrounds. Future progress is essential for increasing the scale

of new physics probed by the Belle II and LHCb experiments [11].

The main uncertainty in predicting R(D(∗)) comes from the fact that the B → D(∗)τ ν̄

decay rates depend on certain form factors, that only give m2
l /m

2
B suppressed contributions

to the differential rates for the precisely measured light lepton channels. Using heavy quark

effective theory (HQET), however, all B → D(∗) form factors are described by a single

Isgur-Wise function in the mc,b � ΛQCD limit. At order ΛQCD/mc,b, only three additional

functions of q2 are needed to parametrize all form factors.

We perform the first combined fit to B → D(∗)lν̄ differential rates and angular distri-

butions, including O(ΛQCD/mc,b, αs) terms in HQET, to constrain both the leading and

three subleading Isgur-Wise functions. This fit constrains all form factors, up to higher

order corrections, with uncertainties suppressed by O(Λ2
QCD/m

2
c,b , αsΛQCD/mc,b , α

2
s). We

extract |Vcb| and form factor ratios under various fit scenarios, that include or omit lattice

QCD and/or QCD sum rule inputs, and which provide checks of previously untested theory
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assumptions or results. Most prior theoretical and experimental studies neglected HQET

relations for the form factors at order ΛQCD/mc,b or the correlations of the uncertainties in

the deviations from the heavy quark limit. Our fits fully incorporate these. These fits also

allow precise predictions of the B → D(∗)τ ν̄ rates and R(D(∗)). Our predictions can be sys-

tematically improved with more B → D(∗)lν̄ data, and need not rely on lattice QCD results.

A similar approach to analyze B → D∗∗lν̄ decays was recently carried out in Ref. [12].

We also compute, for all possible b→ c currents, the O(ΛQCD/mc,b) and O(αs) contribu-

tions to the form factors. While the O(ΛQCD/mc,b) corrections to the vector and axial-vector

matrix elements have been known for over 25 years [13, 14], the corrections for the tensor

current form factors are not explicitly available in past literature. Two of these form factors

vanish in the heavy quark limit, and receive unsuppressed corrections to the partial results,

also of order ΛQCD/mc,b, used previously in the literature.

Section II contains the HQET calculations of the form factors, including order ΛQCD/mc,b

and αs contributions, corresponding expressions for form factor ratios, and some details of

our numerical evaluations in the 1S scheme to avoid known bad behaviors in the pertur-

bation expansions. In Section III we review analyticity constraints on the form factors,

parametrizations of the Isgur-Wise functions, and develop several fit scenarios consistent

with HQET, which we apply to the data. The results for |Vcb|, form factor ratios, and

R(D(∗)) are discussed. Section IV concludes.

II. ELEMENTS OF HQET

A. Matrix elements to order ΛQCD/mc,b and αs

We are concerned with matrix elements 〈D(∗)|OΓ |B〉, where a full operator basis is

OS = c̄ b , OP = c̄ γ5 b , OV = c̄ γµ b , OA = c̄ γµγ5 b , OT = c̄ σµν b , (2)

with σµν ≡ (i/2)[γµ, γν ]. (The sign convention is fixed by σµνγ5 ≡ −(i/2)εµνρσσρσ, which

implies Tr[γµγνγσγργ5] = +4iεµνρσ.) The construction of the HQET expansion to order

O(ΛQCD/mc,b) and O(αs) was developed in the early ’90s [15, 16]; we summarize here the

central elements to establish our conventions.

The HQET allows model independent parametrization of the spectroscopy of heavy

mesons and some hadronic matrix elements between them. The ground state heavy quark
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spin symmetry doublet pseudoscalar (P ) and vector (V ) mesons correspond to the light

degrees of freedom (the “brown muck”) in a spin-1
2

state combined with the heavy quark

spin. They form two states with angular momentum JV,P = 1
2
± 1

2
. Their masses can be

expressed as

mV,P = mQ + Λ̄− λ1

2mQ

± (2JP,V + 1)λ2

2mQ

+ . . . , (3)

where mQ is the heavy quark mass parameter of HQET, Λ̄ = O(ΛQCD), λ1,2 = O(Λ2
QCD),

etc. To evaluate matrix elements relevant for semileptonic decays, it is simplest to use the

trace formalism [17–19]. Including ΛQCD/mc,b corrections, the B → D(∗) matrix elements

can be written as [20]

〈D(∗)| c̄Γ b |B〉
√
mD(∗)mB

= −ξ(w)
{

Tr
[
H̄

(c)
v′ ΓH(b)

v

]
+ εc Tr

[
H̄

(c,1)
v′,v ΓH(b)

v

]
+ εb Tr

[
H̄

(c)
v′ ΓH

(b,1)
v,v′

]}
, (4)

where εc,b = Λ̄/(2mc,b) and Γ is an arbitrary Dirac matrix. The pseudoscalar and vector

mesons can be represented by a “superfield”, which has the right transformation properties

under heavy quark and Lorentz symmetry,

H(Q)
v =

1 + /v

2

(
V (Q)
v /ε − P (Q)

v γ5

)
. (5)

The ΛQCD/mc,b corrections can be parametrized via [20]

H
(Q,1)
v,v′ =

1 + /v

2

{
V (Q)
v

[
/εL̂2(w) + ε · v′L̂3(w)

]
− P (Q)

v γ5 L̂1(w)
}

+
1− /v

2

{
V (Q)
v

[
/εL̂5(w) + ε · v′L̂6(w)

]
− P (Q)

v γ5 L̂4(w)
}
. (6)

It is convenient to use the dimensionless kinematic variable w instead of q2 = (pB − pD(∗))2,

w = v · v′ =
m2
B +m2

D(∗) − q2

2mBmD(∗)
, v =

pB
mB

, v′ =
pD(∗)

mD(∗)
. (7)

In Eq. (4) and hereafter, we absorb into the leading order Isgur-Wise function a heavy quark

spin symmetry conserving O(ΛQCD/mc,b) subleading term, which does not affect any model

independent predictions of HQET, via ξ(w) → ξ(w) + 2(εc + εb)χ1(w). The function χ1

parametrizes the matrix element of the time ordered product of the kinetic operator in the

subleading HQET Lagrangian, Okin = h̄v (iD)2 hv/(2mQ), with the leading order current. It

satisfies χ1(1) = 0 [13], and hence ξ(1) = 1 is maintained. Reparametrization invariance [21]

ensures that this redefinition of ξ(w) is RGE invariant.
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The w-dependent L1...6 functions are [20]

L̂1 = −4(w − 1)χ̂2 + 12χ̂3 , L̂2 = −4χ̂3 , L̂3 = 4χ̂2 ,

L̂4 = 2η − 1 , L̂5 = −1 , L̂6 = −2(1 + η)/(w + 1) . (8)

Here the χ̂2,3 terms in L̂1,2,3 originate from the matrix elements of the time ordered product

of the leading order current with the chromomagnetic correction to the Lagrangian, Omag =

(gs/2) h̄vσµνG
µνhv/(2mQ). Luke’s theorem implies χ̂3(1) = 0 [13]. The L̂4,5,6 terms arise

from ΛQCD/mc,b corrections in the matching of the c̄Γb heavy quark current onto HQET,

c̄Γb→ c̄v′
[
Γ− i

←−
/D Γ/(2mc) + Γ i

−→
/D/(2mb) + . . .

]
bv.

1

The perturbative corrections to the heavy quark currents may be computed by matching

QCD onto HQET [17, 26, 27]. At O(αs), the following operators are generated

c̄ b→ c̄v′
(
1 + α̂sCS

)
bv ,

c̄γ5b→ c̄v′
(
1 + α̂sCP

)
γ5bv ,

c̄γµb→ c̄v′
[(

1 + α̂sCV1
)
γµ + α̂sCV2 v

µ + α̂sCV3 v
′µ]bv ,

c̄γµγ5b→ c̄v′
[(

1 + α̂sCA1

)
γµ + α̂sCA2 v

µ + α̂sCA3 v
′µ]γ5bv

c̄σµνb→ c̄v′
[(

1 + α̂sCT1
)
σµν + α̂sCT2 i(v

µγν − vνγµ) + α̂sCT3 i(v
′µγν − v′νγµ)

+ CT4(v
′µvν − v′νvµ)

]
bv , (9)

where the CΓi
are functions of w and z = mc/mb, and α̂s = αs/π. (We follow the notation

of Ref. [15], while Ref. [16] uses Ci = α̂sCVi + δi1 and C5
i = α̂sCAi

+ δi1.) Evaluating these

contributions using the leading order trace in Eq. (4) leads to O(αs) modifications of the

coefficients of the Isgur-Wise function, ξ(w). In this paper we neglect O(αs εc,b) corrections,

which can also be included straightforwardly (and should be, if NP is established).

The αs corrections for all five currents were computed in Ref. [27]. Appendix A contains

their explicit expressions, at arbitrary matching scale µ. The vector and axial-vector currents

are not renormalized in QCD, but the corresponding heavy quark currents have non-zero

anomalous dimensions, leading to µ-dependence for CV1 and CA1 for w 6= 1. The scalar,

pseudoscalar, and tensor currents are renormalized in QCD, and thus CS, CP , and CT1 are

also µ-dependent. In the MS scheme with dimensional regularization, the remaining CΓj

(j ≥ 2) are scale independent.

1 Our definitions of the subleading Isgur-Wise functions, χ1,2,3, η, and hence L̂1...6, are dimensionless due

to factoring out Λ̄, as done, e.g., in Refs. [16, 22] but not in Refs. [13, 15]; the correspondence is obvious.

The QCD sum rule calculations [23–25] also compute these functions with the dimensionless definitions.

5



B. B → D(∗) form factors

We use the standard definitions of the form factors. For B → D decays,

〈D| c̄ b |B〉 =
√
mBmD hS (w + 1) , (10a)

〈D| c̄γ5b |B〉 = 〈D| c̄γµγ5b |B〉 = 0 , (10b)

〈D| c̄γµb |B〉 =
√
mBmD

[
h+(v + v′)µ + h−(v − v′)µ

]
, (10c)

〈D| c̄σµνb |B〉 = i
√
mBmD

[
hT (v′µvν − v′νvµ)

]
, (10d)

while for the B → D∗ transitions,

〈D∗| c̄b |B〉 = 0 , (11a)

〈D∗| c̄γ5b |B〉 = −
√
mBmD∗ hP (ε∗ · v) , (11b)

〈D∗| c̄γµb |B〉 = i
√
mBmD∗ hV ε

µναβ ε∗νv
′
αvβ , (11c)

〈D∗| c̄γµγ5b |B〉 =
√
mBmD∗

[
hA1(w + 1)ε∗µ − hA2(ε

∗ · v)vµ − hA3(ε
∗ · v)v′µ

]
, (11d)

〈D∗| c̄σµνb |B〉 = −
√
mBmD∗ ε

µναβ
[
hT1ε

∗
α(v + v′)β + hT2ε

∗
α(v − v′)β + hT3(ε

∗ · v)vαv
′
β

]
.

(11e)

The i, −1, and w+ 1 factors are chosen such that in the heavy quark limit each form factor

either vanishes or equals the leading order Isgur-Wise function,

h− = hA2 = hT2 = hT3 = 0 ,

h+ = hV = hA1 = hA3 = hS = hP = hT = hT1 = ξ . (12)

Using Eqs. (4) and (9), one can compute all form factors to order O(ΛQCD/mc,b) and

O(αs). It is convenient to factor out ξ(w), defining

ĥ(w) = h(w)/ξ(w) . (13)

By virtue of Eq. (6), the B → Dlν̄ form factors only depend on two linear combinations of

subleading Isgur-Wise functions, L̂1 and L̂4,

ĥ+ = 1 + α̂s

[
CV1 +

w + 1

2
(CV2 + CV3)

]
+ (εc + εb) L̂1 ,

ĥ− = α̂s
w + 1

2
(CV2 − CV3) + (εc − εb) L̂4 ,

ĥS = 1 + α̂sCS + (εc + εb)

(
L̂1 − L̂4

w − 1

w + 1

)
,
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ĥT = 1 + α̂s
(
CT1 − CT2 + CT3

)
+ (εc + εb)

(
L̂1 − L̂4

)
. (14)

For the B → D∗lν̄ form factors we obtain

ĥV = 1 + α̂sCV1 + εc
(
L̂2 − L̂5

)
+ εb

(
L̂1 − L̂4

)
,

ĥA1 = 1 + α̂sCA1 + εc

(
L̂2 − L̂5

w − 1

w + 1

)
+ εb

(
L̂1 − L̂4

w − 1

w + 1

)
,

ĥA2 = α̂sCA2 + εc
(
L̂3 + L̂6

)
,

ĥA3 = 1 + α̂s
(
CA1 + CA3

)
+ εc

(
L̂2 − L̂3 + L̂6 − L̂5

)
+ εb

(
L̂1 − L̂4

)
,

ĥP = 1 + α̂sCP + εc
[
L̂2 + L̂3(w − 1) + L̂5 − L̂6(w + 1)

]
+ εb

(
L̂1 − L̂4

)
,

ĥT1 = 1 + α̂s

[
CT1 +

w − 1

2

(
CT2 − CT3

)]
+ εcL̂2 + εbL̂1 ,

ĥT2 = α̂s
w + 1

2

(
CT2 + CT3

)
+ εcL̂5 − εbL̂4 ,

ĥT3 = α̂sCT2 + εc
(
L̂6 − L̂3

)
. (15)

In Eqs. (14) and (15), the relations for the SM currents — that is, h+, h−, hV , hA1 , hA2 ,

and hA3 — agree with the literature, e.g., Refs. [16, 20]. Because of Luke’s theorem, the

O(ΛQCD/mc,b) corrections to h+, hS, hA1 , and hT1 vanish at zero recoil. To the best of our

knowledge, the expressions for hT and hT1,2,3 cannot be found in the literature. For hT2 and

hT3 , which start at order ΛQCD/mc,b, the partial results used in the literature (e.g., Ref. [28])

kept and left out terms, which are both order O(ΛQCD/mc,b).

The scalar and vector matrix elements in B → D transitions, and the pseudoscalar and

axial vector ones in B → D∗, are related by the equations of motion

[mb(µ)−mc(µ)] 〈D| c̄ b |B〉 = 〈D| c̄ /q b |B〉 ,

−[mb(µ) +mc(µ)] 〈D∗| c̄γ5b |B〉 = 〈D∗| c̄ /qγ5 b |B〉 , (16)

in which mQ(µ) are the MS quark masses at a common scale µ, obeying

mQ = mQ(µ)

[
1 + α̂s

(
4

3
− ln

m2
Q

µ2

)
+ . . .

]
. (17)

One can verify using mb = mB− Λ̄ +O(Λ2
QCD/mb) and mc = mD(∗) − Λ̄ +O(Λ2

QCD/mc) that

the form factor expansions in Eqs. (14) and (15) satisfy these relations, including all O(εc,b)

and O(αs) terms. We emphasize that this only holds using the MS masses at the common

scale µ. Using mb(mb) and mc(mc) [29] in Eqs. (16), as done in some papers, is inconsistent.
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We prefer to evaluate the scalar and pseudoscalar matrix elements using Eqs. (14) and (15)

instead of Eq. (16), because the natural choice for µ is below mb (or sometimes well below,

as in the small-velocity limit [30, 31]). In the MS scheme fermions do not decouple for µ <

m, introducing artificially large corrections in the running, compensated by corresponding

spurious terms in the β-function computed without integrating out heavy quarks [32].

C. Decay rates and form factor ratios

The B → D(∗)lν̄ differential rates have the well-known expressions in the SM,

dΓ(B → Dlν̄)

dw
=
G2
F |Vcb|2 η2

EW m5
B

48π3
(w2 − 1)3/2 r3

D (1 + rD)2 G(w)2 , (18a)

dΓ(B → D∗lν̄)

dw
=
G2
F |Vcb|2 η2

EW m5
B

48π3
(w2 − 1)1/2 (w + 1)2 r3

D∗(1− rD∗)2

×
[
1 +

4w

w + 1

1− 2wrD∗ + r2
D∗

(1− rD∗)2

]
F(w)2 , (18b)

where rD(∗) = mD(∗)/mB and ηEW ' 1.0066 [33] is the electroweak correction. In addition,

G(w) = h+ −
1− rD
1 + rD

h− , (19a)

F(w)2 = h2
A1

{
2(1− 2wrD∗ + r2

D∗)

(
1 +R1

w − 1

w + 1

)
+
[
(1− rD∗) + (w − 1)

(
1−R2

)]2}
×
[
(1− rD∗)2 +

4w

w + 1

(
1− 2wrD∗ + r2

D∗

)]−1

, (19b)

and the form-factor ratios are defined as

R1(w) =
hV
hA1

, R2(w) =
hA3 + rD∗ hA2

hA1

. (20)

In the heavy quark limit, R1,2(w) = 1 and F(w) = G(w) = ξ(w), the leading Isgur-Wise

function. It is common to fit the measured B → D∗lν̄ angular distributions to R1,2(w). To

O(εc,b, αs), the SM predictions are

R1(w) = 1 + α̂s
(
CV1 − CA1

)
− 2

w + 1

(
εbL̂4 + εcL̂5

)
, (21)

R2(w) = 1 + α̂s
(
CA3 + rD∗CA2

)
− 2

w + 1

(
εbL̂4 + εcL̂5

)
+ εc

[
L̂6(1 + rD∗)− L̂3(1− rD∗)

]
.

To include the lepton mass suppressed terms, one sometimes defines [28, 34] additional

form factor ratios

R3(w) =
hA3 − rD∗hA2

hA1

, R0(w) =
hA1(w + 1)− hA3(w − rD∗)− hA2(1− wrD∗)

(1 + rD∗)hA1

. (22)
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All contributions of R0,3(w) are proportional to m2
` . (Ref. [34] defines R3 = hA3/hA1 .) They

are not linearly independent from R1,2(w), as there are only three form factor ratios in

B → D∗`ν̄ in the SM. In the heavy quark limit, R3(w) = R0(w) = 1. At O(εc,b, αs), the

SM predictions are

R3(w) = 1 + α̂s
(
CA3 − rD∗CA2

)
− 2

w + 1

(
εbL̂4 + εcL̂5

)
+ εc

[
L̂6(1− rD∗)− L̂3(1 + rD∗)

]
,

R0(w) = 1 + α̂s
CA3(rD∗ − w)− (1− rD∗w)CA2

1 + rD∗
+

2(w − rD∗)
(1 + rD∗)(1 + w)

(
εbL̂4 + εcL̂5

)
+ εc

[
L̂3(w − 1)− L̂6(w + 1)

1− rD∗
1 + rD∗

]
. (23)

D. The 1S scheme and numerical results

The CΓ coefficients defined in Eq. (9) are functions of w and z = mc/mb, and thus depend

on the quark masses. As is well known, the pole mass of a heavy quark contains a leading

renormalon ambiguity of order ΛQCD, and so does the HQET parameter Λ̄, as they are

ill-defined beyond perturbation theory. The ambiguity is canceled by a corresponding ambi-

guity in the perturbation series, connected to factorial growth of the coefficients of α̂ns [35–39].

The cancellation comes about as a non-analytic term connected to the asymptotic nature of

the perturbation series, e−c/αs(M) ∼ (ΛQCD/M)cβ0/(4π), where β0 = (11 − 2nf/3) is the first

coefficient in the expansion of the β function. For example, Eq. (21) implies at zero recoil,

R1(1) ' 1 + 4α̂s/3 + εc + εb− 2εbη(1), where the order α̂2
sβ0 terms are also known [22]. The

leading renormalon corresponding to the worst behavior of the α̂ns power series is canceled

by the ambiguity in Λ̄ within the εc + εb term. The −2εbη(1) term, however, does not

contribute to this leading renormalon cancellation, as the only participating terms are those

Λ̄/mc,b terms not multiplied by any subleading Isgur-Wise functions.

The αs perturbation series is known to be poorly convergent for many B decay processes

already at O(α2
s), when expressed in terms of the pole mass. To ensure the order-by-

order cancellation of the fastest factorially growing terms, it is convenient to reorganize the

perturbation series in terms of a suitable short-distance mass scheme, instead of the pole

mass. We use the 1S scheme [40–42], which has been tested in the calculations of numerous

observables. (Using the MS mass yields a poorly behaved perturbation series, for the reasons

mentioned at the end of Sec. II B. Other possible short-distance mass schemes include the

PS mass [43] or the kinetic mass [44].)
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The 1S scheme defines m1S
b as half of the perturbatively computed Υ(1S) mass. It is

related to the pole mass as m1S
b = mb (1 − 2α2

s/9 + . . .) [40–42], so that we may treat the

pole mass as the function mb(m
1S
b ) = m1S

b (1 + 2α2
s/9 + . . .). Neglecting higher order terms,

as done throughout this paper, is a good approximation in all cases where they are known,

including the evaluation of R1,2 [22]. We adopt the inputs [45],

m1S
b = (4.71± 0.05) GeV , δmbc = mb −mc = (3.40± 0.02) GeV , (24)

from fits to inclusive B → Xclν̄ spectra and other determinations of m1S
b . We eliminate mc

using mc = mb(m
1S
b )− δmbc, and extract Λ̄ via

Λ̄ = mB −mb(m
1S
b ) + λ1/(2m

1S
b ) . (25)

Here mB = (mB + 3mB∗)/4 ' 5.313 GeV is the spin-averaged meson mass, and we use

λ1 = −0.3 GeV2 [45]. Enforcing the cancellation of the leading renormalon is equivalent to

using mb(m
1S
b ) → m1S

b everywhere in Eqs. (14) and (15), except in the Λ̄/mc,b terms that

are not multiplied by subleading Isgur-Wise functions.

We match the QCD and HQET theories at scale µ2 = mbmc, corresponding to αs ' 0.26.

The 1S scheme then yields, for example, the following SM predictions for R1,2(1)

R1(1) ' 1.34− 0.12 η(1) ,

R2(1) ' 0.98− 0.42 η(1)− 0.54 χ̂2(1) . (26)

For R′1,2(1) we obtain

R′1(1) ' −0.15 + 0.06 η(1)− 0.12 η′(1) ,

R′2(1) ' 0.01− 0.54 χ̂′2(1) + 0.21 η(1)− 0.42 η′(1) . (27)

For completeness, the similar relations for R0,3 are

R3(1) ' 1.19− 0.26 η(1)− 1.20 χ̂2(1) ,

R0(1) ' 1.09 + 0.25 η(1) ,

R′3(1) ' −0.08− 1.20 χ̂′2(1) + 0.13 η(1)− 0.26 η′(1) ,

R′0(1) ' −0.18 + 0.87 χ̂2(1) + 0.06 η(1) + 0.25 η′(1) . (28)
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III. COMBINED FIT TO B → D∗lν̄ AND B → Dlν̄

A. Parametrization of the w dependence

Unitarity and analyticity provide strong constraints on the shapes of the B → D(∗)`ν̄

form factors [46–51]. It is common to employ a parametrization of the B → D`ν̄ form factor

G(w), defined in Eq. (19), via the conformal mapping z(w) = (
√
w + 1−

√
2)/(
√
w + 1+

√
2).

Unitarity constraints yield, e.g., G(w)/G(1) ' 1− 8ρ2z + (51.ρ2 − 10.)z2 − (252.ρ2 − 84.)z3,

in which ρ2 = −G ′(1)/G(1) is a slope parameter [48]. The convergence of this expansion

may be optimized by parametrizing it in a way that minimizes the range of the expansion

parameter, via

z∗(w) =

√
w + 1−

√
2 a

√
w + 1 +

√
2 a

, a =

(
1 + rD
2
√
rD

)1/2

. (29)

For B → Dlν̄, |z∗| ≤ 0.032. The unitarity constraints suggest a form factor parametrization

of the form
G(w)

G(w0)
' 1− 8a2ρ2

∗z∗ +
(
V21ρ

2
∗ − V20

)
z2
∗ . (30)

Here w0 = 2a2 − 1 ' 1.28 is defined such that z∗(w0) = 0, while V21 ' 57. and V20 ' 7.5

are obtained numerically from Ref. [48]. The uncertainty in the coefficient of the z2
∗ term in

Eq. (30) may be sizable [48]. However, the impact of this term on the physical fit results is

expected to be small.

The leading order Isgur-Wise function, ξ(w), may be extracted from the parametrization

in Eq. (30) by using Eqs. (14) and (13). Keeping terms to O(εc,b(w−1)), we can approximate

the subleading Isgur-Wise functions as

χ̂2(w) ' χ̂2(1) + χ̂′2(1)(w − 1) , χ̂3(w) ' χ̂′3(1)(w − 1) , η(w) ' η(1) + η′(1)(w − 1) ,

(31)

since χ̂3(1) = 0. One finds at O(εc,b, αs),

ξ(w)

ξ(w0)
' 1− 8a2ρ̄2

∗z∗ + z2
∗

{
V21ρ̄

2
∗ − V20 + (εb − εc)

[
2 Ξ η′(1)

1− rD
1 + rD

]
+ (εb + εc)

[
Ξ
[
12χ̂′3(1)− 4χ̂2(1)

]
− 16

[
(a2 − 1) Ξ− 16a4

]
χ̂′2(1)

]
+ α̂s

[
Ξ

(
C ′V1(w0) +

CV3(w0) + rDCV2(w0)

1 + rD

)
+ 2a2(Ξ− 32a2)

C ′V3(w0) + rDC
′
V2

(w0)

1 + rD

− 64a6 C
′′
V3

(w0) + rDC
′′
V2

(w0)

1 + rD
− 32a4C ′′V1(w0)

]}
, (32)
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where Ξ = 64a4ρ̄2
∗ − 16a2 − V21. The slope parameter ρ̄2

∗ = −ξ′(w0)/ξ(w0) is related to the

slope ρ2
∗ = −G ′(w0)/G(w0) via

ρ̄2
∗ − ρ2

∗ = (εb + εc)
[
12χ̂′3(1)− 4χ̂2(1)− 16(a2 − 1)χ̂′2(1)

]
+ 2(εb − εc)η′(1)

1− rD
1 + rD

+ α̂s

[
rDCV2(w0) + CV3(w0)

1 + rD
+ C ′V1(w0) + 2a2 rDC

′
V2

(w0) + C ′V3(w0)

1 + rD

]
. (33)

Enforcing ξ(1) = 1, one may directly extract ξ(w0) via evaluation of Eq. (32) at the zero recoil

point, z∗(w = 1) = (1−a)/(1+a), and thereby obtain a properly normalized parametrization

for ξ(w). Since η(1) does not appear in Eq. (32), this implies that constraining ξ(w) in itself

does not constrain η(1), which is the largest unknown contribution in R1,2(1).

This expression for ξ(w), combined with the HQET expansions in Eqs. (14) and (15),

allows one to parametrize all B → D(∗) form factors in terms of six parameters: ρ̄2
∗, χ̂2(1),

χ̂′2(1), χ̂′3(1), η(1) and η′(1). The normalizations of the form factors are also fixed by Eq. (32),

thus |Vcb| may be determined from a global fit to overall rates without using lattice results.

B. QCD sum rule inputs

The subleading Isgur-Wise functions have only been calculated using model dependent

methods, and are not yet available from lattice QCD. The two-loop QCD sum rule (QCDSR)

calculations [23–25] imply that the subleading Isgur-Wise function η(w) is approximately

constant. The functions χ̂2,3, which parametrize corrections from the chromomagnetic term

in the subleading HQET Lagrangian, are small, in agreement with quark model intuition.

The QCD sum rule results are obtained at a fixed scale. The scale dependence can be

removed from χ̂2,3 by defining “renormalization improved” functions, χ̂ren
2,3 [16]. These are

obtained by multiplying the results of Refs. [23, 24] for χ̂2,3 by [αs(Λ)]3/β0 ∼ 1.4, where

Λ ∼ 1 GeV and β0 = 9 for three light flavors. For these renormalized subleading Isgur-Wise

functions, we use

χ̂ren
2 (1) = −0.06± 0.02 , χ̂′ ren

2 (1) = 0± 0.02 , χ̂′ ren
3 (1) = 0.04± 0.02 ,

η(1) = 0.62± 0.2 , η′(1) = 0± 0.2 . (34)

These central values reproduce L̂1...6 in Ref. [48], often used to predict R1,2 and R(D(∗)).

We assign relatively large uncertainties, to permit assessment of possible pulls of the

experimental data from these QCDSR predictions. Replacing χ̂2,3 with χ̂ren
2,3 , the Wilson

12



coefficient of the chromomagnetic operator receives a corresponding αs(µ)3/β0 factor at the

matching scale µ =
√
mbmc, partly canceling the above [αs(Λ)]3/β0 enhancement. For ease of

comparison with the literature we ignore this, as it can be viewed as a higher order correction,

and is in any case covered by the large assigned uncertainties. We ignore correlations in the

QCDSR results (arising from the common calculational method), which is conservative.

Using Eqs. (34) in Eqs. (21) yield expressions for R1,2(w) as polynomials in (w− 1), with

the coefficients and their uncertainties correlated by HQET. In Ref. [48], the central values

in Eq. (34) were used to write R1,2(w) as quadratic polynomials, without quoting any theory

uncertainties on their slopes and curvatures. It subsequently become standard practice in

experimental |Vcb| and R1,2 measurements to fit for R1,2(1), while fixing R′1,2(1) and R′′1,2(1) to

their quoted central values [48]. Such an approach is inconsistent with the simultaneous use

of the HQET constraints and the QCDSR results. For example, the present world average

central value, R1(1) ' 1.4, cannot simultaneously satisfy the HQET prediction for R1(1) in

Eq. (26) and the QCDSR expectation η(1) > 0, which holds at the 3σ level, and is used

elsewhere in the same fit. A consistent treatment of these form factor ratios is absent from

the derivations of the state-of-the-art predictions for R(D(∗)) in the SM (except for LQCD

R(D) predictions) and in the presence of new physics [28, 34].

We now proceed to assess the importance of obeying the HQET relations between different

form factors, and of including the uncertainties in the QCDSR predictions in Eq. (34). These

effects will be important in the future, to systematically improve the SM predictions.

C. Fit scenarios

A simultaneous fit of the six parameters ρ̄2
∗, χ̂2(1), χ̂′2(1), χ̂′3(1), η(1), and η′(1) to the

B → D(∗)lν̄ rates can be carried out with the present data. Such a fit fixes both the shapes

and normalizations of the B → D(∗)lν̄ rates, without any theory input other than the HQET

expansion. However, one expects large uncertainties at present, because of the limited

experimental precision and the number of subleading HQET parameters. One may instead

use QCD sum rule predictions and/or lattice QCD results to constrain the fit, increasing

sensitivity to ρ̄2
∗. The fit propagates the uncertainties on the subleading Isgur-Wise functions

into the fit result, and allows the data to further constrain the subleading contributions.

Our fit relies on the HQET predictions and unitarity constraints to determine the ratios
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and shapes of the form factors. The form factors at zero recoil, G(1) and F(1), have been

computed in lattice QCD (LQCD), providing state-of-the-art predictions for the normal-

izations of the B → D(∗)lν̄ rates. The most precise lattice QCD predictions at zero recoil

are [52, 53]

G(1)LQCD = 1.054(8) , F(1)LQCD = 0.906(13) , (35)

where we combined the quoted systematic and statistical uncertainties. Although these

normalizations may be expected to drop out of the predictions for R(D(∗)), they do influence

the fit to the differential decay distributions and hence the resulting form factor ratios.

Making use of these lattice constraints leads to our first fitting scenario:

� Rescale the B → D and B → D∗ form factors in the fit by G(1)LQCD/G(1) and

F(1)LQCD/F(1), respectively, such that the rates at w = 1 agree with the lattice

predictions. We refer to this fit as “Lw=1”.

Measurements of the rate normalizations are, however, subject to relatively large system-

atic uncertainties. For example, the calibration of the hadronic tagging efficiency produces

systematic uncertainties of the order of a few percent [54]. To compare the best-fit shapes

without lattice constraints and such systematic effects, we consider a second scenario:

� Allow the normalizations of the B → Dlν̄ and B → D∗lν̄ rates to float independently.

This approach only uses B → D(∗)lν̄ shape information to constrain the form factors,

but no theory input for the normalizations at zero-recoil, and is independent of lattice

information. We refer to this fit as “NoL”.

For each fit, we apply (relax) the QCDSR constraints, exploring a “constrained” (“uncon-

strained”) fit. The QCDSR constrained fits are denoted with a suffix “+SR”. Both Lw=1

and NoL fits alter the overall normalizations the B → Dlν̄ and B → D∗lν̄ rates, but leave

the HQET expansions of the form factors unchanged. Thus, they can be considered as

introducing an extra source of heavy quark symmetry breaking in the normalizations (to

effectively account for higher order effects), while still preserving the form factor relations

independently in Eqs. (14) and (15).

Since lattice QCD predictions are also available for w ≥ 1 for the B → Dlν̄ form factors

f+(w) and f0(w), it is possible to obtain a prediction for the slope parameter, ρ̄2
∗, from them.

This leads to a third fit approach, namely:
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Fit QCDSR
Lattice QCD

Belle Data
F(1) f+,0(1) f+,0(w > 1)

Lw=1 — X X — X

Lw=1+SR X X X — X

NoL — — — — X

NoL+SR X — — — X

Lw≥1 — X X X X

Lw≥1+SR X X X X X

th:Lw≥1+SR X X X X —

TABLE I. Summary of theory and data inputs for each fit scenario. All use the HQET predictions

to order O(ΛQCD/mc,b) and O(αs), as well as the unitarity constraints.

� Extract ξ(w), including the slope parameter ρ̄2
∗, by fitting to the w ≥ 1 lattice QCD

data for B → D, and apply it simultaneously with the LQCD normalization of B → D∗

at w = 1. We refer to this fit as “Lw≥1”.

In a “theory only” version of this fit, denoted by “th:Lw≥1+SR”, one fully constrains the

B → D(∗)lν̄ differential rates without any experimental input; the only fit is to lattice data

and QCDSR constraints. For the “Lw≥1+SR” fit, we combine the w ≥ 1 B → D and w = 1

B → D∗ lattice data with QCDSR constraints and the experimental information, to include

all available information and explore possible tensions. We summarize the inputs of the

various fit scenarios pursued in this paper in Table I.

All fits explored in this paper use the unitarity constraints. The consequences of relaxing

the unitarity constraints between the slope and the curvature terms in Eq. (30) will be

explored in detail elsewhere [55].

D. Data and fit details

To determine the leading and subleading Isgur-Wise functions and |Vcb|, we carry out a

simultaneous fit of the available B → D(∗)lν̄ spectra. There are only two measurements [54,

56] which provide kinematic distributions fully corrected for detector effects. The measured
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recoil and decay angle distributions are analyzed simultaneously by constructing a standard

χ2 function. Common uncertainties (tagging efficiency, reconstruction efficiencies, number of

B-meson pairs) should be treated as fully correlated between the two measurements and we

construct a covariance using Table IV in Ref. [56] and Table IV in Ref. [54]. While Ref. [56]

provides a full breakdown of the total uncertainty for each measured w bin, Ref. [54] only

provides a breakdown for the total branching fraction. To construct the desired covariance

between both measurements, we thus assume that there is no shape dependence on the

tagging and reconstruction efficiency uncertainty of Ref. [54]. Comparing this with the mild

dependence on these error sources in Ref. [56], this seems a fair approximation of the actual

covariance. To take into account the uncertainties of m1S
b and δmbc, we introduce both as

nuisance parameters into the fit, assuming Gaussian constraints with uncertainties given in

Eq. (24). The χ2 function is numerically minimized and uncertainties are evaluated using the

usual asymptotic approximations by scanning the ∆χ2 = χ2
scan−χ2

min contour to find the +1

crossing point, which provides the 68% confidence level. The constraints from lattice QCD

predictions and/or QCD sum rules are incorporated into the fit assuming (multivariate)

Gaussian errors and are added to the χ2 function.

The full fit results are shown in Table II. The “Lw=1” unconstrained fit, i.e., using only

the lattice normalizations at w = 1, yields

|Vcb| = (38.8± 1.2)× 10−3 , (36)

to be compared with the current world average [29] |Vcb| = (42.2 ± 0.8) × 10−3 and

|Vcb| = (39.2± 0.7)× 10−3, from inclusive and exclusive b → c lν̄l decays, respectively. The

uncertainties of the subleading Isgur-Wise parameters are sizable. There is no sensitivity

to disentangle η′(1) from ρ̄2
∗, so we fix η′(1) to be zero for all QCDSR unconstrained fits.

Including the QCDSR constraints in the “Lw=1+SR” fit yields

|Vcb| = (38.5± 1.1)× 10−3 , (37)

resulting in almost the same |Vcb| value. The normalization of η(1) is comparable between

these two fits, at about half the value of the QCDSR expectation. Both fits have reasonable

χ2 values, corresponding to fit probabilities of 64% each.

Neglecting all subleading ΛQCD/mc,b contributions in the “Lw=1” fit results in a poorer

overall χ2. The value of |Vcb| decreases slightly, |Vcb| = (38.2 ± 1.1) × 10−3, with χ2 = 62.6
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Lw=1 Lw=1+SR NoL NoL+SR Lw≥1 Lw≥1+SR th:Lw≥1+SR

χ2 40.2 44.0 38.7 43.1 49.0 53.8 7.4

dof 44 48 43 47 48 52 4

|Vcb| × 103 38.8± 1.2 38.5± 1.1 — — 39.1± 1.1 39.3± 1.0 —

G(1) 1.055± 0.008 1.056± 0.008 — — 1.060± 0.008 1.061± 0.007 1.052± 0.008

F(1) 0.904± 0.012 0.901± 0.011 — — 0.898± 0.012 0.895± 0.011 0.906± 0.013

ρ̄2
∗ 1.17± 0.12 1.19± 0.07 1.06± 0.15 1.19± 0.08 1.33± 0.11 1.24± 0.06 1.24± 0.08

χ̂2(1) −0.26± 0.26 −0.07± 0.02 0.36± 0.62 −0.06± 0.02 0.13± 0.22 −0.06± 0.02 −0.06± 0.02

χ̂′2(1) 0.21± 0.38 −0.00± 0.02 0.14± 0.39 −0.00± 0.02 −0.36± 0.28 −0.00± 0.02 −0.00± 0.02

χ̂′3(1) 0.02± 0.07 0.05± 0.02 0.18± 0.19 0.04± 0.02 0.09± 0.07 0.05± 0.02 0.04± 0.02

η(1) 0.30± 0.04 0.30± 0.03 −0.56± 0.80 0.35± 0.14 0.30± 0.04 0.30± 0.03 0.31± 0.04

η′(1) 0 (fixed) −0.12± 0.16 0 (fixed) −0.11± 0.18 0 (fixed) −0.05± 0.09 0.05± 0.10

m1S
b [GeV] 4.70± 0.05 4.70± 0.05 4.71± 0.05 4.70± 0.05 4.71± 0.05 4.71± 0.05 4.71± 0.05

δmbc [GeV] 3.40± 0.02 3.40± 0.02 3.40± 0.02 3.40± 0.02 3.40± 0.02 3.40± 0.02 3.40± 0.02

TABLE II. Summary of the results for the fit scenarios considered. The correlations are shown in

Appendix B.

for 48 dof, corresponding to a fit probability of 8%, which is still an acceptable fit. The

slope parameter becomes ρ̄2
∗ = 0.93 ± 0.05, below those obtained including the ΛQCD/mc,b

corrections. The uncertainty of ρ̄2
∗ is noticeably smaller due to the smaller number of degrees

of freedom in this fit. The value of |Vcb| is only weakly affected by this shift in ρ̄2
∗.

In the “NoL” fits, using no LQCD inputs, we use only shape information to disentangle ρ̄2
∗

from the subleading contributions, while allowing the B → Dlν̄ and B → D∗lν̄ channels to

each have arbitrary normalizations (these fits cannot determine |Vcb|). This results in large

uncertainties in the QCDSR unconstrained fit. Again, η′(1) and ρ̄2
∗ are strongly correlated,

so the former is fixed at zero. Including the QCDSR constraints in the “NoL+SR” fit yields

results close to those in the “Lw=1+SR” fit.

In the “th:Lw≥1+SR” scenario, which uses no experimental data, fitting the parametrized

ξ(w) to the six lattice points for f+,0(w) in Table III and F(1) in Eq. (35), results in a slope

parameter

ρ̄2
∗ = 1.24± 0.08 . (38)

The fitted w spectra are shown in Fig. 1 (gray curves), together with the lattice data points.

The χ2 of the fit is 7.4, corresponding to a fit probability of 11% with 7 − 3 = 4 degrees
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Form factor w = 1.0 w = 1.08 w = 1.16

f+ 1.1994± 0.0095 1.0941± 0.0104 1.0047± 0.0123

f0 0.9026± 0.0072 0.8609± 0.0077 0.8254± 0.0094

TABLE III. The predictions for the form factors f+,0 at w = 1.0, 1.08, 1.16 using the synthetic

data results of Ref. [53]. The correlations can be found in Table VII in Ref. [53].
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FIG. 1. The “th:Lw≥1+SR” fit of the form factors f+,0 to the lattice points listed in Table III

is shown (gray solid line). The dashed gray lines correspond to the 68% errors. The dark blue

line shows the f+,0 best fit for “Lw≥1+SR”, using lattice points, experimental information, and

QCDSR constraints. The blue band displays the corresponding 68% CL of this fit.

of freedom. The value for the slope is in good agreement with the slope obtained from the

QCDSR constrained and unconstrained “Lw=1” and “NoL” fits.

In the “Lw≥1” fit, all six lattice points for f+,0(w) in Table III and F(1) in Eq. (35)

are fitted together with the available experimental information. Once again, η′(1) is fixed

to zero, as it is strongly correlated with ρ̄2
∗. The fit has χ2 = 49, corresponding to a fit

probability of 43%. For |Vcb|, this fit yields

|Vcb| = (39.1± 1.1)× 10−3 , (39)

which is slightly higher than the “Lw=1” result. The value of ρ̄2
∗ is also higher.

In the “Lw≥1+SR” fit, the QCDSR constraints are included, so that all theory and ex-

perimental information is incorporated. The resulting differential B → D(∗)lν̄ distributions

are shown in Fig. 2, overlaid with the experimental data, as well as the predictions for the

B → D(∗)τ ν̄ differential rates. The fit has χ2 = 53.8, corresponding to a fit probability of
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FIG. 2. The measured B → D(∗)lν̄ decay distributions [54, 56] compared to the best fit contours

(dark blue curves) for the “Lw≥1+SR” fit, using LQCD at all w and QCDSR constraints. The blue

bands show the 68% CL regions. The orange curves and bands show the central values and the

68% CL regions of the fit predictions for dΓ(B → D(∗)τ ν̄)/dw.

44%. For |Vcb| the fit gives

|Vcb| = (39.3± 1.0)× 10−3 . (40)

This is higher than the “Lw=1+SR” result, because the value of ρ̄2
∗ is also higher.

The correlation matrices for all fits are shown in Appendix B. In the “Lw=1” and “Lw≥1”
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type fits, moderate correlations are seen between |Vcb|, G(1), and F(1), as expected. The

correlations are sizable in these fits between ρ̄2
∗ and the subleading Isgur-Wise functions.

A more detailed study of these effects, in particular the extraction of |Vcb|, will be pre-

sented elsewhere [55]. A first comparison with the CLN parametrization [48], as implemented

by previous experimental studies, can be done by considering the results for the form factor

ratios R1 and R2, defined in Eq. (20). Figure 3 shows the extracted values of R1,2(1) for all

fit scenarios. The results agree with each other and with the world average of R1(1) and

R2(1) [9] shown by black ellipses, up to a mild 1σ tension. Firm conclusions are difficult

to reach, as it is impossible to assess how the experimental results would change, had the

uncertainties in the quadratic polynomials used to fit R1,2(w) been properly included. When

the QCDSR constraints are used, the central values satisfy R1(1) < 1.34, as required by the

HQET prediction in Eq. (26) and the constraint η(1) > 0.

E. R(D(∗)) and new physics

Using the fitted values for ρ̄2
∗, χ̂2(1), χ̂′2(1), χ̂′3(1), η(1), and η′(1), one can predict R(D(∗))

in the SM and for any new physics four-fermion interaction. Figure 4 and Table IV summa-

rize the predicted values of R(D(∗)) in the SM for the seven fit scenarios considered. Our fit

results for R(D) are in good agreement with other predictions in the literature [57, 58]. All

our fits using lattice QCD inputs yield R(D∗) above those in Ref. [34]. This slightly eases the

disagreement with the world average measurement [9]. The significance is calculated from

χ2 statistics, taking into account the full covariance of the theory prediction and the world

average measurement. The tension between our most precise “Lw≥1+SR” fit and the data

is 3.9σ, with a p-value of 11.5× 10−5, to be compared with 8.3× 10−5 quoted by HFAG [9].

The precision of this prediction is limited by that of the input measurements and LQCD

inputs, and can be systematically improved with new data from Belle II or LHCb.

To derive a SM prediction for R(D∗), Ref. [34] used the measured R2(1) form factor

ratio [9] and the QCDSR predictions to obtain R0(1) = 1.14 ± 0.11. In comparison, our

“Lw≥1+SR” fit results yield

R0(1) = 1.17± 0.02 , R3(1) = 1.19± 0.03 . (41)
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FIG. 3. The SM predictions for R1(1) and R2(1) for the fits imposing (left) or not imposing (right)

the QCDSR constraints in Eq. (34). The black ellipse shows the world average of the data [9]. The

fit scenarios are described in the text and in Table I, and the fit results are shown in Table II. All

contours correspond to 68% CL in two dimensions (∆χ2 = χ2
scan − χ2

min = 2.3).
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FIG. 4. The SM predictions for R(D) and R(D∗), imposing (left) or not imposing (right) the

QCDSR constraints (see Table IV). Gray ellipses show other SM predictions (last three rows of

Table IV). The black ellipse shows the world average of the data [9]. The contours are 68% CL

(∆χ2 = 2.3), hence the nearly 4σ tension.
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Scenario R(D) R(D∗) Correlation

Lw=1 0.292± 0.005 0.255± 0.005 41%

Lw=1+SR 0.291± 0.005 0.255± 0.003 57%

NoL 0.273± 0.016 0.250± 0.006 49%

NoL+SR 0.295± 0.007 0.255± 0.004 43%

Lw≥1 0.298± 0.003 0.261± 0.004 19%

Lw≥1+SR 0.299± 0.003 0.257± 0.003 44%

th:Lw≥1+SR 0.306± 0.005 0.256± 0.004 33%

Data [9] 0.403± 0.047 0.310± 0.017 −23%

Refs. [53, 57, 59] 0.300± 0.008 — —

Ref. [58] 0.299± 0.003 — —

Ref. [34] — 0.252± 0.003 —

TABLE IV. The R(D) and R(D∗) predictions for our fit scenarios, the world average of the data,

and other theory predictions. The fit scenarios are described in the text and in Table I. The bold

numbers are our most precise predictions.

The precision on R0(1) improves five-fold compared to Ref. [34] and is in good agreement.

In Fig. 5 we illustrate the impacts NP might have on the allowed R(D)−R(D∗) regions,

assuming the dominance of one new physics operator in a standard four-Fermi basis. NP

couplings are permitted to have an arbitrary phase, generating allowed regions rather than

single contours. We display the allowed regions generated for the “NoL+SR” best fit values;

the “Lw≥1+SR” best fit values; and for leading order contributions only, i.e., αs, εc,b → 0,

with ρ̄2
∗ = 1.24. The small variation between the “NoL+SR” and “Lw≥1+SR” regions

illustrates the good consistency of the predictions obtained with and without LQCD. On

each plot, we also include for comparison the corresponding contours (dashed lines) produced

by a NP OV − OA coupling. The latter rescales R(D) and R(D∗) keeping their ratio fixed.

Solid dots indicate the SM point for each case. For scalar currents, if NP only contributes

to OS (OP ) then only R(D) (R(D∗)) is affected in accordance with Eq. (10b) (Eq. (11a)),

respectively. We plot the allowed regions for the OS ± OP linear combinations, which are

also motivated by specific NP models.
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FIG. 5. The allowed ranges of R(D)−R(D∗), due to one of the new physics operators in addition

to the SM: OS −OP (top left), OS +OP (top right), OV +OA (bottom left), OT (bottom right).

IV. SUMMARY AND OUTLOOK

We performed a novel combined fit of the B → Dlν̄ and B → D∗lν̄ differential rates

and angular distributions, consistently including the HQET relations to O(ΛQCD/mc,b, αs).

Under various fit scenarios, that use or omit lattice QCD and QCD sum rule predictions, we

constrain the leading and subleading Isgur-Wise functions. We thus obtain strong constraints

on all form factors, and predictions for the form factor ratios R1,2 as well as R(D(∗)), both in

the SM and in arbitrary NP scenarios, valid at O(αs) and O(ΛQCD/mc,b). Our most precise

prediction for R(D(∗)), in the “Lw≥1+SR” fit, using the experimental data and all lattice

QCD and QCDSR inputs is

R(D) = 0.299± 0.003 , R(D∗) = 0.257± 0.003 , (42)
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with a correlation of 44%. The same fit also yields |Vcb| = (39.3±1.0)×10−3, which is in good

agreement with existing exclusive determinations. All possible b → c current form factors

are derived at O(ΛQCD/mc,b) and O(αs), including those for a tensor current, previously

unavailable in the literature at this order. A lattice QCD calculation of the subleading

Isgur-Wise functions, or even just those which arise from the chromomagnetic term in the

subleading HQET Lagrangian (χ2,3), would be important to reduce hadronic uncertainties in

both SM and NP predictions, complementary to a long-awaited lattice calculation of R(D∗).

At the current level of experimental precision, our predictions agree up to mild ten-

sions with previous results, which neglected the HQET relations for the uncertainties of the

O(ΛQCD/mc,b) terms. Our fit results are consistent with one another, and at the current

level of precision we find no inconsistencies between the data, lattice QCD results, and QCD

sum rule predictions. Our fit using all available lattice QCD and QCD sum rule inputs and

HQET to order O(αs,ΛQCD/mc,b) yields the most precise combined prediction for R(D) and

R(D∗) to date. However, in principle, our fit need not require either lattice or sum rule

input, and its precision can be improved simply as the statistics of future data increases.

The (moderate) tension between the measurements of |Vcb| from inclusive and exclusive

semileptonic decays probably cannot be resolved with current data. Understanding how the

inclusive rate is made up from a sum of exclusive channels has been unclear from the data for

a long time [60], and puzzles remain even in light of BaBar and Belle measurements [61, 62].

A more detailed examination of the effects of the unitarity constraints and the precision

extraction of |Vcb| is the subject of ongoing work [55]. We are also implementing the full

angular distributions of the measurable particles [63, 64] into a software package, hammer [65,

66], based on the state-of-the-art HQET predictions for all six B → D,D∗, D∗∗ decay modes.
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Appendix A: The O(αs) corrections

In this appendix we summarize the explicit expressions for the CΓ(w) functions defined

in Eq. (9), calculated in Ref. [27]. The following results use the MS scheme and correspond

to matching from QCD onto HQET at µ =
√
mcmb,

CS =
1

z(w − wz)

[
2z(w − wz)Ω(w)−

(
(w − 1)(z + 1)2r(w)− (z2 − 1) ln z

)]
, (A1a)

CP =
1

2z2(w − wz)2

[
(z − 1)

[(
w(z3 − (3 + 2w)z2 + z − 1) + (z2 + 3)z

)
r(w) + (z2 − 1) ln z

]
− 2z(wz − w)(z − 1 + (z + 1)z ln z) + 4z2(w − wz)2Ω(w)

]
, (A1b)

CV1 =
1

6z(w − wz)

[
2(w + 1)

(
(3w − 1)z − z2 − 1

)
r(w)

+
(
12z(wz − w)− (z2 − 1) ln z

)
+ 4z(w − wz)Ω(w)

]
, (A1c)

CV2 =
−1

6z2(w − wz)2

[(
(4w2 + 2w)z2 − (2w2 + 5w − 1)z − (w + 1)z3 + 2

)
r(w)

+ z
(
2(z − 1)(wz − w) +

(
z2 − (4w − 2)z + (3− 2w)

)
ln z
)]
, (A1d)

CV3 =
1

6z(w − wz)2

[(
(2w2 + 5w − 1)z2 − (4w2 + 2w)z − 2z3 + w + 1

)
r(w)

+
(
2z(z − 1)(wz − w) + ((3− 2w)z2 + (2− 4w)z + 1) ln z

)]
, (A1e)

CA1 =
1

6z(w − wz)

[
2(w − 1)

(
(3w + 1)z − z2 − 1

)
r(w)

+
(
12z(wz − w)− (z2 − 1) ln z

)
+ 4z(w − wz)Ω(w)

]
, (A1f)

CA2 =
−1

6z2(w − wz)2

[(
(4w2 − 2w)z2 + (2w2 − 5w − 1)z + (1− w)z3 + 2

)
r(w)

+ z
(
2(z + 1)(wz − w) +

(
z2 − (4w + 2)z + (2w + 3)

)
ln z
)]
, (A1g)

CA3 =
1

6z(w − wz)2

[(
2z3 + (2w2 − 5w − 1)z2 + (4w2 − 2w)z − w + 1

)
r(w)

+
(
2z(z + 1)(wz − w)−

(
(2w + 3)z2 − (4w + 2)z + 1

)
ln z
)]
, (A1h)

CT1 =
1

3z(w − wz)

[
(w − 1)

(
(4w + 2)z − z2 − 1

)
r(w)

+
(
6z(wz − w)− (z2 − 1) ln z

)
+ 2z(w − wz)Ω(w)

]
, (A1i)

CT2 =
2

3z(w − wz)

[
(1− wz)r(w) + z ln z

]
, (A1j)

CT3 =
2

3(w − wz)

[
(w − z)r(w) + ln z

]
, (A1k)

25



and CT4 = 0. Here z = mc/mb, and the functions

Ω(w) ≡ w

2
√
w2 − 1

[
2Li2(1− w−z)− 2Li2(1− w+z) + Li2(1− w2

+)− Li2(1− w2
−)
]

− w r(w) ln z + 1 , (A2)

where Li2(x) =
∫ 0

x
ln(1− t)/t dt is the dilogarithm, and

r(w) ≡ lnw+√
w2 − 1

, w± ≡ w ±
√
w2 − 1 , wz ≡

1

2

(
z + 1/z

)
. (A3)

At the zero recoil point, w = 1,

CS(1) = −2

3
, CP (1) =

2

3
,

CV1(1) = −4

3
− 1 + z

1− z
ln z, CV2(1) = −2 (1− z + z ln z)

3(1− z)2
, CV3(1) =

2z(1− z + ln z)

3(1− z)2
,

CA1(1) = −8

3
− 1 + z

1− z
ln z ,

CA2(1) = −2 [3− 2z − z2 + (5− z)z ln z]

3(1− z)3
, CA3(1) =

2z [1 + 2z − 3z2 + (5z − 1) ln z]

3(1− z)3
,

CT1(1) = −8

3
− 4(1 + z)

3(1− z)
ln z , CT2(1) = 2CV2(1) , CT3(1) = −2CV3(1) . (A4)

Finally, for arbitrary matching scale µ, one should add to Eqs. (A1) the terms

C
(µ2)
S,P = C

(mbmc)
S,P − 1

3
[2w r(w) + 1] ln(mcmb/µ

2) , (A5a)

C
(µ2)
V1,A1

= C
(mbmc)
V1,A1

− 2

3
[w r(w)− 1] ln(mcmb/µ

2) , (A5b)

C
(µ2)
T1

= C
(mbmc)
T1

− 1

3
[2w r(w)− 3] ln(mcmb/µ

2) , (A5c)

and all other C
(µ2)
Γj

= C
(mbmc)
Γj

, for j ≥ 2.

Appendix B: Dull Correlations

The correlation matrices for the fit scenarios are given in Tables V-XI.
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|Vcb| G(1) F(1) ρ̄2
∗ χ̂2(1) χ̂′2(1) χ̂′3(1) η(1) m1S

b δmbc

|Vcb| 1.00 −0.16 −0.18 0.30 −0.13 0.28 0.11 0.04 −0.01 0.00

G(1) −0.16 1.00 0.06 −0.11 0.03 −0.04 −0.09 −0.23 0.00 −0.00

F(1) −0.18 0.06 1.00 0.18 −0.00 0.08 0.21 −0.02 0.01 −0.00

ρ̄2
∗ 0.30 −0.11 0.18 1.00 0.67 −0.47 0.82 0.13 −0.16 0.01

χ̂2(1) −0.13 0.03 −0.00 0.67 1.00 −0.87 0.82 −0.11 0.07 −0.01

χ̂′2(1) 0.28 −0.04 0.08 −0.47 −0.87 1.00 −0.47 0.01 0.01 −0.00

χ̂′3(1) 0.11 −0.09 0.21 0.82 0.82 −0.47 1.00 −0.12 0.12 −0.02

η(1) 0.04 −0.23 −0.02 0.13 −0.11 0.01 −0.12 1.00 −0.52 0.05

m1S
b −0.01 0.00 0.01 −0.16 0.07 0.01 0.12 −0.52 1.00 0.00

δmbc 0.00 −0.00 −0.00 0.01 −0.01 −0.00 −0.02 0.05 0.00 1.00

TABLE V. The correlations of the “Lw=1” fit scenario.

|Vcb| G(1) F(1) ρ̄2
∗ χ̂2(1) χ̂′2(1) χ̂′3(1) η(1) η′(1) m1S

b δmbc

|Vcb| 1.00 −0.12 −0.32 0.48 −0.02 0.02 0.14 0.05 0.02 −0.02 0.00

G(1) −0.12 1.00 0.14 −0.05 0.04 0.01 −0.14 −0.23 0.09 −0.00 −0.00

F(1) −0.32 0.14 1.00 0.04 −0.07 −0.01 0.24 −0.02 −0.11 −0.03 0.01

ρ̄2
∗ 0.48 −0.05 0.04 1.00 −0.09 −0.04 0.57 0.32 0.08 −0.45 0.04

χ̂2(1) −0.02 0.04 −0.07 −0.09 1.00 −0.03 0.17 −0.06 −0.20 0.04 −0.00

χ̂′2(1) 0.02 0.01 −0.01 −0.04 −0.03 1.00 0.06 −0.02 −0.09 0.01 −0.00

χ̂′3(1) 0.14 −0.14 0.24 0.57 0.17 0.06 1.00 0.08 0.38 −0.03 0.00

η(1) 0.05 −0.23 −0.02 0.32 −0.06 −0.02 0.08 1.00 −0.14 −0.48 0.05

η′(1) 0.02 0.09 −0.11 0.08 −0.20 −0.09 0.38 −0.14 1.00 0.08 −0.01

m1S
b −0.02 −0.00 −0.03 −0.45 0.04 0.01 −0.03 −0.48 0.08 1.00 0.01

δmbc 0.00 −0.00 0.01 0.04 −0.00 −0.00 0.00 0.05 −0.01 0.01 1.00

TABLE VI. The correlations of the “Lw=1+SR” fit scenario.

ρ̄2
∗ χ̂2(1) χ̂′2(1) χ̂′3(1) η(1) m1S

b δmbc

ρ̄2
∗ 1.00 −0.22 −0.18 −0.03 0.46 −0.22 0.01

χ̂2(1) −0.22 1.00 −0.41 0.94 −0.92 0.33 −0.03

χ̂′2(1) −0.18 −0.41 1.00 −0.19 0.08 −0.02 −0.00

χ̂′3(1) −0.03 0.94 −0.19 1.00 −0.88 0.32 −0.03

η(1) 0.46 −0.92 0.08 −0.88 1.00 −0.35 0.02

m1S
b −0.22 0.33 −0.02 0.32 −0.35 1.00 0.00

δmbc 0.01 −0.03 −0.00 −0.03 0.02 0.00 1.00

TABLE VII. The correlations of the “NoL” fit scenario.
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ρ̄2
∗ χ̂2(1) χ̂′2(1) χ̂′3(1) η(1) η′(1) m1S

b δmbc

ρ̄2
∗ 1.00 −0.15 −0.07 0.57 0.44 −0.11 −0.31 0.03

χ̂2(1) −0.15 1.00 −0.02 0.07 −0.15 −0.09 0.02 −0.00

χ̂′2(1) −0.07 −0.02 1.00 0.03 −0.07 −0.05 0.00 −0.00

χ̂′3(1) 0.57 0.07 0.03 1.00 0.17 0.16 0.00 −0.00

η(1) 0.44 −0.15 −0.07 0.17 1.00 −0.40 0.09 −0.01

η′(1) −0.11 −0.09 −0.05 0.16 −0.40 1.00 0.02 −0.00

m1S
b −0.31 0.02 0.00 0.00 0.09 0.02 1.00 0.01

δmbc 0.03 −0.00 −0.00 −0.00 −0.01 −0.00 0.01 1.00

TABLE VIII. The correlations of the “NoL+SR” fit scenario.

|Vcb| × 103 G(1) F(1) ρ̄2
∗ χ2(1) χ′2 χ′3 η(1) m1S

b δmbc

|Vcb| × 103 1.00 −0.30 −0.16 0.18 −0.13 0.28 0.07 0.01 0.00 0.00

G(1) −0.30 1.00 0.08 −0.28 −0.04 −0.04 −0.16 −0.23 0.01 −0.00

F(1) −0.16 0.08 1.00 0.38 0.18 −0.10 0.32 0.00 0.01 −0.00

ρ̄2
∗ 0.18 −0.28 0.38 1.00 0.64 −0.44 0.80 0.18 −0.22 0.01

χ̂2(1) −0.13 −0.04 0.18 0.64 1.00 −0.79 0.89 −0.17 0.21 −0.03

χ̂′2(1) 0.28 −0.04 −0.10 −0.44 −0.79 1.00 −0.48 0.05 −0.13 0.02

χ̂′3(1) 0.07 −0.16 0.32 0.80 0.89 −0.48 1.00 −0.12 0.18 −0.03

η(1) 0.01 −0.23 0.00 0.18 −0.17 0.05 −0.12 1.00 −0.54 0.05

m1S
b 0.00 0.01 0.01 −0.22 0.21 −0.13 0.18 −0.54 1.00 0.01

δmbc 0.00 −0.00 −0.00 0.01 −0.03 0.02 −0.03 0.05 0.01 1.00

TABLE IX. The correlations of the “Lw≥1” fit scenario.

|Vcb| G(1) F(1) ρ̄2
∗ χ̂2(1) χ̂′2(1) χ̂′3(1) η(1) η′(1) m1S

b δmbc

|Vcb| 1.00 −0.27 −0.28 0.33 −0.05 0.00 0.21 0.03 0.13 −0.01 0.00

G(1) −0.27 1.00 0.24 −0.26 0.07 0.02 −0.22 −0.22 −0.27 −0.02 0.00

F(1) −0.28 0.24 1.00 0.15 −0.06 −0.02 0.25 −0.03 −0.19 −0.01 0.00

ρ̄2
∗ 0.33 −0.26 0.15 1.00 −0.13 −0.08 0.72 0.35 0.13 −0.49 0.05

χ̂2(1) −0.05 0.07 −0.06 −0.13 1.00 −0.04 0.25 −0.10 −0.11 0.06 −0.01

χ̂′2(1) 0.00 0.02 −0.02 −0.08 −0.04 1.00 0.07 −0.05 −0.06 0.04 −0.00

χ̂′3(1) 0.21 −0.22 0.25 0.72 0.25 0.07 1.00 0.16 0.19 −0.06 0.01

η(1) 0.03 −0.22 −0.03 0.35 −0.10 −0.05 0.16 1.00 0.05 −0.48 0.05

η′(1) 0.13 −0.27 −0.19 0.13 −0.11 −0.06 0.19 0.05 1.00 0.04 0.00

m1S
b −0.01 −0.02 −0.01 −0.49 0.06 0.04 −0.06 −0.48 0.04 1.00 0.01

δmbc 0.00 0.00 0.00 0.05 −0.01 −0.00 0.01 0.05 0.00 0.01 1.00

TABLE X. The correlations of the “Lw≥1+SR” fit scenario.
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G(1) F(1) ρ̄2
∗ χ̂2(1) χ̂′2(1) χ̂′3(1) η(1) η′(1) m1S

b δmbc

G(1) 1.00 0.00 −0.15 0.01 −0.00 −0.02 −0.25 −0.40 0.01 −0.00

F(1) 0.00 1.00 −0.00 −0.00 −0.00 −0.00 −0.00 −0.00 −0.00 −0.00

ρ̄2
∗ −0.15 −0.00 1.00 −0.27 −0.13 0.81 0.08 −0.07 −0.24 0.02

χ̂2(1) 0.01 −0.00 −0.27 1.00 0.00 0.01 0.01 0.03 −0.01 0.00

χ̂′2(1) −0.00 −0.00 −0.13 0.00 1.00 −0.01 −0.01 0.01 0.01 −0.00

χ̂′3(1) −0.02 −0.00 0.81 0.01 −0.01 1.00 −0.02 −0.09 0.04 −0.00

η(1) −0.25 −0.00 0.08 0.01 −0.01 −0.02 1.00 0.11 −0.48 0.04

η′(1) −0.40 −0.00 −0.07 0.03 0.01 −0.09 0.11 1.00 0.07 −0.01

m1S
b 0.01 −0.00 −0.24 −0.01 0.01 0.04 −0.48 0.07 1.00 0.00

δmbc −0.00 −0.00 0.02 0.00 −0.00 −0.00 0.04 −0.01 0.00 1.00

TABLE XI. The correlations of the “th:Lw≥1+SR” fit scenario.
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