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We study a vectorial asymptotically free gauge theory, with gauge group G and N; massless
fermions in a representation R of this group, that exhibits an infrared (IR) zero in its beta function,
B, at the coupling @ = argr in the non-Abelian Coulomb phase. For general G and R, we calculate
the scheme-independent series expansions of (i) the anomalous dimension of the fermion bilinear,
Yy 1r, to O(A}) and (ii) the derivative 8’ = dB/de, to O(A}), both evaluated at o, where Ay is
an Ny-dependent expansion variable. These are the highest orders to which these expansions have
been calculated. We apply these general results to theories with G = SU(N,) and R equal to the
fundamental, adjoint, and symmetric and antisymmetric rank-2 tensor representations. It is shown
that for all of these representations, vz, g, calculated to the order A? with 1 < p < 4, increases
monotonically with decreasing N; and, for fixed Ny, is a monotonically increasing function of p.
Comparisons of our scheme-independent calculations of v, ;r and 87 are made with our earlier
higher n-loop values of these quantities, and with lattice measurements. For R = F, we present
results for the limit N. — oo and Ny — oo with Ny /N, fixed. We also present expansions for arr
calculated to O(A%).

I. INTRODUCTION

An important advance in the understanding of quantum field theory was the realization that the properties of a
theory depend on the Euclidean energy/momentum scale p at which they are measured. This is of particular interest
in an asymptotically free non-Abelian gauge theory, in which the running gauge coupling ¢g(u) and the associated
quantity a(u) = g(u)?/(4m) approach zero at large u in the deep ultraviolet (UV). We shall consider a theory of this
type, with gauge group G and N; massless fermions v;, j = 1,..., Ny, in a representation R of G. The dependence
of a(p) on p is described by the renormalization-group (RG) [1] beta function, § = da(u)/dt, where dt = dln . The
condition that the theory be asymptotically free implies that Ny be less than a certain value, N,, given below in Eq.
(2.4). Since () is small at large p, one can self-consistently calculate 8 as a power series in a(u). As u decreases
from large values in the UV to small values in the infrared (IR), a(p) increases. A situation of special interest occurs if
the beta function has a zero at some value away from the origin. For a given G and R, this can happen for sufficiently
large Ny, while still in the asymptotically free regime. In this case, as i decreases from large values in the UV toward
1 =0 in the IR, the coupling increases, but approaches the value of « at this zero in the beta function, which is thus
denoted aygr. Since 8 = 0 at o = agp, the resultant theory in this IR limit is scale-invariant, and generically also
conformally invariant [2, 3]. A fundamental question concerns the properties of the interacting theory at such an IR
fixed point (IRFP) of the renormalization group. There is convincing evidence that if ayp is small enough, then the
IR theory is in a (deconfined) non-Abelian Coulomb phase (NACP), also called the conformal window [4]. In terms of
Ny, this phase occurs if Ny is in the interval Ny .. < Ny < N,, where N,, and Ny ., depend on G and R. Here, Ny .,
denotes the value of Ny below which the running a(u) becomes large enough to cause spontaneous chiral symmetry
breaking and dynamical fermion mass generation.

Physical quantities in the IR-limit theory at a;r cannot depend on the scheme used for the regularization and
subtraction procedure in renormalization. In conventional computations of these quantities, first, one expresses them
as series expansions in powers of «, calculated to n-loop order; second, one computes the IR zero of the beta function
at the n-loop (nf) level, denoted ayg,ne; and third, one sets a = arg,ne in the series expansion for the given quantity
to obtain its value at the IR zero of the beta function to this n-loop order. However, these conventional series
expansions in powers of «, calculated to a finite order, are scheme-dependent beyond the leading one or two terms.
Specifically, the terms in the beta function are scheme-dependent at loop order ¢ > 3 and the terms in an anomalous
dimension are scheme-dependent at loop order ¢ > 2 [5]. Indeed, as is well-known, the presence of scheme-dependence
in higher-order perturbative calculations is a general property in quantum field theory.

It is therefore of great value to use a complementary approach in which one expresses these physical quantities
at arp as an expansion in powers of a variable such that, at every order in this expansion, the result is scheme-
independent. A very important property is that one can recast the expressions for physical quantities in a manner
that is scheme-independent. A crucial point here is that, for a given gauge group G and fermion representation R,



as Ny (formally generalized from non-negative integers to the real numbers) approaches the upper limit allowed by
asymptotic freedom, denoted N, (given by Eq. (2.4) below), the resultant value of ;g approaches zero. This means
that one can equivalently express a physical quantity in a scheme-independent manner as a series in powers of the
variable

— Ny, (1.1)

where C4 is the quadratic Casimir invariant for the adjoint representation, and T is the trace invariant for the
fermion representation R [6]. Here, ajg — 0 <= Ay — 0. Hence, for Ny less than, but close to N, this expansion
variable Ay is reasonably small, and one can envision reliable perturbative calculations of physical quantities at this
IR fixed point in powers of Ay. Following the original calculations of the one- and two-loop coefficients of the beta
function [7]-[9], some early work on this was reported in [10, 11].

In this paper we consider a vectorial, asymptotically free gauge theory and present scheme-independent calculations,
for a general gauge group G and fermion representation R, of two physical quantities in the IR theory at a;gr of
considerable importance, namely (i) the anomalous dimension, denoted 7z, rg, of the (gauge-invariant) fermion
bilinear ¢n) = Ejv:fl Yi; to O(A?) and (ii) the derivative §75 = dB/da to O(A}), both evaluated at o = ayg. These
are the highest orders in powers of Ay to which these quantities have been calculated. We give explicit expressions
for these quantities in the special cases where G = SU(N.) and the fermion representation R is the fundamental
(F), adjoint (adj), and symmetric and antisymmetric rank-2 tensors, (S2, As). Our results extend our previous
scheme-independent calculations of vz, 15 to O(A‘}) in [12] and of the derivative 8} to O(A?) in [13] for general G
and R, and our scheme-independent calculation of 7z, 1z to O(A%) for G = SU(3) and R = F in [14] (see also [15]).
A brief report on some of our results was given in [16].

Scheme-independent series expansions of 7y, ;1 and B7r can be written as

Yy, IR = Z Kj AJ} (1.2)
j=1
and
Brr = dj A}, (1.3)
j=1

where dq = 0 for all G and R [12-14]. In general, the calculation of the coefficient x; in Eq. (1.2) requires, as inputs,
the values of the by for 1 < ¢ < j+1 and the ¢, for 1 < ¢ < j. The calculation of the coefficient d; in Eq. (1.3) requires,
as inputs the values of the by for 1 < £ < j. We refer the reader to [12] and [13] for discussions of the procedure for
calculating the coeflicients r; and d;. We denote the truncation of these series to maximal power j = p as Vg rg, ar

and 3} r.ars respectively. Where it is necessary for clarity, we will also indicate the fermion representation R in the
By

subscript.

Our main new results here include the general expressions, for arbitrary gauge group G and fermion representation
R, for the coefficient, x4 in Eq. (3.5) below, and for the coefficient ds, given in Eq. (4.9) below, as well as reductions
of these formulas for special cases and, for R = F, calculations in the LNN limit (3.21). As will be discussed
further below, the derivative 875 is equivalent to the anomalous dimension of the non-Abelian field strength squared,
Tr(F,, F*). Our present calculations make use of the newly computed five-loop coefficient in the beta function for
this gauge theory for general G and R in [17], as our work in [14, 15] made use of the calculation of this five-loop
coefficient for the case G = SU(3) and R = F in [18].

In addition to being of interest and value in their own right, our new scheme-independent calculations, performed
to the highest order yet achieved, are useful in several ways. First, we will compare our results for vz, ;r and Brr
for various G and R with the values that we obtained at comparable order with the conventional n-loop approach in
[19]-[21]. Our new results have the merit of being scheme-independent at each order in Ay, in contrast to scheme-
dependent series expansions of 7, ;p and B7r in powers of the IR coupling. Second, there is, at present, an intensive
program to study this IR behavior on the lattice [22]. Thus, it is of considerable interest to compare our scheme-
independent results for 7, ;g for various theories with values measured in lattice simulations of these theories. We
have done this in [13, 14, 16] (as well as in our work on conventional n-loop calculations [15, 19]), and we will expand
upon this comparison here. Third, we believe that our scheme-independent expansions for these physical quantities
are of interest in the context of the great current resurgence of research activity on conformal field theories (CFT).
Much of this current activity makes use of operator-product expansions and the associated bootstrap approach [23].



Our method of scheme-independent series expansions for physical quantities at an IR fixed point is complementary
to this bootstrap approach in yielding information about a conformal field theory.

Our calculations rely on ayr being an exact zero of the beta function and thus an exact IR fixed point of the
renormalization group, and this property holds in the non-Abelian Couloumb phase (conformal window). In this
phase, the chiral symmetry associated with the massless fermions is preserved in the presence of the gauge interaction.
However, there has also been interest in vectorial asymptotically free gauge theories that exhibit quasi-conformal
behavior associated with an approximate IRFP in the phase with broken chiral symmetry, which could feature a
substantial value of an effective v, ;g ~ O(1) [24]. Our scheme-independent calculations are also relevant to this

area of research in two ways: (i) if Ny < Ny ., then the effective values of quantities such as Yo, 1r May be close to
the values calculated via the Ay expansion from within the NACP; (ii) combining our calculations of v, ;p With an
upper bound on this anomalous dimension from conformal invariance and an assumption that this bound is saturated
as Ny \y Ny yields an estimate of the value of Ny .. This is useful, since the value of Ny ., for a given G and R is
not known exactly at present and is the subject of current investigation, including lattice studies, as discussed further
below.

Although most of our paper deals with new scheme-independent results for physical quantities, one of the ouputs
of our calculations is a new type of series expansion for a scheme-dependent quantity, namely ayr. The conventional
procedure for calculating the IR zero of a beta function at the n-loop order, which we have applied in earlier work
to four-loop order for arbitrary G and R [19]-[21] (see also [25]) is to examine the n-loop beta function, which has
the form of a? times a polynomial of degree n — 1 in «, and then determine the n-loop value asg ¢ as the (real,
positive) root of this polynomial closest to the origin. However, in [15], we investigated the five-loop beta function for
G =SU(3) and R = F, as calculated in the standard MS scheme, and found that, over a substantial range of values
of Ny in the non-Abelian Coulomb phase, it does not have any positive real root. We were able to circumvent this
problem in [15] by the use of Padé approximants, but nevertheless, it is a complication for this conventional approach
to calculating aiyr. The new calculation of arr as an expansion in powers of Ay up to O(A‘;) for general G and R
that we present here has the advantage that it always yields a physical value, in contrast to the situation with the
n-loop beta function.

The paper is organized as follows. Some relevant background and methods are discussed in Section II. We present
our calculation of x4 in the scheme-independent expansion of 7y, ;r for general G and R in Section III, together with
evaluations for G = SU(N,) and R = F, adj, S2, and As. These are compared with values from n-loop calculations and
with lattice measurements. In this section we also present results for case R = F' in the limit N, — oo, Ny — oo, with
Ny /N, fixed, which we call the LNN limit. In Section IV we present our calculation of the coefficient ds in the scheme-
independent expansion of 3} for general G and R, with evaluations for the above-mentioned specific representations.
Section V gives an analysis of the five-loop rescaled beta function in the LNN limit and a determination of the interval
over which it exhibits a physical IR zero. Section VI is devoted to the calculation of the coefficients in an expansion
of arp in powers of Ay up to O(A?). Our conclusions are given in Section VII, and some auxiliary formulas are listed
in an appendix.

II. BACKGROUND AND METHODS

In this section we review some background and methods relevant for our calculations. The series expansion of 3 in
powers of « is

p= —2a§:be (%)e : (2.1)
(=1

where by is the ¢-loop coefficient. For a general operator O, we denote the full scaling dimension as Do and its
free-field value as Do free- The anomalous dimension of this operator, denoted 7o, is defined via the relation [26]

DO = DO,free — Yo - (22)

An operator of particular interest is the (gauge-invariant) fermion bilinear, ). The expansion of the anomalous
dimension of this operator, 7y, in powers of « is

Yo =D Cé(g) ; (2.3)
(=1

where ¢ is the ¢-loop coefficient. As noted above, the coefficients b1, bo, and ¢; are scheme-independent, while the by
with £ > 3 and the ¢, with £ > 2 are scheme-dependent [5]. For a general gauge group G and fermion representation



R, the coefficients b; and bs were calculated in [7] and [8], and bs and by were calculated in [27] and [28] (and checked
in [29]) in the commonly used MS scheme [30]. For G = SU(3) and R = F, bs was calculated in [18] and recently,
an impressive calculation of bs for general gauge group G and fermion representation R was presented in [17], again
in the MS scheme. We also make use of the ¢, up to loop order £ = 4, calculated in [31]. Although we use these
coefficients as calculated in the MS scheme below, we emphasize that the main results of this paper are calculations
of the quantities k4 and ds which, like all of the x; and d;, are scheme-independent. We denote the n-loop 8, 5,
and gy, as Bu, Bl and Y me- As discussed above, we denote the IR zero of 8, as arrne, and the corresponding
evaluations of 3, and Yy, o at A1Rne a8 Brg 0 a0 Yy 15 ne- The symbols arr, Yy, 15, and B refer to the exact
values of these quantities.

For a given G and R, as Ny increases, b; decreases through positive values and vanishes with sign reversal at
Ny = N,, with

11C x4
N, = , 24
where C4 and Ty are group invariants [6, 32]. Hence, the asymptotic freedom condition yields the upper bound
Nf < Ny.
There is a range of Ny < IN,, where by < 0, so the two-loop beta function has an IR zero, at the value
47h
arR2 = ——p - (2.5)
2

The n-loop beta function has a double UV zero at a = 0 and n — 1 zeros away from the origin. Among the latter
zeros of the beta function, the smallest (real, positive) zero, if there is such a zero, is the physical IR zero, asg ne, of
Bne. As Ny decreases below IV, by passes through zero to positive values as Ny decreases through

17C2

|/ p—— A
© T T (5CA +3Cy)

(2.6)
Hence, with N formally extended from nonnegative integers to nonnegative real numbers [32], B2, has an IR zero
(IRZ) for Ny in the interval

Iirz : Ng<Nf<Nu. (2.7)

Thus, Ny is the lower (£) end of this interval [33]

As Ny decreases in this interval, ag 2, increases. Therefore, in order to investigate the IR zero of the beta function
for Ny toward the middle and lower part of I;rz with reasonable accuracy, one requires higher-loop calculations.
These were performed in [34, 35], [19]-[21], [25],[15] for asgne and for the anomalous dimension of the fermion
bilinear operator (see also [36, 37]). Since the by with £ > 3 are scheme-dependent, it is necessary to determine the
degree of sensitivity of the value obtained for aspr ne for n > 3 to the scheme used for the calculation. This was done
in [38]-[41].

The nonanomalous global flavor symmetry of the theory is

Gy = SU(Nf)L & SU(Nf)R @U)y . (2.8)

This Gy; symmetry is preserved in the (deconfined) non-Abelian Coulomb phase. As in [12-16], we focus on this
phase in the present work, since both the expansion in a small a;r and the scheme-independent expansion in powers
of Ay start from the upper end of the interval I;rz in this phase. In contrast, in the phase with confinement and
spontaneous chiral symmetry breaking, the gauge interaction produces a bilinear fermion condensate, (1)%), and this
breaks Gy; to SU(Ns)y @ U(1)y, where SU(Ny)y is the diagonal subgroup of SU(Ny)r ® SU(Ny)r.

We will consider the flavor-nonsinglet (fns) and flavor-singlet (fs) bilinear fermion operators Z;Y/;:l Vi (Tw) jktk

and Zjvzfl i1, where here T, with a = 1,..., N]% — 1 is an generator of the global flavor group SU(N;). We will
usually suppress the explicit flavor indices and thus write these operators as ¥/T,1 and 1. These have the same
anomalous dimension (e.g., [42]), which we denote simply as the anomalous dimension for the flavor-singlet operator,
Yy In vectorial gauge theories of the type considered here, these fermion bilinear operators are gauge-invariant, and
hence the anomalous dimension v;,, and its IR value, vz, ;g, are physical. (In contrast, in a chiral gauge theory,
fermion bilinears are generically not gauge-invariant, and hence neither are their anomalous dimensions.)

Since ayp vanishes (linearly) with Ay as Ay — 0, we can express it as a series expansion in this variable, A;. We
thus write

Oé]RE47Ta]R=47TZajA§c ) (2.9)

j=1



The calculation of the a; requires, as input, the by with 1 < ¢ <j+1 [12, 13].

A basic question concerns the part of the interval I;rz in which the series expansions for v, ;z and Brr in Egs.
(1.2) and (1.3) are reliable. We analyzed this question in [12-14, 16] and concluded that these expansions for v;r and
B7r should be reasonably reliable throughout much of the interval I1rz and non-Abelian Coulomb phase. We will use
our higher-order calculations in this paper to extend this analysis here. We recall that the properties of the theory
change qualitatively as Ny decreases through the value Ny ., and spontaneous chiral symmetry breaking occurs, with
the fermions gaining dynamical masses. The (chirally symmetric) non-Abelian Coulomb phase with Ny ., < Ny < N,
is clearly qualitatively different from the confined phase with spontaneous chiral symmetry breaking at smaller Ny
below Ny ... Therefore, one does not, in general, expect the small-A ; series expansion to hold below N¢ ... Estimating
the range of applicability of this expansion is thus connected with estimating the value of Ny .. For general G and R,
as Ny, formally continued from the nonnegative integers to the nonnegative real numbers, decreases from the upper
end of the interval I;rz at N, to the lower end of this interval at Ny = Ny, Ay increases from 0 to the maximal value

(Af)maz - Nu - NE

3C4(7CA + 11C)
- for Ny € Irnz. 2.10
IT;(5CA 1 3C;) OF S liRz (2.10)

Recall that for a function f(z) that is analytic about z = 0 and has a Taylor series expansion
F2) =17, (2.11)
j=1

the radius of convergence of this series, z., can be determined by the ratio test

Ze = lim i1l .
j—oo | fjl

(2.12)

Of course, we cannot apply the full ratio test here, since we have only calculated the x; and d; to finite order. However,
we can get a rough measure of the range of applicability of the series expansions in Ay (and also A, in the LNN limit
[21] discussed below) by computing the ratios x;_1/k; and d;_1/d; for the values of j for which we have calculated
these coefficients.

The series expansion (1.2) for v, g starts at Ay =0, i.e., at the upper end of the non-Abelian Coulomb phase, and
extends downward through this phase. Given that the theory at ajg in this phase is conformal, there is an upper
bound from conformal invariance, namely [44]

Yo, iR <2 (2.13)

We have used this in our earlier work [12-16, 19] and we will apply it with our higher-order calculations here. As
discussed in [19], in the phase with spontaneous chiral symmetry breaking (SxSB), there is a similar upper bound,
Yy, rr < 2. This follows from the requirement that if m(k) is the momentum-dependent running dynamical mass
generated in association with the SxSB, then limg_,o. m(k) = 0 (see Eqs. (4.1)-(4.2) of [19]). Thus, if the approximate
calculation of the anomalous dimension of a given quantity at a fixed value of Af, computed up to order A’}, yields
a value greater than 2, then we can infer that the perturbative calculation is not applicable at this value of Ay or
equivalently, Ny.

In particular, this can give information on the extent of the non-Abelian Coulomb phase and the value of N¢ ;.
The application of this bound is particularly powerful in the context of our present scheme-independent calculations
because we find that the x; in Eq. (1.2) are positive for all of the representations considered here, and hence, for a
given p, Vrp, A? is a monotonically increasing function of Ay or equivalently it increases monotonically as IN¢ decreases

from its upper limit, N,. If one assumes that ;g saturates its upper bound, (2.13) and if a calculation of ;g is
reliable in the regime where it is approaching 2 from below, then one can, in principle, determine the value of N¢ .,
where g reaches this upper bound after approaching it from below. In this context, it should be mentioned that in
a supersymmetric (vectorial) gauge theory (SGT) with Ny pairs of massless chiral superfields transforming according
the representations R and R of a gauge group G, the exact expression for v7x is known [45, 46], and (i) it increases
monotonically with decreasing N; in the NACP; and (ii) it saturates its upper bound (which, in the SGT case is
~vir,ser < 1) at the lower end of the non-Abelian Coulomb phase. Specifically, in this supersymmetric gauge theory,
the upper and lower ends of the NACP occur at [32]

3C4

— 2.14
T (2.14)

Nusar =



and

Neser = 7 = : (2.15)

3Ca  Nu
ATy ~ 2

and

3CA— 2TyN; N,

Vlljw,IR,SGT = W = N_j
2T

_ _acihr (2.16)

2T :
1= 554y

-1

Thus, Vg, IR,SGT INCreases from 0 to 1 as Ny decreases from N, sgr to Ngsgr. However, it is not known if this
saturation occurs in the non-supersymmetric case. In practice, we are only able to apply this test in an approximate
manner because for a given G and R, as Ny decreases toward the lower part of Irrz, the ratio test already shows
that higher-order terms in the A; expansion are becoming increasingly non-negligible, so that the truncation of the
infinite series (1.2) to maximal power p = 4 involves an increasingly great uncertainty, as does an extrapolation to
p = 0.

For some perspective, we note that in order to asses the accuracy of the Ay expansion, the coeflicients k; sar
were calculated for j = 1, 2 in [12] and were found to be in perfect agreement with the corresponding Taylor series
expansion of the exact expression (2.16). This check was carried to one higher order in [16] for the case G = SU(N,)
and R = I with a calculation of v;p sar, INE and again, perfect agreement was found with the exact result. This
agreement explicitly demonstrated the scheme independence of the x; s, since the calculations were carried out
using inputs computed in the DR scheme, while (2.16) was derived in the NSVZ scheme [45]. Furthermore, as a
consequence of electric-magnetic duality [46], as Ny N\, Ny ger in the non-Abelian Coulomb phase, the physics is
described by a magnetic theory with coupling strength going to zero, or equivalently, by an electric theory with
divergent arr. Therefore, this perfect agreement, order-by-order, between the x; sgr and the expansion of the exact
expression (2.16) for v7r ser in powers of Ay, showed that the Ay expansion in this supersymmetric gauge theory is
able to treat situations with strong, as well as weak, coupling. This could not be done with conventional perturbative
series expansions in powers of a [36, 37].

III. CALCULATION OF v;, ;z TO O(A})
A. General G and R

The coefficients #; in the scheme-independent expansion of 7, ;g in powers of Ay, Eq. (1.2), contain important
information about the theory. For a general asymptotically free vectorial gauge theory with gauge group G and Ny
massless fermions in a representation R, the coefficients r; were given in [12] up to order j = 3, yielding the expansion
of 5y rr to order A}. Tt is convenient to define

D =7C4 +11Cy , (3.1)

since this factor occurs repeatedly in denominators of various expressions. For reference, we list the x; for 1 < j <3
below:

_ 8CsTy
K1 = OAD 5 (32)
4C;T?(5C A + 88C ) (7TCa + 4C
oy — Gy 7(5Ca £)(7C4 1) (3.3)

3C2D° ’

and

AC Ty

" T 3104 DS

3CAT? ( — 18473C"4 + 144004C5Cy + 650896C5CF + 356928C4CF + 5691840}*)




dabcd abed abcddabcd dabcddabcd
— 256077 D—-A—A— + 45056C ATy D—L—4— — 170368C5D-L——F—
da da da
dabcddabcd abcd dabcd dabcd dabcd
+ 33-2%D <2T§% - 13@@% + 1103,%)@ . (3.4)

Here, (s = Zf;l n~* is the Riemann zeta function, the quantities C's, C'¢, and T are group invariants, the contrac-
tions dePedqabed, qabedqabed, qabedqebed are additional group-theoretic quantities given in [28], and dy4 is the dimension
of the adjoint representation of G. In [12, 13], the expression for k3 was given with terms written in order of descending
powers of C'4. It is also useful to express this coefficient k3 in an equivalent form that renders certain factors of D
explicit and shows the simple factorization of terms multiplying (3, and we have done this in Eq. (3.4).

Our new result here for x4 for a general gauge group G and fermion representation R is

+

T2
f
K= T CaCyT? (1951567102, — 131455044C5C} + 1289299872C4 C + 2660221312C5C}
dabcddabcd
1058481072C5C + 6953709312C4CF + 12757155840?) +2"C4TFD (578903 —4168CACy — 68200%) A A dAA
dabcddabcd
21°C,CyTyD (416710?4 — 125477CACy — 532400?) E__A
A
dabcddabcd
2% . 112°C5CrD(2569C% + 18604C4Cy — 79640]%) %
dabcddabcd dabcddabcd
old . 3CATf2D3M 49213, 330%Tfp3u
dr ' dr

28D [ — 3CACsT?D (4991031 — 17606C%Cy + 33240C5CF — 30672C4C} + 95040;%)

dabcd abcd abed jabed
20T (172060?4 — 60511040 — 450120?) +400ACy Ty (351680?4 — 154253C4C — 885720]%)

dabcd dabcd dabcddabcd dabcd dabcd
88C3Cy R (973C% — 93412C4C — 56628CF ) + 1440CATFD?HE_CA — 7920041, D> ]cg

R R

4505600C 4C D?

dAA ! { — ATFdSldYed + 2Tpdgldoy° (10C 4 + 3Cy) + 11Cd5  dH(Ca — 3Cy) ]g5 ] . (3.5)

Here, dg is the dimension of the fermion representation R. As before, we have indicated the simple factors in the
prefactor and, for sufficiently simple cases, also factorizations of numbers in numerator terms. We will follow the same
format for indicating numerical factorizations below. We proceed to evaluate this general expression for the gauge
group G = SU(N,) and several specific fermion representations R, namely the fundamental, adjoint, and symmetric
and antisymmetric rank-2 tensor. As stated in the introduction, we will use the abbreviations F', adj, S, and Ay to
refer to these representations. It is also worthwhile to evaluate our general formulas for other gauge groups and their
representations, including orthogonal, symplectic, and exceptional groups. We will report these evaluations for other
groups and their representations elsewhere. There has, indeed, been interest in conformal phases for theories with
these other gauge groups [47].

The coefficients k1 and ko are manifestly positive for all G and R. For G = SU(N,) with all physical N., and
for representations R = F, adj, S2, we have found that k3 and k4 are also positive [12]-[16]. As one of the results
in the present paper, we generalize this further to include R = As. That is, for all physical N, and for all of these
representations, we find that x; > 0 for j = 3, 4 as well as the manifestly positive cases j = 1, 2. Thus, extending our
previous discussion in [12]-[16], the property that, for all of these representations R, x; > 0 for 1 < j < 4 and for all
N, implies two important monotonicity results: (i) for these R, and with a fixed p in the interval 1 < p <4, vz, g N

is a monotonically increasing function of Ay, i.e., it increases monotonically with decreasing Ny; and (ii) for these R,
and with a fixed Ny € Irrz, Yy IR, AP is a monotonically increasing function of p in the range 1 < p < 4. In addition

to the manifestly positive k1 and k2, a plausible conjecture is that, for these R, x; > 0 for all j > 3. Assuming that
this conjecture is valid, then three consequences are that for these representations R, (iii) for fixed Ny, Vg IR,AY is

a monotonically increasing function of p for all p; (iv) Vi, IR,AT is a monotonically increasing function of Ay, i.e. it

increases with decreasing Ny, for all p; and hence (v) (assuming that the infinite series (1.2) converges), the quantity
Yo, 1r defined by this infinite series, and equivalent to limy—cc Yy rr, A is a monotonically increasing function of

Ay, i.e., it increases monotonically with decreasing Ny.



B. Vv 1R,AY for G =SU(N;) and R=F

An important special case is G = SU(N,) with R being the fundamental representation. For this case, the general
expression for the interval Ijrz, Eq. (2.7), is [32]

34N3 11N,
I . ——%— < Ny © for R=F. 3.6
IRZ: p@Nz_g ~ ST (36)
The factor D in Eq. (3.1) has the explicit form
25N2 — 11
D= 52# for R = fund. (3.7)
The general results for k, with 1 <p < 3 in (3.2)-(3.4) from [12] take the following forms given in [13]:
4(N2% -1
R1,F = # (38)

© N.(25N2 —11)

A(N2 = 1)(9N2 — 2)(49N2 — 44) 59)
K = .
2 3NZ2(25N2 — 11)3

and

8(N2 B 1) 8 6 4 2
= c 274243 N8 — 455426 NS — 114080N* + 47344 N, 35574)
"F T B3N3(25N2 — 11) ( : c et et
— 4224NZ?(4N? — 11)(25N?2 — 11)@] . (3.10)
For k4,F, we have [16]
A(NZ 1)

KaF = [(263345440N§2 — 673169750N " + 256923326 N

34N4(25N2 — 11)7
290027700N8 + 557945201 N — 208345544 N2 + 6644352)

+ 384(25N2% —11) (4400NC10 — 123201 N2 + 480349N° — 486126 N + 84051 N? + 1089) G

+ 211200N2(25N2 — 11)?(N® + 3N? — 16 N2 + 22)¢5 } : (3.11)
We have checked that when we substitute the value N, = 3 in our expression for k4 p in Eq. (3.11), the result agrees
with our previous calculation of k4 g for this case in Eq. (9) of Ref. [14].

The explicit numerical expressions for the scheme-independent series expansions of v, ;g to order Aﬁ» for R=F
and N, =2, 3, 4 are as follows:

SU) : Ygyirras = By [0.067416+ (0.73308 x 10"2)A; + (0.60531 x 107%)A% + (1.62662 x 10~*)A% }

(3.12)

SUG) : Ypprmras = B [0.049844 + (037928 x 1072)A s + (0.23747 x 107)A2 + (0.36789 x 10~4)A3 }
(

3.13)

and

SUM) : Ygyirras = Oy [0.038560 +(0.22314 x 1072)A s + (0.11230 x 107%)A2 + (0.126505 x 10~*)AY } .

(3.14)
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FIG. 1: Plot of Vo 1R,F,AD (labelled as v, rr on the vertical axis in this and subsequent graphs) for N. = 2, i.e., G = SU(2),
and 1 < p < 4 as a function of Ny € I1rz. From bottom to top, the curves (with colors online) refer to vy 1r,ra; (red),
Vv IR, F,A2 (green), Vv IR, F,A (blue), and Vi IR, F.A% (black).
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FIG. 2: Plot of ’sz’IR’F’Az; for No =3 and 1 < p < 4 as a function of Ny € I;rz. From bottom to top, the curves (with colors

online) refer to Yy, IR, F,Ap (red), Ty, IR, F,A2 (green), Ty, IR, F,A% (blue), and Ty, IR, F,A4 (black).

In these equations,

1IN,

Ay 5

~N; forR=F . (3.15)

Plots of Vi, I R,F,AT for N. =2 and N. = 3 and 1 < p < 4 were given in [16]. These showed the two monotonicity
properties mentioned above. For an extended comparison, we show the plots of v, g F, A? for 2 < N, < 4 and
1 <p<4in Figs. 1-3.

In Table I we list the values of Vi, IR, F,A" for 1 < p <4 for the SU(2), SU(3), and SU(4) theories, with N in the
respective interval Irgz for each. For comparison, we also include the values of v, 15,0 Obtained with our earlier
n-loop calculations in [19], using series expansions in powers of « evaluated at o = ajrne for 1 < n < 4 with b3
and by and c,,, 2 < n < 4 calculated in the MS scheme. (See Table VI in [19] for a list of numerical values of values
of Y5y 1rme-) As discussed above, if, for a given N, and Ny, a calculated value of v, ;p violates the upper bound
Yy rr < 2 in (2.13), this is unphysical (marked with a symbol “u” in Table I) and indicates that the perturbative
calculation is unreliable and hence not applicable for this N;. In the case of the n-loop values y7g n¢, if this occurs
at the two-loop level, it also leads to caution concerning 7yrgn¢ for n = 3, 4, and this is similarly indicated with
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FIG. 3: Plot of Vg 1R, F,AT for N. =4 and 1 < p <4 as a function of Ny € Itrz. From bottom to top, the curves (with colors

online) refer to Yy, IR, F,A (red), Ty, IR, F,A2 (green), Ty, IR, F,A% (blue), and Ty, IR, F,A4 (black).

Woy??

a “u”. The computations of ;g ne in [19, 25] made use of the b, and ¢, up to the n = 4 loop level, where the
scheme-dependent bs, by, and ¢, with 2 < n < 4 had been calculated in the widely used MS scheme [27-29, 31]. As we
pointed out in [15], the five-loop beta function in the MS scheme does not exhibit a physical IR zero over a substantial
lower part of I7rz. We discuss this further below. For compact notation, we will often leave the subscript vt implicit
on these and other quantities and thus write vz, 1r = VIR, Vgy.1Rne = VIRne, etc. From Egs. (2.4) and (2.6) it
follows that the respective lower and upper ends of the intervals I;rz for these theories are (N, Ny) = (5.55, 11),
(8.05, 16.5), and (10.61, 22) for SU(2), SU(3), and SU(4), and hence the physical intervals Irgz are 6 < Ny < 10
for SU(2), 9 < Ny < 16 for SU(3), and 11 < Ny < 21 for SU(4).

Since the calculation of x; and the resultant v, p A uses information from the (j + 1)-loop beta function from (2.1)

and the j-loop expansion of 7, in (2.3), it is natural to compare the (SI) VIR,AY with the (SD) 7rg ¢ for p’ = p and
p' = p+ 1. In the upper and middle part of the interval I;rz for a given N, we find that v,p At is slightly larger

than ~yrg 4¢, with the difference increasing as Ny decreases below N,, i.e., as A increases.

It is important to assess the range of applicability and reliability of these results from the Af expansion. We did
this in [12-14] and extend our analysis here, using our new result for k4. Following our discussion above on the ratio
test for the determination of the radius of convergence of a Taylor series, the ratios of successive coefficients, k;_1/k;,
give an approximate measure of the range of applicability of the A; expansion for y;r. For a given G and R, this
range may be compared with the maximum size of A¢ in the interval I;rz where the scheme-independent two-loop
beta function P2, has an IR zero. For the present case of G = SU(N,) and R = F, the general formula (2.10) takes
the form

3N,(25N2 — 11)

R=F: (Ap)mas = 3.16
(A7) 2(13N2 — 3) (3.16)
This has the respective values
(Af)mas = 5.45, 8.45, 11.39 for N, =2, 3, 4 . (3.17)
We begin by reviewing the SU(3) theory, for which
su@): P 9314, P2 507,
K,F,2 KF3
B3 _ 6455 . (3.18)
KF,4

As discussed in [12-14], these results suggest that for the SU(3) theory with R = F, the Ay expansion calculated
to this order should be reasonably reliable over a substantial part, including the upper and middle portions, of the
interval I7rz and the non-Abelian Coulomb phase.
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Using our new results, we now extend this analysis to the SU(2) and SU(4) theories (and will give a further analysis

in the LNN limit of Eq. (3.21)). We find

RF1 KRF2

SU(2) : =920, "F2_ 1911,
K,F2 KF,3
B3 _ 372 (3.19)
KF4

and

Su@4):  SBL _q798, E2 1987,
K F,2 KF,3
B3 _ 888 (3.20)
RF4

Since (Aj)mas has the respective values 5.45 and 11.39 for the SU(2) and SU(4) theories, we are led to the same
conclusion for these theories that we reached for the SU(3) theory, namely that the A expansion should be reasonably
reliable over a substantial portion of the respective intervals I7rz.

As discussed above, another way to assess the range of applicability of the A expansion is to check to see whether
the resultant values of VIR,AY obey the upper bound ;g < 2 in (2.13). As is evident from Table I, all of our values
of vrg, A? listed there obey this bound. This again shows the advantages of the scheme-independent Ay expansion as

a way of calculating vyrr to a given order, as compared with the conventional n-loop calculation of y;g n¢. As is also
evident from Table I for each of the cases listed there, namely N. = 2, 3, 4, one finds unphysically large values of
~iR,ne for values of Ny in the lower portions of the respective intervals Iygz. In [19] and later works we explained this
as a consequence of the fact that, for a given G' and R, as Ny decreases toward Ny in the interval Irrz, the coupling
arg increases from weak toward strong coupling. Thus, toward the lower end of the respective intervals I7rz, the IR
coupling ar g n¢ become too large for the perturbative n-loop calculations of v;r n¢ to be applicable. In contrast, the
Ay expansion can be applied over a considerably greater portion of the interval Itrz to yield results for ;g A? that

obey the upper bound (2.13). We will show this further below for the LNN limit (3.21). This also demonstrates that
the Ay expansion for v;r is able to be used in situations with substantially stronger IR coupling than is the case with
the conventional expansion in powers of this coupling yielding the n-loop value yrg ne.

We proceed to compare our values in Table I with lattice measurements. The SU(3) theory with R = F and
Ny = 12 has been the subject of many lattice measurements. In [14], we compared our results for this theory with
lattice measurements, so we only briefly review that discussion here. We recall that there is not, at present, a consensus
among all lattice groups as to whether this theory is in an IR-conformal phase or is in a chirally broken phase [22].
There is a considerable spread of values of 7rr in published papers, including the values (where uncertainties in
the last digits are indicated in parentheses) vrr ~ 0.414(16) [48], vrr ~ 0.35 [49], vi1r ~ 0.4 [50], v1r = 0.27(3)
[51], yrr =~ 0.25 [52] (see also [53]), yrr = 0.235(46) [54], and 0.2 S vir S 0.4 [55]. We refer the reader to [22]
and [48]-[55] for discussions of estimates of overall uncertaintites in these measurements. Our value ;g as = 0.338

and our extrapolated value for limy ;o 77 A» = VIR, namely ;g = 0.40, are consistent with this range of lattice

measurements and are somewhat higher than our five-loop value yrr 5, = 0.255 from the conventional « series that
we obtained in [15]. It is hoped that further work by lattice groups will lead to a consensus concerning whether this
theory is IR conformal or not and concerning the value of v .

The SU(3) theory with Ny = 10 has been investigated on the lattice in [56], with the result ;g ~ 1. While our
highest-order n-loop values, namely our four-loop result, yrr 4¢ = 0.156 [19], and our five-loop result, vrg 5¢ = 0.211
obtained using Padé methods [15], are smaller than this lattice value, our extrapolated scheme-independent value,
~vir = 0.95 £ 0.06 [14], is consistent with it.

There have also been a number of lattice studies of the SU(3) theory with Ny = 8 [57-59], which have yielded the
estimate y7gr ~ 1. As is evident from Fig. 2, if we were to continue the curve for v,p At plotted there downward

further to Ny = 8, the resultant value would be compatible with yrg ~ 1. We note that this theory may well be in
the chirally broken phase, and there is not yet a clear consensus as to whether it is in this phase or possibly near the
lower end of the IR-conformal non-Abelian Coulomb phase. In this context, one may recall that if, for a given G and
R, Ny < Ny ¢, so that there is spontaneous chiral symmetry breaking, then the IR zero of the beta function is only
approximate, since the theory flows away from this value as the fermions gain dynamical mass and are integrated
out, leaving a pure gluonic low-energy effective field theory. For such a theory, the quantity extracted from either
continuum or lattice analyses as yrg is only an effective anomalous dimension that describes the renormalization-
group behavior as the theory is flowing near to the approximate zero of the beta function. A general comment is that
the determination of Ny ., relies upon effective methods to analyze the lattice data [22]; progress on this continues
[48]-[61].
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Theories with an SU(2) gauge group and Ny = 8 have been of interest in the context of certain ideas for physics
beyond the Standard Model (SM) [62], in which the number of Dirac fermions is Ny = Nyi(N. + 1) = 8, where
Ny = 2, corresponding to the SU(2) factor group in the SM and N, = 3 colors. There have been several lattice of
this SU(2) theory with N; = 8, including [22, 63, 64]. These are consistent with this theory being IR-conformal, and
the recent study [64] has reported the measurement y;p = 0.154+0.02. For comparison, as listed in Table I, our previous
higher n-loop values were vrg 3¢ = 0.272 and yrr4¢ = 0.204 [19], and our current highest-order scheme-independent
value is vy p, NS 0.298. These are somewhat higher than this lattice result.

There have also been a number of lattice studies of the SU(2) theory with Ny = 6 [22, 65-67]. From this work,
it is not yet clear if this theory is IR-conformal or chirally broken. Ref. [66] obtained the range 0.26 < vy < 0.74,
while Ref. [67] found v;r ~ 0.275. Our higher-order scheme-independent values, as listed in Table I, in particular,
VRAL = 0.698, are in agreement with the range given in [66] and are somewhat higher than the value from [67].

C. LNN Limit for G =SU(N.) and R=F

For G = SU(N,) and R = F, it is of interest to consider the limit

LNN: N;,—oo, Ny—o0

with r = & fixed and finite

c

and &(u) = a(p)N, is a finite function of p .
(3.21)

We will use the symbol limyyy for this limit, where “LNN” stands for “large N, and N;” with the constraints in
Eq. (3.21) imposed. This is also called the 't Hooft-Veneziano limit. Anticipating our later discussion of theories
with fermions in two-index representations (adjoint and symmetric and antisymmetric rank-2 tensor), we will use the
symbol limy, n, where “LN” stands for “large N.”, to denote the original 't Hooft limit

LN: N,—
with (i) = a(u)N, a finite function of
(3.22)

and N fixed and finite.
Continuing our discussion of the LNN limit, as relevant to theories with fermions in the fundamental represention,
we define the following quantities in this limit:

E=dmx = LI%I}V aN, , (3.23)
. Ny
Ty = Ll}\rfr]lv N, (3.24)
and
. Ny
Te = LI%I}VFC , (3.25)
with values
11
re=— =55 (3.26)
2
and
34
re = =2.615 . (3.27)

13
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to the indicated floating-point accuracy). With Itrz : Ny < Ny < N, it follows that the corresponding interval in
f
the ratio r is

34 11
Itpz,y: ' <r< = i.e., 2.615 <r < 5.5 (3.28)

The critical value of r such that for r > r.,., the LNN theory is IR-conformal and for r < r.,, it exhibits spontaneous
chiral symmetry breaking is denoted 7., and is defined as

Nfcr
o = lim — 3.29
rer = lim — (3.29)

We define the scaled scheme-independent expansion parameter for the LNN limit

>

11
PRSP (3.30)

A,

=,

As r decreases from 7, to r¢ in the interval I;rz -, A, increases from 0 to a maximal value

(A'r‘)maz =Ty — Ty = % = 2.8846 forr € IIRZ,T .

(3.31)
We define rescaled coefficients &, ¢
fjp = lim N/ g 32
Rip = Jim N7 (3.32)
that are finite in this LNN limit. The anomalous dimension «y;g is also finite in this limit and is given by
R=F: g}\ffrjlv’WR = Z IijJ:‘A? = Z I%jJ:‘Ai . (3.33)

Jj=1 Jj=1

From the results for x;, j = 1, 2, 3 in [12] or the special cases given above for G = SU(N,) and R = F in Egs.
(3.8)-(3.10), we have

N 2?
Fir = 25 = 0.1600, (3.34)
. 988
Ror = 5 = 0.037632, (3.35)
and
. 2193944 9

where, as above, we indicate the factorizations of the denominators. (The numerators do not, in general, have such
simple factorizations; for example, in k3 p, 2193944 = 23 - 274243.) From our new expression for x4, we calculate

210676352 90112 11264

Rap = 3.5 33, 510<3 T3 58<5
= 0.36489 x 1072 . (3.37)
Hence, numerically, to order O(A%),
R=F: ViR LNy Az = A, [0.160000 +0.037632A,

+ 0.0083207Af+0.003649Af} . (3.38)
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Using these results for v,z p a2 with 1 < p < 4 for R = F in the LNN limit, we can now carry out a polynomial
extrapolation to p = co. To do this, we fit an expression for v, Az With some subset of the p terms to a polynomial
in 1/p. We denote the resultant value generically as vrgr r s, where here s denotes the subset of the p terms used
for the extrapolation. We shall use, as a necessary condition for ;g rs to be reliable, the requirement that it
not differ too much from the highest-order value, v7g 2. Quantitatively, we require that for the given subset s,

VIR,F,S/VIR,F,A;l < 1.5. We find that this condition is satisfied if r € I;rz,, is r 2 3.5, but that it is not satisfied as
r decreases below this value toward the lower end of the interval I;rz, at ¢ = 2.615. As an example, at r = 4.0,
depending on the subset of terms used for the extrapolation, we obtain 7137F75/71R7F7A§ ~ 1.2, while at r = 3.6, this
ratio increases to ~ 1.4. We remark that the value r = 4.0 corresponds to Ny = 12 for the SU(3) theory and Ny =8
for the SU(2) theory.

Previously, in [14] we performed this analysis for the special case G = SU(3) and R = F and, for that work, we
studied how the extrapolated value depends on the subset of terms that one includes for the fit. We perform the
corresponding analysis here for this LNN case. We study three sets of terms:

setaq : {’YIR,F,A27 ”YIR,F,A%]’ (3.39)
setoszy : {”YIR,F,Ag, VIR,F,A3; ”YIR,F,A%]’ (3.40)
seti234 ©  {VIRF.A,, VIRFA2, VIR FA3, VIRFAL} (3.41)

There are countervailing advantages of these sets of terms. The two-term set (3.39) has the advantage of using the two
highest-order terms, while the three-term and four-term sets have the advantage of using progressively more terms in
the fit. The fits to the sets (3.39)-(3.41) yield polynomials in the variable p~! of the respective forms

1
setss = VIR ,Fex34,p = S34,0 + $34,1P (3.42)

setozs = VIR, Fex234p = $234,0 T 8234,1]?71 + 8234,21f2
(3.43)
and
set1234 =  VIR,Fex1234,p = S1234,0 + 81234,1]f1

+ s123492D 7+ S12343D . (3.44)

The extrapolated values in the limit p — oo given by these fits are, respectively, as

lim VIR Fex34,p = S34,0 = VIR, F,ex34 (3.45)
p%oo
lim VIR, Fex234,p = 5234,0 = VIR,F,ex234 (3.46)
p%oo
and
pli_)r{.lo VIR, F,ex1234,p = 51234,0 - = VIR, F,ex1234 (3.47)

We have calculated these quantities analytically. Below, we list the corresponding expressions with coefficients given
to the indicated floating-point precision:

YIR,F.ex34 = 16.758754 —11.042531r + 2.82405287>

— 0.329427247° + 0.014595750r (3.48)

VIR Fexo3a = 27.346053 — 19.2457889r + 5.1985972r>

— 0.633892287° + 0.02919150067* (3.49)
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and

YIR,Fex1234 = 33.901799 — 24.4060664r + 6.719252751>

— 0.832708600r° 4 0.0389220017% . (3.50)

Note that there are strong cancellations between individual terms for relevant values of r € Irpz,. Some examples
will show the range of resultant values of extrapolations for these different choices of sets of terms used in the fits.
As anticipated, for values of r in the upper part of the interval Irrz, ., all of the different types of extrapolation give
quite similar results. For example,

r=50 — YIR,F.ex,34 = 0.0914, VIR,F,ex234 = 0.0902,

VIR,F,ex1234 = 0.0905 . (3.51)

As r decreases in the interval I;rz,,, the differences between the extrapolations using the different sets of terms
increase slightly, e.g., for a value roughly in the middle of this interval, namely r» = 4.0, we find

r=4.0 = YR Fer3s = 0427, IR Fexr23s = 0.444,

YIR,F,ex1234 = 0.456 . (352)

Toward the lower part of the interval I;pz,, these differences increase further, but also, as discussed above, for a
given r, all of the different types of extrapolations involve greater uncertainties, since each of the extrapolated values
differs more from the value of highest-order explicitly calculated quantity, yrr,a4. For example, for r = 3.0,

r=3.0 = YR Fer3s = 1335, IR Fexr23s4 = 1.645,

VIR,F,ex1234 = 1.826 . (3.53)
The ratios of these values divided by the highest-order explicitly calculated value, vrgr, r a1, are

YIR,F,ex34 _ 1477 VIR, F,ex234 —=1.82

YIR,F,A4 VIR,F,A}
JIR.Fexl23d 5y (3.54)

r=30 —=

YIR,F,A4

Given our fiducial requirement that the ratio of the extrapolated value for p — oo divided by the highest-order
explicitly calculated value, should not be greater than 1.5 for the extrapolation to be considered reasonably reliable,
it follows that we would not consider the latter two extrapolations in Eq. (3.53) to be sufficiently reliable to meet
this requirement.

It is interesting to compare these scheme-independent calculations of v,z g Az to order 1 < p < 4 with the results
from the conventional n-loop calculations as truncated expansions in ayg g ne, denoted g r e from Table V of [21]
up to n = 4 loop order. We list our scheme-independent values together with these n-loop values in Table II. For each
value of r, we also include the extrapolated value, yrr, F ex234 for the p — oo limit, and the ratio 7137F781234/713)A$.
We do not include the results from the n = 5 loop conventional calculation, because of the absence of a physical IR
zero in the five-loop beta function for 2.615 < r < 4.323 in I;rz . Although the extrapolated values vrg F,ex234 for 7
values below r = 3.5 are included, we caution that these do not satisfy our fiducial criterion for sufficient reliability
of extrapolation, since they differ by too much from our highest-order calculated values, y7g as. For this reason,
although we can roughly apply the method discussed in Section I to use the extrapolated value of v;r to estimate
the lower end, r.,, of the IR-conformal non-Abelian Coulomb phase (defined in Eq. (5.3)), this involves a substantial
degree of uncertainty. Bearing this caveat in mind, the resulting estimate would be that r.. ~ 2.7. If one were to
pull back from the LNN limit and multiply this value of r.. by a specific finite value of N, to get an estimate of
the corresponding Ny ., then, for example, for N, = 3, i.e., G = SU(3), this would yield Ny ~ 8. This estimate

is consistent with the estimate 8 < Ny < 9 that we derived from our calculation of v; R.F,A for this theory and
extrapolation to obtain limy, ;o YR, F, AP in [14]. Clearly, the lower that one goes in N, away from the LNN limit, the

greater is the error in performing this conversion from a specific r value in the LNN limit to a corresponding ratio
Ny /N, with finite Ny and N, so we do not perform this conversion for N, = 2.

In Fig. 4 we plot ;g par, ie., the value of yrgp for R = F, calculated to order AP with 1 < p < 4, in the
scheme-independent expansion, as a function of » € Irrz,. As a consequence of the positivity of the &, r in Egs.
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LNN Limit
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FIG. 4: Plot of y;p par for 1 <p < 4 as a function of r € I1rz, in the LNN limit (3.21). From bottom to top, the curves
(with colors online) refer to vir,r,a, (red), Yrr a2 (green) vrr a3 (blue) vip pas (black).

(3.34)-(3.36), for a fixed r, 7/ g g ar is a monotonically increasing function of the order of calculation, p. As r decreases
toward the lower end of the interval Irrz, at r = ry = 2.615, the value of v calculated to the highest order in this
LNN limit, namely O(A2), is slightly greater than 1.

As we did for specific SU(N,) theories above, here we proceed to investigate the range of applicability of the scheme-
independent series expansion for y7g in the LNN limit. As is evident from Table II, all of our values of v, g a» for
1 < p < 4 satisfy the bound ~rr < 2. This is also true for all of our extrapolated values, vrr, F ez234, €xcept for
the lowest value of r listed, namely r = 2.8, for which Yrr Feg234 = 2.09, slightly above this bound. Thus, these
results in the LNN limit again demonstrate the advantage of the scheme-independent expansions, since they enable
us to calculate self-consistent values of yrr F A, over a greater range of the interval I;rz , than is the case with the
conventional n-loop calculations. To show the latter in detail, we have explicitly listed the values of vyrr r 3¢ and
IR, F,4¢ for values of r where v, r 2, was unphysically large.

To investigate the range of applicability of the scheme-independent expansions further, it is worthwhile to obtain
an estimate of this range from ratios of successive coefficients. From the coefficients &; r that we have calculated with
1 < n <3, we compute the ratios

R1,F

T = 4.252 (3.55)
K2, F
F2F 4593 (3.56)
K3,F

and
B8.F 9980 . (3.57)
R4, F

Recalling that the maximal value of A, in the interval I;rz , is 2.885 (Eq. (3.31), these ratios are consistent with the
inference that the small-A, series expansion may be reasonably accurate throughout most of this interval Irpz. ;.

D. TV, TR, A% for G = SU(N.) and R = adj

Here we present our results for the s; coefficients and thus Vi, IR,A% with 1 < j < 4 for G = SU(N,) and
Ny fermions in the adjoint representation, R = adj. We will usually denote these as x;qq; and 7y I Roadj, A but
9 9 ’ f
sometimes, when no confusion will result, we will omit this adj subscript for brevity of notation.
In this theory, Eqs. (2.6) and (2.6) yield, for the upper and lower ends of the interval I;rz, the values

11
Nuagj = - =275 (3.58)
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and

7
— =1.0625 , (3.59)

Ny aaj = 6

so this interval includes only one integral value of N¢, namely Ny = 2. We note that since the adjoint representation is
self-conjugate, a theory with Ny Dirac fermions with R = adj is equivalent to a theory with N rq; = 2Ny Majorana
fermions. Hence, here, one may also allow the half-integral values Ny = 3/2, 5/2 corresponding to Ny ara; = 3, 5.
We have

R:adj: Af:Nu—Nf:Z—Nf. (360)

For this case, the factor D in Eq. (3.1) is simply D = 18. In [13] we gave the coefficients ; 4q; for 1 < n < 3. These
are as follows:

9 2
Kl,adj = <§) = 0.44444 | (3.61)
341
Iiladj = W = 023388 5 (362)
and
B 61873 592
K3,adj = 93.310 38]V3
= 0.130978 — 0.0902301ch2 , (3.63)

where, as before, we indicate the simple factorizations of the denominators. The coefficient k4 q4; is

53389393 368
97 . 314 T 3T0C3

2170 33952 9
<_ 310 + 311 C3)Nc

= 0.0946976 + 0.193637N, 2 . (3.64)

R4.adj =

The coefficients #1,4qj and k2 qq4; are manifestly positive, and we find that for all physical N, the coefficients x3 q4;
and K4,qq; are also positive. Although k1 4q; and K244 are independent of N, the coefficients x; qq; for j = 3, 4 do
depend on N.. We find that k3 4q; and k4 q4; are, respectively, monotonically increasing and monotonically decreasing
functions of N.. The N. — oo limits of K3 4q; and k4,44 are given by the respective first terms in Eqgs. (3.63) and
(3.64).

Thus, to order A‘}, we have

Vv rradas = Ar (044444 4 0.23388A 5 + (0.13098 — 0.090230N; %)A% + (0.094698 + 0.19364N, 2)A} | . (3.65)

In Fig. 5 we show Vi, TR,adj, A" with 1 < p < 4 for the SU(2) theory, as a function of Ny, formally generalized
from the nonnegative integers to the real numbers. In Table III we list values of vy, 1R qdj, ar with 1 < p < 4 for
Ny =2 and N. = 2 and N, = 3. For comparison, we also include our n-loop values vy, 1g qajne calculated in the

conventional manner via power series in the coupling (in the MS scheme), from Table VIII of [19].

Among SU(N,) theories with fermions in the adjoint representation, the SU(2) theory with N; = 2 (Dirac) fermions
has been of particular interest [69]. In the following, for notational brevity, the subscript adj is understood implicitly.
For this theory, as listed in Table III we obtain the values VIR.A2 = 0.465, VIR.A3 = 0.511, and VIRAY = 0.556,

which are close to our earlier higher-order n-loop calculations in [19], namely ;g 3, = 0.543 and vrr4¢ = 0.500. It
is of interest to compare these values with the results of lattice studies. There have been a number of such studies,
and these are consistent with the conclusion that this theory is conformal in the infrared [70]-[77],[22]. These studies
have yielded a rather large range of measured values for v; g, including the following (where the published estimated
uncertainties in the last digits are indicated in parentheses): yrg = 0.49(13) [70], vir = 0.22(6) [71], v7r = 0.31(6)
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FIG. 5: Plot of V. IR.adj, AL for G = SU(2) and 1 < p <4 as a function of Ny € I1rz for R = adj and Ny = 2. From bottom

to top, the curves (with colors online) refer to vrr,adj,a, (red), VIR,adj,A3 (green), VIR,adj,A8 (blue), and VIRadj, A% (black).

[72], yrr = 0.17(5) [73], v1r = 0.37(2) [74], yrr = 0.20(3) [75], and yrr = 0.50(26) [76]. (See these references and [77]
for additional discussion of estimates of overall uncertainties.) Our scheme-independent calculation of v;r to O(A?)
and our earlier n-loop calculations of yrr e up to n = 4 loops are clearly consistent with the larger among these
lattice values. Before carrying out a comparison of our results with the full set of lattice values, it will be necessary
to narrow the current wide range of lattice measurements.

It is of interest to investigate the N. — oo limit for an SU(N,) gauge theory with fermions in the adjoint repre-
sentation. Since in this case, the upper and lower ends of the interval Iz, given by N, = 11/4 in Eq. (3.58) and
Ny =17/16 in Eq. (2.6) are independent of NN, it follows that A is also independent of N.. Hence, for R = adj,

lli/I]{]lfle = Zl l%j,adegf (366)
j=
where
Rjadj = 1M K aqj - (3.67)

The values of & qq; are evident from the full expressions for & 4q; that we have given above in Egs. (3.61)-(3.64); for
example, &3 qq; = 61873/(23 - 319).

E. Ty IR,A% for G = SU(N.) and R = S2, A2

Here we present our results for the ; coefficients and thus Vou IR.A with 1 < j < 4 for G = SU(N.) and Ny

’ ’ f
fermions in the symmetric and antisymmetric rank-2 tensor representations of SU(N.), Sz and Ay. Since many
formulas for these two cases are simply related to each other by sign reversals in certain terms, it is convenient to
treat these cases together. As before [19], we shall use the symbol T» (rank-2 tensor) to refer to these cases together.
(Do not confuse this use of T' with our use of the symbol T in Section VII of Ref. [13] for the anomalous dimension of

the operators 10,1 and operators 1/T,0,,%, where it referred to the antisymmetric Dirac tensor o, = (4/2) Y., 7].)
The values of N,, and Ny for R =T, are [19]

11N,

Nug, = ———°
T2 T (N, £2)

(3.68)

and

17N3
(N. + 2)(8N2Z £ 3N, —6) ’

Ny, = (3.69)
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so that

11N,

=Ty: Aj=—nt
=1 I~ 3N, £2)

- Ny . (3.70)

The factor D in Eq. (3.1) takes the explicit form

I8SN2 + 11N, —22 Fy
R=T,: D=—"¢ == 3.71
2 N, N, (871)
whence
Fy =18N? £ 11N, —22. (3.72)

Both F, and F_ are positive-definite for the physical range N. > 2. At the lower end of the interval I;rz, Af takes
on the maximum value

3N Fy

=T : A mar = .
=T (&) 2(N, £ 2)(8N2 £ 3N, — 6)

(3.73)

If N, = 2, then S5 is the same as the adjoint representation, so we focus on N, > 3 here. For this R = S5 theory,
the illustrative values N. = 3 and N, = 4 yield the respective intervals Itrz 1.22 < Ny < 3.30 and 1.35 < Ny < 3.67.
Hence, the physical integral values of N¢ in these respective intervals I;rz are Ny = 2, 3 for both N, = 3 and N, = 4.
Furthermore, the Ay representation is the singlet if N, = 2 and is the same as the conjugate fundamental, F if N, = 3,
so in the case of Ag, we restrict to N, > 3 and focus mainly on N, > 4. In the SU(4) theory with R = A, the interval
Itrz is 4.945 < Ny < 11, including the integral values 5 < Ny < 10.

Here, using our general results (3.2)-(3.5), we give explicit expressions for the x; with 1 < j < 4 for the case
G = SU(N.) and fermion representation R = T>. From the general expressions for x; with 1 < j < 4, Egs. (3.2)-
(3.5), we calculate the following. In each expression, the + and — signs refer to the So and As special cases of Tb,
respectively:

A(Ne F 1)(Ne + 2)°

K11y = N.F; (3.74)
(N. F1)(N. £2)3(11N2 £ 4N, — 8)(93N? + 88N, — 176)
k2,1, = 53 (3.75)
3N2F3
(N F )(Ne +2)° 9 8 7 6
k3,1, = > 3INBED (1670571Nc + 7671402N7 + 2181584 N, F 25294256 N
— 13413856N2 + 17539136 N 4 16707328 N2  3046912N?2 — 27320832N, + 18213888)

+ 8448NZ(N, F2)F(3N2 £ 28N2 + 176)(3 (3.76)

and
(Nc$1)(Nci2)4
kam, = 1. RANAET
24 3INAFT

224952825968 N + 105492861344 N8 4 600583055488 N, + 45292329216 N — 1067559840512 N7

[(4324540833NC13 + 26924228982 N2 + 30086550336 ' 106026091536 N °

+ 68261028352N + 982655860736 N2 385868775424 N2 — 136076328960, + 54430531584)
+ 29Fy (335341\731 4 702000N 0 + 4448403 N? F 2216812N8 — 38600660 N, + 22594304 N9

+ 124680384 N? F 82679040N — 90554112N3 + 64551168 N2 — 6690816 N, + 3345408)(3

F 563200N2(N, F 2)F2 (151\]5 + 158N + 240N3 F 912N2 — 1056 N, + 2112)<5 } . (3.77)
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We comment on some factors in these ;7 expressions. The property that the k; 4, coefficients contain an overall
factor of (N, — 2) (possibly raised to a power higher than 1), and hence vanish for N, = 2, is a consequence of the fact
that for N, = 2, the Ay representation is a singlet, so for SU(2), fermions in the Ay = singlet representation have no
gauge interactions and hence no anomalous dimensions. Clearly, this property holds in general; i.e., the coeflicients
Kj A, for all j contain an overall factor of (N, — 2) (as well as possible additional factors of (N, — 2)).

As noted above, if N, = 2, then the Sy representation is the same as the adjoint representation, so the coefficients
must satisfy the equality x; s, = k;j.qq; for this SU(2) case, and we have checked that they do. Note that this equality
requires (i) that the term proportional to 3 in k3 s, must be absent if N, = 2, since k3 4q4; does not contain any (3
term, and, indeed, this is accomplished by the factor (N, — 2) multiplying the {3 term in k3 g,; and (ii) the term
proportional to (5 in 4,5, must be absent if N, = 2, since x4, 44; does not contain any (5 term, and this is accomplished
by the factor (N, — 2) multiplying this (5 term in x4,s,. Similarly, as we observed above, if N, = 3, then the A
representation is the same as the conjugate fundamental representation, F', so the coefficients must satisfy the equality
Kj A, = K for this SU(3) case, and we have checked that they do.

The resultant Ay expansions for Vipip, IR, S2,A% with 2 < N, < 4 are

SU(2) : Vi, IR, 85,08 = Ar|0.44444 4+ 0.23388A ¢ + 0.10842A?¢' + 0.14311A§» ] (3.78)
SU(3) : Vi IR, S5,0% = A7|0.38536 + 0.17038A ¢ + 0.078062Afc + 0.060081A?f’ ] (3.79)

and
SU4) : Vi, IR, 52,08 = Ar]0.34839 4+ 0.13875A ¢ + 0.059680A? + 0.38102A? ] . (3.80)

For R = Az, we give illustrative results for the Ay expansion of vz, ;g for N =4, 5:

SUM): Ygy1rasas =Dy [0.090090+ (1.1114 x 107)Af 4 (1.6013 x 107)A% + (2.9668 x 10~ *) A} } (3.81)
and

SUG) Vg irasat =Dy [0.11582 + (1.7570 x 107 %) Ay + (2.9243 x 107%)A% + (0.59791 x 10~ %) A% } . (3.82)

In Fig. 6 we present a plot of Vibip, s, TR, A for G = SU(3), R = S2, and 1 < p < 4, as a function of Ny. We
list values of the VIR,S2,A7 with 1 < p < 4 for the SU(3) and SU(4) theories with R = S in Table IV. In both

of these theories, the interval Itrz includes the two integer values Ny = 2, 3. For comparison, we also include the
values V1R, s, ne for 2 < n <4 calculated via the conventional power series expansion to n-loop order and evaluated at
& = aypne from Table XI in our previous work, Ref. [19]. As is evident from this table, for a given N, and Ny, there
is reasonable agreement between the n = 4 loop values VIR,S5.A% and yrr,s, 4¢. For example, for SU(3) and Ny = 2,

YIR,S5,4¢ = 1.12 while VIR,SQ,A‘} =1.13.
We next compare our calculation of v, g s, ar to order p = 4 with lattice measurements. A theory of particular

interest is the SU(3) gauge theory with Ny = 2 flavors of fermions in the S, representation, and lattice studies of this
theory include [78] and [79] (see also [22]). As indicated in Table IV, our higher-order scheme-independent results
are Yrp,al = 0.960, and VIRAY = 1.132, in agreement with our n-loop results from [19] for this theory, Vg 3 = 1.28

and yrr4¢ = 1.12. The lattice study [78] concluded that this theory is IR-conformal and obtained y;r < 0.45 [78],
while Ref. [79] concluded that it is not IR-conformal and got an effective y7g ~ 1 [79]. One hopes that further work
by lattice groups will lead to a consensus concerning whether this theory is IR conformal or not and concerning the
value of yrp.

Regarding the range of applicability of the A ; expansion for these cases, we compute the following ratios of successive
coefficients for the G = SU(3), R = S5 case:

FLS: _ 996176 (3.83)

k2,85
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FIG. 6: Plot of Vi IR, 52, A7 for No = 3 and 1 < p < 4 as a function of Ny. Here, Sz denotes the symmetric rank-2

tensor representation. From bottom to top, the curves (with colors online) refer to gy 1r,5,,4, (red), Vi IR, 55,03 (green),

Ty, IR,S2,A% (blue), and Vi 1R, S2,0% (black).

H2,52

= 2.1826 (3.84)
KJ3,S2
and
5.8 12993 . (3.85)
K/4,SQ

The first two ratios, (3.83) and (3.84), are slightly larger than (Af)maz,s, = 519/250 = 2.076 in I;rz for this theory.
However, the third ratio is about 40 % less than this maximal value of Ay g,. This suggests that because of slow
convergence, one must use the Ay expansion with caution in the lower part of the interval I;rz in this theory.

We list values of the VIR, Az,A7 with 1 < p <4 for the SU(4) theory with R = Ay and Ny € I;gz for this theory in
Table V. Again, for comparison, we include the values yrr a, ne for 2 < n < 4 calculated via the conventional power
series expansion to n-loop order and evaluated at a = ayg n¢ from Table XII in our previous work [19]. As expected,
the agreement between the two methods of calculation is best at the upper end of the interval I;zz, where the IRFP
occurs at weak coupling. For example, for Ny =9, VIR A2,0% = 0.242, while vyrg,4¢ = 0.232.

It is of interest to consider the N, — oo (LN) limit of Eq. (3.22) for these theories with R = So and As. In this LN
limit, the upper ends of the interval I;rz for the S; and As representations approach the same limit, and similarly
for the lower ends:

. 11
lim N7, = o =55 (3.86)

. 17
lim Np.7, = — = 2125 (3.87)

Hence, in this V. — oo limit, the interval Irgz is formally 2.125 < Ny < 5.5, including the physical integer values
3 < Ny < 5. Similarly, in this limit, the variable Ay is given by Ay = (11/2) — Ny and reaches a maximum value, at
Ny = Ner,, of
lm(Ar) 2 3.375 (3.88)
Ll?vl f)mazx, Ty — S — 9. . .
This the N. — oo limit of (3.73).
As with the adjoint representation, we define

Rjr, = lm ko, . (3.89)



22

We find that
Rj s, = Rj Ay - (3.90)

From our general expressions for k; 7, with 1 < j <4, we calculate

2
ki, = 32 = 0.2222 (3.91)
341
RoT, = 25 .36 0.0584705 (3.92)
61873
R3,1y, = 26310 = 0.016372 (3.93)
and
N 53389393  23(3 9
RAT; = STT 31d 310 = 0.59186 x 107~ . (3.94)
Hence,
%%WJR,sz,Ag = %%WJR,AQ,N; (3.95)
and, in the limit p — oo,
121]{[1711%,52 = 1LH]{[1 VIR, Ay - (3.96)

Thus, for both R =S and R = As,

B Y5 15, a0 = Ay [0.22222 +0.0584705A

- 0.016372A§»+0.0059186A§] . (3.97)

We observe that for all of the cases we have calculated, namely 1 < j < 4,
Rjry =27 Rjadj - (3.98)
One can understand this relation from the structure of the relevant group invariants, including the fact that the trace
invariant T'(R) satisfies

Tr, 1
lim —2 =-. .
Nclgloo Tadj 2 (3 99)
We thus infer more generally that the relation (3.98) holds for all j. In Table VI we list the resultant common values
of VIRTy,AY for 1 <p <4 and Ny € I;rz in the LN limit. As noted above, in this LN limit, this interval consists of
the integral values Ny = 3, 4, 5.
Concerning the range of applicability of the Ay expansion in this LN limit, we compute the ratios

i, 1296

Fam =3 = 3.8006 (3.100)
Ra T 220968
F;TZ = 61873 — 3.5713 (3.101)
and
R31, 160374816
Ra,T, 53389393 + 3815424(3
= 2.76624 . (3.102)

The first two ratios, (3.100) and (3.101), are slightly greater than the maximum value (Ajf)maez,, = 3.375, but the
third ratio, (3.102), is smaller than this maximum value, suggesting that in this limit, for these tensor representations,
because of slow convergence, one must use caution in applying the Ay expansion in the lower part of the interval
Irrz. This is similar to what we found for the S3 representation in the SU(3) theory.



23

IV. CALCULATION OF j;z TO O(A})
A. General G and R

The derivative 8} is an important physical quantity characterizing the conformal field theory at arr. We denote the
gauge field of the theory as A, (where a is a group index), the field strength-tensor as Fl, =0,A,—-0,A+ gcabcAZA,cj

(where cap is the structure constant of the Lie algebra of ) and the rescaled field-strength tensor as F, . = gFy,,
so that the gauge field kinetic term in the Lagrangian is £, = —[1/(4¢%)]F%, . F* *. The trace anomaly states that
the trace of the energy-momentum tensor T} satisfies the relation [81]

mn— B _pa pow (4.1)

BT 16ma2 mertT

Therefore, the full scaling dimension of the operator F ,, F* #, which we denote as Dp2, satisfies [82]

DF2:4+ﬁ’—%, (4.2)

where we use the shorthand notation F? = Fr F 7. We denote the anomalous dimension of F2? ~ps via the
equation [26]

I)F2 = DF2,f7‘ee Vg2 — 4-— V2 (43)

and its evaluation at o = asg as v, , .. From Eq. (4.2), it follows that at a zero of the beta function away from the

origin, in particular, at ayg, the derivative 875 is equivalent to the anomalous dimension of the operator F B

BIR="Vpo1n - (4.4)

In [13] we calculated the expansion coefficients d; of 8} in Eq. (1.3) to order A‘;c for general G and R, and to order
A?c for the special case G = SU(3) and fermion representation R = F, the fundamental. Here we calculate the next
higher-order coefficient, namely ds, for general G and R. For this purpose, we make use of the recent computation
of the five-loop beta function coefficient, bs, in [17]. The computation in [17] was performed in the MS scheme, so
that we can combine it with the scheme-independent by and by [7, 8] and the results for b3 and b4 that have also been
calculated in the MS scheme [27, 28]. However, we again stress that since the d,, coefficients are scheme-independent,
it does not matter which scheme one uses to calculate them. We first recall our previous results from Ref. [13]:

di =0, (4.5)
2572
T 320,D (46)

B 27Tf3(5CA + 3Cf)

and
23TJ% 2 4 3 2 2 3 4
di = —g5arps | —3CaT}( 137445C] + 103600050 + T2616C5CF + 951808C4CF — 63888
A
dabcd dabcd dabcd dabcd dabcddabcd
— 512077 D—A——A— 4 90112C, Ty D—H——A— — 340736CE D~ —
A A
P ) ) 2daAbcddaAbcd d%ded%de ) d%ded%de
+ 8448D {OATf (21CA +12C4C) — 330.,0) +16TF A — 104CATy A SSCAT] G
(4.8)

In Ref. [13] we presented the expression for d4 with terms written in order of descending powers of C4. It is also
useful to express this coefficient ds in an equivalent form that renders certain factors of D explicit and shows the
simple factorization of terms multiplying (3, and we have done this in Eq. (4.8).
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Here we present our calculation of ds for arbitrary G and R:

2473
f
= w7 |~ CaT} <39450145O§, +235108272C5C + 1043817726C 4 C7 4 765293216CC
dabcddabcd
— T37283360C5C} + 730646400CAC} — 3567505920?) — 2°T7 D-4——4—(6139C% + 2192CC; — 3300C7)
dabcd abed abed jabed
+ 290ATfDRd7A(43127O% — 28325CACy — 2904C7) + 15488O%DRd73(29750124 +8308CACy — 12804C7)
A A

+ 27D |3CAT?D( 6272C% — 49823C3C + 40656C%C? + 13200C4C% 4 211207
f T f f f

dabcd abcd dabcd abed
+ 2471}4’%(195160?4 — 18535C4Cy — 21780C7) — ZBC’ATf%(I&Q%Cﬁ —297649C4Cy — 197472C7)
dabcddabcd
— 8805 (24503 + 62524C4C + 421080?)} G
A
abcddabcd
+ 219.550,D? [9CATJ%D(CA +2C4)(Ca — Cy) + 160Tj2»‘4di’4
A
abcd dabcd dabcddabcd
— 80T4(10C4 + 30,»)%714 — 440CA(Cy — 3@)%} G (4.9)
A A

We proceed to evaluate these coefficients d; up to j = 5, and hence the derivative 575 up to O(A?) below for

G

= SU(N.) and several specific representations. The coefficients da and ds are manifestly positive for arbitrary G

and R. These signs are indicated in Table VII. We discuss the signs of d4 and ds for various representations below.

B. ﬂ}R,A‘} for G=SU(N.) and R=F

Here we present the evaluation of our general result (4.9) for the case G = SU(N,) and R = F. For reference, we

first recall our results from [13] for d; with 2 < j <4 (and also recall that d; = 0 for all G and R):

24

and

dopp=—— 4.10
> T 32(25N2 —11) (4.10)
25(13N? — 3)
G5.r = 33N 5NZ 1102 (411)
24 8 6
dur = I NT 1Ty [NC ( — 366782 + 6600()0(3) + N (865400 _ 76560()(3)
+ N;*( — 1599316 + 224188843) 4 N? (571516 - 89443243) +3993 } . (4.12)

This coefficient can be written equivalently in a form that shows the simple factorization of the terms multiplying (3:

24
T 35N2(25N2 —11)°

dip = {( — 366782N? + 865400N° — 1599316 N2 + 571516 N> + 3993)
+ 1056NZ(25N2 — 11)(25N — 18N2 +77)(3 ] : (4.13)

In [16] we presented the expression for ds p with terms ordered as descending powers of N.. As with dy p, it is also

useful to display this coefficient in an equivalent form that shows the simple factorizations of the terms multiplying

G3

and (5:
25
35N3(25N2 —11)7

ds,p = [( — 208194551 N2 + 414681770N_° + 80227411 N?
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+ 210598856 NS — 442678324N* + 129261880N? + 3716152)

— 96(25N2 — 11) (176375N§0 — 564526 N8 + 1489367N° — 1470392N? + 290620N? + 968) G
+ 21120N2(25N2 — 11)2(40N§ — 27TN* + 124N2 — 209) G } . (4.14)

We have checked that when we set N, = 3 in our general result for ds p in Eq. (4.14), the result agrees with our
earlier calculation of ds g in Eq. (5.20) of Ref. [13].

As observed above, the coefficients ds and dz are manifestly positive for any G and R. We find that dy4 r and ds p
are negative-definite for G = SU(IV,.) and all physical values of N, > 2. These results are summarized in Table VII.

We list below the explicit numerical expressions for 8] to order A%, denoted B SU(N.),F.AS for the gauge groups
p 9 c/s ) f

SU(N,) with N, = 2, 3, 4, with fermions in the fundamental representation, to the indicated floating-point precision:

SU(2) : BQRVM? = A} [(1.99750 x 1072 4 (3.66583 x 107*)A — (3.57303 x 10 *)A% — (2.64908 x 107°)A} }

(4.15)

SU(3) : B}R7F7A? A% [(0.83074 x 107%) 4 (0.98343 x 107°Ay — (0.46342 x 10~*)A% — (0.56435 x 107°)A} }

(4.16)
and

SU(4) : B}R7F7A? = A} [(0.45701 x 1072) 4 (0.40140 x 1072Af — (0.12938 x 10~ *)A% — (0.15498 x 107°) A} } :

(4.17)

In Table VIIT we list the (scheme-independent) values that we calculate for B} RFAT with 2 < p < 4 for the

illustrative gauge groups G = SU(2), SU(3), and SU(4), as functions of N in the respective intervals I;pz given in
Eq. (2.7). For comparison, we list the n-loop values of 87 p,,, with the 2 < n <4 from [13, 20|, where 87 5, and

B1 R, F.ae are computed in the MS scheme. Although, for completeness, we list values of 3 r.F2¢ With Ny extending
down to the lower end of the respective intervals Itrz for each value of N,., we caution that in a number of cases,
including Ny = 6 for SU(2), Ny = 9 for SU(3), and 10 < Ny < 12 for SU(4), the corresponding values of arg ¢
(discussed further below) are too large for the perturbative n-loop calculations to be applicable. Moreover, since for a
considerable range of values of N; € I;rz for each N, the five-loop beta function S5, calculated via the conventional
power series expansion has no physical IR zero, we restrict the resultant g} R.Fne €valulations to 1 <n < 4 loops.

In Figs. 7-9 we plot the values of 8, calculated to order A? with 2 < p <5, for R = F for the gauge groups SU(2),
SU(3), and SU(4). In the general calculations of 7y as a series in powers of Ay to maximal power p = 3 (i.e., order
A%) in [12] and, for G = SU(3) and R = F, to maximal power p = 4 in [14], it was found that, for a fixed value of
Ny, or equivalently, Ay, in the interval Irrz, these anomalous dimensions increased monotonically as a function of p.
This feature motivated our extrapolation to p = oo in [12] to obtain estimates for the exact v7z. In contrast, here we
find that, for a fixed value of N¢, or equivalently, A¢, in I;rz, as a consequence of the fact that different coefficients
dy, do not all have the same sign, £} RAT is not a monotonic function of p. Because of this non-monotonicity, we do

not attempt to extrapolate our series to p = co.

A lattice measurement of 7, has been reported in [83] for the SU(3) theory with R = F' and Ny = 12, namely
Brr = 0.26(2). The earlier higher-order values calculated in [20] via n-loop expansions in the coupling are 87 5, =
0.2955 and (7 r.4c = 0.282, which agree with this lattice measurement. As indicated in Table VIII, our higher-order
scheme-independent values for this theory are 3, xs = 0.258, 87, A4 = 0.239, and 8}, \5 = 0.228. Given the possible

B B By

contributions of higher-order terms in the A expansion, we consider that our scheme-independent calculation of 8}
to this order is also consistent with the lattice measurement from Ref. [83].

To get a rough estimate of the range of accuracy and applicability of the series expansion for 5} for this R = F
case, we can compute ratios of coefficients, as discussed before. For the illustrative case of SU(3), we have

d
d2—’F =8.447 for SU(3), (4.18)

3,F
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FIG. 7: Plot of B}R N (labelled as B7r on the vertical axis) for N = 2 and 2 < p < 5 as a function of Ny € Itrz. From

bottom to top, the curves (with colors online) refer to 8}, a2 (red), 85 4 aa (green), B, 1o aa (blue), and B} . A5 (black).
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FIG. 8: Plot of ﬂ}R FA? for N. =3 and 2 < p < 5 as a function of Ny € I;rz. From bottom to top, the curves (with colors

online) refer to ,B}RyF’A? (red), B}R’F’A? (green), B}R’F’A? (blue), and /B}R’F’Ag} (black).

Br 91991 for SU(3), (4.19)
|da, |
and
|da,F| _
=82115 for SU(3) . (4.20)
|ds, |

Since N, = 16.5 and N, = 153/19 = 8.053 in this SU(3) theory, the maximal value of A in the interval I;rz, as
given by (3.16), is
321
(Af)max = % = 8.447 for SU(?)), Nf € lirz . (421)
Therefore, these ratios suggest that the small-Af expansion may be reasonably reliable in most of this interval, I;rz
and the associated non-Abelian Coulomb phase.
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FIG. 9: Plot of ,B}R N for N =4 and 2 < p <5 as a function of Ny € I;rz. From bottom to top, the curves (with colors

online) refer to ,B}RyF’A? (red), B}R’F’A? (green), B}R’F’A? (blue), and /B}R’F’Ag} (black).

C. Bipa; in LNN Limit

The appropriately rescaled beta function that is finite in the LNN limit is
Pe=— = lim N.j, (4.22)

where £ = 4rx = lim; vy aN. was defined in Eq. (3.21). This has the series expansion

d [e’e} . o
Be = d—f = —8mx Y b’ =20 bi¢t (4.23)
=1 =1
where
by = lim 2 (4.24)
S |

and by = by/(4m)". The by with 1 < £ < 4 were analyzed in [20, 21] and are listed for the reader’s convenience in the
Appendix. L
From the recent calculation of b5 in [17], for general G and R, in the MS scheme [17], we calculate

- 8268479 38851 121

b = _ = _
5 3888 T 162 ¢ g <306
11204369 231619< . ZC N 4090C
5184 618 2 T gt g )T

3052801 | 33125 2411630 Y
7776 108 27 ¢ T g )7
< 5173 1937

432 81

61 52\ 4
i (raa - 8—143) r

= 2050.932 — 2105.880r + 645.7474r2

3+ 7C+ 2—30C5> r

26.2309r% — 0.646187* . (4.25)

(In this expression although (4 could be expressed explicitly as ¢4 = 7*/90, we leave it in abstract form to be
parallel with the (3 and (5 terms.) We find that this coefficient b5 is positive throughout the entire asymptotically



28

free interval 0 < r < 5.5. (Considered formally as a function of r € R, bs is negative for r < —58.609, positive
for —58.609 < r < 14.336, and negative for r > 14.336, where the numbers are quoted to the given floating-point
accuracy.)

Since the derivative df¢/d¢ satisfies the relation

dﬂf o dﬂ /
=" (4.26)

dg
it follows that 8’ is finite in the LNN limit (3.21). In terms of the variable x defined in Eq. (3.23), we have

o0

B==2) (L+1)ba’ (4.27)

(=1

Because 37 is scheme-independent and is finite in the LNN limit, one is motivated to calculate the LNN limit of
the scheme-independent expansion (1.3). For this purpose, in addition to the rescaled quantities A, defined in Eq.
(3.30), we define the rescaled coefficient

djr = lim Nd;p, (4.28)
LNN
which is finite. Then each term
. ; . ApNT o
lim d; ) = (N2de) (S2) = dird] (4.29)

is finite in this limit. Thus, writing limzyx 87 as B 1y for this R = F' case, we have

ﬂ}R,LNN = Z dj,FAjf = Z Czj,FAz :
j=1 j=1
(4.30)

We denote the value of B7p 1y obtained from this series calculated to order O(A%) as B}R,LNN,A?

From Eqs. (4.5)-(4.8), we find that the approach to the LNN limits for CZJ, r involves correction terms that vanish
like 1/N2. This is the same property that was found in [20, 21] and, in the same way, it means that the approach to
the LNN limit for finite N, and N; with fixed » = N;/N, is rather rapid, as discussed in [21]. In [13] we gave the

d}p for 1 < n < 4; in addition to di =0 (which holds for any G and R), these are

R 4

da.r = g3—5 = 0.0711111, (4.31)
. 416 _
ds.p = gg—z7 = 2465185 x 1072 , (4.32)

and

5 5868512 5632
da,p = 35.510 34, 56<3 =—(

2.876137 x 1073) . (4.33)

Here we give the next higher coefficient:

5 9542225632 1444864 360448
ds.p = — 36.514  35.59 G+ 35 .58 G

= —(1.866490 x 1073) . (4.34)

In these equations we have indicated the simple factorizations of the denominators that were already evident in
the general analytic expressions (4.5)-(4.8). Although the numerical coefficients in the numerators of terms in Eq.

(4.34) do not, in general, have simple factorizations, they do contain various powers of 2; for example, in ds p,
1444864 = 210 .17 - 83, etc. Thus, numerically, to order A%, for the LNN limit of this theory with R = F, we have

Brrony = AZ|7.1111 x 1072 + (2.4652 x 107%)A,.
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— (2.8761 x 107?)A? — (1.8665 x 1073)A3
+ o], (435

where the coeflicients are given to the indicated floating-point precision. We may again calculate ratios of successive
magnitudes of these coefficients to get a rough estimate of the range over which the small-A, expansion is reliable in
this LNN limit. We find

dor

- 2.885 (4.36)
d3,r
2E 8571, (4.37)
4,F
and
ol _ 54y (4.38)
|ds, F|

For r € I1rz,r, the maximal value of A, is (A, )max = 75/26 = 2.885. The first two ratios, (4.36) and (4.37) suggest
that the A, expansion for 3}, may be reasonably reliable over a reasonable fraction of the interval I;gz . From the
third ratio, (4.38), we infer that the expansion is expected to be more accurate in the upper portion of the interval
Irrz,» than the lower portion.

In Ref. [13] we presented a comparison of these scheme-independent calculations of 8;p ; v calculated up to the
A} order with the results of conventional n-loop calculations, denoted j3; Rone, NN computed up to the n = 4 loop
order for which the b, were known at that time. We refer the reader to [13] for details of this discussion. Here we
shall extend this comparison to the A5 order. In Table IX we list the numerical values of these conventional n-loop
calculations up to n = 4, in comparison with our scheme-independent results calculated to O(AP) with p up to 5. (The
conventional 4-loop values 3} Rr,4¢ for some values of r toward the lower part of I1rz,, supersede the corresponding
entries in Table IT of [13].) Both ﬁ’IR)M and B7p an Use, as inputs, the coefficients of the beta function up to loop
order n, although 7} Rr.An does this in a scheme—ianependent manner. We see that, especially for r values in the
upper part of the interval I IRZ,r, the results are rather close, and, furthermore, that, as expected, for a given r, the
higher the loop level n and the truncation order p in the respective calculations of 3} R.ne 10 the MS scheme and the
scheme-independent [3; RAD the better the agreement between these two results. Toward the lower end of the interval
I1Rrz,r, both the conventional expansion of 8}, and the scheme-independent expansion of 3} in powers of A, become
less reliable, and hence it is understandable that the results differ from each other in this lower part of I;rz ..

D. B}R’AE} for G = SU(NC) and R = adj

/
IR,A%
R = adj. As was discussed above, in this case, the interval I;rz contains the single Dirac value, Ny = 2. For this
value of Ny, Eq. (3.60) yields Ay = 3/4. We recall that the d; for 2 < j < 4 are [13]

Here we calculate the d; and hence for j up to j = 5 in the SU(N,) gauge theory with fermion representation

4

2
do.aqj = <§) =0.19753 , (4.39)

28
5,007 = 37 = 011706 . (4.40)

and
46871 2368
diadj = =53

922 . 312 + 310Nc2
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= 0.022049 + 0.040102N 2 . (4.41)

Here, from our new general result (4.9) for ds, we obtain the next coefficient for this case of the adjoint representation:

7141205 =~ 5504
T 93,316 T 312

30928 465152 9
(314 + 313 <3)Nc

ds.adi = 3

—(0.828739 x 1072) — 0.357173N 2 .
(4.42)

While the djqq; with 2 < j < 4 are positive-definite, we thus find that ds 4q4; is negative-definite. These results on
signs are listed in Table VII. In the N, — oo (LN) limit of Eq. (3.22), the values of d; 44 can be read off directly

from our general results in Eqs. (4.39)-(4.42); for example, dy o4 = 46871/ (2% - 312), etc.
With these coefficients, one can again compute ratios to obtain a crude idea of the region over which the small-A
series expansion is reliable. We have

doqqj 3°
—= = — =1.687 4.43
dsaaj 2% (4.43)

and, taking the large- N, limit for simplicity,

d3aq;  3°-2%

li = = 5.309 4.44
Neoo dyag; | A68TL (4.44)
g adi 7593102
lim —d = 2.6606 . (4.45)

Ne—oo |ds qa;| 7141205 — 3566592(3

Since Ay = 0.75 for N; = 2, these ratios indicate that the small-A¢ expansion should be reasonably accurate here.

E. 6}R,A‘:} for G = SU(N.) and R = S, A

Here we present our results for the d; coefficients and hence B’I RAS with j up to 5 for G = SU(N,) and Ny fermions
By

in the symmetric and antisymmetric rank-2 tensor representations, So and As. As before with vz, 1. ans since many
formulas for these two cases are simply related to each other by sign reversals in certain terms, it is convenient to
treat these two cases together, denoting them collectively as T>. We recall that for R = Ao, we restrict to N, > 3.

From our general formulas (4.5)-(4.9), we obtain the following, where the upper and lower signs refer to the Se and
As special cases of Ty, respectively, and Fy was defined in Eq. (3.72):

23(N, + 2)?
b P 2)? 4.46
= 202 (4.46)
g, — 21(Ne £ 2)*(BNE + 3N, — 6) (4.47)
3T — 33NF3 '
do = NeE2)® [ 9 L 63058500 4 8455112N7 T 18825808 N® — 47225264 N5
4, Ty — 235N2Fi c c c Tt c c

+ 61021088 + 70598528 N3 T 72131840N? 4 3066624.N, T 2044416)

+ 8448N?(N,. ¥ 2)(18N2 £ 11N, — 22)(12N2 F 9N? 4+ 308)(3 } (4.48)
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and

(N, +2)*
2-36N3F]
+ 12567177608 N? + 29240054768 N8 — 75390007296 N F 70417381376 NS + 243309040128 N

ds, 1,

( — 578437605N 1 F 2353001022 N2 — 1643220810N ! + 1685855300 N

F 27199484928 N — 228577603584 N2 4 143780184064 N2 — 38053396480, + 15221358592)
+ 27Fy (125388le + 372762N 20 — 7324047 N? F 9682414 N8 + 52934332N; F 12735976 N

— 192234240N? £ 112670976 N2 + 164609280 N2 F 111598080N2 + 2973696 N.. F 1486848> (3
+ 2'9.55N2(N. F 2)F3 ( F 87TN2 + 259N + 1134N?2 — 3600N2 F 5016 N, + 10032) G 1 . (4.49)

We find that, in addition to the manifestly positive da 1,, the coefficient ds 1, is also positive for all relevant V.. Here,
by “relevant N.”, we mean N, > 2 for Sy and N, > 3 for A;. In contrast, while dy s, is positive for all relevant N, we
find that d4 a, is negative for N, = 3, 4, 5, passes through zero at N. = 5.515, and is positive for N. > 6. Further,
we find that ds s, and ds 4, are both negative for their respective physical ranges, N, > 2 and N, > 3. These sign
properties are listed in Table VII.

Some general comments are in order concerning these d; 1, expressions. These are analogous to the comments that
we made for the k; 7, coefficients. The property that all of the d; 4, coefficients contain an overall factor of (N, — 2)
(possibly raised to a power higher than 1), and hence vanish for N. = 2, is a consequence of the fact that for N, = 2,
the Ay representation is a singlet, so for SU(2), fermions in the As = singlet representation have no gauge interactions
and do not contribute to the beta function or 7.

Furthermore, if N, = 2, then the S5 representation is the same as the adjoint representation, so the coefficients
must satisfy the equality d; s, = djqq; for this SU(2) case, and we have checked that they do. This equality requires
(1) that the term proportional to (3 in d4 s, must be absent if N, = 2, since dy qq; does not contain any (3 term, and
this is accomplished by the factor of (N, — 2) multiplying the (3 term in d4 s,; and (ii) the term proportional to (s
in ds,5, must be absent if N, = 2, since ds 4q; does not contain any (s term, and this is accomplished by the factor
(N — 2) multiplying this (5 term in ds g,. Similarly, as observed before, if N, = 3, then the As representation is the
same as the conjugate fundamental representation, F, so the coefficients must satisfy the equality d; A, = dj  for
this SU(3) case, and we have checked that they do.

In the LN limit (3.22), as discussed above in the case of the anomalous dimension 7sr 1,, the upper ends of the
interval Irgz for the S; and A theories approach the same value, N, 1, given in Eq. (3.86), and similarly the lower
ends of this interval for these S and As theories approach the same value, Ny 1, given in Eq. (3.87). We denote

djr, = limd;z, , (4.50)
and we find
Czj732 = Czj7A2 ) (451)
which we denote simply as ch,TQ. Hence,
121]{[15/11%,52 = 121]{[15/13,,42 : (4.52)

Further, again in analogy with Eq. (3.98) and for the same reasons concerning group invariants in the LN limit, we
have

dj7T2 = 2_jdj,adj (453)

From our general expressions, we calculate

R 22
do, = 31 0.049383 (4.54)
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. 25

ds 1, = 3 = 146319 x 1072 (4.55)
; 46871 -
dim, = 3573 = 1.37806 x 107° (4.56)

and

7141205 172

s, = — 55316 T ﬁ@

= —(2.58981 x 107%) . (4.57)

To estimate the region over which the Ay expansion converges, we calculate the ratios of adjacent coefficients. We
have

dy,  3N.(18N2 £ 11N, — 22)

= . 4.58
dsz,  (N.+2)(8N2 3N, —6) (4.58)
and similarly for the ratios d;_1 1, /d;r, for j =4, 5. For the LN limit,
d 3\°
2T (—) = 3.375 (4.59)
ds. 1, 2
dsp, 497664
——= = =10.618 4.60
dig, 46871 (4.60)
and
d
2T 5321 . (4.61)
|d57T2

Since formally, (Af)maz = 3.375 from Eq. (3.88) and Ay = 5.5 for Ny = 2, these ratios indicate that the A, expansion
for the LN limit of this R = T5 case should be reasonably accurate in the interval I;pz for this case.

V. IR ZERO OF 3 IN THE LNN LIMIT

In this section we analyze the zeros of the rescaled five-loop beta function in the LNN limit. This elucidates further
the result that we first found for a finite value of N., namely N, = 3, in [15], namely that for SU(3), the five-loop
beta function only has a physical IR zero in the upper range of the interval I;pz. We denote the n-loop rescaled beta
function (4.22) in this LNN limit as S¢ ¢, and its IR zero (if such a zero exists) as &rrne = 47xrr ne. The analytic
expressions of {1r2¢ and £rgr 3¢ were given in [21], together with numerical values of {1 ne for 1 < n < 4. Here we
extend these results to the five-loop level, using the coefficient 135 in Eq. (4.25). As noted before, we use the by, with
3 <n <5 calculated in the MS scheme. The reader is referred to [21] for analysis of these zeros up to the four-loop
level.

In general, the IR zero of the n-loop beta function, B¢ n¢, is the positive real root closest to the origin (if such a
root exists) of the equation

> bt =0, (5.1)
=1
of degree n — 1 in the variable z. The roots of Eq. (5.1) depend on the n — 1 ratios 132/131 for 2 < ¢ < n. In particular,
at the five-loop level, Eq. (5.1) is the quartic equation
61 + 6217 + 631172 + B4IE3 + 651174 =0. (52)

To analyze the roots of this equation, it is natural to start with r in the vicinity of r,, = 11/2, where by — 0 and hence
one solution of Eq. (5.2) approaches zero, matching the behavior of 2 ne for 2 < n < 4 in this limit. As we reduce r
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from the value r,, in the interval I; gz, we can thus calculate how the physical IR root, g 5¢ = rr.5¢/(47), changes.
We find that, in contrast to the behavior of the IR zero of the lower-loop beta functions B¢ ¢ with 2 < n < 4, here
at the five-loop level, as r decreases past a certain value r.,, Eq. (5.2) (with bn, n = 3, 4, 5 calculated in the MS
scheme) ceases to have a physical IR zero. We find that the value of r, is

Few = 4.32264 (5.3)

to the indicated floating-point accuracy. This is determined as the relevant root of the discriminant of Eq. (5.2),
which is a polynomial of degree 15 in the variable r. (The discriminants of the corresponding equations at loop levels
3 and 4 are polynomials of degree 3 and 8 in r.) For example, for the illustrative value r = 5, near to the upper
end of the interval I;rz,, Eq. (5.2) has the solutions in z, expressed in terms of £ = 4mz: £ = 0.36300, 1.69540,
and —1.48884 £ 1.08446:. Of these, we identify the first as the IR zero, {rr5¢. As r decreases and approaches 7.,
from above, the two real roots approach a common value, £ ~ 1.312 and as r decreases below r.;, Eq. (5.2) has only
two complex-conjugate pairs of solutions, roots, but no real positive solution. In Table X we list our new results for
&rR,5¢, in comparison with the previously calculated values of ;g n¢ in the LNN limit with 2 <n <4 from Table III
of [21]. Although we list &1 ne values extending to the lower part of the interval Itrz, for completeness, it is clear
that a number of these values are too large for the perturbative calculations to be reliable. For values of r where the
five-loop beta function (calculated in the MS scheme) has no physical IR zero, we denote this as unphysical (u).

We note that the absence of a physical IR zero in the five-loop beta function (calculated in the MS scheme) for
Ny values in the lower portion of the interval Itgz does not necessarily imply that higher-loop calculations would
yield similarly unphysical results. We gave an example of this in Section VIII of the second paper in [38], using an
illustrative exact beta function. In this example, it was shown that a certain order of truncation of the Taylor series
expansion in powers of « for this beta function did not yield any physical IR zero, but higher orders did converge
toward this zero.

VI. A; EXPANSION FOR a;r TO O(A})
A. General G and R

Since the exact arg (and also the n-loop approximation to this exact arg) vanishes as functions of Ay, it follows
that one can expand it as a power series in this variable. This expansion was given above as Eq. (2.9), and it
was noted that the calculation of the coefficient a; requires, as input, the ¢-loop beta function coeflicients b, with
1 < ¢ < j+ 1. We denote the truncation of this infinite series (2.9) to maximal power j = p as OrR,AL- Here we
present a calculation of this series to O(A‘I%), which is the highest order to which it has been calculated. Since arpr
is scheme-dependent, it follows that the dj coefficients in Eq. (2.9) are also scheme-dependent, in contrast to the
scheme-independent coefficients £; and d; in Egs. (1.2) and (1.3). Nevertheless, it is still worthwhile to calculate
these coefficients a; and the resultant finite-order approximations a;p AP for several reasons. First, this method has

the advantage that a;p A? is always physical and thus avoids the problem that we found in [15] and have further

studied above, that the five-loop beta function calculated in the MS scheme does not have a physical IR zero in the
lower part of the interval I;gz. In [14], for the special case G = SU(3) and R = F, we presented the a; (denoted a,
there) for 1 < j < 4.

Here, as a new result, we present the expressions for the a; for arbitrary G and R, for 1 < j < 4. For this purpose,
we use the n-loop beta function coefficients b,, with 3 < n <5 calculated in the MS scheme. In particular, our result
for ay makes use of the recently calculated five-loop beta function for general G and R [17].

For general G and R, recalling the definition of the denominator factor D = 7C4 + 11C} in Eq. (3.1), we find

4T
el - 6.1
M 304D (6.1)
2T2(—287C% + 1208C 4 C+ + 924C?
0 — 7 A ACy 7) (6.2)

302 D°

2Ty

9 = 350iDs

CATf?( — T1491C4 + 372680C5C + 2102252C5CF + 835560C4CF + 8363520‘,%)
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abed dabcd abcddabcd dabcddabcd
— 256077 D—-2—42— + 45056C ATy D—-2—4— — 170368C3 Ty DL
da da da
dabcd abcd abcd jabed dabcddabcd
+ 4224D [3C§T,2D(OA - Cf) + 16de7 - 1040AT,TA + ggciRT] G (6.3)
A A A
and
;
_ . 2 6 5 4 ~2 3 3
ay = W CATf (194849725CA — 684457480C5Cr + 41759490360,40,» + 1329201704OCACf

+ 2617931536C3C} + 8758858944C ACF + 85865472052‘)

abed jabed
Ay dy (

+ 272D 21287C% — 5504C4C; — 19140C%)

dabcddabcd

da
dabcd abcd (

+ 290, Ty D (- 194005C% + 253231C4Cy + 1364853

+ 28.11°C%D 917C% — 404120Acf+267960]%)

da
— 2304D [CATf (154560 4 — T5039C5Cy + 45T16C3CF + 23848CACF + 21120;%)

dabcddabcd abcd abed
+ 16T A4 (8610C% — 15037C4Cy — 1403603 ) — 8CAT, 2 A (95984C% — 190355C4C; — 135036C%)

dabcddabcd
+ ossczdn Tr (3199@, — 26004C4C — 17908@)] G

dabcddabcd
+ 337920C 4 D? [ —9CAT?D(Ca — Cy)(Ca +2Cy) — 160TF -4 7
dabcddabcd dabcddabcd
+ 80T;(10C4 + 3cf)Rd7A +440C4(Ca — 3cf)d7] G |- (6.4)
A

We next specialize to the case G = SU(N,) and give explicit reductions of these general formulas for the representations
of interest here.

B. R=F

For R = F, our general results (6.1)-(6.4) reduce to the following expressions:

4
- 6.5
“LF T 395N2 — 11) (65)
4(548N4 — 1066 N2 4 231)
= ¢ ¢ 6.6
92.F 3BN,(25N2 — 11)3 (6.6)
23
= 730529N% — 1105385 N° — 719758 N + 389235 N2 52272)
95F = IFNZ(25NZ _11) [( ¢ ¢ et ot

+ 1584N2(25N2 —11) (25N;1 —18N? + 77) G ] (6.7)

and

22
as,p = ) {(2783259085N012 — 7278665930N, % + 4578046419N7 — 1719569282N?

3TN3(25N2 — 11)7
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FIG. 10: Plot of Q1R,FAY (denoted as arr on the vertical axis) with 1 < p < 4 for G = SU(2), as functions of Ny € I;rz. From
bottom to top, the curves (with colors online) refer to arr,r,a, (red), arg g a2 (green), Q1R,FA3 (blue), arR,FAl (black).

Note that the curves for OrRF.A3 and QrR,a4 AT SO close as to be indistinguishable in this figure.

+ 2905511455N* — 1137735654 N2 + 1341648)

+ 288(25N2 — 11) (5480251\]30 — 1857036 NE + 4694107NS — 5482510N* + 1098130N?2 + 2904) G
— 190080N2(25N2 — 11)2 (401\]5 — 27TN* 4 124N? — 209)45 ] . (6.8)

We have checked that setting N, = 3 in our new a4 coefficient in Eq. (6.8) yields agreement with the value that we
obtained previous for this special case in (Eq. (14) of) Ref. [14].

We comment next on the signs of these coefficients. The coefficient a1 is manifestly positive for arbitrary group G
and fermion representation R. We find that as p and a3 p are also positive for all physical N, > 2. In contrast, we
find that a4 r is negative for N, = 2 and positive for N, > 3. With N, generalized from positive integers to positive
real numbers in the range N, > 2, we calculate that as N, increases through the value N, = 2.1184 (given to the
indicated accuracy), a4, p passes through zero with positive slope.

We list below the explicit numerical expressions for aygr to order A‘}, for N. =2, 3, 4 and R = F, denoted , the
indicated floating-point precision:

SU2):  appas = Af [(0.18826+ (0.62521 x 107?)Af + (0.70548 x 10~?) A% — (0.45387 x 10~ *)A} }

(6.9)
SUB):  arppas = Af {(0.078295 +(2:2178 x 107%)Ay + (1.1314 x 107%)A% + (2.1932 x 107°)A} }
(6.10)
and
SUM):  armpay = Ay [(0.043072 +(0.97619 x 103)A s + (0.33823 x 107)A2 + (0.71999 x 107) A’ } .
(6.11)

In Figs. 10-12 we show OIR,F,A? for N, =2, 3, 4 and 1 < p < 4 as a function of Ny. Note that in Fig. 10 the
curves for p = 3 and p = 4 are so close as to be indistinguishable for this this range of Ny.

In Table XI we compare the values of the IR zero of the n-loop beta function for 1 < n < 4 from [19] with our
values of OIR,F.AY for 1 < p <4 and N, = 2, 3, 4. Since the calculation of a;r n¢ uses the f-loop beta function
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FIG. 11: Plot of OrR.F.AP with 1 < p < 4 for G = SU(3), as functions of Ny € I;rz. From bottom to top, the curves (with

colors online) refer to arr,ra; (red), Q1R,F,A3 (green), AR, FA3 (blue), I (black).
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FIG. 12: Plot of OIR,F.AY with 1 < p <4 for G = SU(4), as functions of Ny € Irrz. From bottom to top, the curves (with

colors online) refer to arr,ra; (red), 1R FA3 (green), I IIN (blue), LI (black).

coefficients by with 1 < £ < n, while the calculation of a;p A uses the by for 1 < ¢ < p+ 1, the closest comparison is
of arr ne with o RAT which both use n-loop information from the beta function. Although, for completeness, we

include values of arg ¢ for Ny extending down to the lower end of the respective intervals I;rz for each value of IV,
we caution that in a number of cases, including Ny = 6 for SU(2), Ny = 9 for SU(3), and 10 < Ny < 12 for SU(4),
these values of arg 2¢ are too large for the perturbative n-loop calculations to be reliable. Concerning the comparison
of the higher-order n-loop values of ajr ne with our values of a;p g AR, We see that for a given N, and Ny, at the

upper end of the non-Abelian Coulomb phase, the values of o; RAT- and arg n¢ are quite close to each other, but
Ny decreases in this NACP in in the interval I7rz, Qrp,An-t becomes slightly larger than arg ne.
In the LNN limit, for the IR zero of the rescaled beta function, we write

{rr =47 a;pAl  (LNN limit) , (6.12)
j=1
where
ajr = lim NJta;p . (6.13)

LNN



From our results for a; r, we calculate

) 4
i1p = 555 = 0053333

) 2192 s

a2 F = W = 0.519585 x 10
5844232 1408
35.510 +33,56

a3, p = C3 = 0.647460 x 102

and
R _ 2226607268 935296 45056
G4.F = 737 13 + 34 510 (3 — 34 58

= 0.778770 x 1072 .

Cs

Thus, in the LNN limit, the expansion of £7g, to O(A%), is
§rr,ar = 4mA,0.053333 + (0.519585 x 1072)A,

+ (0.647460 x 1072)A2 4 (0.778770 x 1073)A?

C. R=adj

For R = adj, our general results (6.1)-(6.4) reduce to the following expressions:

2 0.074747
Q1,adj = BN = N
205 0.023434
1204 = 92 BTN, T T N,
49129 296
8adi = 91 3TN, ~ 30N3
_ 0.017333 _ 0.015038
N, N3
and
38811689 40 1
Wradj = | 55 515 0| =
3157 25616\ 1
+ 313 T 312 N_c3
_ 0. 0081230 0.055960
N. G
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(6.14)

(6.15)

(6.16)

(6.17)

(6.18)

(6.19)

(6.20)

(6.21)

(6.22)

The coefficients a; q4q; with j =1, 2, 4 are manifestly positive, and we find that a3 .q; is also positive for all N, > 2.

Since for the adjoint representation, R = adj, the upper and lower boundaries of the interval Itgrz, Ny 1, = 11/2
in Eq. (3.58) and Ny qq¢; = 17/16 in (3.59), are independent of Ny, it follows that Ay = N,, — Ny is also independent
of N.. From the general formula (2.9), in the LN limit of a theory with fermions in a two-index representation Ra,

including the adjoint and symmetric and antisymmetric tensors, we can write

{rr =47 4R, A} (LN limit) ,

j=1

(6.23)
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where

CALjﬁR2 = %Ij{leCCLj132 . (624)

From our calculations above, setting Ro = adj, we have

2
Q1,adj = 3= 0.074747 (6.25)
205
G0 = 5357 = 0.023434 (6.26)
. 49129
a37adj = 247311 =0.017333 (627)
and
. 38811689 40
a47adj = W — 3—9<3 = 00081230 . (628)

D. R=5, A

For R equal to the symmetric or antisymmetric rank-2 tensor representations, So and As, we give the reductions
of our general results (6.1)-(6.4) next. As before, it is convenient to consider these together, since many terms differ
only by sign reversal. As above, the upper and lower signs refer to the S and A, representations, respectively. Also,
as before, for As, we require that N. > 3. Recalling the definition of the denominator factor Fi in Eq. (3.72), we
have

2(N, £ 2)

_ 6.29
a17T2 3Fi ( )
(N. £ 2)2(1845N2 4 3056 N2 — 5188 N2 3696 N, + 3696)
a1, = — (6.30)
233N F}
(NC + 2)2 9 8 7 6 5
31, = Sy gsrage | | 39TIHONT £ 16999002NF + T61444N] F 52233472N7 — 3099440N
: ct £
+ 11578144N? — 16368000N? + 36440448 N? — 40144896 N, + 26763264)
F 12672N2(N. F 2)Fy(12N2 + 9N? 4+ 308)(3 (6.31)

and

(N. +2)3
25 . 3TN3FT

— 929147053664N7 + 428226859968 N + 2279581786496 N! + 586028410624 NS — 4633121830656 N2

asr, = <28293721281N§3 + 156860406306 N 1% + 13832572748 N M 547968555432 N 10

+ 143588589056 N, + 4686268342272N?2 F 2321839534080N?2 — 27476951040N,. & 10990780416)
— 2304F, <131220N§1 + 695898 N0 — 6916683 N2 F 10687114 N? 4 60333108 N F 12100440N?

— 239418432N7 + 140804928 N? + 208053120 N2 F 140560640N? + 2973696 N, T 1486848) (3

+ 1013760N?(N.. F 2)F? ( + 87N? — 259N ¥ 1134N3 + 3600N? + 5016 N, — 10032) G ] . (6.32)
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The same general comments that we made before concerning factors in the x; 1, and d; 1, coefficients also apply
here. Thus, for arbitrary j, the a;j 4, coefficients contain at least one overall factor of (N. — 2) and hence vanish
for N. = 2, as a result of the fact that for N. = 2, the A5 representation is a singlet, so for SU(2), fermions in the
Ao = singlet representation are free fields and hence make no contribution to the beta function. Moreover, if N, = 2,
then the Sy representation is the same as the adjoint representation, so the a; coefficients must satisfy the equality
a;j,S, = jqq; for this SU(2) case, and we have checked that they do. Similarly, if N. = 3, then the A representation
is the same as the conjugate fundamental representation, F, so these coefficients must satisfy the equality a; 4, = a; F
for this SU(3) case, and we have checked that they do.

We next consider the LN limit of the theory with fermions in the Ss or As representations. Using the definition
(624) with R2 = SQ and R2 = AQ, we find that

aj,8, = Qj,A, (6'33)

so we denote these simply as a;7,. In general, for the same group-theoretical reasons as led to the LN relation
ki, =277k qq; in Eq. (3.98) and the LN relation d; 7, = 277d; 44 in Eq. (4.53),we have, in the LN limit,

ajr, =27 j.adj - (6.34)
Explicitly, we calculate
1
in,1, = 73 = 005333 (6.35)
R 205 L
G201, = 5757 = 058585 x 10 (6.36)
. 49129 5
@31, = 57 57 = 216668 x 10 (6.37)
and
38811689 5 _
011, = 5315 — 5 g9 = 0-50769 x 1077 . (6.38)

VII. CONCLUSIONS

In conclusion, in this paper we have presented a number of new results on scheme-independent calculations of
various quantities in an asymptotically free vectorial gauge theory having an IR zero of the beta function. We have
presented scheme-independent series expansions of the anomalous dimension vy, 1z to O(A;%) and the derivative of
the beta function, f}5, to O(A?) for a theory with a general gauge group G and Ny fermions in a representation R of
G. We have given reductions of our general formulas for theories with G = SU(N,) and R equal to the fundamental,
adjoint, and symmetric and antisymmetric rank-2 tensor representations. We have compared our scheme-independent
calculations of 7, ;g and B7r with previous n-loop values of these quantities calculated via series expansions in powers
of the coupling. For a number of specific theories we have also compared our new scheme-independent calculations
of Yy, 1r and B7r with lattice measurements. We have shown that for all of the representations we have studied,
and for the full range 1 < p < 4 for which we have performed calculations, vz, ;r calculated to O(A?), denoted
Vi, I R,AT increases monotonically with decreasing Ny (i.e., increasing Ay) and, for a fixed Ny, Vg, IR,A" increases

monotonically with the order p. For the representation R = F, we have presented results for the limit N, — oo
and Ny — oo with N¢/N, fixed. These higher-order results have been applied to obtain estimates of the lower
end of the (IR-conformal) non-Abelian Coulomb phase. We have confirmed and extended our earlier finding that
our expansions in powers of Ay should be reasonably accurate throughout a substantial portion of the non-Abelian
Coulomb phase. We have also given expansions for ayp calculated to O(A‘}) which provide a useful complementary
approach to calculating ayg. Our scheme-independent calculations of physical quantities at a conformal IR fixed
point yield new information about the properties of a conformal field theory.
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Appendix A: Series Coefficients for §: and vz, in the LNN Limit

For reference, we list here the rescaled series coefficients for 3¢ and v, in the LNN limit (3.21). From the (scheme-
independent) one-loop and two-loop coefficients in the beta function [7, 8], it follows that in the LNN limit the b
with £ = 1,2 are

1
by = z(11-2r)

= 3.667 — 0.667r (A1)
and
. 1
by = =(34—13r)
3
= 11.333 — 4.333r . (A2)

The coefficients bz and by have been calculated in the MS scheme [27, 28]. With these inputs, one has [21]

1
by = =1(2857 17097 + 1122
= 52.907 — 31.648r + 2.074r2 (A3)

and

;o 150473+gC - 485513+@< .
7\ 486 3 1944 93

8654+§< 1307
243 3 243

= 315.492 — 252.421r + 46.832r% + 0.5350r3

+

(A4)

The behavior of these coefficients l;g as functions of r was discussed in [21] for 1 < ¢ < 4. The positivity of 131 is
equivalent to the asymptotic freedom of the theory, and requires r to lie in the interval 0 < r < 11/2. The existence
of an IR zero in the two-loop beta function is equivalent to the condition that by < 0, which, in turn, is equivalent to
the condition that r € I;rz,, as given in Eq. (3.28) . In this interval, b3 is negative-definite, while b4 is negative for
for 2.615 < r < 3.119 and positive for 3.119 < r < 5.5 [21].

For the coefficients ¢ in Eq. (3.33), from [31] and references therein, one has [21]

& =3, (A5)
203 5
Coy = ﬁ — g’f’ 5 (AG)
11413 (/1177 35
(3 = —— — +12 — 2 A7
“ = 108 ( 54 C3> 27’ (A7)

and

460151 23816 @T’Q _ §r3

Cp = —/———— — ——7T
576 81 162 81
1157 889
- 207 -

_|_

(66 — 121 )¢y + ( — 220+ 1607 )¢5 - (A8)
(66— 12r) ( )
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TABLE I: Values of the anomalous dimension Y, 1R, F calculated to O(A’}), ie., Ty IR,FA with 1 < p <4, for G = SU(N.), as a

function of N¢ and Ny for 2 < N. < 4 and Ny in the respective intervals I;grz for each Nc. For comparison, we also include the n-loop
values Yy g, Fne With 2 <n < 4 from Table VI of [19]. Values that exceed the bound Yo, r < 21n Eq. (2.13) are marked as unphysical

(u). For notational brevity in this and successive tables, we omit the subscript 1. See text for further details.

=
Z

YIR,F,2¢|YIR,F,3¢|YIR,F,4¢ |YIR,F,A WIR,F,A? 71R,F,A§ WIR,F,Afc
6 u u u 0.337 0.520 0.596 0.698
7 u u u 0.270 0.387 0.426 0.467
8 | 0.752 | 0.272 | 0.204 0.202 0.268 0.285 0.298
9 | 0.275 | 0.161 | 0.157 0.135 0.164 0.169 0.172
10| 0.0910 | 0.0738 | 0.0748 | 0.0674 | 0.07475 | 0.07535 | 0.0755
9 u u u 0.374 0.587 0.687 0.804
10 u u u 0.324 0.484 0.549 0.615
11| 1.61 0.439 | 0.250 0.274 0.389 0.428 0.462
12 0.773 | 0.312 | 0.253 0.224 0.301 0.323 0.338
13| 0.404 | 0.220 | 0.210 0.174 0.221 0.231 0.237
14| 0.212 | 0.146 | 0.147 0.125 0.148 0.152 0.153
151 0.0997 | 0.0826 | 0.0836 | 0.0748 | 0.0833 | 0.0841 | 0.0843
0.0272 | 0.0258 | 0.0259 | 0.0249 | 0.0259 | 0.0259 | 0.0259
11 u u u 0.424 0.694 0.844 1.029
12 u u u 0.386 0.609 0.721 0.8475
13 u u u 0.347 0.528 0.610 0.693
14 u u u 0.308 0.451 0.509 0.561
15| 1.32 0.420 | 0.281 0.270 0.379 0.418 0.448
16| 0.778 | 0.325 | 0.269 0.231 0.312 0.336 0.352
17 0.481 | 0.251 | 0.234 0.193 0.249 0.263 0.2705
18| 0.301 | 0.189 | 0.187 0.154 0.190 0.197 0.200
191 0.183 | 0.134 | 0.136 0.116 0.136 0.139 0.140
20| 0.102 | 0.0854 | 0.0865 | 0.0771 | 0.0860 | 0.0869 | 0.0871
21| 0.0440 | 0.0407 | 0.0409 | 0.0386 | 0.0408 | 0.0409 | 0.0409

B s s s s R s R R R R W W W W W W W WD NN N
=
(=)
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TABLE II: Values of the scheme-independent YrR,F,a? in the LNN limit (3.21) for 1 < p < 4, together with vrr pne with n =

2, 3, 4 from Table V of [21] for comparison, as a function of r for 7 € I;pz . Values that exceed the bound y;r < 2 are marked as
unphysical (u) or placed in parentheses. We also list the extrapolated estimate vrr, ,ez234 Of VIR,F,A% and, in the last column, the ratio
YIR,F,ex234/ VIR, F,A4-

T \V1r,F2¢ | ViR, F30 | VIR, F a0 | VIR, F.Ar | VIR, F,A2 | VIR, F,A3 | VIR, F,A4% | VIR, F,ex234 %
2.8 u 1.708 | 0.190 0.432 0.706 0.870 1.064 (2.09) 1.96
3.0 u 1.165 | 0.225 0.400 0.635 0.765 0.908 1.645 1.82
3.2 u 0.854 | 0.264 0.368 0.567 0.668 0.770 1.28 1.66
3.4 u 0.656 | 0.293 0.336 0.502 0.579 0.650 0.993 1.53
3.6] 1.853 | 0.520 | 0.308 0.304 0.440 0.497 0.5445 0.763 1.40
3.8 1.178 | 0.420 | 0.306 0.272 0.381 0.422 0.452 0.584 1.29
4.0 0.785 | 0.341 | 0.288 0.240 0.325 0.353 0.371 0.444 1.20
4.2] 0.537 | 0.277 | 0.257 0.208 0.272 0.290 0.300 0.337 1.12
4.4] 0.371 | 0.222 | 0.217 0.176 0.2215 0.233 0.238 0.253 1.06
4.6| 0.254 |0.1735 | 0.1745 | 0.144 0.1745 | 0.1805 0.183 0.188 1.03
4.8| 0.170 | 0.129 | 0.131 0.112 0.130 0.133 0.134 0.135 1.01
5.0] 0.106 | 0.0889 | 0.0900 | 0.0800 | 0.0894 | 0.09045 | 0.0907 0.0905 1.00
5.2] 0.0562 | 0.0512 | 0.0516 | 0.0480 | 0.0514 | 0.0516 | 0.0516 0.0516 1.00
5.41 0.0168 | 0.0164 | 0.0164 | 0.0160 | 0.0164 | 0.0164 | 0.0164 0.0164 1.00

TABLE III: Values of the anomalous dimension VIR,adj,A} with 1 < p <4, for Ny =2 and G = SU(N,) with N. = 2, 3. For comparison,
we also list our n-loop values, VrR,qdj,ne for this theory from Table VIIT of Ref. [19].

Nc|VIR,adj,2¢| VIR, adj,3¢ | VIR, adj,4e YIR,adj,A ¢ 71R,adj,A§ 71R,adj,A§ VIR,adj,A‘}

2| 0.820 0.543 0.500 0.333 0.465 0.511 0.556
0.820 0.543 0.523 0.333 0.465 0.516 0.553

TABLE IV: Values of the anomalous dimension VIR, S2,A7 with 1 < p < 4, for G = SU(N.) with N = 3, 4 and Ny = 2, 3 (so

Ny € I1rz). For comparison, we also include values of yrgr, g, ,ne With 2 < n < 4 for this theory from Table XI in our Ref. [19]. Values
that exceed the upper bound yrr < 2 are marked as unphysical (u).

Ne| Ny |V1R55.2¢ | VIR,S2,3¢ | VIR.Sp.4¢ | VIR, S3.8¢ | VIR,S5,82 | VIR,S5,0% | VIR,S,,04

312 u 1.28 1.12 0.501 0.789 0.960 1.132
313 0144 0.133 0.133 0.116 0.131 0.133 0.1335
4|2 u u 1.79 0.581 0.966 1.242 1.536
413 | 0381 0.313 0.315 0.232 0.294 0.312 0.319
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TABLE V: Values of the anomalous dimension VIR,AQ,AI; calculated to order 1 < p < 4, for G = SU(4) and Ny € Irrz. For comparison,

we also include values of Y7 4, ,ne With 2 < n < 4 for this theory from Table XII in [19]. Values that exceed the upper bound y;r < 2
are marked as unphysical (u).

Nc| Ny |VIR,Ag,2¢| VIR, A5,3¢ | VIR, Ay 4 VIR, Az, Ay WIR,AZ,AZ} ’YIR,Ag,Af; ’YIR,Ag,Ajlc

u u u 0.5405 0.941 1.287 1.671
u 1.38 0.293 0.450 0.728 0.928 1.114
u 0.695 0.435 0.360 0.538 0.641 0.717

0.802 0.402 0.368 0.270 0.370 0.4135 0.438
0.331 0.228 0.232 0.180 0.225 0.237 0.242
10| 0.117 0.101 0.103 0.0901 0.101 0.103 0.103

NGNS
© W -1 O

TABLE VI: Values of the anomalous dimension VIR/Ty,A7 for Ty = S or Ty = Aa, calculated to order 1 < p < 4, in the limit N, — oo
with Ny € Ijgz for this limit, namely 3 < Ny <'5.

Ny VIR, T2,Ay ’YIR,TZ,AZ} ’YIR,TZ,Afc ’YIR,TZ,Ajlc
3 | 0.5555 0.921 1.177 1.408
4 0.333 0.465 0.520 0.550

5 0.111 0.126 0.128 0.128

TABLE VII: Signs of the dj; g coefficients for 2 < j < 5 for gauge group G = SU(N.) and fermion representations R equal to F
(fundamental), adj (adjoint), S2, and Az (symmetric and antisymmetric rank-2 tensor). Note that di = 0 for all G and R. In the case
R = Aa, we restrict to N. > 3.

J|dj,F|djadi|dj,50 dj, a5

20 + | + | + +

3+ | + | + +

4| — | + | + |- for N.=3,4,5
+ for No. > 6

5 — — — —
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TABLE VIII: Scheme-independent values of BIIR ”

respective intervals Itrz. For comparison, we list the n-loop values of B}R e With 2 < n <5, where BIIR Fne With n =3, 4, 5 are

ap With 2 < p < 4 for G = SU(2), SU(3), and SU(4), as functions of Ny in the

computed in the MS scheme. The notation ae-n means a x 10~"™.

Ny 5}R,F72K ﬂ}R,F,M,m ﬁ;R,F,u,l\Ts B}R,F,A% ﬂ}R,F,A\} ﬂ}R,F,A‘; ﬂ}R,F,A‘?
6 | 6.061 1.620 0.975 0.499 0.957 0.734 0.6515
7 | 1.202 0.728 0.677 0.320 0.554 0.463 0.436
8 | 0.400 0.318 0.300 0.180 0.279 0.250 0.243
9| 0.126 0.115 0.110 0.0799 | 0.109 | 0.1035 | 0.103
10 | 0.0245 0.0239 0.0235 0.0200 | 0.0236 | 0.0233 | 0.0233
9 | 4.167 1.475 1.464 0.467 0.882 0.7355 0.602
10| 1.523 0.872 0.853 0.351 0.621 0.538 0.473
11| 0.720 0.517 0.498 0.251 0.415 | 0.3725 | 0.344
12| 0.360 0.2955 0.282 0.168 0.258 0.239 0.228
13| 0.174 0.1556 0.149 0.102 0.144 0.137 0.134

14| 0.0737 | 0.0699 0.0678 0.0519 | 0.0673 | 0.0655 | 0.0649
15| 0.0227 | 0.0223 0.0220 0.0187 | 0.0220 | 0.0218 | 0.0217
16 | 2.21e-3 | 2.20e-3 2.20e-3 | 2.08e-3 | 2.20e-3 | 2.20e-3 | 2.20e-3

11| 16.338 2.189 2.189 0.553 1.087 0.898 0.648
12| 3.756 1.430 1.429 0.457 0.858 0.729 0.574
13| 1.767 0.965 0.955 0.370 0.663 0.578 0.486
14| 0.984 0.655 0.639 0.292 0.498 0.445 0.394
15| 0.581 0.440 0.424 0.224 0.362 0.331 0.3045
16| 0.348 0.288 0.276 0.1645 0.251 0.234 0.222
17| 0.204 0.180 0.1725 0.114 0.164 0.156 | 0.1515
18| 0.113 0.105 0.101 0.0731 | 0.0988 | 0.0955 | 0.0939

191 0.0558 0.0536 0.0522 0.0411 | 0.0520 | 0.0509 | 0.0505
20 | 0.0222 0.0218 0.0215 0.0183 | 0.0215 | 0.0213 | 0.0212
21 |5.01e-3| 4.99e-3 4.96e-3 | 4.57e-3 | 4.97e-3 | 4.96e-3 | 4.96e-3

%%%%%%%%%%%wwwwwwwwwwwwwZ

TABLE IX: Scheme-independent values of B;R ap for 2 <p <5 in the LNN limit (3.21) as functions of r = 5.5 — A,.. For comparison,

we also list the n-loop values B;R ne With 2 <n <5, where B;R ne With n =3, 4, 5 are computed in the MS scheme. The notation ae-n
means a X 107",

r ﬂ}R,% ﬂ}R,S(Z ﬂ}RA(Z 5}R,A$ ﬂ?R,AQ ﬂ?R,A;& 5}R,A;’i
2.8| 8.100 1.918 1.913 0.518 1.004 0.851 0.583
3.0 3.333 1.376 1.379 0.444 0.830 0.717 0.535
3.2 1.856 1.006 1.003 0.376 0.676 0.596 0.4755
3.4 1.153 | 0.7395 0.729 0.314 0.542 0.486 0.410
3.6 0.752 0.542 0.527 0.257 0.426 0.388 0.342
3.8 0.500 0.393 0.378 0.2055 0.327 0.303 0.276
4.0| 0.333 0.279 0.267 0.160 0.243 0.229 0.214
4.2] 0.219 0.193 0.184 0.120 0.174 0.166 0.159
4.4] 0.139 0.128 0.122 0.0860 0.119 0.115 0.112
4.6| 0.0837 | 0.0792 | 0.0766 0.0576 0.0756 0.0737 0.0726
4.8] 0.0460 | 0.0445 | 0.0435 0.0348 0.0433 0.0426 0.0423
5.0 0.0215 | 0.0212 | 0.0208 0.0178 0.0209 0.0207 0.0206
5.2(0.714e-2|0.710e-2| 0.706e-2 | 0.640e-2 | 0.707e-2 | 0.704e-2 | 0.704e-3
5.4(0.737e-3|0.736e-3|0.7356e-3[0.7111e-3|0.7358e-3 [0.7355e-3|0.7355e-3
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TABLE X: Values of the IR zero {1 g ne of the B¢ ¢ function in the LNN limit for 2 < n < 5 and r € I,.. Notation u (unphysical) means
that there is no physical IR zero &1 5¢ of the 5-loop beta function.

r | &rr2e | §1r3¢ | S1ra0 | S1R 50
2.8 28.274 | 3.573 | 3.323 u

3.0 12.566 | 2.938 | 2.868
3.2| 7.606 | 2.458 | 2.494
3.4| 5.174 | 2.076 | 2.168
3.6 3.731 | 1.759 | 1.873
3.8| 2.774 | 1.489 | 1.601
4.0( 2.095 1.252 1.349
4.2 1.586 1.041 1.115 u

4.4 1.192 | 0.8490 | 0.9003 | 1.0353
4.6] 0.8767 | 0.6725 | 0.7038 | 0.7439
4.8] 0.6195 | 0.5083 | 0.5244 | 0.5364
5.0( 0.4054 | 0.3538 | 0.3603 | 0.3630
5.21 0.2244 | 0.2074 | 0.2089 | 0.2093
5.410.06943(0.06769 |0.06775 |0.06776

£ £ g 28 & €

TABLE XI: Values of TN with 1 < p <4 for No =2, 3, 4 and R = F, as functions of Ny € I;pz, together with arg 20 and MS

values of n-loop arg ne with 3 <n <4 from [19], for comparison.

Nc|Ny|arr2e|OrR3e|QrRae |OUR,A RA2 |OIR,A3 | OIR,AY
6 | 11.42]1.645|2.395| 0.941 | 1.098 | 1.979 | 1.951
71 283 | 1.05 | 1.21 | 0.753 | 0.853 | 1.305 | 1.293
1.26 | 0.688 | 0.760 | 0.565 | 0.621 |0.8115| 0.808
9 10.595|0.418 | 0.444 | 0.377 | 0.402 | 0.458 | 0.457
10| 0.231 | 0.196 | 0.200 | 0.188 | 0.1945 | 0.202 | 0.2015
9| 5.24 | 1.028 | 1.072 | 0.587 | 0.712 1.19 1.26
10| 2.21 [ 0.764 | 0.815 | 0.509 | 0.603 | 0.913 | 0.952
11| 1.23 [ 0.578 | 0.626 | 0.431 | 0.498 | 0.686 | 0.706
121 0.754 | 0.435 | 0.470 | 0.352 | 0.397 | 0.500 | 0.509
1310.468 | 0.317 | 0.337 | 0.274 | 0.301 | 0.350 | 0.353
14| 0.278 | 0.215 | 0.224 | 0.196 | 0.210 | 0.227 | 0.228
1510.143 | 0.123 | 0.126 | 0.117 | 0.122 | 0.126 | 0.126
16 10.0416{0.0397{0.0398| 0.0391 | 0.0397 | 0.0398 | 0.0398
11| 14.00 | 0.972 | 0.943 | 0.474 | 0.592 | 1.042 | 1.1475
12| 3.54 | 0.754 | 0.759 | 0.431 | 0.528 | 0.867 | 0.939
13| 1.85 [0.6035| 0.628 | 0.388 | 0.467 | 0.713 |0.7605
14| 1.16 | 0.489 | 0.521 | 0.345 | 0.407 | 0.580 | 0.610
151 0.783 | 0.397 | 0.428 [ 0.3015| 0.349 | 0.465 | 0.483
16 | 0.546 | 0.320 | 0.345 | 0.258 | 0.294 | 0.367 | 0.376
1710.384 | 0.254 | 0.271 | 0.215 | 0.240 | 0.282 | 0.2865
18 1 0.266 | 0.194 | 0.205 | 0.172 | 0.188 | 0.210 | 0.211
191 0.175 | 0.140 | 0.145 | 0.129 | 0.138 | 0.147 | 0.148
20| 0.105 | 0.091 | 0.092 | 0.0861 {0.09005| 0.0928 | 0.0929
2110.0472| 0.044 | 0.044 | 0.0431 {0.04405| 0.0444 | 0.0444
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