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We present a full evaluation of the deeply virtual Compton scattering (DVCS) cross sec-

tion in the dipole framework in the small-x region. The result features the cosφ and cos 2φ

azimuthal angular correlations which have been missing in previous studies based on the

dipole model. In particular, the cos 2φ term is generated by the elliptic gluon Wigner distri-

bution whose measurement at the planned electron-ion collider (EIC) provides an important

information about the gluon tomography at small-x. We also show the consistency with the

standard collinear factorization approach based on the quark and gluon generalized parton

distributions (GPDs).

PACS numbers: 24.85.+p, 12.38.Bx, 12.39.St

I. INTRODUCTION

The deeply virtual Compton scattering (DVCS) is one of the most important channels to study

the partonic structure of nucleon, in particular, to unveil the orbital angular momentum information

for the quarks and gluons [1–4]. It has attracted tremendous interests from both theory and

experimental sides [5–10]. Experimentally, it is a simple high energy scattering process, and is

a major emphasis in the current and future lepton-nucleon collision facilities [9, 10]. Among the

observables in DVCS, it has been predicted that there exists a cos 2φ azimuthal correlation due to

the so-called helicity-flip gluon generalized parton distributions (GPDs) [11–15]. In this paper, we

investigate this physics in the small-x dipole formalism. We will show that the cos 2φ correlation

can be accommodated in the dipole model through the so-called elliptic gluon distribution [16–19].

We also find the cosφ correlation which has been missing in previous dipole-based studies.

In the small-x dipole factorization approach, the DVCS amplitude can be schematically calcu-

lated as [20–23]

ADV CS ∼
∫

d2b⊥e
ib⊥·∆⊥

∫

dzd2r⊥Ψγ∗(z, r⊥)Ψ
∗
γ(z, r⊥)T (b⊥, r⊥) , (1)
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FIG. 1. Deeply virtual Compton Scattering γ∗p→ γp in the small-x limit.

where Ψ and Ψ∗ are the wave functions for the incoming virtual photon and outgoing real photon,

respectively. The physics behind this factorization can be understood as illustrated in Fig. 1,

where the virtual photon fluctuates into a quark-antiquark pair to form a color-dipole. The latter

scatters on the nucleon target and merges into a real photon in the final state, whereas the nucleon

recoils with momentum transfer ∆. The wave functions depend on the momentum fraction of

the photon carried by the quark z and the dipole size r⊥. For sufficiently hard scatterings, they

are perturbatively calculable. In the DVCS amplitude, T describe the elastic scattering of the

dipole with the nucleon target. This is different from the inclusive deep inelastic scattering, which

depends on the inelastic scattering amplitude. The elastic scattering amplitude can be written as

T = 1− S , (2)

where S represents the dipole S-matrix (defined below). In the previous calculations of DVCS in

the dipole formalism, the main focus is on the azimuthally symmetric cross section in which the

photon helicity is conserved. In order to obtain the azimuthal cos 2φ correlation, we need to carry

out the calculation on the helicity-flip amplitude. We perform our calculations in both coordinate

space and momentum space and check their consistency.

An important aspect of our calculations is the comparison with the collinear factorization results.

The key observation is the connection between the gluon GPDs at small-x and the dipole scattering

amplitude. For the cos 2φ azimuthal correlation in the DVCS process, we show that the helicity-

flip amplitude calculated from the elliptic gluon distribution reduces, in the collinear limit, to

that from the helicity-flip gluon GPD in the collinear framework. Meanwhile, for the azimuthally

symmetric cross section, the dipole formalism leads to divergence in the collinear limit. This can

be interpreted as the O(αs) contribution to the quark GPD in the collinear framework, according
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FIG. 2. Left diagram: DVCS amplitude in transverse coordinate space; Right diagram: DVCS amplitude

in momentum space.

to the relation between the quark GPD and the gluon GPD at small-x. These results establish a

complete consistency between the dipole formalism and the collinear factorization framework.

The rest of the paper is organized as follows. In Sec. II, we establish the connection between

the gluon GPDs at small-x and the gluon Wigner distributions. In particular, the so-called elliptic

gluon Wigner distribution will contribute to the helicity-flip gluon GPD. In Sec. III, we calculate

the DVCS amplitude in the dipole framework in coordinate space and derive the cos 2φ correlation.

In Sec. IV, we perform the calculations in momentum space and demonstrate the consistency with

the coordinate space derivations in Sec. III. The comparisons to the collinear factorization results

will be made in Secs. III and IV and Appendix A. In Sec. V, we compute the contribution from

the longitudinally polarized virtual photon and find the cosφ correlation. Finally, we summarize

our paper in Sec. VI.

II. THE DIPOLE S-MATRIX AND THE GLUON GPD

In this section, we introduce the basic ingredient to calculate the DVCS amplitude at small-x,

namely, the dipole S-matrix. We shall clarify the relation between the gluon GPDs and the dipole

S-matrix, and show that the latter provides an efficient description of the DVCS amplitude which

is free of collinear divergences.

In the dipole framework, the DVCS amplitude is represented by the diagram in Fig. 2 in

coordinate space (left) and in momentum space (right). We work in a frame in which the virtual

photon and the proton are collinear, with the proton moving fast in the positive z-direction. In

coordinate space, we fix the transverse coordinates of the quark and anti-quark to be x1⊥ =

b⊥ + (1 − z)r⊥ and x2⊥ = b⊥ − zr⊥, respectively, with z defined as the longitudinal momentum
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fraction of the quark with respect to the incoming virtual photon. The ‘center-of-mass’ of the qq̄

system coincides with the virtual photon coordinate zx1⊥ + (1 − z)x2⊥ = b⊥. The size of the qq̄

system is r⊥ = x1⊥ − x2⊥. In this setup, the forward S-matrix for the qq̄ pair scattering off the

target reads

Sx
(

b⊥ + (1− z)r⊥, b⊥ − zr⊥
)

≡
〈

1

Nc
Tr
[

U(b⊥ + (1− z)r⊥)U
†(b⊥ − zr⊥)

]

〉

x

, (3)

where x is the relevant momentum fraction of gluons in the target. In DVCS and in the small-x

limit, it is related to the Bjorken variable xBj as x ≈ xBj

2 , which is also the same as the skewness

parameter ξ (defined below). U is the Wilson line

U(x⊥) = P exp

(

−ig
∫ ∞

−∞
dx−A+(x−, x⊥)

)

, (4)

which represents the eikonal propagation of the quark. The brackets 〈...〉 denote the off-forward

proton matrix element 〈p′|...|p〉
〈p|p〉 with p′ = p+∆. In momentum space, we define

Fx(q̃⊥,∆⊥, z) ≡
∫

d2r⊥d
2b⊥

(2π)4
ei∆⊥·b⊥+iq̃⊥·r⊥Sx

(

b⊥ + (1− z)r⊥, b⊥ − zr⊥
)

=

∫

d2r⊥d
2b′⊥

(2π)4
ei∆⊥·b′

⊥
+iq̃⊥·r⊥e−iδ⊥·r⊥Sx

(

b′⊥ +
r⊥
2
, b′⊥ − r⊥

2

)

= Fx(q⊥ ≡ q̃⊥ − δ⊥,∆⊥), (5)

where δ⊥ ≡ 1−2z
2 ∆⊥ and

Fx(q⊥,∆⊥) =

∫

d2r⊥d
2b⊥

(2π)4
eib⊥·∆⊥+ir⊥·q⊥Sx

(

b⊥ +
r⊥
2
, b⊥ − r⊥

2

)

. (6)

In momentum space, we can also write Fx = 1
(2π)4

∫

d2x1⊥d
2x2⊥e

ik1⊥·x1⊥−ik2⊥·x2⊥Sx(x1⊥, x2⊥) with

k1⊥ ≡ q̃⊥+ z∆⊥ and k2⊥ ≡ q̃⊥− (1− z)∆⊥ conjugate to x1⊥ and x2⊥, respectively. The directions

of transverse momenta flow of exchanged gluons are labeled in Fig. 2. Following [16], we decompose

F into the angular independent and ‘elliptic’ parts

Fx(q⊥,∆⊥) = F0(|q⊥|, |∆⊥|) + 2 cos 2(φq⊥ − φ∆⊥
)Fǫ(|q⊥|, |∆⊥|) + · · · . (7)

Below Fǫ will be referred to as the elliptic gluon distribution. It is at most a few percent in

magnitude compared to F0, but has very different functional dependencies on x and q⊥ [17]. It

can thus lead to distinct experimental signatures [16, 18, 19]. One of the main goals of this paper

is to clarify the role of Fǫ in DVCS.

Comments are in order regarding the phase factor e−iδ⊥·r⊥ in (5). In Ref. [23], the authors

introduced a phase factor in the DVCS amplitude in the b⊥-space

d2σ

d2b⊥
= 2(1 − S(b⊥, r⊥)) →

d2σ

d2b⊥
e−i(1−z)∆⊥·r⊥ , (8)
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and this prescription has been used in many subsequent works [24–28]. It is motivated by the

explicit perturbative analysis in [21] that such a phase factor arises in nonforward amplitudes

∆⊥ 6= 0. However, the result of [21] has been misinterpreted. To see the problem, note that (8) is

not invariant under the combined transformation z → 1 − z and r⊥ → −r⊥. This transformation

interchanges quark and antiquark, and has been emphasized in [21] as the exact symmetry of the

dipole formalism. The phase factor discussed in [21] ensures that the effective transverse coordinates

of the quark and antiquark is b⊥+(1−z)r⊥ and b⊥−zr⊥, respectively, and this has been taken into

account in (3). Eq. (5) then shows that the correct phase factor should be e−iδ⊥·r⊥ = e−i 1−2z
2

∆⊥·r⊥

which is by itself invariant under the transformation z → 1 − z and r⊥ → −r⊥. As a nontrivial

crosscheck, in Section IV we compute the DVCS amplitude in the momentum space and find the

equivalent of this phase factor. We then show in Section V that this phase factor plays an important

role in DVCS processes involving the longitudinally polarized virtual photon. We remark in passing

that no phase factor is needed in the case of diffractive dijet production [16], though the process

looks rather similar to DVCS.

A. Relation to GPD at small-x

Let us point out the relation between F0 and Fǫ introduced above and the gluon GPDs which

are defined as [12]

1

P+

∫

dζ−

2π
eixP

+ζ−〈p′|F+i(−ζ/2)F+j(ζ/2)|p〉

=
δij

2
xHg(x,∆⊥) +

xETg(x,∆⊥)

2M2

(

∆i
⊥∆

j
⊥ − δij∆2

⊥

2

)

+ · · · , (9)

where M is the proton mass and P = p+p′

2 and we only kept the relevant terms for the nucleon-

spin independent gluon GPDs at small-x. Since we shall be later interested in matching between

the dipole and GPD approaches in the limit ∆⊥ ≪ Q (Q is the photon virtuality), we assumed

that ∆⊥ is small and approximated various spinor products ū(p′s′)....u(ps) which appear in the

usual parameterization of GPDs by their forward counterparts, e.g., ū(p′s′)γ+u(ps) ≈ 2P+. Our

convention for the gluon GPDs is such that Hg(x,∆⊥ → 0) = G(x) (the unpolarized gluon PDF)

in the forward limit. The helicity-flip1 gluon GPD ETg is also called the gluon transversity GPD,

and the above normalization coincides with that of [12].2 We suppress the dependence of GPDs

1 Note that ‘helicity-flip’ here refers to that of gluons (and the photon in DVCS) [12]. The nucleon helicity is not

flipped. The GPDs associated with nucleon helicity-flip are subleading at small-x and are not shown in (9). (In

other words, averaging over nucleon spin s = s
′ is implicit in (9).) We do not consider polarized GPDs, either.

2 It differs from the normalization in [6] by a factor −2x. There exists another GPD called H̃
g
T in Ref. [6, 14]

which was not noticed in Ref. [12]. Its contribution, if nonvanishing, can be trivially included in (9) and in all the

formulas below by a simple shift ETg → E
′

Tg ≡ ETg + 2H̃g
T .
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on the skewness parameter ξ = (p+ − p′+)/(p+ + p′+). Unless otherwise specified, it is understood

that Hg(x,∆⊥) ≡ Hg(x, ξ = x,∆⊥) and ETg(x,∆⊥) ≡ ETg(x, ξ = x,∆⊥). This is because the

imaginary part of the DVCS amplitude, which we assume to be dominant at small-x, probes GPDs

at ξ = x to leading order. It is also known that, for the gluon GPDs at small-x, this dependence

has been found to be very mild, see for example the discussions in Ref. [6], which is consistent with

the color-dipole formalism. The leading contribution of the S-matrix in the dipole formalism does

not differentiate the dependence on x and ξ.

At small-x, the left hand side of (9) can be approximately written as [16],

1

P+

∫

dζ−

2π
eixP

+ζ−〈p′|F+iF+j |p〉 ≈ 2Nc

αs

∫

d2q⊥

(

qi⊥ − ∆i
⊥

2

)

(

qj⊥ +
∆j

⊥

2

)

F (q⊥,∆⊥)

=
2Nc

αs

∫

d2q⊥q
i
⊥q

j
⊥

[

F0(|q⊥|, |∆⊥|) + 2

(

2(~q⊥ · ~∆⊥)
2

q2⊥∆
2
⊥

− 1

)

Fǫ(|q⊥|, |∆⊥|)
]

=
2Nc

αs

(

δij

2

∫

d2q⊥q
2
⊥F0 +

1

∆2
⊥

(

∆i
⊥∆

j
⊥ − δij∆2

⊥

2

)
∫

d2q⊥q
2
⊥Fǫ

)

, (10)

where we used the fact that
∫

d2q⊥F (q⊥,∆⊥) = 0 for ∆⊥ 6= 0. We thus obtain important relations

between the gluon GPDs and the small-x dipole distributions as follows

xHg(x,∆⊥) =
2Nc

αs

∫

d2q⊥q
2
⊥F0 , (11)

xETg(x,∆⊥) =
4NcM

2

αs∆
2
⊥

∫

d2q⊥q
2
⊥Fǫ . (12)

These formulas will be used below to check the consistency with the collinear approach. The

physical interpretation of the gluon GPDs and the above relations becomes manifest in the following

computations of DVCS amplitudes.

III. DVCS AMPLITUDE AND cos 2φ AZIMUTHAL ANGULAR CORRELATION

The differential cross section for DVCS can be written as

dσ(ep → e′γp′)

dxBjdQ2d2∆⊥
=
α3
emxBjy

2

4πQ4

LµνMµν

Q4
, (13)

where Lµν is the lepton tenor and Mµν is the hadronic tensor. We use vectors l and l′ for the initial

and final state lepton momenta, p and p′ = p +∆ for the initial and final state proton momenta,

respectively. The incoming virtual photon has momentum q = l− l′ with virtuality q2 = −Q2 with

vanishing transverse momentum. We use the standard variables xBj = Q2/(2q · p), y = q · p/(l · p).
t = −∆2

⊥ andW 2 = (q+p)2 ≈ Q2/xBj . In (13) and in the following, we only take into account the
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DVCS process and neglect the Bethe-Heitler (BH) contribution. In fixed-target experiments such

as at COMPASS where Q is at most a few GeV or less at small-x, the cross section is dominated

by the BH contribution. In collider experiments such as at HERA and the EIC, especially at

large center-of-mass energies and small-x, there exist regions in kinematic variables where the

cross section is dominated by the DVCS process [29, 30]. However, we should keep in mind that

even in this latter situation, the azimuthally asymmetric part of the cross section may receive

significant contributions from the interference with the BH amplitude. (As we commented above,

the cos 2φ correlation from the elliptic Wigner distribution is a few percent effect.) In general, the

BH amplitude can be highly suppressed when Q2 is sufficiently large, since the target proton is

unlikely to remain intact in the case of large momentum transfer. A detailed quantitative analysis

of the impact of the BH amplitude is beyond the scope of this paper, and we leave it for future

work.

The hadronic tensor can be decomposed as

Mµν = Mµν
TT +Mµν

TL +Mµν
LL , (14)

where the subscripts T and L (transverse and longitudinal) denote the polarizations of the virtual

photon in the amplitude and complex-conjugate amplitudes. (The outgoing real photon is always

transversely polarized.) In this and the next sections, we will focus on MTT . The longitudi-

nally polarized case will be treated in Section V. In the present frame, the lepton tensor can be

decomposed into, for µ, ν transverse,

Lµν = 2(lµl
′
ν + lν l

′
µ − gµν l · l′)

=
2Q2

y2

[(

1− y +
y2

2

)

g⊥µν + (1− y)ĥ⊥µν

]

, (15)

where gµν⊥ = −gµν + (p̂µn̂ν + p̂ν n̂µ)/p̂ · n̂ and ĥµν⊥ =
2lµ

⊥
lν
⊥

l2
⊥

− gµν⊥ . p̂ and n̂ are two light-like vectors:

p̂2 = n̂2 = 0 and p̂ · n̂ = 1. Here l⊥ = l′⊥ represents the transverse momentum of the lepton. It

satisfies the relation l2⊥ = 1−y
y2
Q2. The hadronic tensor is calculated from the amplitude squared

of γ∗ + p→ γ + p′,

Mµν
TT =W 4g⊥αβAµα

T

(

Aνβ
T

)∗
, (16)

where µ, ν represent the (transverse) polarization indices for the incoming virtual photon, and

α, β for the outgoing photon, respectively. We have defined Aµν as the imaginary part of the

amplitude. The real part is subleading at small-x and can be retrieved through the dispersion

relation, if necessary. It is convenient to decompose the tensor indices as

Aµν
T (∆⊥) = gµν⊥ A0(∆⊥) + hµν⊥ A2(∆⊥) , (17)
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where hµν⊥ =
2∆µ

⊥
∆ν

⊥

∆2
⊥

− gµν⊥ . The differential cross section then takes the form

dσTT

dxBdQ2d2∆⊥
=

α3
em

πxBjQ2

{(

1− y +
y2

2

)

(A2
0 +A2

2) + (1− y)2A0A2 cos(2φ∆l)

}

, (18)

where φ∆l is the azimuthal angle of the final state photon with respect to the lepton plane. The

amplitudes A0,2 can be calculated from different projections of the tensor Aµν
T . Alternatively, as

noted in Refs. [11, 12], they can also be obtained from the helicity conserved and helicity-flip

amplitudes as

1

2

∑

λ

Aλ=λ′

T (∆⊥) = A0 ,
1

2

∑

λ

Aλ6=λ′

T (∆⊥) = −A2 cos 2φ∆⊥
, (19)

where λ and λ′ represent the helicities of the incoming and outgoing photons. Aλλ′

T ≡ ǫλµAµν
T ǫ∗λ

′

ν

can be conveniently expressed in coordinate space using the dipole S-matrix introduced in Section

II

Aλ,λ′

T (∆⊥) = 2

∫

d2b⊥e
ib⊥·∆⊥Nc

∑

q

∫

d2r⊥

∫ 1

0

dz

4π
Ψλ

γ∗(z, r⊥)Ψ
λ′∗
γ (z, r⊥)

×
(

1− S(b⊥ + (1− z)r⊥, b⊥ − zr⊥)
)

, (20)

where Ψ is the photon wavefunction. For the incoming virtual photon, it is given by

ΨT λ
γ∗αβ(z, r⊥) =

ieq
π
ǫqK1(ǫq|r⊥|)











r⊥·ǫ
(1)
⊥

|r⊥| [δα+δβ+z − δα−δβ−(1− z)], λ = 1,

r⊥·ǫ
(2)
⊥

|r⊥| [δα−δβ−z − δα+δβ+(1− z)], λ = 2,

(21)

ΨL
γ∗αβ(z, r⊥) =

eqz(1− z)Q

π
K0(ǫq|r⊥|)δαβ , (22)

where α and β are the quark and antiquark helicities, eq is the electric charge of the quark (in units

of e) and ǫ2q = z(1 − z)Q2. The quark mass has been neglected. For the outgoing real photon, we

have

ΨT λ
γαβ(z, r⊥) = eq

i

π











r⊥·ǫ
(1)
⊥

r2
⊥

[δα+δβ+z − δα−δβ−(1− z)], λ = 1,

r⊥·ǫ
(2)
⊥

r2
⊥

[δα−δβ−z − δα+δβ+(1− z)], λ = 2.

(23)
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A. Helicity Conserved Amplitude

From (19) and (20), we immediately find

A0 =
1

2

∑

λ

Aλ=λ′

T (∆⊥)

= −
∑

q

e2qNc

π

∫ 1

0
dz
[

z2 + (1− z)2
]

∫

d2r⊥
r⊥

ǫqK1(ǫqr⊥)

∫

d2q⊥e
−iq⊥·r⊥F(q⊥,∆⊥, z) ,

= −
∑

q

e2qNc

π

∫ 1

0
dz
[

z2 + (1− z)2
]

∫

d2r⊥
r⊥

ǫqK1(ǫqr⊥)

×
∫

d2q⊥e
−iq⊥·r⊥−iδ⊥·r⊥

(

F0(|q⊥|, |∆⊥|) + 2 cos 2(φq⊥ − φ∆⊥
)Fǫ(|q⊥|, |∆⊥|)

)

= −
∑

q

2e2qNc

∫ 1

0
dz
[

z2 + (1− z)2
]

∫ ∞

0
dr⊥ǫqK1(ǫqr⊥)

×
∫

d2q⊥

(

J0(|q⊥ + δ⊥|r⊥)F0(|q⊥|, |∆⊥|) + 2J2(δ⊥r⊥)J2(q⊥r⊥)Fǫ(|q⊥|, |∆⊥|)
)

. (24)

Let us first consider the F0 term in the last line. The r⊥-integral looks divergent at first sight,

since
∫∞
0 dr⊥ǫqK1(ǫqr⊥)J0(q⊥r⊥) is logarithmically divergent at r⊥ = 0. However, this divergence

is not physical and it can be removed easily. Using the fact that
∫

d2q⊥F (q⊥,∆⊥) = 0, we obtain

a convergent result

∫ ∞

0
dr⊥ǫqK1(ǫqr⊥) [J0(|q⊥ + δ⊥|r⊥)− 1] = −1

2
ln

[

1 +
(q⊥ + δ⊥)

2

ǫ2q

]

. (25)

The r⊥-integral in the Fǫ term can also be done analytically in terms of the Appell function (see the

formula 6.578-2 in [31]). We may however neglect this term as a higher order effect J2(δ⊥r⊥) ∼ δ2⊥

and obtain

A0(∆⊥) ≈
∑

q

e2qNc

∫ 1

0
dz
[

z2 + (1− z)2
]

∫

d2q⊥ ln

[

1 +
(q⊥ + δ⊥)

2

z(1− z)Q2

]

F0(|q⊥|, |∆⊥|) . (26)

If one wishes to make contact with the collinear approach, one can expand the logarithm to

linear order in (q⊥+ δ⊥)
2 and find that only the q2⊥ term survives after the d2q⊥ integration. Thus

one recovers the GPD xHg(x,∆⊥), see (11). However, the prefactor is divergent due to the poles at

z = 0, 1. In order to isolate this divergence, one needs to return to the last line of (24) and employ

the dimensional regularization in coordinate space as discussed in the appendix of Ref. [32]. That

is, in the MS scheme, one can modify the r⊥-integral as
3

∫

d2r⊥
(2π)2

→ µ̄2ε(4πe−γE )ε
∫

d2+2εr⊥
(2π)2+2ε

, with µ̄2 =
µ2

4e−2γE
. (27)

3 This is equivalent to the dimensional regularization with d = 2− 2ε in the momentum space.
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Expanding J0(q⊥r⊥) = 1− 1
4q

2
⊥r

2
⊥ + · · · and keeping only the second term which is the leading

twist contribution, we find

−1

4

∫ 1

0
dz
[

z2 + (1− z)2
]

∫

d2r⊥
2πr⊥

ǫqK1(ǫqr⊥)r
2
⊥ → − 1

Q2

(

Q2e−γE

µ2

)−ε
Γ(2− ε)Γ(2 + ε)Γ(−ε)

Γ(2− 2ε)

= − 1

Q2

[

−1

ε
+ ln

Q2

µ2
− 2

]

. (28)

At the end of the day, one thus obtains

A0 =
∑

q

e2qαs

Q2
xHg(x,∆⊥)

[

−1

ε
+ ln

Q2

µ2
− 2

]

, (29)

which can be interpreted as the contribution to the quark GPD xHq(x,∆⊥) at small-x, see the

next section and Appendix A. The dominant contribution for the quark GPD comes from the

gluon GPD in this region.

B. Helicity-flip Amplitude

Next let us consider the the DVCS amplitude with helicity flip. It is straightforward to find

A2(∆⊥) cos 2φ∆⊥
= −1

2

∑

λ

Aλ6=λ′

T (∆⊥) (30)

=
∑

q

2e2qNc

π

∫ 1

0
dzz(1 − z)

∫

d2r⊥
r⊥

ǫqK1(ǫqr⊥) cos 2φr⊥

∫

d2q⊥e
−iq⊥·r⊥F(q⊥,∆⊥, z)

=
∑

q

2e2qNc

π

∫ 1

0
dzz(1 − z)

∫

d2r⊥
r⊥

ǫqK1(ǫqr⊥) cos 2φr⊥

∫

d2q⊥e
−i(q⊥+δ⊥)·r⊥F (q⊥,∆⊥).

After performing the angular integrations, we can cast the above amplitude into

A2(∆⊥) = −8π
∑

q

e2qNc

∫ 1

0
dzz(1− z)

×
∫ ∞

0
q⊥dq⊥ [H02(q⊥, δ⊥)F0(q⊥,∆⊥) +H20(q⊥, δ⊥)Fǫ(q⊥,∆⊥)] , (31)

where

H02(q⊥, δ⊥) ≡
∫ ∞

0
dr⊥ǫqK1(ǫqr⊥)J0(q⊥r⊥)J2(δ⊥r⊥), (32)

H20(q⊥, δ⊥) ≡
∫ ∞

0
dr⊥ǫqK1(ǫqr⊥)J2(q⊥r⊥) [J0(δ⊥r⊥) + J4(δ⊥r⊥)] . (33)

Again the r⊥-integrals can be done [31], but in order to make contact with the collinear calculation,

let us focus on the first term in (33) (the other terms are subleading in the DVCS limit Q≫ ∆⊥)
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and evaluate it as

∫ ∞

0
dr⊥ǫqK1(ǫqr⊥)J2(q⊥r⊥)J0(δ⊥r⊥)

= −
∫ ∞

0
dr⊥ǫqK1(ǫqr⊥)

∫

dφr⊥
2π

eir⊥·δ⊥

∫

dφq⊥
2π

e−iq⊥·r⊥ cos 2(φq⊥ − φr⊥)

=

∫ ∞

0
dr⊥ǫqK1(ǫqr⊥)

∫

dφq⊥
2π

J2(|q⊥ − δ⊥|r⊥) cos 2(φq⊥ − φq⊥−δ⊥)

=
1

2

∫

dφq⊥
2π

(

1− 2δ2⊥ sin2(φq⊥ − φδ⊥)

(q⊥ − δ⊥)2

)

[

1−
ǫ2q

(q⊥ − δ⊥)2
ln

(

1 +
(q⊥ − δ⊥)

2

ǫ2q

)

]

. (34)

We further take the collinear limit Q2 ≫ q2⊥ and arrive at

A2(∆⊥) = −
∑

q

e2qNc

Q2

∫

d2q⊥q
2
⊥Fǫ(q⊥,∆⊥) = −

∑

q

e2qαs∆
2
⊥

4M2Q2
xETg(x,∆⊥), (35)

where Eq. (12) is used in the last step. This should be compared to the collinear factorization

calculation by Ji-Hoodbhoy [12]. Their result reads, in the present normalization,

A2 =
∑

q

e2qαs∆
2
⊥

8πQ2M2
ξ Im

[∫

dx

(

1

x− ξ + iǫ
+

1

x+ ξ − iǫ

)

ETg(x, ξ)

]

. (36)

Noting that ETg(x, ξ) = −ETg(−x, ξ), we see that the above two are consistent with each other.

We thus see that the helicity-flip amplitude is proportional to the elliptic gluon distribution.

Moreover, the collinear limit can be safely taken, as there is no divergence from the remaining

z-integration. The resulting cos 2φ correlation should be measurable in the future experiments at

the EIC. A similar observable in quasielastic scattering γ∗T p → p′X has been proposed in [18].

Since these observables are associated with the correlation in the phase space Wigner distribution

[16], such measurements will provide a unique perspective on the gluon tomography in nucleons at

small-x.

IV. MOMENTUM SPACE CALCULATION AND THE COLLINEAR LIMIT

In this section, we repeat the calculation of the DVCS amplitude fully in momentum space and

reproduce the results in the previous section. An advantage of the momentum space calculation

is that it makes the connection to the collinear factorization approach more transparent. This

is particularly important for the azimuthally symmetric part A0 which, as we have already seen,

contains divergence in the collinear limit. We show that this divergence can be interpreted as

that of the quark GPD contribution to the DVCS amplitude. This is because the quark GPD

can be calculated from the gluon GPD at small-x. When we substitute the quark GPD into the
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collinear formula for the DVCS amplitude, we are able to reproduce the result of the helicity-

conserved DVCS amplitude in the previous section. This demonstrates the complete consistency

of the dipole and collinear factorization approaches to DVCS.

In momentum space, the DVCS amplitude can be straightforwardly calculated from the right

diagram in Fig. 2

Aµν
T =

∑

q

e2qNc

2π

∫

dzd2q⊥d
2q1⊥(−2)Fx(q⊥,∆⊥)

×2(z2 + (1− z)2)qµ1⊥k
ν
⊥ − qµ1⊥k

ν
⊥ − qν1⊥k

µ
⊥ + q1⊥ · k⊥gµν⊥

q21⊥(k
2
⊥ + ǫ2q)

, (37)

where k⊥ = q1⊥+ z−z̄
2 ∆⊥−q⊥ with z̄ ≡ 1−z and Fx is defined as in (6). We have included a factor

−2 to adjust to the normalization AT ∼ −2S in (20). If we change variables as q̃⊥ = q⊥+ δ⊥, (37)

takes the form

Aµν
T =

∑

q

e2qNc

2π

∫

dzd2q̃⊥d
2q1⊥(−2)Fx(q̃⊥,∆⊥, z)

×2(z2 + (1− z)2)qµ1⊥k
ν
⊥ − qµ1⊥k

ν
⊥ − qν1⊥k

µ
⊥ + q1⊥ · k⊥gµν⊥

q21⊥(k
2
⊥ + ǫ2q)

, (38)

where k⊥ = q1⊥ − q̃⊥ and Eq. (5) is used. We thus see that this shift of loop momentum is related

to the appearance of the phase factor e−iδ⊥·r⊥ in coordinate space discussed in Section II. For the

components (17), we obtain

A0 =
g⊥µνAµν

T

2
= −

∑

q

e2qNc

π

∫

dzd2q⊥d
2q1⊥

(z2 + (1− z)2)q1⊥ · k⊥
q21⊥(k

2
⊥ + ǫ2q)

Fx(q⊥,∆⊥), (39)

and

A2 =
h⊥µνAµν

T

2

=
∑

q

2e2qNc

π

∫

dzd2q⊥d
2q1⊥

z(1 − z)
[

2q1⊥ ·∆⊥k⊥ ·∆⊥ − q1⊥ · k⊥∆2
⊥

]

q21⊥(k
2
⊥ + ǫ2q)∆

2
⊥

Fx(q⊥,∆⊥). (40)

It is interesting to notice that the A2 depends on cos(2φ). For example, we can rewrite as

[

2q1⊥ ·∆⊥k⊥ ·∆⊥ − q1⊥ · k⊥∆2
⊥

]

∆2
⊥

= q1⊥k⊥ cos(φq∆ + φk∆) , (41)

where φq∆ and φk∆ are azimuthal angles for q1⊥ and k⊥, respect to ∆⊥. To carry out the above

integrals, we define

Γµν(q⊥,∆⊥) =

∫

d2q1⊥
qµ1⊥k

ν
⊥

q21⊥(k
2
⊥ + ǫ2q)

= Γ0g
µν
⊥ + Γ2q̃

µ
⊥q̃

ν
⊥ . (42)
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A2 receives a contribution only from Γ2, whereas A0 receives from both terms. After applying the

Feynman parametrization and performing the loop integral, Γ2 can be written as,

Γ2 = −π
∫ 1

0
dα

α

αq̃2⊥ + ǫ2q
. (43)

Substituting the above result into A2, we obtain

A2 = −2
∑

q

e2qNc

∫

dzdαd2q⊥
z(1− z)α

αq̃2⊥ + ǫ2q

2(q̃⊥ ·∆⊥)
2 − q̃2⊥∆

2
⊥

∆2
⊥

Fx(q⊥,∆⊥) . (44)

By construction, (44) should be equivalent to (31), although it is difficult to see this analytically.

We have checked this numerically for both the F0 and Fǫ terms. In the DVCS limit ∆⊥ ≪ Q, we

can write

2(q̃⊥ ·∆⊥)
2 − q̃2⊥∆

2
⊥

∆2
⊥

≈ q2⊥ cos(2φq∆) , (45)

and therefore,

A2 = −
∑

q

e2qNc

Q2

∫

d2q⊥q
2
⊥Fǫ(q⊥,∆⊥) = −

e2qαs∆
2
⊥

4Q2M2
ETg(x,∆⊥) , (46)

which is in agreement with (35).

We now return to A0 in (39) and take the DVCS limit

A0 = −
∑

q

e2qNc

π

∫

dzd2q⊥d
2k⊥

(z2 + (1− z)2)k⊥ · (k⊥ + q⊥)

(k⊥ + q⊥)2(k
2
⊥ + ǫ2q)

Fx(q⊥,∆⊥) . (47)

In order to see the infrared behavior of the above integration more clearly, we examine the low

transverse momentum region Q ≫ k⊥ ∼ q⊥ of the above integrand. We first notice that only

the end points of the z-integral contribute. For example, if z 6= 1 or 0 so that ǫ2q ∼ Q2 ≫ k2⊥, we

immediately find that the above integral vanishes. Therefore, we have to separate out the dominant

kinematic region of the above integration. To do that, we follow the trick of Ref. [33] and insert

an identity:
∫

dxδ
(

x− 1/(1 + Λ2/ǫ2q)
)

= 1 where Λ2 = (1 − z)k2⊥ + z(k⊥ + q⊥)
2. In the region

Q≫ k⊥ ∼ q⊥, we can expand the δ-function as

δ



x− 1

1 + Λ2

ǫ2q



 =
1− z

x
δ

(

(1− z)(1 − x)− x

z

Λ2

Q2

)

=
1− z

x

[

δ(1 − z)

1− x
+
δ(1 − x)

1− z
+ δ(1 − x)δ(1 − z) ln

(

Q2

k2⊥

)]

. (48)

Let us show that only the first term contributes to A0 in the above expansion. For that purpose,

we replace Q2 and ǫ2q by applying the above δ-function ǫ2q =
x

1−x
Λ2, Q2 = x

z(1−z)(1−x)Λ
2 and obtain

A0 = −
∑

q

e2qNc

πQ2

∫

dxdzd2q⊥d
2k⊥(z

2 + (1− z)2)
Λ2

z(k⊥ + q⊥)2
k⊥ · (k⊥ + q⊥)

(1− x)k2⊥ + xΛ2

×
[

δ(1 − z)

1− x
+
δ(1 − x)

1− z
+ δ(1 − x)δ(1 − z) ln

(

Q2

k2⊥

)]

Fx(q⊥,∆⊥) . (49)
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First, we can easily check that the δ(1 − x)δ(1 − z) term vanishes. Second, the term proportional

to δ(1 − x) also vanishes because the integrand can be simplified as

k⊥ · (k⊥ + q⊥)

z(1 − z)(k⊥ + q⊥)2
, (50)

and the azimuthal integration gives zero. Thus the final result comes from the δ(1 − z) term

A0 = −
∑

q

e2qNc

πQ2

∫

dxd2q⊥d
2k⊥

1

1− x

k⊥ · (k⊥ + q⊥)

(1− x)k2⊥ + x(k⊥ + q⊥)2
Fx(q⊥,∆⊥)

= −
∑

q

4πe2qNc

Q2

∫

dxd2q⊥d
2k′⊥

(2π)2
1

1− x

(k′⊥)
2 − x(1− x)q2⊥

(k′⊥)
2 + x(1− x)q2⊥

Fx(q⊥,∆⊥) . (51)

In the collinear limit, we can further simplify this as

A0 =
∑

q

4πe2qNc

Q2

∫

d2k′⊥
(2π)2

1

k′2⊥

∫

d2q⊥q
2
⊥Fx(q⊥,∆⊥)

=
∑

q

2πe2qαs

Q2

∫

d2k′⊥
(2π)2

1

k′2⊥
xHg(x) . (52)

In the above calculation we picked up the leading contribution in the region of z ∼ 1, which is

similar to the current fragmentation contribution in semi-inclusive DIS at small-x studied in [33].

For the z ∼ 0 region, we can repeat the same procedure with z ↔ 1− z. As a result, (51) and (52)

are doubled and the divergent part of the latter agrees with (29). In Appendix A, we show that

(52) can be interpreted as the quark GPD at small-x.

V. LONGITUDINALLY POLARIZED VIRTUAL PHOTON

Finally, we study the contribution from the longitudinally (L) polarized photon. The transition

amplitude from the longitudinally polarized virtual photon to the transversely polarized real photon

γ∗Lp → γp′ is usually neglected in the dipole framework and actually vanishes unless one includes

the phase factor e−iδ⊥·r⊥ [21]. Here we calculate its contribution to the DVCS cross section. The

interference term between the transverse and longitudinal virtual photon amplitudes reads

LµνMµν
TL

W 4
= −2Re

∑

λ

LµνǫT (λ)∗
µ ǫ

T (λ)
µ′ g⊥αβAµ′α

T (Aν′β
L )∗ǫLν′ǫ

L
ν . (53)

Writing ǫLν′A
ν′β
L =

∆β
⊥

|∆⊥|AL and using

LµνǫT (λ)∗
µ ǫLν = −2(2 − y)Q

y
l⊥ · ǫ(λ)∗⊥ , (54)
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we obtain

LµνMµν
TL

W 4
=

4(2 − y)

y
Q (A0 +A2)AL

∑

λ

l⊥ · ǫ(λ)∗⊥

∆⊥ · ǫ(λ)⊥

|∆⊥|

=
4(2 − y)

√
1− y

y2
Q2 (A0 +A2)AL cosφ∆l. (55)

We immediately recognize the cosφ∆l angular distribution. AL can be evaluated as

AL = −
∑

q

2ie2qNcQ

π|∆⊥|

∫ 1

0
dzz(1− z)(1 − 2z)

×
∫

d2r⊥K0(ǫqr⊥)
r⊥ ·∆⊥

r2⊥

∫

d2q⊥e
−i(q⊥+δ⊥)·r⊥F (q⊥,∆⊥). (56)

Naively, the z-integral vanishes because the integrand seems to be antisymmetric under z → 1− z.
However, the phase e−iδ⊥·r⊥ = e−i 1−2z

2
∆⊥·r⊥ also depends on z, and this makes the integral finite.

Performing angular integrations, we find

AL = −
∑

q

8πe2qNcQ

∫ 1

0
dzz(1 − z)(1− 2z)

∫ ∞

0
dr⊥K0(ǫqr⊥)

∫ ∞

0
dq⊥q⊥

×
(

J1(δ⊥r⊥)J0(q⊥r⊥)F0(q⊥,∆⊥)− (J1(δ⊥r⊥)− J3(δ⊥r⊥))J2(q⊥r⊥)Fǫ(q⊥,∆⊥)
)

, (57)

where δ⊥ = 1−2z
2 |∆⊥| in the argument of the Bessel functions. Let us ignore the J3(δ⊥r⊥) term

and expand as J1(δ⊥r⊥) ≈ 1
2δ⊥r⊥. We then get a nonzero result

AL ≈ −
∑

q

e2qNcQ|∆⊥|
∫ 1

0
dzz(1 − z)(1− 2z)2

∫

d2q⊥

×
[

F0(q⊥,∆⊥)

ǫ2q + q2⊥
+ Fǫ(q⊥,∆⊥)

(

1

ǫ2q + q2⊥
− 1

q2⊥
ln

(

1 +
q2⊥
ǫ2q

)

)]

. (58)

If we do the collinear expansion, the F0 term gives xHg(∆⊥) via (11), but again the z-integral di-

verges at z = 0, 1. Similarly, the Fǫ term gives xETg(∆⊥) with a divergent coefficient. Regularizing

this divergence as in (27), we find

AL = −
∑

q

e2qαs|∆⊥|
Q3

(

xHg(∆⊥) +
∆2

⊥

4M2
xETg(∆⊥)

)

1

ε
+ · · · . (59)

The first term in (59) again comes from the quark GPD whose contribution to the cosφ part of

the cross section is manifest in the collinear calculation (see the function called Feff in [15]). We

are however unsure of the origin of the second term. Presumably this arises from the twist-three

part of Feff , but we have not been able to show this explicitly. In any case, this divergence is an

artifact of the collinear expansion. At the level of (58), AL is finite and can be used in practical

calculations.
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For completeness, we also note the result for the longitudinal amplitude squared

LµνMµν
LL

W 4
= LµνǫL∗µ ǫLµ′g⊥αβAµ′α

L (Aν′β
L )∗ǫLν′ǫ

L
ν =

4(1 − y)

y2
Q2A2

L. (60)

Adding all the components, we arrive at the complete DVCS cross section in the dipole framework

dσ(ep → e′γp′)

dxBdQ2d2∆⊥
=

α3
em

πxBjQ2

{

(

1− y +
y2

2

)

(A2
0 +A2

2) + 2(1 − y)A0A2 cos(2φ∆l)

+(2− y)
√

1− y(A0 +A2)AL cosφ∆l + (1− y)A2
L

}

. (61)

We remind the leader that, for practical applications, the Bether-Heitler contributions have to be

included, see our comment at the beginning of Section III.

VI. CONCLUSION

In summary, we have studied the DVCS amplitudes at small-x in the dipole formalism. The

final formula for the cross section (61) involves the cosφ and cos 2φ azimuthal angular correlations.

While such correlations are known in the standard collinear approach to DVCS [6, 7], it is nontrivial

to retrieve them in the dipole framework. In order to obtain the cosφ term, we have to include

the (correct) phase factor e−i 1−2z
2

∆⊥·r⊥ in the amplitude. As for the cos 2φ term, it is essential

to consider the elliptic gluon Wigner distribution [16–18] which represents the dominant angular

dependence of the dipole S-matrix. In this regard, it is interesting to note that the elliptic gluon

distribution has been recently proposed [19] as a possible underlying mechanism for the observed

elliptic flow (cos 2φ azimuthal correlation among the final state hadrons) in high energy pp and

pA collisions [34]. Thus the same distribution plays an important role to generate the cos 2φ

distribution both in DVCS and in inclusive hadron production in pA collisions (see also [18]).

Experimental investigations of these novel phenomena will provide crucial information about the

gluon tomography in the nucleon at small-x.

We have also shown that, in the collinear limit, the dipole formalism reproduces the results

obtained in the collinear factorization approach for both the angular symmetric and elliptic am-

plitudes. As Q2 is lowered, the DVCS amplitudes are sensitive to the transverse momentum

distribution in the target and the dipole framework becomes more appropriate.

At last, we notice that the calculation on DVCS presented in this paper can be easily generalized

to diffractive vector meson (J/ψ, ρ and φ) productions in DIS (γ∗+p→ V +p′) (see e.g. Refs. [10,

23, 35–37] and references therein), if we replace the transverse wave-function of the final state real

photon by the vector meson wave-function. Similar conclusions can be also applied to this process.
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Appendix A: Collinear Factorization Results and Quark GPD and PDF at Small-x

The DVCS amplitude is calculated in terms of the off-forward tensor T µν ,

T µν = i

∫

d4ze−iq·z〈P ′|jµ(z/2)jν(−z/2)|P 〉 ≡ gµν⊥ T0 + hµν⊥ T2 . (A1)

The above two terms have been calculated in the literature. In small-x limit, they take the following

forms [1, 12],

T0 = −
∑

q

e2q

∫

dxα(x)Hq(x, ξ,∆
2
⊥) , (A2)

T2 =
∑

q

e2q
αs

4π

∆2
⊥

4M2

∫

dxα(x)ETg(x, ξ,∆
2
⊥) , (A3)

where Hq and ETg are the quark GPD and helicity-flip gluon GPD, and α(x) is defined as

α(x) =
1

x− ξ + iǫ
+

1

x+ ξ − iǫ
. (A4)

The other contribution in T2 is suppressed at small-x, and has been neglected in the above. We

are particularly interested in the imaginary part of the scattering amplitudes

ImT0 =
π

ξ

∑

q

e2q
[

ξHq(ξ, ξ,∆
2
⊥) + ξHq̄(ξ, ξ,∆

2
⊥)
]

, (A5)

ImT2 = −π
ξ

αs

2π

∆2
⊥

4M2

∑

q

e2qξETg(ξ, ξ,∆
2
⊥) , (A6)

where we have taken into account the antiquark contribution, Hq(−x, ξ,∆2
⊥) = −Hq̄(x, ξ,∆

2
⊥).

At small-x, the quark distribution comes from the gluon splitting. The forward quark distribu-

tion can be calculated as

xq(x) =
αs

2π

1

2

∫ 1

x

dζ
(

ζ2 + (1− ζ)2
)

x′G(x′)

∫

dk2⊥
k2⊥

, (A7)

where ζ = x/x′ and G(x′) is the integrated forward gluon distirbution. By applying the small-x

approximation, the above can be simplified as

xq(x) ≈ xG(x)
αs

2π

1

2
· 2
3

∫

dk2⊥
k2⊥

, (A8)
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where we assumed that x′G(x′) is approximately constant at small-x′. For the quark GPD, the

evolution equation depends on the skewness parameter ξ which reads, for x > ξ,

xHq(x, ξ,∆
2
⊥) =

αs

2π

1

2

∫ 1

x

dζ
ζ2 + (1− ζ)2 − ξ2

x2 ζ
2

(1− ξ2

x2 ζ2)2
x′Hg(x

′, ξ,∆2
⊥)

∫

dk2⊥
k2⊥

, (A9)

whereHg(x
′, ξ,∆2

⊥) is the gluon GPD. The limit x→ ξ requires some care because of the singularity.

If one naively sets ξ = x in the integrand and assumes that x′Hg(x
′, ξ) is a constant, the ζ-integral

gives
∫ 1
x

dζ
(1+ζ)2 ≈ 1

2 . However, this is incorrect. One has to first evaluate the ζ-integral exactly and

then take the limit x→ ξ. This gives

lim
x→ξ

∫ 1

x

dζ
ζ2 + (1− ζ)2 − ξ2

x2 ζ
2

(1− ξ2

x2 ζ2)2
=

1

1 + ξ
≈ 1. (A10)

We thus find

ξHq(ξ, ξ) ≈ ξHg(ξ, ξ)
αs

2π

1

2
· 1
∫

dk2⊥
k2⊥

. (A11)

It is interesting to notice that here the prefactor is 1, instead of 2
3 for the forward quark distribution

in Eq. (A8). Substituting the above results, we obtain the collinear factorization result for the

DVCS amplitudes at small-x,

ImT0 =
αs

2ξ

∑

q

e2qξHg(ξ, ξ,∆
2
⊥)

∫

dk2⊥
k2⊥

, (A12)

ImT2 = −αs

2ξ

∆2
⊥

4M2

∑

q

e2qξETg(ξ, ξ,∆
2
⊥) , (A13)

where we have combined the quark and antiquark contributions together. To compare to our

results in this paper, we note that the normalizations for the hadronic tensor are different,

ImT µν =W 2Aµν =
Q2

xBj
Aµν ≈ Q2

2ξ
Aµν . (A14)

We thus find that (A12) agrees with (29) or (52) (the latter has to be multiplied by 2 as noted

above (52)), and (A13) agrees with (35).
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