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It has been known for a long time that hyperons produced in hadronic collisions are polarized
perpendicular to the production plane of the reaction. This effect cannot be described by using
twist-2 collinear parton correlators only. Here we compute the contribution of twist-3 fragmenta-
tion functions to the production of transversely polarized hyperons in unpolarized proton-proton
collisions in the framework of collinear factorization. By taking into account the relations among
the relevant twist-3 fragmentation functions which follow from the QCD equation of motion and the
Lorentz invariance property of the correlators, we present the leading-order cross section for this

term.

PACS numbers: 12.38.Bx; 13.85.Ni; 13.87.Fh; 13.88.+¢

I. INTRODUCTION

The first observation of transversely polarized hyper-
ons in unpolarized hadronic collisions was already made
in the 1970s. Specifically, when colliding protons with a
beryllium target and detecting A hyperons, it was found
that the A’s show a transverse polarization asymmetry
(often denoted as Ap), which is largest (up to 30%) for
polarization perpendicular to the reaction plane and van-
ishes in the reaction plane [1]. This pioneering measure-
ment was followed by a number of corresponding exper-
iments which, in particular, also covered different kine-
matic ranges [2-11]. Some of the earlier data are reviewed
in [12, 13]. We also refer to [14] for a list of relevant
papers. Generally Ay vanishes for exact mid-rapidity of
the hyperon in a process like pp — ATX, and it increases
with increasing rapidity. Hyperon polarization was also
studied in related reactions such as yp — ATX [15, 16],
quasi-real photo-production of A’s in lepton scattering
off nucleons and nuclei [17, 18], and in electron-positron
collisions [19, 20].

For high-energy collisions and sufficiently large trans-
verse momentum Ppr of the hyperon, Ay can be com-
puted in perturbative quantum chromodynamics (QCD).
However, it has been known for a long time that by only
using collinear leading-twist (twist-2) parton correlators
one cannot describe this type of transverse single-spin
asymmetry (SSA) [21]. As Ay is a genuine twist-3 ob-
servable, one rather needs the full machinery of collinear
higher-twist factorization [22-24]. Already in the early
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1980s this approach was used in connection with trans-
verse SSAs [22, 25]. Later works further elaborated on
these twist-3 calculations, where a main focus was on the
transverse target SSA for processes like pTp — 7X —
see for instance [26-35]. An overview of these calcula-
tions can be found in [36].

In collinear factorization, the transverse SSAs receive,
a priori, twist-3 contributions from two-parton and three-
parton correlation functions which are associated with
either the initial-state or final-state hadrons. These cor-
relators are parameterized in terms of twist-3 parton dis-
tribution functions (PDFs) and fragmentation functions
(FFs), respectively. While the complete leading-order
(LO) twist-3 cross section for p'p — 7X can be found
in the literature [32-35], only part of the twist-3 cross
section for pp — ATX is available [37-39]. The present
work is a major step towards completing the calculation
of all possible terms.

The numerator of the transverse SSA for pp — ATX
has two types of contributions. The first one, which
contains a twist-3 PDF for one of the unpolarized pro-
tons combined with the unpolarized twist-2 PDF for the
other proton and the spin-dependent twist-2 “transver-
sity” FF, was derived in Refs. [37-39]. Here we focus on
the second contribution, which involves twist-3 FF's and
the twist-2 unpolarized PDFs of the protons. (A short
version of the present work was presented in [40, 41]. We
also remind the reader that twist-3 FFs for a polarized
A were studied for other processes, e.g., ep — ATX [42]
and eTe™ — ATX [43].) Specifically, we compute all the
LO terms that are related to quark-gluon-quark (qgq)
fragmentation correlators, while terms given by quark-
antiquark-gluon (¢gg) correlators and pure gluon (gg and
gg9) correlators will be considered elsewhere.

Not only is our study important for obtaining a com-
plete analytical result, but it may also be critical for the
phenomenology of this observable. In this context we re-



mind the reader that recent work strongly suggests the
numerical dominance of the collinear twist-3 fragmenta-
tion contribution for Ay in p'p — 7X [44, 45].

The remainder of the paper is organized as follows: In
Sec. II, we list the definitions of the twist-3 FFs that
are relevant for the present study. In that section we
also present relations among the FFs which are based on
the QCD equation of motion and Lorentz invariance [46].
These relations are crucial for, in particular, obtaining a
frame-independent result for Ay. In Sec. ITI, we discuss
the calculation for the twist-3 fragmentation contribu-
tion to the cross section for pp — ATX, while Sec. IV is
devoted to a brief summary.

II. TWIST-3 FRAGMENTATION FUNCTIONS
AND THEIR RELATIONS

We first recall the definitions of the twist-3 FFs for a
transversely polarized spin—% hadron. One can identify,
a priori, three different types of such functions, which
in [46] were referred to as intrinsic, kinematical, and dy-
namical FFs. We start with the intrinsic twist-3 FF's for
AT, They are defined through a quark-quark (qq) frag-
mentation correlator according to [46-48]
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where 9;, 9; are the quark fields carrying the spinor in-
dices i, j, and a color average is implied in Eq. (1), with
N = 3 the number of quark colors. The hadron (A)
is characterized by its four-momentum P, and (trans-
verse) spin vector S, while M, is its mass. The four-
vector wH is light-like (w? = 0) and satisfies P, - w = 1.
For simplicity, Wilson lines in the operator (1) are sup-
pressed. Here and below we use the shorthand notation
exS1wPn = eo‘ﬁ'y‘;SLﬁw,yPh(;, where our convention for the
Levi-Civita tensor is €”1?* = +1. The r.h.s. of Eq. (1)
contains the twist-2 transversity FF H;p, which describes
the probability for a transversely polarized quark to frag-
ment into a transversely polarized hadron, and the intrin-
sic twist-3 FFs Dy and Gp. These (dimensionless) FFs
depend on the fraction z of the quark momentum which
is carried by the hadron. Hermiticity implies that they
are real-valued. From the functions available in (1), it is
actually only the naive time-reversal-odd (T-odd) func-
tion Dp which contributes to the piece of the transverse
SSA we calculate here.

The kinematical twist-3 FFs parameterize the deriva-

tive of the ¢q correlator [46-48],
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The derivative on the r.h.s. of (2) also acts on the Wilson
line, which generally is defined through

[0, \w] = Pexp {ig//\odt wHA“(tw)} , (3)

where P indicates path-ordering and g is the strong

coupling. The FFs Df‘T(l) and Gi‘r}l) are also real-
valued. This (T-odd) function is a particular moment of
a transverse-momentum-dependent (TMD) FF [47, 48],

DlT(l)( )= 2/d273 2M2D1T(z,zzﬁf), (4)

with Di5 describing the fragmentation of an unpolar-
ized quark into a transversely polarized spin—% hadron.
Using the so-called generalized parton model, which ex-
clusively works with TMD PDFs and FFs, in Ref. [49]
this function was fitted to Ay data for pp — ATX. The
result of the fit was then used to estimate transverse
SSAs in semi-inclusive deep-inelastic scattering [50], in-
cluding neutrino-nucleon scattering vN — (*ATX for
which some data are available [51]. We note that, like
with the intrinsic functions, only T-odd kinematical cor-
relators can contribute to our calculation. Namely, only
Df‘T(l) can enter from (2).

Let us finally discuss the dynamical twist-3 FFs. They
parameterize the so-called F-type ggq correlator (see, for
instance, Refs. [42, 46, 52]),
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where F*" = F""Bw,g represents a component of the

gluon field strength tensor. The (two-argument) FFs
ﬁpT(z,zl) and éFT(z,zl) have support for 1 > z > 0
and z; > z [53-56]. These support properties imply, in
particular, that the functions themselves [54] and their
z1-partial derivatives [46] vanish for a vanishing gluon



momentum. Therefore, for fragmentation one has no so-
called gluonic poles [26, 27], which play a very important
role for contributions to SSAs caused by twist-3 effects
coming from initial-state hadrons. The vanishing of glu-
onic poles in fragmentation is also intimately connected
with the universality of TMD FFs (see, for instance,
Refs. [53-55, 57, 58]). In general, the dynamical twist-
3 FFs are complex [34, 52, 56, 59, 60], and we use their
complex conjugate in Eq (5). (In this paper we follow the
convention of [46] for D rr and G rr.) One can also define
D-type twist-3 FFs by replacing ¢F*" (uw) in (5) with
the covariant derivative D*(pw). These functions, how-
ever, do not represent new independent objects, but they
can rather be related to the F-type functions. For the
imaginary parts of the FFs, which matter in the present
study, one has the relations [30, 31, 34, 52, 56, 59, 60|

N 1 -
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where here P indicates the principal-value prescription.
For the calculation in Sec. III we will use the F-type FFs.

Although, a priori, all three types of FFs as defined in
(1), (2), (5) appear in the derivation of the twist-3 cross
section for pp — ATX, these functions are not indepen-
dent. There exist relations based on the QCD equation
of motion (e.0.m.) and so-called Lorentz invariance rela-
tions (LIRs). A comprehensive derivation of these rela-
tions as well as a list of references can be found in [46].
The e.o.m. relation which is relevant for the present study
takes its simplest form for the D-type functions,

DT(Z)

z
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Using Egs. (6), (7) one finds the e.o.m. relation involving
the F-type functions,

Oodzl 1 . R
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DTZ( 2 4 D). (9)

Making use of Lorentz invariance of the parton correla-
tion functions one can further derive the LIR
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(10)
These relations generally simplify the form of twist-3

cross sections and, in particular, guarantee their frame-
independence [42, 45, 46, 61-63].

FIG. 1. Generic diagrams giving rise to the twist-3 fragmenta-
tion contribution to the polarized cross section for the process
n (11). The top blob and bottom blob indicate the unpolar-
ized twist-2 PDFs in the protons. The second blob from the
top represents the fragmentation matrix elements for A: A(k)
in (a) and Aa(k,k1) in (b). The second blob from the bot-
tom is the partonic hard scattering parts: S(k) in (a) and
Sta(k1,k) in (b). The mirror diagram of (b) also contributes
and is included in the third term of (12).

III. TWIST-3 CROSS SECTION FOR pp — A'X

We now sketch the derivation and present the results
of the twist-3 spin-dependent cross section for

p(p) +p(p') = AT(Py,51) + X (11)

For the derivation of the nonpole contribution to the
cross section from twist-3 FFs, we follow the Feynman
gauge formalism developed in [56]. Though this reference
presented the formalism for semi-inclusive deep inelastic
scattering, it can be directly applied to the above pro-
cess (11). From Eq. (54) of [56], one can read the cross
section for (11) a:
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where the summation over all channels and parton types
is implicit. In Eq. (12), s = (p + p’)? is the square of the
center of mass energy and 23 = g5 — P'wg. The unpo-
larized twist-2 PDF is denoted by f1, and the correlators
A(z), Ab(z) and AS(z, 21) are defined in (1), (2) and (5).
The symbol Tr indicates the trace over color and spinor
indices. In deriving Eq. (12), we introduced the partonic
hard scattering parts (before collinear expansion), S(k)
and Spa(k1, k), corresponding, respectively, to the frag-
mentation matrix elements
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and each partonic cross section 0() (i =12Y =
T, D, ND, ...)is a function of the partonic Mandelstam
variables defined as 3§ — (zp + 2'p")?, t = (xp — Pn/2)?,
@ = (2'p’ — Pn/2)?. The lowest-order Feynman diagrams
for the partonic hard parts S and S, in each channel are
shown in Figs. 2-5. Several comments are in order here:
(i) Unlike in the case of the twist-3 PDFs, for twist-3
FFs the nonpole term of the hard scattering coefficients
contributes to Ax. (In this context, see also the discus-
sion in the paragraph after Eq. (5).) In particular, the
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as shown in Figs. 1 (a) and (b). In Ref. [56], it has
been proven that, after the collinear expansion, S and
Sra become the partonic hard cross section for the
gauge-invariant correlation functions A(z), Ag(z) and

Ag(z,zl), as shown in (12). Note SLQ( e P’“') is the

hard part for the diagram in which the coherent gluon
line from Af,(z,zl) (i.e., the gluon line originally from
the A®-field in (14)) is located to the left of the cut, and
the effect of the mirror diagram is taken into account by
the principal value prescription and the factor 2 for the
third term in (12). Substituting (1), (2) and (5) into
Eq. (12), one can cast the cross section in the following
form:

L) [ L ne) [Soe+i+a)
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imaginary part of the complex functions ﬁFT and G T
contributes to the spin-dependent cross section, reflecting
the naive T-odd nature of Ay.

(ii) One finds that the z1-dependence of the hard parts
Sra in Eq. (12) has a relatively simple structure that
does not “mix” with the partonic Mandelstam variables.
Therefore, the contributions from Im D rr and Im G FT
can be brought into the form shown in (15), where the
hard partonic cross sections &gf)
and only depend on §, £, 1.

are independent of z;
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FIG. 2. Feynman diagrams for the hard parts S(k) and
Sra(ki, k) in the q¢ — qq (all graphs), ¢4’ — q¢’ (top left
graph) and qq¢’ — ¢’q (top right graph) channels. The circled
cross indicates the fragmentation insertion. When ignoring
the dots the diagrams determine the hard parts S(k). Graphs
for Sra(k1, k) are obtained by attaching a coherent gluon line
from the fragmentation function to one of the four dots in
each diagram.

(iii) Calculation of the diagrams provides the relations
@ _ 20 ) SN ) ~() L

Gpr1 = —0Gr1 Opsrp = OGsrp Ogpe =0 (i =1, 2)
for all channels. Using these relations in combination
with the e.o.m. relation (9) and the LIR (10) one can
rewrite the cross section in (15) in a very compact manner
— see Eq. (16) below — by introducing the combinations
o) = ) + 5 + 58y of) = ) — o ) =
~ (2 ~ (2 ~(1) _ (7

ONp —Opp1 and 64" =G pgpp-

(iv) In order to test the frame-independence of our re-
sult, we have computed the cross section in two differ-

m w
ent frames: w) = L= and wh) = L. In the first
p'-Pn p-Pn

frame, A (w;) is nonzero while A (w;) vanishes, so
the result depends only on A (w;) and 682))374(101). In
the second frame, A®)(wy) is nonzero while AM (wy)
vanishes, so the result depends only on A®) (wy) and
6%722)7374(102). Since AN (w;) = AP®(wy), and we also
found 6{') 5 ,(w1) = 6\ 5 4(w2) = 61,234 for all chan-
nels, the result is the same in both frames.

Our final expression for the frame-independent twist-3
cross section reads

do(Py,S1)  2a2My, / dx da’

0 ’ _ s P, S

Ph d3Ph — 82 € hPP © L ?fl(x)/ 7fl(w/)
dz . . | Dr(2). d DV .
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< dz z
o[ (2
i (2)0 . 22 \1/z—1/~n
X (ImﬁFT(z,zl) + Im@FT(z,zl)) [74} . (16)

This represents the complete result of the cross section
caused by twist-3 effects of the gg and ggq fragmentation
correlators depicted in Fig. 1. The partonic cross sections
for each channel are given as follows:

v
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FIG. 3. Same as Fig. 2, but for the ¢q¢ — ¢g (all graphs),
q7 — qq’ (top left graph) and q7 — ¢'q’ (top right graph)
channels.
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FIG. 6. Additional twist-3 fragmentation contribution to
pp — ATX which is not included in the present study.
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12— 2a+ta? - ad 61
O N2-1 210 ' (64)

Note that for a LO calculation of the fragmentation term,
more channels contribute to Ay for pp — ATX than for
p'p — mX [34] due to the chiral-odd nature of the parton
correlators involved in the latter case.

IV. SUMMARY

We have calculated, to leading order in perturbation
theory, the twist-3 fragmentation contribution to the
transverse SSA Ay for hyperon production in unpolar-
ized proton-proton collisions. Specifically, we have taken
into account all contributions arising from ¢¢ and qgq
fragmentation correlators. We have verified that the re-
sult of the cross section is frame-independent when taking
into account relations between the twist-3 FFs which are
based on the QCD equation of motion and the Lorentz
invariance of the parton correlators.



In order to complete the calculation of this spin-
dependent twist-3 fragmentation effect, one also needs
to include ¢qgg correlators (see Fig. 6) as well as gg and
ggg correlators. We mention that the qqg graphs need the
pure gluon ones in order to have a gauge invariant subset
of diagrams. (In the case of Ay for p'p — 7X the con-
tribution from the former vanishes after summing over
all graphs, while the latter do not contribute at all [34].)
Let us finally mention that so far the properties of tri-
gluon FFs have only been studied to some extent [52]. In
particular, the LIRs in this case are not yet known. We
plan to address these topics elsewhere.
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