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The Yang-Baxter σ-model is a systematic way to generate integrable deformations of AdS5×S5. We
recast the deformations as seen by open strings, where the metric is undeformed AdS5×S5 with
constant string coupling, and all information about the deformation is encoded in the noncommu-
tative (NC) parameter Θ. We identify the deformations of AdS5 as twists of the conformal algebra,
thus explaining the noncommutativity. We show that the unimodularity conditon on r-matrices
for supergravity solutions translates into Θ being divergence-free. Integrability of the σ-model for
unimodular r-matrices implies the existence and planar integrability of the dual NC gauge theory.

I. INTRODUCTION

Integrable models have been key to enriching our
knowledge of condensed matter systems, field theory and
string theory. Within string theory, considerable atten-
tion has focused on integrable structures underlying the
AdS/CFT correspondence [1]. The most studied exam-
ple is a duality between superstrings on AdS5×S5 and
N = 4 super Yang-Mills (sYM). Remarkably, the 2D
string worldsheet σ-model on AdS5×S5 is classically in-
tegrable [2]; it has an infinite set of conserved charges.

There is immense interest in identifying integrable
structures beyond the maximally symmetric setting of
AdS5×S5, or equivalently sYM on R

1,3. It is curious
that the earliest integrability preserving deformation of
AdS5×S5 [3–5] was inspired by NC spacetimes, which are
ubiquitous in string theory [6, 7] (see [8] for a review). In
hindsight, we understand these deformations as T-duality
shift T-duality (TsT) transformations in the string and
gravity side [9–11].

Recently, Yang-Baxter(YB) deformations of the σ-
model [12–15] were generalized to the AdS5×S5 super-
string [16, 17]. We now understand TsT transformations
as part of a larger class of YB deformations of the σ-
model [18–31], which are defined by r-matrices satisfy-
ing the classical Yang-Baxter equation (cYBE). A fur-
ther unimodularity condition ensures the YB deforma-
tion has a valid string theory (supergravity) description
[32]. It has been conjectured [33] (see also [32]) that ho-
mogeneous YB deformations [15, 17] may all be realized
through non-Abelian duality transformations [34–38].

In this letter, we retrace TsT transformations to NC
deformations of QFTs. We encounter a number of sur-
prises. Firstly, irrespective of the YB deformation, for
r-matrix solutions to the homogeneous cYBE, there is
a universal description in open string parameters. Con-
cretely, we show that the open string metric [7] is always
the original undeformed AdS5×S5 metric with constant
open string coupling, and all information about the YB
deformation is encoded in a NC parameter Θ. This in
particular implies that all YB string theory σ-models of

AdS5×S5 have a NC gauge theory dual on R
1,3 where

integrability of the σ-model has direct bearing on planar
integrability.
For our second result, sharpening an earlier conjecture

[24], we confirm that YB deformations of AdS5 are sim-
ply Drinfeld twists of the conformal algebra. To better
understand this fact, we recall that in NC spacetimes
the coordinate operators x̂µ satisfy the commutation re-
lation,

[x̂µ, x̂ν ] = iΘµν (µ, ν = 0, . . . , 3), (1)

where Θµν is in general an x-dependent anti-symmetric
matrix. For twists of Poincaré algebra, the x-dependence
of Θ is fixed to be constant, linear or quadratic [39–41].
As we will argue, however, for twists in the conformal
algebra we can also have cubic and quartic dependence.
In fact, the homogeneous YB deformations studied to
date [18–28, 30–32] provide predictions for NC parame-
ters that arise from twists of the full conformal algebra.
We establish by exhaustion that the NC parameters and
r-matrices are directly related [47],

ΘMN = −2 η rMN (M,N = 0, . . . , 3, z), (2)

where η is the deformation parameter, z is the radial
direction of AdS5, and rMN is the r-matrix expressed as
differential operators on AdS5.
Finally, non-unimodular YB deformations lead to ge-

ometries that solve generalized supergravity equations,
specified through a modification given by a Killing vector
field I [42]; setting I = 0, we recover usual supergravity.
We show Θ and I are related through the equation,

∇MΘMN = IN , (3)

evaluated with open string metric. This remarkable re-
sult, which marries open and closed string descriptions, is
a requirement of the Λ-symmetry [43, 44] of the string σ-
model. Under Λ-symmetry the NSNS two-form B-field is
transformed by dΛ, which in presence of D-branes (open
strings) must be supplemented by a shift of the gauge
field on the brane by a one-form Λ. This novel observa-
tion provides the first explanation of the unimodularity
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condition [32] from a symmetry principle. Observe, for
supergravity solutions, ΘMN is divergence-free.

II. CLOSED STRING PICTURE

In a bid to make this letter self-contained, we re-
view the essentials of the YB σ-model, following the
presentation of ref. [25]. Here, we restrict ourselves to
deformations of AdS5 by considering the coset space
SO(4, 2)/SO(4, 1) and the homogeneous cYBE. Further-
more, to avoid unnecessary technicalities, we suppress
the RR sector, which does not affect any of our results.
The corresponding YB σ-model action is [15, 17]

L = Tr

[

AP (2) ◦ 1

1− 2ηRg ◦ P (2)
A

]

, (4)

with a deformation parameter η and Rg(X) ≡
g−1R(gXg−1)g . Here A = −g−1dg, g ∈ SO(4, 2), is a
left-invariant current, while P (2) is a projector onto the
coset space so(4, 2)/so(4, 1), spanned by the generators
Pm (m = 0, . . . , 4), which satisfy Tr[PmPn] = ηmn =
diag(− + + + +). Details, such as matrix representa-
tions, are given in [25]. P (2) may be expressed as

P (2)(X) = ηmnTr[X Pm]Pn , X ∈ so(4, 2) . (5)

Above, R is an antisymmetric operator satisfying the
homogeneous cYBE

[R(X), R(Y )]−R([R(X), Y ] + [X,R(Y )]) = 0, (6)

with X,Y ∈ so(4, 2). In turn, the operator R can be
written in terms of an r-matrix as,

R(X) = Tr2[r(1 ⊗X)] =
∑

i,j

rijbiTr[bjX ], (7)

where r ∈ so(4, 2)⊗ so(4, 2) is

r =
1

2

∑

i,j

rijbi ∧ bj , with bi ∈ so(4, 2). (8)

The r-matrix is called Abelian if [bi, bj] = 0 and unimod-
ular if it satisfies the following condition [32]:

rij [bi, bj] = 0. (9)

Note i, j range over the generators of so(4, 2), but ex-
pressed as differential operators on AdS5, one finds r

MN .
To determine the YB deformed geometry, we adopt the

following parametrization for g ∈ SO(4, 2),

g = exp[xµPµ] exp[(log z)D], (10)

where Pµ (µ = 0, ..., 3), D respectively denote translation
and dilatation generators and are related to Pm [25]. In
terms of these coordinates, we define

r =
1

2
rMN∂M ∧ ∂N , ∂M ∈ {∂µ, ∂z}. (11)

Then, the YB deformed metric gMN (M,N = 0, . . . , 4),
NSNS two-form BMN , and dilaton Φ (in string frame)
can be expressed as [25]

gMN = emMenNk(mn), BMN = emMenNk[nm], (12)

eΦ = gs(det5 k)
−1/2 , kmn = k(mn) + k[mn], (13)

where emM is the AdS5 vielbein, and we have defined

km
n ≡ (δmn − 2ηλm

n)
−1, (14)

λm
n ≡ ηnlTr[PlRg(Pm)]. (15)

It is useful to exemplify the deformation for the sim-
plest case of the Abelian r-matrix [19],

r =
1

2
P2 ∧ P3, (16)

corresponding to the closed string background [3, 4],

ds2 =
1

z2
[−dx2

0 + dx2
1 + h(z)(dx2

2 + dx2
3) + dz2]

B23 = ηh(z)/z4, e2Φ = g2sh(z), (17)

where h−1 = 1 + η2z4. The above together with S5 and
the RR-fields constitute a supergravity solution, which is
obtained simply via TsT from AdS5×S5 [3, 4].
In passing, we comment that while we focus on AdS5,

following [18], similar arguments apply equally to S5. In
particular, the case of β [9] or γ-deformations [10] is re-
lated to Abelian twists of SO(6), and via AdS/CFT, to
marginal deformations of N = 4 sYM [45].

III. OPEN STRING PICTURE

Given closed string parameters (gMN , BMN , gs), the
open string metric GMN , NC parameter ΘMN and cou-
pling Gs are defined as [7]:

GMN =
(

g −Bg−1B
)

MN
, (18)

ΘMN = −
(

(g +B)−1B(g −B)−1
)MN

, (19)

Gs = gse
Φ

(

det(g +B)

det g

)
1
2

. (20)

For YB deformations of AdS5 (12), we find

GMN +ΘMN = eMm eNn (ηmn + 2η λmn) , (21)

where eMm denotes the inverse vielbein. As λmn is anti-
symmetric, it is easy to separate the components, getting

GMN = eMm eNn ηmn, ΘMN = 2η eMm eNn λmn. (22)

Inverting GMN , it is clear that the open string metric is
precisely the original AdS5 metric. Moreover, inserting
(12) and (13) into (20), we get Gs = gs = constant.
That is, all the information about the YB deformation,
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as viewed by open strings is sitting in ΘMN , while the
geometry is undeformed AdS5 [63].
For the example (17), the open string parameters are

ds2open =
1

z2
(−dx2

0 + dx2
1 + dx2

2 + dx2
3 + dz2),

Θ23 = −η, Gs = gs. (23)

While the closed string metric (17) has a severely de-
formed causal and boundary structure [3–5], the space-
time as seen by the open strings is the usual AdS5×S5

with R
1,3 boundary, indicating that the dual gauge the-

ory description is a Θ-deformed sYM.

IV. CONFORMAL TWISTS & NC GAUGE

THEORY

One can formulate quantum field theory (QFT) on the
NC spacetime specified by Θ (1). Let us start with con-
stant Θ case, relevant to the example (17). The NC-
QFT may be obtained by replacing the usual product of
functions, or fields in QFT, with the Moyal star-product,
f(x)g(x) → (f ⋆ g)(x), such that

(f ⋆ g)(x) = f(x)e
i
2
Θµν

←

∂µ

→

∂ν g(x). (24)

The Moyal bracket of two functions is defined to be

[f, g]⋆ := f ⋆g−g ⋆f = iΘµν∂µf∂νg+O(∂3f, ∂3g). (25)

It is worth noting that f(x) = xµ, g(x) = xν reproduces
the commutator (1). It has been shown that introduction
of Moyal ⋆-product is equivalent using the co-products
with a Drinfeld twist element [39],

F = e−2iηr = e
i
2
ΘµνPµ∧Pν . (26)

This is a special case of an Abelian Poincaré twist and the
r-matrix satisfies the cYBE [19]. Abelian twists have the
remarkable property that they do not affect the Poincaré
algebra P [39], but instead deform the co-product of
U(P ) [46], where U(P ) is the universal enveloping algebra
of the Poincaré algebra.
In (26), we have considered the simplest twist, with

constant Θ. However, for other solutions to the cYBE,
the NC parameter need not be a constant. Indeed, in-
cluding Lorentz generators Mµν , the cYBE has solu-
tions r ∼ P ∧ M and r ∼ M ∧ M , which respectively
lead to linear and quadratic Θ [41]. For example, for
r = 1

2M01 ∧M23, modulo a convention dependent sign in
the twist (26), the NC parameter has components [41]:

Θ02 =− 2 sinh
η

2
· x1x3, Θ03 = 2 sinh

η

2
· x1x2,

Θ12 =− 2 sinh
η

2
· x0x3, Θ13 = 2 sinh

η

2
· x0x2.

(27)

We recover the same result (at leading order) from the
YB prescription (22).

This example shows that the open string parameter Θ
knows about the Moyal bracket, which may be derived
from twists of the Poincaré algebra. One can repeat the
YB analysis for all r-matrices of the conformal algebra

and show that (2) holds once the r-matrix is expressed in
terms of differential operators [47]. Note, (2) generalizes
existing results [24, 30] from the Poincaré to conformal
algebra.
In support of our claim, we present two examples

r1 =
1

2
D ∧K1,

r2 =
1

2
(P0 − P3) ∧ (D +M03),

(28)

which involve scale D and special conformal symmetries
Kµ. Note, the first is non-unimodular and the second ap-
pears in the classification of unimodular r-matrices [32].
The NC parameter in each case can be easily calculated
from (15) and (22). For r1, we find

Θ1µ = ηxµ(xνx
ν + z2), Θ1z = ηz(xνx

ν + z2),(29)

where µ 6= 1, while for r2, we get

Θ−+ = −4ηx+, Θ−i = −2ηxi, Θ−z = −2ηz, (30)

where i = 1, 2 and we have employed x± = x0 ± x3. One
recovers the same results from conformal twists of the
dual CFT [47]. We interpret this mathematical agree-
ment as evidence in support of our claim that YB defor-
mations based on unimodular r-matrices are dual to NC
deformations of N = 4 sYM. We establish this through
an almost exhausting set of examples in our upcoming
work [47].
Some comments and remarks are in order:

1) In both cases one can confirm that (2) holds.

2) One generically encounters cubic and quartic terms
from conformal twists.

3) Not only are there non-zero Θzµ components, they
also have non-trivial z-dependence. Nonetheless, it
can be shown in general that Θzµ components van-
ish at the AdS boundary at z = 0, where the dual
field theory resides. Viewing (3) as a first order
equation for ΘMN , the z-components and depen-
dence can be recovered from the Θµν , no informa-
tion is lost in the dual field theory side.

4) For YB deformations corresponding to unimodular
r-matrices, there is a well-defined string theory pic-
ture. Following the usual reasoning of AdS/CFT,
wherever the decoupling limit exists, closed string
theory on these deformed AdS5 backgrounds is ex-
pected to be dual to NC deformations of sYM with
noncommutativity Θµν = −2ηrµν . Particular ex-
amples are discussed in [3–5]. However, we note
that existence of a decoupling limit, where the open
string theory is reduced to its low energy limit of



4

NC sYM, is not trivial [5] (see also [24, 30] for re-
lated discussion). For the cases with ΘµνΘµν < 0,
so-called “electric” noncommutativity, it has been
argued that the open string theory does not reduce
to NC sYM. In these cases we are dealing with the
non-critical NC Open String theory (NCOS) [48–
51] which is related to NC sYM at strong coupling.

V. UNIMODULARITY & Λ-SYMMETRY

Our statements about the universal open string de-
scription are true, irrespective of unimodularity. Here,
we address the origin of unimodularity in terms of string
theory and its symmetry.
The key to our explanation is Λ-symmetry [43, 44].

It is known that closed string theory (supergravity) are
invariant under B → B+dΛ, where B is the NSNS two-
form and Λ is an arbitrary one-form. Upon introduction
of open strings with Dirichlet boundary conditions, this
symmetry survives, since B appears in the brane DBI ac-
tion only through the combination B+F , where F = dA
is the field strength of the brane gauge field A [52], and
one can compensate by shifting A → A − Λ. Therefore,
the action of the system, which is sum of the supergravity
and DBI actions, maintains the Λ-symmetry.
Open string parameters (18), (19) and (20), however,

are defined in a particular Λ-gauge, where the expecta-
tion (or background) value of F is set to zero. So, the
expression for ΘMN (19) is not necessarily Λ-invariant
[7, 44]. In fact, recalling that when F is set to zero [7],

1

Gs

√
detG =

eΦ

gs

√

det (g +B),

one can readily see that the variation of the DBI action
w.r.t. Λ-symmetry is ∇MΘMN , where the divergence is
computed w.r.t. open string metric GMN . So, invari-
ance of the full action for the unimodular cases where
the supergravity part is Λ-invariant on its own, leads to
∇MΘMN = 0. See also [53] for related arguments.
For the non-unimodular cases, where we encounter

generalized supergravity equations with Killing vector
I, one can show that these equations are Λ-symmetric.
However, the presence of the isometry direction I would
modify the DBI action by an IMAM term, which is not
Λ-invariant [47]. Therefore, to restore Λ-symmetry, the
NC parameter should satisfy (3). As an example con-
sider r1 in (28), which is known to be non-unimodular
with I = K1. One can then explicitly check that Θ given
in (29) satisfies (3).

VI. OUTLOOK

Our observations and results have broad implications.
It is imperative to revisit Poincaré twists [39–41] and
extend them to conformal twists [47], thus testing our

claim that the conformal twists can be described as YB
deformations. While we considered only bosonic defor-
mations of AdS5, one easily repeat for different coset
spaces, in different dimensions, or extend the analysis to
the fermionic sector of the AdS5×S5 σ-model, where one
will encounter fermionic T-duality [54, 55], or potentially
a non-Abelian generalization of it.
We recall that the homogeneous YB deformations may

be described as non-Abelian T-duality [33] . In principle,
a careful treatment of the Θ parameter for non-Abelian
T-duals supported by RR flux [37, 38] may elucidate the
dual theory [64]. It is interesting that the open string,
via Λ-symmetry, knows about generalized supergravity
through I. Since the latter is reproducible from the Dou-
ble Field Theory description, it may be interesting to
push this connection by following [56, 57].
The AdS5×S5 YB σ-model integrability has impli-

cations for the dual gauge theory and the dual open
strings. The fact that open strings reside in an unde-
formed AdS5×S5 geometry prompts the proposal of inte-
grability of the corresponding open string σ-model. The
effects of the deformation should then appear in Θ which
is expected to only affect open string endpoint dynam-
ics (which end on the AdS5×S5 boundary). This open
string integrability dovetails with the fact that some of
the deformed backgrounds can be obtained through TsT
transformations and that T-duality is a symmetry of the
worldsheet theory. Establishing this open string integra-
bility proposal, however, requires a thorough analysis of
the boundary conditions.
Integrability of AdS5×S5 σ-model is intimately con-

nected with the planar integrability of the correspond-
ing dual N = 4 sYM. With the same token, one would
expect the associated NC sYM to be planar-integrable.
Some preliminary analysis and results for a special case
have already appeared [58]. This is a highly non-trivial
statement and extends the important sYM integrability
to a big list of NC gauge theories. In the same line, one
would expect that Drinfeld twists and Drinfeld doubles
of the original Yangian, which underlies the integrability
of sYM, to be at work for the NC cases.
It is known that the constant magnetic NC sYM at

strong coupling flows to the NCOS [48–51]. It is inter-
esting to check if the same feature extends to more gen-
eral x-dependent twist elements. Recalling the S-duality
of type IIB supergravity, this is expected to be the case.
It is also interesting to explore the direct consequences
of the twisted conformal symmetry on the corresponding
NCOS and in particular features like Hagedorn transi-
tion [62]. One may also explore extending these con-
siderations about the S-duality and NCOS to the non-
unimodular cases and to generalized IIB supergravity.
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VII. SUPPLEMENTAL MATERIAL

4D conformal algebra

We record the conformal algebra so(4, 2) employed in
this work,

[D,Pµ] = Pµ, [D,Kµ] = −Kµ,

[Pµ,Kν ] = 2 (ηµνD +Mµν) , (1)

[Mµν , Pρ] = −2ηµ[νPρ], [Mµν ,Kρ] = −2ηµ[νKρ],

[Mµν ,Mρσ] = −ηµρMνσ+ηνρMµσ+ηµσMνρ−ηνσMµρ.

The algebra can be realized in terms of differential oper-
ators as

Pµ = −∂µ, Kµ = −(xνx
ν + z2)∂µ + 2xµ(x

ν∂ν + z∂z),

D = −xµ∂µ − z∂z, Mµν = xµ∂ν−xν∂µ. (2)

Duality between YB σ-models and NC sYM for

conformal twists

In the body of letter, we determined ΘMN for two r-
matrices r1 and r2. We have conjectured for unimodular
r-matrices, for example r2, that the YB deformation is
dual to a NC deformation of N = 4 sYM. To support
this claim, we now show that equation (30), evaluated at
z = 0, agrees with the resulting NC parameter from the
corresponding conformal twist. The analysis presented
here generalizes known Drinfeld twists with respect to
the Poincaré subalgebra to the conformal algebra.
Let us recall the r-matrix,

r2 =
1

2
(P0 − P3) ∧ (D +M03). (3)

We introduce null coordinates, x± = x0±x3, so that the
4D Minkowski metric is

ds2 = −dx+dx− + (dx1)2 + (dx2)2. (4)

It is worth noting that η+− = − 1
2 , η

+− = −2. In these
coordinates, the generators correspond to differential op-
erators:

P0 − P3 = −2∂−, D +M03 = −2x+∂+ − x1∂1 − x2∂2.
(5)

Note, there is no z-dependence and the operators are
essentially the AdS5 Killing vectors evaluated at z = 0.
Following the standard procedure, we introduce the twist
element, which acts on the commutative algebra A of
functions, f(x), g(x), in Minkowski space,

F = e−2iηr2 = e−iη(P0−P3)∧(D+M03). (6)

The star product then takes the form,

f(x) ⋆ g(x)

= m ◦ F(f(x) ⊗ g(x))

= m ◦ e−iη(P0−P3)∧(D+M03)(f(x)⊗ g(x))

= m ◦ e−iη∂−∧(2x+∂++x1∂1+x2∂2)(f(x)⊗ g(x)), (7)

where m denotes the operation of commutative multi-
plication, m(f(x) ⊗ g(x)) := f(x)g(x). Taking f(x) =
xµ, g(x) = xν , µ, ν = +,−, 1, 2, while expanding to first
order, one finds,

xµ ⋆ xν = xµxν − i

2
η(x+ηµ+ην− − x1ηµ+ην1

−x2ηµ+ην1 − µ ↔ ν),

xν ⋆ xµ = xνxµ − i

2
η(x+ην+ηµ− − x1ην+ηµ1

−x2ην+ηµ1 − ν ↔ µ). (8)

Therefore, the Moyal bracket is

[xµ, xν ]⋆ = xµ ⋆ xν − xν ⋆ xµ

= −iη(x+ηµ+ην− − x1ηµ+ην1 − x2ηµ+ην1 − µ ↔ ν).
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At this stage, it is easy to read off the non-zero compo-
nents of Θµν :

Θ−+ = −4ηx+, Θ−1 = −2ηx1, Θ−2 = −2ηx2. (9)

This precisely agrees with equation (30), which was de-
rived from the open string description and evaluated at
z = 0.


