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Signal of right-handed currents using B → K∗`+`− observables at the kinematic
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The decay mode B → K∗`+`− is one of the most promising modes to probe physics beyond the
standard model (SM), since the angular distribution of the decay products enable measurement of
several constraining observables. LHCb has recently measured these observables using 3 fb−1 of
data as a binned function of q2, the dilepton invariant mass squared. We find that LHCb data
implies evidence for right-handed currents, which are absent in the SM. These conclusions are
derived in the maximum q2 limit and are free from hadronic corrections. Our approach differs from
other approaches that probe new physics at low q2 as it does not require estimates of hadronic
parameters but relies instead on heavy quark symmetries that are reliable at the maximum q2

kinematic endpoint.

PACS numbers: 11.30.Er,13.25.Hw, 12.60.-i

I. INTRODUCTION

The rare decay B → K∗`+`−, which involves a b → s
flavor changing loop induced quark transition at the
quark level, provides an indirect but very sensitive probe
of new physics (NP) beyond the standard model (SM).
The angular distribution of the decay products provides
a large number of observables [1] and thus can be used
to reduce hadronic uncertainties making the mode a very
special tool to probe for NP. Significant work has been
done to probe NP in this mode. Most previous at-
tempts have focused [2] on the low dilepton invariant
mass squared region q2 = 1−6 GeV2. An alternative ap-
proach that probes the maximum q2 limit has also been
studied in literature [3, 4]. We show that this limit holds
significant promise for clean probes of NP. A previous
study suggested a possible signal of NP in the large q2

region [5]. In this letter we show that LHCb data implies
a 5σ signal for the existence of NP. While the evidence
for right handed currents is clear, other NP contribu-
tions are also possible. Our conclusions are derived in
the maximum q2 limit (q2

max) and are free from hadronic
corrections. Our approach differs from other approaches
that probe NP at low q2 by not requiring estimates of
hadronic parameters but relying instead on heavy quark
symmetries that are completely reliable at the kinematic
endpoint q2

max [3, 6]. While the observables themselves
remain unaltered from their SM values, their derivatives
and second derivatives at the endpoint are sensitive to
NP effects. The paper is organized as follows. In Sec. II,
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we discuss the model independent theoretical framework
used for the analysis. The numerical procedure for the
extraction of right-handed (RH) currents is described in
Sec. III. We illustrate the effect of resonances and the
convergence of the polynomial fit in Sec. IV and Sec. V,
respectively. Finally, Sec. VI contains concluding re-
marks.

II. THEORETICAL FORMALISM

In this section we briefly discuss the model indepen-
dent theoretical framework that has been adopted in
this work. The decay B → K∗`+`− is described by six
transversity amplitudes that can be written as [7]

AL,Rλ = Cλ

L,R Fλ − G̃λ =
(
C̃λ

9 ∓ C10)Fλ − G̃λ (1)

within the standard model in the massless lepton
limit [8]. This parametric form of the amplitude is gen-
eral enough to comprehensively include all short-distance
and long-distance effects, factorizable and nonfactoriz-
able contributions, resonance contributions and complete
electromagnetic corrections to hadronic operators up to
all orders. In Eq. (1) C9 and C10 are Wilson coefficients

with C̃λ
9 being the redefined “effective” Wilson coefficient

defined [7, 9, 10] as

C̃λ

9 = C9 + ∆C
(fac)
9 (q2) + ∆C

λ,(non-fac)
9 (q2) (2)

where ∆C
(fac)
9 (q2), ∆C

λ,(non-fac)
9 (q2) correspond to fac-

torizable and soft gluon non-factorizable contributions.
The Wilson coefficient C10 is unaffected by strong inter-
action effects coming from electromagnetic corrections to

hadronic operators [11]. The form factors Fλ and G̃λ in-
troduced in Eq. (1) can in principle be related to the
conventional form factors describing the decay if power
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corrections are ignored. However, our approach does not

rely on estimates of Fλ and G̃λ.

In the SM, Fλ’s and C10 are real, whereas C̃λ
9 and G̃λ

contain the imaginary contributions of the amplitudes.

Defining two variables rλ and ελ, the amplitudes AL,Rλ
in Eq. (1) can be rewritten as,

AL,Rλ = (∓C10 − rλ)Fλ + iελ, (3)

where
rλ =

Re(G̃λ)

Fλ
− Re(C̃λ

9 ), (4)

ελ = Im(C̃λ

9 )Fλ − Im(G̃λ). (5)

The observables F⊥, F‖, FL, AFB and A5 are defined as,

Fλ =
|ALλ |2 + |ARλ |2

Γf
λ ∈ {⊥, ‖, 0}, (6)

AFB =
3

2

Re(AL‖A
L∗

⊥ −AR‖ A
R∗

⊥ )

Γf
, (7)

A5 =
3

2
√

2

Re(AL0AL
∗

⊥ −AR0 AR
∗

⊥ )

Γf
, (8)

where Γf ≡
∑
λ(|ALλ |2 + |ARλ |2) and are related to the

observables measured by LHCb [14] as follows:

F⊥ =
1− FL + 2S3

2
, A4 = − 2

π
S4,

A5 =
3

4
S5, AFB =−ALHCb

FB . (9)

We neglect the ελ contributions to the amplitude for
the time being, but their effect in the numerical analy-
sis is discussed in Appendix A. In the presence of RH
currents the transversity amplitudes are given by [11]

AL,R⊥ =
(
(C̃⊥9 + C ′9)∓ (C10 + C ′10)

)
F⊥ − G̃⊥ (10)

AL,R‖ =
(
(C̃‖9 − C ′9)∓ (C10 − C ′10)

)
F‖ − G̃‖ (11)

AL,R0 =
(
(C̃0

9 − C ′9)∓ (C10 − C ′10)
)
F0 − G̃0. (12)

Note that setting the RH contributions C ′9 and C ′10 to
zero, the amplitudes reduce to the SM ones in Eq. (1).

Introducing new variables

ξ =
C ′10

C10
and ξ′ =

C ′9
C10

(13)

the observables F⊥, F‖, AFB, A5 (Eqs. (6) – (8)) can be
expressed as,

F⊥ = 2ζ (1 + ξ)2(1 +R2
⊥) (14)

F‖P
2
1 = 2ζ (1− ξ)2(1 +R2

‖) (15)

FLP
2
2 = 2ζ (1− ξ)2(1 +R2

0) (16)

AFBP1 = 3ζ (1− ξ2)
(
R‖ +R⊥

)
(17)

√
2A5P2 = 3ζ (1− ξ2)

(
R0 +R⊥

)
(18)

where P1 =
F⊥
F‖

, P2 =
F⊥
F0

, ζ =
F2
⊥C

2
10

Γf
,

R⊥ =

r⊥
C10
− ξ′

1 + ξ
, R‖ =

r‖

C10
+ ξ′

1− ξ
, R0 =

r0

C10
+ ξ′

1− ξ
. (19)

We consider the observables FL, F‖, F⊥, AFB and A5,
with the constraint FL + F‖ + F⊥ = 1. Using Eq. (14)–
(18), we obtain expressions for R⊥, R‖, R0 and P2 in
terms of the observables and P1:

R⊥ = ±3

2

(
1−ξ
1+ξ

)
F⊥ + 1

2P1Z1

P1AFB
(20)

R‖ = ±3

2

(
1+ξ
1−ξ

)
P1F‖ + 1

2Z1

AFB
(21)

R0 = ± 3

2
√

2

(
1+ξ
1−ξ

)
P2FL + 1

2Z2

A5
(22)

P2 =

(
1−ξ
1+ξ

)
2P1AFBF⊥

√
2A5

((
1−ξ
1+ξ

)
2F⊥ + Z1P1

)
− Z2P1AFB

(23)

where Z1 = (4F‖F⊥ − 16
9 A

2
FB)1/2 and Z2 = (4FLF⊥ −

32
9 A

2
5)1/2. Since we have one extra parameter compared

to observables, all of the above expressions depend on P1.
Fortunately in the large q2 limit, the relations between
form factors enable us to eliminate one parameter.

At the kinematic limit q2 = q2
max = (mB −mK∗)

2 the
K∗ meson is at rest and the two leptons travel back to
back in the B meson rest frame. There is no preferred
direction in the decay kinematics. Hence, the differential
decay distribution in this kinematic limit must be inde-
pendent of the angles θ` and φ, which can be integrated

out. This imposes constraints on the amplitude AL,Rλ
and hence the observables. The entire decay, including
the decay K∗ → Kπ takes place in a single plane, re-
sulting in a vanishing contribution to the ‘⊥’ helicity, or
F⊥ = 0. Since the K∗ decays at rest, the distribution of
Kπ is isotropic and cannot depend on θK . It can easily
be seen that this is only possible if F‖ = 2FL [6].

At q2 =q2
max, Γf → 0 as all the transversity amplitudes

vanish in this limit. The constraints on the amplitudes
described above result in unique values of the helicity
fractions and the asymmetries at this kinematical end-
point. The values of the helicity fractions and asymme-
tries were derived in Ref. [6, 7] where it is explicitly shown
that

FL(q2
max) =

1

3
, F‖(q

2
max) =

2

3
, A4(q2

max) =
2

3π
,

F⊥(q2
max) = 0, AFB(q2

max) = 0, A5,7,8,9(q2
max) = 0. (24)

The large q2 region where the K∗ has low-recoil energy
has also been studied [3, 12] in a modified heavy quark
effective theory framework. In the limit q2 → q2

max the
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hadronic form factors satisfy the conditions

G̃‖
F‖

=
G̃⊥
F⊥

=
G̃0

F0
= −κ2mbmBC7

q2
, (25)

where κ ≈ 1 as shown in [12]. The helicity indepen-

dence of the ratios G̃λ/Fλ at q2
max is easy to understand,

since both the B and K∗ mesons are at rest, resulting
in a complete overlap of the wave functions of these two
mesons and the absence of any preferred direction in the
Kπ distribution. Due to the constraints arising from
decay kinematics and Lorentz invariance, on the observ-
ables at q2

max (in Eq. (24)), it is shown in Ref. [6] that
the non-factorizable contributions are helicity indepen-
dent at the endpoint. Hence from Eq. (4) it can be seen
that, r0 = r‖ = r⊥ ≡ r [13]. Therefore, Eq. (19) implies
that, by definition of the variables Rλ, in the presence
of RH currents, one should expect R0 = R‖ 6= R⊥ at

q2 = q2
max without any approximation. As argued above

this relation is unaltered by non-factorizable and reso-
nance contributions at this kinematic endpoint.

We study the values of Rλ, ζ and P1,2 in the large
q2 region and consider the kinematic limit q2 → q2

max.
It is easy to see from Eq. (14) that F⊥(q2

max) = 0 im-
plies that ζ = 0 in the limit q2 → q2

max. Further, since
R‖(q

2
max) = R0(q2

max), Eqs. (15) and (16) imply that in the

limit q2 → q2
max, P2 =

√
2P1. However, both P1 and P2

go to zero at q2
max. It is therefore imperative that we take

into account the limiting values very carefully by Taylor
expanding all observables around the endpoint q2

max in
terms of the variable δ ≡ q2

max − q2. The leading power
of δ in the Taylor expansion must take into account the

relative momentum dependence of the amplitudes AL,Rλ .

Eq. (6)-(8) and (24) together imply that AL,R⊥ must have

an expansion at least O(
√
δ) higher compared to AL,R‖,0 .

This is in agreement with Ref. [6]. Hence the leading
term in FL and F‖ must be O(δ0), whereas the leading
term for F⊥ is O(δ). The leading terms for the asym-

metries, A5 and AFB, are O(
√
δ). Thus, we expand the

observables as follows:

FL =
1

3
+ F

(1)
L δ + F

(2)
L δ2 + F

(3)
L δ3 (26)

F⊥ = F
(1)
⊥ δ + F

(2)
⊥ δ2 + F

(3)
⊥ δ3 (27)

AFB = A
(1)
FBδ

1/2 +A
(2)
FBδ

3/2 +A
(3)
FBδ

5/2 (28)

A5 = A
(1)
5 δ

1/2 +A
(2)
5 δ

3/2 +A
(3)
5 δ

5/2, (29)

where for each observable O, O(n) is the coefficient of the
nth term in the expansion. The polynomial fit to data
is not based on Heavy Quark Effective Theory (HQET)
or any other theoretical assumption. A parametric fit to
data is performed, so as to obtain the limiting values of
the coefficients to determine the slope and second deriva-
tive of the observables at q2

max. It should be noted that
the polynomial parameterizations are inadequate to de-
scribe the q2 dependent behavior of resonances. However,

systematics of resonance effects are discussed in Sec. IV
in detail validating the approach followed here.

The relation in Eq. (25) between form factors is ex-
pected to be satisfied in the large q2 region. Eq. (25) is
naturally satisfied if it is valid at each order in the Taylor
expansion of the form factors:

q2 G̃λ
Fλ

= q2
max

G̃(1)
λ + δ (G̃(2)

λ −
G̃(1)
λ

q2
max

) +O(δ2)

F (1)
λ + δF (2)

λ +O(δ2)
. (30)

We require only that the relation be valid up to or-
der δ. In order for Eq. (30) to have a constant value
in the neighborhood of q2

max up to O(δ), we must have

F (2)
λ = cF (1)

λ and (q2
max G̃

(2)
λ − G̃(1)

λ ) = c q2
max G̃

(1)
λ where

c is any constant. As discussed earlier, P2 =
√

2P1 at

q2
max, hence, we must have P

(1)
2 =

√
2P

(1)
1 , where P

(1)
1,2

are the coefficients of the leading O(
√
δ) term in the ex-

pansion. However, the above argument implies that at

the next order, we must also have P
(2)
2 =

√
2P

(2)
1 , since

F (2)
λ = cF (1)

λ . This provides the needed input that to-

gether with Eq. (23) determines P
(1)
1 purely in terms of

observables.
The expressions for Rλ in the limit q2 → q2

max are

R⊥(q2
max) =

8A
(1)
FB(−2A

(2)
5 +A

(2)
FB) + 9(3F

(1)
L + F

(1)
⊥ )F

(1)
⊥

8 (2A
(2)
5 −A

(2)
FB)

√
3
2F

(1)
⊥ −A

(1) 2
FB

=
ω2 − ω1

ω2

√
ω1 − 1

, (31)

R‖(q
2
max) =

3(3F
(1)
L + F

(1)
⊥ )

√
3
2F

(1)
⊥ −A

(1) 2
FB

−8A
(2)
5 + 4A

(1)
FB + 3A

(1)
FB(3F

(1)
L + F

(1)
⊥ )

=

√
ω1 − 1

ω2 − 1
= R0(q2

max) (32)

where

ω1 =
3

2

F
(1)
⊥

A
(1) 2
FB

and ω2 =
4 (2A

(2)
5 −A

(2)
FB)

3A
(1)
FB(3F

(1)
L + F

(1)
⊥ )

. (33)

It should be noted that Eqs. (31)–(33) are derived only
at q2

max. However, even at the endpoint, the expressions

depend on polynomial coefficients: F
(1)
L and F

(1)
⊥ as well

as A
(2)
FB and A

(2)
5 which are not related by HQET. Hence,

in our approach, corrections beyond HQET are automat-
ically incorporated through fits to data.

In the absence of RH currents or other NP that
treats the “⊥” amplitude differently one would expect
R⊥(q2

max) = R‖(q
2
max) = R0(q2

max). It is easily seen that

the LHS of Eq. (17) is positive around q2
max and since

ζ > 0, we must have R⊥ = R‖ = R0 > 0. Since very
large contributions from RH currents are not possible, as
they would have been seen elsewhere, Rλ(q2

max) > 0 still
holds and restricts ξ and ξ′ to reasonably small values.
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O(1)(10−2) O(2)(10−3) O(3)(10−4)

FL −2.85± 1.26 12.13± 1.90 −5.68± 0.67

F⊥ 6.89± 1.65 −9.79± 2.47 3.83± 0.86

AFB −30.58± 1.95 26.96± 3.58 −4.15± 1.47

A5 −15.85± 1.87 5.38± 3.33 2.46± 1.29

TABLE I. Best fit and 1σ uncertainties for the coefficients
of observables (in Eqs. (26)– (29)) obtained by fitting recent
LHCb’s 14- bin measurements [14] as a function of q2 for the
entire region.
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FIG. 1. An analytic fit to 14-bin LHCb data using Taylor
expansion at q2max for the observables FL, F⊥, AFB and A5

are shown as the brown curves. The ±1σ error bands are
indicated by the light brown shaded regions, derived including
correlation among all observables. The points with the black
error bars are LHCb 14-bin measurements [14].

III. RIGHT-HANDED CURRENT ANALYSIS

In this section we describe the numerical analysis based
on the theoretical formalism derived in the previous sec-
tion. We start by fitting the latest LHCb measurements
[14] of the observables FL, F⊥, AFB and A5 as func-
tions of q2 using the Taylor expansion at q2

max as given
in Eqs. (26)– (29). The fits were performed by minimiz-
ing the χ2 function, which compares the bin integrated
values of q2 functions of the observables with their mea-
sured experimental values for all 14 bins. The corre-
lations reported by LHCb among all observables have
also been considered. The bin integration for the poly-
nomial fit is weighted with the recent measurements of
differential decay rate [15]. A polynomial is fitted for
dΓ/dq2 data for the entire q2 region. This fitted poly-
nomial for dΓ/dq2 (say denoted by Γ(q2)) is then used
in weighted average for all the observables. For an ob-
servable O the bin averaged value within the q2 interval

[bi, bf ] is obtained by,
∫ bf
bi
O(q2)Γ(q2) dq2

/∫ bf
bi

Γ(q2) dq2.

We use the 14 bin data set based on the method of mo-
ments [16] from LHCb rather than the 8 bin data set as it
enables better constraints near q2

max. The best fit values

**

0 5 10 15 20
-1

0

1

2

3

R⊥

R
∥,
0

FIG. 2. Allowed regions in R⊥ – R‖,0 plane are shown. The
solid red straight line on the far left corresponds to the case
R⊥ = R‖,0. The SM value is indicated by the star. The gray
point corresponds to best fit central values. The light and
dark gray contours correspond to 1σ and 5σ confidence level
regions, respectively.

for each coefficient of the observables FL, F⊥, AFB and
A5 (Eqs. (26)– (29)) are given in Table I. The errors in
each coefficient are evaluated using a covariance matrix
technique. A detailed study of the systematics in fitting
the polynomial is described in Sec. V. Variations in the
order of the polynomial from two to four and the number
of bins used in fitting (from the last four to all fourteen),
demonstrate good convergence when larger numbers of
bins are considered.

In Fig. 1 the results of the fits for the observables FL,
F⊥, AFB and A5, respectively, are compared with the
measured LHCb data [14]. We notice that the factoriza-

tion requirement A
(1)
FB = 2A

(1)
5 holds to within ±1σ. We

treat A
(1)
FB and 2A

(1)
5 as two independent measurements

of the same quantity as we have neglected correlation be-
tween observables. We obtain ω1 = 1.10 ± 0.30 (1.03 ±
0.34) and ω2 = −4.19± 10.48 (−4.04± 10.12), where the

first values are determined using A
(1)
FB and the values in

the round brackets use 2A
(1)
5 .

We estimate the range of values for R⊥ and R‖,0 in two
different ways. One approach estimates R⊥ and R‖,0 us-

ing randomly chosen values of F
(1)
L , F

(1)
P , A

(1)
FB, A

(1)
5 , A

(2)
FB

and A
(2)
5 , from a Gaussian distribution with the central

value as the mean and errors from Table I. If RH cur-
rents are absent the values would lie along a straight
line with a 45o slope in the R⊥ − R‖,0 plane. However,
we find a slope that is nearly horizontal, indicating that
R⊥ � R‖,0. The deviation of slope from 45o provides
evidence of contributions from RH currents.

In an alternate approach we fit the values of R⊥ and
R‖,0 with the two estimated values of ω1 and ω2 by min-

imizing a χ2 function. The allowed regions in the R⊥ –
R‖,0 plane are shown in Fig. 2. The solid red straight line
on the far left corresponds to the case R⊥ = R‖,0. The
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FIG. 3. Allowed regions in C′10/C10 – C′9/C10 plane are shown
in three different panels. The yellow, orange and red bands
are the 1σ, 3σ and 5σ confidence level regions, respectively.
The center red dot denotes best fit point; the SM values of
C′10/C10 and C′9/C10 are indicated by a ‘star’, which sits more
than 5σ confidence level contour in the upper left panel, at
5σ contour in the upper right panel and at 3σ contour in the
bottom panel. The plots illustrates the sensitivity to r/C10.
The upper left panel shows the SM value, the upper right
panel includes an additional NP contribution CNP

9 ≈ −1 [2]
while the bottom panel highlights the case where r/C10 is
considered as a nuisance parameter (see text for details).

SM value is indicated by the star on the red line. The
light gray and dark gray contours indicate the 1σ and
5σ permitted regions. We emphasize that for the SM,
even in the presence of resonances the contours should
be aligned along the 45o line, since resonances contribute
equally to all helicities through ∆C9 in Eq. (2). Hence
the deviation of the contours from the SM expectation
is a signal for RH currents. As it will be discussed in
Sec. IV, charmonium resonance contributions in bin av-
eraged data always raise the values of ω1, whereas we
find that the values of ω1 are close to the lowest possible
physical value allowed.

Having established the existence of RH contributions,
we perform a χ2 fit to the parameters ξ and ξ′ which
indicate the size of the new Wilson coefficients. This is
easily done using Eqs. (19), (31) and (32). However, this
requires as an input the estimate of r/C10 from Eq. (25)
at q2

max. The allowed regions in the ξ – ξ′ plane are shown
in Fig. 3. The left panel shows the region obtained using
SM estimate of r/C10 = 0.84 [12]. The best fit values of ξ
and ξ′, with ±1σ errors are −0.63±0.43 and −0.92±0.10,
respectively. The yellow, orange and red bands denote
1σ, 3σ and 5σ confidence level regions, respectively. The

SM value of C ′10/C10 and C ′9/C10 is indicated by the
star, beyond the 5σ confidence level contour, which is
in an agreement with the result shown in Fig. 2. The
SM estimate of r/C10 can have uncertainties that cannot
easily be accounted for. These could range from errors
in Wilson coefficients, contributions from other kinds of
new physics or even the contributions from resonances.
In order to ascertain the accuracy of our conclusion to
these uncertainties, we have scanned r/C10 over a range
of values. While the evidence for right handed currents is
clear, the central values of ξ and ξ′ obtained from the fit
can be reduced somewhat if r/C10 is smaller due to NP
contributions that alter the Wilson coefficient C9 and the
significance of discrepancy can also be reduced ∼ 5σ as
can be seen from Fig. 3 upper right panel plot. The value
r/C10 = 0.6 corresponds to the scenario in which NP
contribution to the Wilson coefficient C9 is CNP

9 ≈ −1 as
indicated by a global fit analysis for b→ s transition [2].
In this case, best fit values of ξ and ξ′ with ±1σ errors
are −0.73 ± 0.32 and −0.69 ± 0.10. We have performed
another analysis where the input r/C10 is considered as
nuisance parameter and the result is shown in the bottom
panel of Fig. 3. In this case the best fit value with ±1σ
error for the parameters ξ, ξ′ and r/C10 are −0.63 ±
0.43, −0.92 ± 0.14 and 0.84 ± 0.10, respectively. It can
be seen that the uncertainties in C ′10/C10 and C ′9/C10

parameters have increased due to the variation of r/C10

and the SM prediction still remains on a 3σ level contour
providing evidence of RH currents. We note that if ξ 6= 0
is confirmed by further measurements, additional scalar
and or pseudoscalar contributions would be needed in
order to have consistency with Bs → µ+µ− data [25].

We now discuss the effect of complex part of the
transversity amplitudes i.e ελ contributions (in Eq. (3)),
which was not considered so far. In our approach ελ can
be estimated at the endpoint purely from data. The ελ
corrections do not contribute to the asymmetries AFB

and A5, however, they do contribute to the helicity frac-
tions FL and F⊥ [7]. Interestingly, in a Taylor expansion
of ε̂λ ≡ 2|ελ|2/Γf , the coefficient of the leading term must

be positive. We have used LHCb data to estimate ε̂
(0)
0 ,

ε̂
(1)
0 , ε̂

(1)
‖ and ε̂

(1)
⊥ that modify the estimates of ω1 and

ω2. The detailed expressions and discussions are given in
Appendix A. We have also studied the effects of non-zero
K∗, width in Appendix B. Including these effects we find
that our conclusions are slightly strengthened.

IV. EFFECT OF RESONANCES

In this section we examine if resonances can alter the
results that are obtained using a polynomial fit to the
observables in Eqs. (26)– (29), where it is assumed that
resonances are absent. The data includes resonance con-
tributions in the bin averaged observables and these av-
erages may not fit well to polynomial if resonance contri-
butions are sizable. It may be noted that in our approach
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the polynomial function is used only for a parametric fit
to data. In principle, the data could have been fitted to
any chosen function. An inappropriate function will re-
sult in a poor fit with large errors. We have estimated
all errors and the fits reflect the errors caused by the
assumption of ignoring resonances. It should be noted
that the fit itself is not invalidated, however the errors
estimated in Table. I will decrease if a better function or
the estimate of systematics of resonances are accounted
for. Thus, our errors are an overestimate. We also em-
phasize that the real part of resonance contributions are
notionally included in the amplitudes and the imaginary
parts are also accounted for as discussed in Appendix. A.
Since, both our theory and experimental data include res-
onances contributions, the observed discrepancy cannot
arise due to resonances. Below we discuss the differences
between q2 distributions with and without resonances as
systematic uncertainties.

This study is performed on observables, evaluated us-
ing theoretical estimates of form factors and Wilson coef-
ficients. We assume the values of the form factors evalu-
ated using LCSR [18] for q2 ≤ 15 GeV2 and from Lattice
QCD [19] for q2 ≥ 15 GeV2 region. The effects of reso-
nances are incorporated as in [20]. The procedure defines
the function g(mc, q

2), in Ceff
9 , as

g(mc, q
2) = −8

9
ln
mc

mb
− 4

9

+
q2

3
P
∫ ∞

4m̂2
D

Rcc̄had(x)

x(x− q2)
dx+ i

π

3
Rcc̄had(q2). (34)

where P is the Principal Value of the integral and m̂D =
mD/mb. The cross-section ratio Rcc̄had(q2) is given by,

Rcc̄had(q2) = Rcc̄cont(q
2) +Rcc̄res(q

2). (35)

Here, Rcc̄cont and Rcc̄res denote the contributions from the
continuum and the narrow resonances, respectively. The
latter is given by the Breit-Wigner formula

Rcc̄res(q
2)=Nr

∑
V=J/ψ ,ψ′..

9 q2

α

Br(V → `+`−)ΓVtotΓ
V
had

(q2−m2
V )2 +m2

V ΓV 2
tot

eiδV (36)

where ΓVtot is the total width of the vector meson ‘V ’,
δV is an arbitrary relative strong phase associated with
each of the resonances and Nr is a normalization factor
that fixes the size of the resonance contributions com-
pared to the non-resonant ones correctly. We include the
J/ψ (1S), ψ(2S), ψ(3770), ψ(4040), ψ(4160) and ψ(4415)
resonances in our study. The masses and widths of these
vector mesons are taken from the PDG compilation [21].

The continuum term Rcc̄cont(q
2) is parametrized differ-

ently in Refs. [20] and [17], but we have verified that both
of these parameterization gives indistinguishable results
for our analysis. We introduce yet another overall nor-
malization factor Nb that normalizes the value of dΓ/dq2

so as to match it with its experimentally measured value.
We numerically integrate the theoretical differential

decay rate including all the resonances, in q2, for eight bin

intervals given in [15]. We add all these eight bin aver-
aged values to obtain a quantity, which we refer to here
as dΓtot

th /dq
2. However, dΓtot

th /dq
2 depends on the two

unknown quantities Nb and Nr. We integrate the same
theoretical differential decay rate again including all the
resonances, in the q2 region [2.972, 3.212] to match the
cuts used in the LHCb experiment (Ref. [22]) and denote

the result as dΓ
J/ψ
th /dq2, which is once again also a func-

tion of the same two quantities Nb and Nr. These two

theoretical quantities, dΓtot
th /dq

2 and dΓ
J/ψ
th /dq2, are then

compared with the central values of the experimentally
measured differential decay rates 4.379× 10−7 (total bin
average value for eight bins) and 1.29×10−3, respectively.
The solution for Nb and Nr are obtained by solving the
two equations,

dΓtot
th (Nb, Nr)

dq2
= 4.379× 10−7

dΓ
J/ψ
th (Nb, Nr)

dq2
= 1.29× 10−3.

Two solutions for normalizations are obtained from the
resultant quadratic equations. For every set of δV cho-
sen, two sets of Nb and Nr are calculated. We have also
verified that our results are insensitive to the variation
in q2 cuts for the J/ψ resonance. This implies that if the
q2 cut is changed to [3.052, 3.152] [23], the normalization
factors are modified only by a few percent.

We have varied δV from 0 to 2π through 15o intervals
for each resonance. In order to keep the size of data
limited we present only a sample of some of the plots
obtained by varying δV for the J/ψ (1S), ψ(4040) and
ψ(4160) resonances. The plots are given in link [24] as
movies. The movies were created using more than 22000
plots.

It may be noted from these plots that when resonances
are included, the helicity fractions do not vary signif-
icantly due to resonance contributions. The asymme-
tries AFB and A5 always decrease in magnitude for the
15 GeV2 ≤ q2 ≤ 19 GeV2 region. Hence if the effect of
resonances could somehow be removed from the data, the
values of AFB and A5 would be larger in magnitude. This
observation is also valid for the slope of the fitted poly-
nomial for AFB and A5 at the endpoint. The value of ω1

in this case would be smaller compared to the values ob-
tained from fits to experimental data in which resonances
are automatically present. In other words including res-
onance effects in 15 GeV2 ≤ q2 ≤ 19 GeV2 region always
increases ω1. It should be noted that the values of ω1,
obtained by fitting to experimentally observed data, are
already close to unity and any further reduction will force
ω1 into the un-physical domain.

In a Toy Monte Carlo study, values of δV were ran-
domly chosen one million times and the values of ob-
servables obtained without resonances were compared to
those where resonances were included. This enabled us
to verify that the conclusions drawn for δV ∈ nπ/12
(∀n = 1, ..., 12) are valid in general.
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It is also easy to see analytically that adding resonances
would strengthen the case for NP rather than weaken it.

Consider the observable Z1 =
√

4F‖F⊥ − 16
9 A

2
FB from

Refs. [7, 13], which can be cast as

Z1 =
4

3
|AFB|

√
9F‖F⊥

4A2
FB

− 1 =
4

3
|AFB|

√
Ω1 − 1 (37)

where Ω1 =
9F‖F⊥

4A2
FB

. Since Z1 is real it is obvious that

Ω1 > 1. Experimental data indicates that Ω1 is very
close to unity for the entire range above q2 > 15 GeV2.
If resonance contributions are explicitly included Z1 be-
comes,

Z1 =
4

3
|AFB|

√√√√9(F‖ −
2ε2‖
Γf

)(F⊥ −
2ε2⊥
Γf

)

4A2
FB

− 1

=
4

3
|AFB|

√
Ω1 −O

(2ε2
‖,⊥Ω1

F‖,⊥Γf

)
− 1 (38)

where ελ is defined in Eq. (5). Note that O
(

2ε2‖,⊥Ω1

F‖,⊥Γf

)
is always positive, decreasing the radical. Hence, one
can conclude that resonance contributions cannot be sig-
nificant in data or else the value of Ω1 would become
unphysical. It should be noted that ω1 ≡ Ω1(q2

max), im-
plying that the value of ω1 which we find very close to
unity is consistent and would only decrease and become
unphysical if resonances were included. The same argu-
ments hold for the observables Z2 and Ω2 or ω2.

It may be noted that in a previous study of resonance
effects in B → K`+`− [17], the difficulty in accommo-
dating the LHCb-result in the standard treatment of the
SM or QCD was noted and possible right-handed current
contributions were suggested.
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FIG. 4. Systematic study of the coefficients of observables with the variation of polynomial order and the number of bins used
for the fit. The color code for the different orders of the fitted polynomial is depicted in the panel. The x-axis denotes the
number of bins used for the fit from last 4 to 14 bins. Coefficient values show good convergence within the ±1σ error bars

except for few bins in the F
(1)
⊥ and A

(1)
5 distributions.

V. CONVERGENCE OF POLYNOMIAL FIT

It is discussed in Sec. II the observables are Taylor
expanded around the endpoint q2

max in Eqs. (26)– (29).
In this section, we study the systematics of the fits to

coefficients F
(1)
L , F

(1)
P , A

(1)
FB, A

(2)
FB, A

(1)
5 and A

(1)
5 , which

appear in the expressions of ω1 and ω2 given in Eq. (33).
We vary the order the polynomial fitted from 2 to 4. Fits
are also performed by varying the number of bins from

the last 4 to 14 bins. The plots for the observables AFB,
A5 FL and F⊥ are shown in Appendix. C. The summary
of the variation of fits with respect to the order of the
polynomial and number of bins are given in Fig. 4 for

all observable coefficients F
(1)
L , F

(1)
P , A

(1)
FB, A

(2)
FB, A

(1)
5 and

A
(2)
5 , respectively. The color code for the order of the

polynomial used to fit is given in the panel. The x− axis
denotes the number of bins from last 4 to last 10 bins. We
find that all the fitted coefficients show a good degree of
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FIG. 5. Fits with third order polynomials to the theoretical
SM observables, generated using LCSR form factors for q2 ≤
15 GeV2 and Lattice QCD form factors for q2 ≥ 15 GeV2.

convergence even when larger number of bins are added.
The values obtained for the coefficients are consistent
within ±1σ regions apart from some small mismatches

in F
(1)
P , and A

(1)
5 . We choose as a benchmark the third

order polynomial fit to all 14 bins.
To validate this choice of a third order polynomial fit

to all 14 bins, we also perform an identical fit for observ-
ables generated using form factor values from LCSR [18]
for the q2 ≤ 15 GeV2 and from Lattice QCD [19] for
q2 ≥ 15 GeV2 region. The fits are shown in Fig. 5, where
the blue error bars are bin integrated SM estimates and
the solid blue curve with the shaded region represents
the best fit polynomial with ±1σ errors. The fits to SM
observables are satisfactory for the entire q2 region.

VI. CONCLUSION

In conclusion, we have shown how RH currents can be
uniquely probed without any hadronic approximations at
q2
max. Our approach adopted in Sec. II differs from other

approaches [2] that probe new physics at low q2, as it does
not require estimates of hadronic parameters but relies
instead on heavy quark symmetry based arguments that
are reliable at q2

max [3, 4]. Our parameters are defined
so as to notionally include non-factorizable loop correc-
tion and power-corrections and must differ from those
of others. It should be noted that we use data directly,
instead of theory estimates, to derive our conclusions.
We understand that experimental measurements cannot
alone result in discovery of NP as re-parameterization
invariance suggests and to that end we rely on theoreti-
cal understanding of symmetries at the endpoint. While
the observables themselves remain unaltered from their
SM values, their derivatives and second derivatives at
the endpoint are sensitive to NP effects. Large values
of AFB and A5, which do not rapidly approach zero in
the neighborhood of q2

max, are indicative of NP effects. In

Sec. III we show that LHCb data implies 5σ evidence of
NP at q2

max. While the signal for right handed currents
is clear, the large central values of ξ and ξ′ obtained will
be reduced if other NP contributions are present. Al-
lowing variation in the only input parameter i.e r/C10,
we obtain 3σ evidence of RH currents from the latest
LHCb measurements. A detailed study of resonance ef-
fects has been carried out in Sec. IV, which provides more
significant evidence for RH currents. The systematics of
polynomial fit has been discussed in Sec.V where a good
convergence has been observed when a large number of
bins are considered. The choice of a particular polyno-
mial parametrization has been justified with a fit to SM
observables. The effect of complex contributions in the
amplitudes (in Appendix A) and the finite K∗ width (in
Appendix B) leaves the conclusions unchanged. In view
of these, we speculate that if the current features of data
persist with higher statistics the existence of RH currents
can be established in the near future.
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Appendix A: Effect of Complex Contributions of
amplitude

We show that the contributions arising from the com-
plex part (ελ) of the amplitudes, in Eq. (3), can be in-
corporated in the following way.

Defining a new notation ε̂λ ≡ 2|ελ|2/Γf , the Taylor
expansions for each ε̂λ around q2 = q2

max are given by,

ε̂⊥ = ε̂
(1)
⊥ δ + ε̂

(2)
⊥ δ2 + ε̂

(3)
⊥ δ3

ε̂0 = ε̂
(0)
0 + ε̂

(1)
0 δ + ε̂

(2)
0 δ2

ε̂‖ = ε̂
(0)
‖ + ε̂

(1)
‖ δ + ε̂

(2)
‖ δ2

where δ ≡ q2
max − q2 and the limiting values of helicity

fractions, FL(q2
max) = 1/3 and F‖(q

2
max) = 2/3, constrain

the coefficients i.e. ε̂
(0)
‖ = 2 ε̂

(0)
0 . The presence of complex

amplitudes leads to a modification of the expressions of
ω1 and ω2 (Eq. (33)) in the following way,

ω1 =
9

4

(
2
3 − 2 ε̂

(0)
0

)(
F

(1)
⊥ − ε̂

(1)
⊥

)
A

(1) 2
FB

(A1)
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ω2 =
4
(

2A
(2)
5 −A

(2)
FB

)(
1− 3 ε̂

(0)
0

)
3A

(1)
FB

(
3F

(1)
L + F

(1)
⊥ + ε̂

(1)
‖ − 2 ε̂

(1)
0

) . (A2)

The procedure to incorporate the complex part of the
amplitudes ελ is described in Ref. [7], where it was shown
that the complex part of the amplitudes ελ are propor-
tional to the asymmetries A7, A8 and A9. Using 3 fb−1

of LHCb data [14], we simulated values of the coefficients

ε̂
(0)
0 , ε̂

(1)
0 , ε̂

(1)
‖ and ε̂

(1)
⊥ ; these turn out to be very small

at the kinematic endpoint. These estimated coefficients
are used to evaluate ω1 = 1.03 ± 0.31 (0.98 ± 0.29) and
ω2 = −4.52± 17.40 (−3.94± 9.86) (Eq. (A1) and (A2)),

where the first values are determined using A
(1)
FB and A

(1)
9

whereas the values in the round brackets use 2A
(1)
5 and

− 2
3A

(1)
8 . The factorization assumption is needed only at

leading order in the expansions of observables, which re-

quires A
(1)
FB = 2A

(1)
5 and A

(1)
9 = − 2

3A
(1)
8 .

It should be noted that the inclusion of ε̂λ’s change the
values of ω1 and ω2 insignificantly, with corresponding
estimates for the real case being well within the ±1σ
errors. Hence, the conclusions derived in the paper are
robust against the inclusion of complex contributions in
the amplitudes.

Appendix B: Finite K∗ width effect

The finite width of the K∗ can alter the position of
the kinematic endpoint i.e q2

max value. As LHCb consid-
ers a much wider range for the width of K∗, compared
to the observed width (which is ∼ 50 MeV), we have
varied the q2

max value in the Taylor expansion of observ-
ables (Eqs. (26)–(29)) within an interval 18.34 − 20.10
GeV2. The observables ω1 and ω2 are evaluated for
each case and a weighted average over the Breit-Wigner
shape for a K∗ gives ω1 = 1.11 ± 0.30 (1.03 ± 0.35) and
ω2 = −3.56 ± 28.34 (−3.50 ± 27.44). The change in the
values of ω1 and ω2 have an insignificant effect in Fig. 1
and 2 and the results derived in this work.

Appendix C: Polynomial fit variation

The variation of fits with respect to the order of the
polynomial and number of bins are shown in Fig. 6, 7, 8
and 9 for observables AFB, A5, FL and F⊥, respectively
The color code is same as Fig. 1. The panel in each plot
depicts the number of bins (from kinematic endpoint)
and the order of polynomial is used for the fit. The ex-
tracted coefficient values of the observables from these
plots are summarized in Fig. 5.
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FIG. 6. Fits to AFB using various numbers of bins and polynomial parameterizations. The color code is the same as in Fig. 1
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FIG. 7. Fits to A5 various numbers of bins and polynomial parameterizations. The color code is the same as in Fig. 1
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FIG. 8. Fits to FL various numbers of bins and polynomial parameterizations. The color code is the same as in Fig. 1
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FIG. 9. Fits to F⊥ various numbers of bins and polynomial parameterizations. The color code is the same as in Fig. 1
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