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We study a vectorial asymptotically free gauge theory, with gauge group G and Nf massless
fermions in a representation R of this group, that exhibits an infrared (IR) zero in its beta function,
β, at the coupling α = αIR in the non-Abelian Coulomb phase. For general G and R, we calculate
the scheme-independent series expansions of (i) the anomalous dimension of the fermion bilinear,
γψ̄ψ,IR, to O(∆4

f ) and (ii) the derivative β′ = dβ/dα, to O(∆5
f ), both evaluated at αIR, where ∆f is

an Nf -dependent expansion variable. These are the highest orders to which these expansions have
been calculated. We apply these general results to theories with G = SU(Nc) and R equal to the
fundamental, adjoint, and symmetric and antisymmetric rank-2 tensor representations. It is shown
that for all of these representations, γψ̄ψ,IR, calculated to the order ∆p

f , with 1 ≤ p ≤ 4, increases
monotonically with decreasing Nf and, for fixed Nf , is a monotonically increasing function of p.
Comparisons of our scheme-independent calculations of γψ̄ψ,IR and β′

IR are made with our earlier
higher n-loop values of these quantities, and with lattice measurements. For R = F , we present
results for the limit Nc → ∞ and Nf → ∞ with Nf/Nc fixed. We also present expansions for αIR
calculated to O(∆4

f ).

I. INTRODUCTION

An important advance in the understanding of quantum field theory was the realization that the properties of a
theory depend on the Euclidean energy/momentum scale µ at which they are measured. This is of particular interest
in an asymptotically free non-Abelian gauge theory, in which the running gauge coupling g(µ) and the associated
quantity α(µ) = g(µ)2/(4π) approach zero at large µ in the deep ultraviolet (UV). We shall consider a theory of this
type, with gauge group G and Nf massless fermions ψj , j = 1, ..., Nf , in a representation R of G. The dependence
of α(µ) on µ is described by the renormalization-group (RG) [1] beta function, β = dα(µ)/dt, where dt = d lnµ. The
condition that the theory be asymptotically free implies that Nf be less than a certain value, Nu, given below in Eq.
(2.4). Since α(µ) is small at large µ, one can self-consistently calculate β as a power series in α(µ). As µ decreases
from large values in the UV to small values in the infrared (IR), α(µ) increases. A situation of special interest occurs if
the beta function has a zero at some value away from the origin. For a given G and R, this can happen for sufficiently
large Nf , while still in the asymptotically free regime. In this case, as µ decreases from large values in the UV toward
µ = 0 in the IR, the coupling increases, but approaches the value of α at this zero in the beta function, which is thus
denoted αIR. Since β = 0 at α = αIR, the resultant theory in this IR limit is scale-invariant, and generically also
conformally invariant [2, 3]. A fundamental question concerns the properties of the interacting theory at such an IR
fixed point (IRFP) of the renormalization group. There is convincing evidence that if αIR is small enough, then the
IR theory is in a (deconfined) non-Abelian Coulomb phase (NACP), also called the conformal window [4]. In terms of
Nf , this phase occurs if Nf is in the interval Nf,cr < Nf < Nu, where Nu and Nf,cr depend on G and R. Here, Nf,cr
denotes the value of Nf below which the running α(µ) becomes large enough to cause spontaneous chiral symmetry
breaking and dynamical fermion mass generation.
Physical quantities in the IR-limit theory at αIR cannot depend on the scheme used for the regularization and

subtraction procedure in renormalization. In conventional computations of these quantities, first, one expresses them
as series expansions in powers of α, calculated to n-loop order; second, one computes the IR zero of the beta function
at the n-loop (nℓ) level, denoted αIR,nℓ; and third, one sets α = αIR,nℓ in the series expansion for the given quantity
to obtain its value at the IR zero of the beta function to this n-loop order. However, these conventional series
expansions in powers of α, calculated to a finite order, are scheme-dependent beyond the leading one or two terms.
Specifically, the terms in the beta function are scheme-dependent at loop order ℓ ≥ 3 and the terms in an anomalous
dimension are scheme-dependent at loop order ℓ ≥ 2 [5]. Indeed, as is well-known, the presence of scheme-dependence
in higher-order perturbative calculations is a general property in quantum field theory.
It is therefore of great value to use a complementary approach in which one expresses these physical quantities

at αIR as an expansion in powers of a variable such that, at every order in this expansion, the result is scheme-
independent. A very important property is that one can recast the expressions for physical quantities in a manner
that is scheme-independent. A crucial point here is that, for a given gauge group G and fermion representation R,
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as Nf (formally generalized from non-negative integers to the real numbers) approaches the upper limit allowed by
asymptotic freedom, denoted Nu (given by Eq. (2.4) below), the resultant value of αIR approaches zero. This means
that one can equivalently express a physical quantity in a scheme-independent manner as a series in powers of the
variable

∆f = Nu −Nf =
11CA
4Tf

−Nf , (1.1)

where CA is the quadratic Casimir invariant for the adjoint representation, and Tf is the trace invariant for the
fermion representation R [6]. Here, αIR → 0 ⇐⇒ ∆f → 0. Hence, for Nf less than, but close to Nu, this expansion
variable ∆f is reasonably small, and one can envision reliable perturbative calculations of physical quantities at this
IR fixed point in powers of ∆f . Following the original calculations of the one- and two-loop coefficients of the beta
function [7]-[9], some early work on this was reported in [10, 11].
In this paper we consider a vectorial, asymptotically free gauge theory and present scheme-independent calculations,

for a general gauge group G and fermion representation R, of two physical quantities in the IR theory at αIR of
considerable importance, namely (i) the anomalous dimension, denoted γψ̄ψ,IR, of the (gauge-invariant) fermion

bilinear ψ̄ψ =
∑Nf

j=1 ψ̄jψj to O(∆
4
f ) and (ii) the derivative β′

IR = dβ/dα to O(∆5
f ), both evaluated at α = αIR. These

are the highest orders in powers of ∆f to which these quantities have been calculated. We give explicit expressions
for these quantities in the special cases where G = SU(Nc) and the fermion representation R is the fundamental
(F ), adjoint (adj), and symmetric and antisymmetric rank-2 tensors, (S2, A2). Our results extend our previous
scheme-independent calculations of γψ̄ψ,IR to O(∆3

f ) in [12] and of the derivative β′
IR to O(∆4

f ) in [13] for general G

and R, and our scheme-independent calculation of γψ̄ψ,IR to O(∆4
f ) for G = SU(3) and R = F in [14] (see also [15]).

A brief report on some of our results was given in [16].
Scheme-independent series expansions of γψ̄ψ,IR and β′

IR can be written as

γψ̄ψ,IR =

∞
∑

j=1

κj ∆
j
f (1.2)

and

β′

IR =

∞
∑

j=1

dj ∆
j
f , (1.3)

where d1 = 0 for all G and R [12–14]. In general, the calculation of the coefficient κj in Eq. (1.2) requires, as inputs,
the values of the bℓ for 1 ≤ ℓ ≤ j+1 and the cℓ for 1 ≤ ℓ ≤ j. The calculation of the coefficient dj in Eq. (1.3) requires,
as inputs the values of the bℓ for 1 ≤ ℓ ≤ j. We refer the reader to [12] and [13] for discussions of the procedure for
calculating the coefficients κj and dj . We denote the truncation of these series to maximal power j = p as γψ̄ψ,IR,∆p

f

and β′

IR,∆p

f

, respectively. Where it is necessary for clarity, we will also indicate the fermion representation R in the

subscript.
Our main new results here include the general expressions, for arbitrary gauge group G and fermion representation

R, for the coefficient, κ4 in Eq. (3.5) below, and for the coefficient d5, given in Eq. (4.9) below, as well as reductions
of these formulas for special cases and, for R = F , calculations in the LNN limit (3.21). As will be discussed
further below, the derivative β′

IR is equivalent to the anomalous dimension of the non-Abelian field strength squared,
Tr(FµνF

µν). Our present calculations make use of the newly computed five-loop coefficient in the beta function for
this gauge theory for general G and R in [17], as our work in [14, 15] made use of the calculation of this five-loop
coefficient for the case G = SU(3) and R = F in [18].
In addition to being of interest and value in their own right, our new scheme-independent calculations, performed

to the highest order yet achieved, are useful in several ways. First, we will compare our results for γψ̄ψ,IR and β′
IR

for various G and R with the values that we obtained at comparable order with the conventional n-loop approach in
[19]-[21]. Our new results have the merit of being scheme-independent at each order in ∆f , in contrast to scheme-
dependent series expansions of γψ̄ψ,IR and β′

IR in powers of the IR coupling. Second, there is, at present, an intensive
program to study this IR behavior on the lattice [22]. Thus, it is of considerable interest to compare our scheme-
independent results for γψ̄ψ,IR for various theories with values measured in lattice simulations of these theories. We
have done this in [13, 14, 16] (as well as in our work on conventional n-loop calculations [15, 19]), and we will expand
upon this comparison here. Third, we believe that our scheme-independent expansions for these physical quantities
are of interest in the context of the great current resurgence of research activity on conformal field theories (CFT).
Much of this current activity makes use of operator-product expansions and the associated bootstrap approach [23].
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Our method of scheme-independent series expansions for physical quantities at an IR fixed point is complementary
to this bootstrap approach in yielding information about a conformal field theory.
Our calculations rely on αIR being an exact zero of the beta function and thus an exact IR fixed point of the

renormalization group, and this property holds in the non-Abelian Couloumb phase (conformal window). In this
phase, the chiral symmetry associated with the massless fermions is preserved in the presence of the gauge interaction.
However, there has also been interest in vectorial asymptotically free gauge theories that exhibit quasi-conformal
behavior associated with an approximate IRFP in the phase with broken chiral symmetry, which could feature a
substantial value of an effective γψ̄ψ,IR ∼ O(1) [24]. Our scheme-independent calculations are also relevant to this

area of research in two ways: (i) if Nf <∼ Nf,cr, then the effective values of quantities such as γψ̄ψ,IR may be close to
the values calculated via the ∆f expansion from within the NACP; (ii) combining our calculations of γψ̄ψ,IR with an
upper bound on this anomalous dimension from conformal invariance and an assumption that this bound is saturated
as Nf ց Nf,cr yields an estimate of the value of Nf,cr. This is useful, since the value of Nf,cr for a given G and R is
not known exactly at present and is the subject of current investigation, including lattice studies, as discussed further
below.
Although most of our paper deals with new scheme-independent results for physical quantities, one of the ouputs

of our calculations is a new type of series expansion for a scheme-dependent quantity, namely αIR. The conventional
procedure for calculating the IR zero of a beta function at the n-loop order, which we have applied in earlier work
to four-loop order for arbitrary G and R [19]-[21] (see also [25]) is to examine the n-loop beta function, which has
the form of α2 times a polynomial of degree n − 1 in α, and then determine the n-loop value αIR,nℓ as the (real,
positive) root of this polynomial closest to the origin. However, in [15], we investigated the five-loop beta function for
G = SU(3) and R = F , as calculated in the standard MS scheme, and found that, over a substantial range of values
of Nf in the non-Abelian Coulomb phase, it does not have any positive real root. We were able to circumvent this
problem in [15] by the use of Padé approximants, but nevertheless, it is a complication for this conventional approach
to calculating αIR. The new calculation of αIR as an expansion in powers of ∆f up to O(∆4

f ) for general G and R
that we present here has the advantage that it always yields a physical value, in contrast to the situation with the
n-loop beta function.
The paper is organized as follows. Some relevant background and methods are discussed in Section II. We present

our calculation of κ4 in the scheme-independent expansion of γψ̄ψ,IR for general G and R in Section III, together with
evaluations forG = SU(Nc) and R = F, adj, S2, and A2. These are compared with values from n-loop calculations and
with lattice measurements. In this section we also present results for case R = F in the limit Nc → ∞, Nf → ∞, with
Nf/Nc fixed, which we call the LNN limit. In Section IV we present our calculation of the coefficient d5 in the scheme-
independent expansion of β′

IR for general G and R, with evaluations for the above-mentioned specific representations.
Section V gives an analysis of the five-loop rescaled beta function in the LNN limit and a determination of the interval
over which it exhibits a physical IR zero. Section VI is devoted to the calculation of the coefficients in an expansion
of αIR in powers of ∆f up to O(∆4

f ). Our conclusions are given in Section VII, and some auxiliary formulas are listed
in an appendix.

II. BACKGROUND AND METHODS

In this section we review some background and methods relevant for our calculations. The series expansion of β in
powers of α is

β = −2α
∞
∑

ℓ=1

bℓ

( α

4π

)ℓ

. (2.1)

where bℓ is the ℓ-loop coefficient. For a general operator O, we denote the full scaling dimension as DO and its
free-field value as DO,free. The anomalous dimension of this operator, denoted γO, is defined via the relation [26]

DO = DO,free − γO . (2.2)

An operator of particular interest is the (gauge-invariant) fermion bilinear, ψ̄ψ. The expansion of the anomalous
dimension of this operator, γψ̄ψ, in powers of α is

γψ̄ψ =

∞
∑

ℓ=1

cℓ

( α

4π

)ℓ

, (2.3)

where cℓ is the ℓ-loop coefficient. As noted above, the coefficients b1, b2, and c1 are scheme-independent, while the bℓ
with ℓ ≥ 3 and the cℓ with ℓ ≥ 2 are scheme-dependent [5]. For a general gauge group G and fermion representation
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R, the coefficients b1 and b2 were calculated in [7] and [8], and b3 and b4 were calculated in [27] and [28] (and checked
in [29]) in the commonly used MS scheme [30]. For G = SU(3) and R = F , b5 was calculated in [18] and recently,
an impressive calculation of b5 for general gauge group G and fermion representation R was presented in [17], again
in the MS scheme. We also make use of the cℓ up to loop order ℓ = 4, calculated in [31]. Although we use these
coefficients as calculated in the MS scheme below, we emphasize that the main results of this paper are calculations
of the quantities κ4 and d5 which, like all of the κj and dj , are scheme-independent. We denote the n-loop β, β′,
and γψ̄ψ as βnℓ, β

′
nℓ, and γψ̄ψ,nℓ. As discussed above, we denote the IR zero of βnℓ as αIR,nℓ, and the corresponding

evaluations of β′

nℓ and γψ̄ψ,nℓ at αIR,nℓ as β
′

IR,nℓ and γψ̄ψ,IR,nℓ. The symbols αIR, γψ̄ψ,IR, and β
′
IR refer to the exact

values of these quantities.
For a given G and R, as Nf increases, b1 decreases through positive values and vanishes with sign reversal at

Nf = Nu, with

Nu =
11CA
4Tf

, (2.4)

where CA and Tf are group invariants [6, 32]. Hence, the asymptotic freedom condition yields the upper bound
Nf < Nu.
There is a range of Nf < Nu where b2 < 0, so the two-loop beta function has an IR zero, at the value

αIR,2ℓ = −
4πb1
b2

. (2.5)

The n-loop beta function has a double UV zero at α = 0 and n − 1 zeros away from the origin. Among the latter
zeros of the beta function, the smallest (real, positive) zero, if there is such a zero, is the physical IR zero, αIR,nℓ, of
βnℓ. As Nf decreases below Nu, b2 passes through zero to positive values as Nf decreases through

Nℓ =
17C2

A

2Tf(5CA + 3Cf )
. (2.6)

Hence, with Nf formally extended from nonnegative integers to nonnegative real numbers [32], β2ℓ has an IR zero
(IRZ) for Nf in the interval

IIRZ : Nℓ < Nf < Nu . (2.7)

Thus, Nℓ is the lower (ℓ) end of this interval [33]
As Nf decreases in this interval, αIR,2ℓ increases. Therefore, in order to investigate the IR zero of the beta function

for Nf toward the middle and lower part of IIRZ with reasonable accuracy, one requires higher-loop calculations.
These were performed in [34, 35], [19]-[21], [25],[15] for αIR,nℓ and for the anomalous dimension of the fermion
bilinear operator (see also [36, 37]). Since the bℓ with ℓ ≥ 3 are scheme-dependent, it is necessary to determine the
degree of sensitivity of the value obtained for αIR,nℓ for n ≥ 3 to the scheme used for the calculation. This was done
in [38]-[41].
The nonanomalous global flavor symmetry of the theory is

Gfl = SU(Nf )L ⊗ SU(Nf )R ⊗U(1)V . (2.8)

This Gfl symmetry is preserved in the (deconfined) non-Abelian Coulomb phase. As in [12–16], we focus on this
phase in the present work, since both the expansion in a small αIR and the scheme-independent expansion in powers
of ∆f start from the upper end of the interval IIRZ in this phase. In contrast, in the phase with confinement and
spontaneous chiral symmetry breaking, the gauge interaction produces a bilinear fermion condensate, 〈ψ̄ψ〉, and this
breaks Gfl to SU(Nf )V ⊗U(1)V , where SU(Nf )V is the diagonal subgroup of SU(Nf )L ⊗ SU(Nf )R.

We will consider the flavor-nonsinglet (fns) and flavor-singlet (fs) bilinear fermion operators
∑Nf

j,k=1 ψ̄j(Ta)jkψk

and
∑Nf

j=1 ψ̄jψj , where here Ta with a = 1, ..., N2
f − 1 is an generator of the global flavor group SU(Nf ). We will

usually suppress the explicit flavor indices and thus write these operators as ψ̄Taψ and ψ̄ψ. These have the same
anomalous dimension (e.g., [42]), which we denote simply as the anomalous dimension for the flavor-singlet operator,
γψ̄ψ. In vectorial gauge theories of the type considered here, these fermion bilinear operators are gauge-invariant, and
hence the anomalous dimension γψ̄ψ and its IR value, γψ̄ψ,IR, are physical. (In contrast, in a chiral gauge theory,
fermion bilinears are generically not gauge-invariant, and hence neither are their anomalous dimensions.)
Since αIR vanishes (linearly) with ∆f as ∆f → 0, we can express it as a series expansion in this variable, ∆f . We

thus write

αIR ≡ 4πaIR = 4π

∞
∑

j=1

aj∆
j
f . (2.9)
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The calculation of the aj requires, as input, the bℓ with 1 ≤ ℓ ≤ j + 1 [12, 13].
A basic question concerns the part of the interval IIRZ in which the series expansions for γψ̄ψ,IR and β′

IR in Eqs.
(1.2) and (1.3) are reliable. We analyzed this question in [12–14, 16] and concluded that these expansions for γIR and
β′
IR should be reasonably reliable throughout much of the interval IIRZ and non-Abelian Coulomb phase. We will use

our higher-order calculations in this paper to extend this analysis here. We recall that the properties of the theory
change qualitatively as Nf decreases through the value Nf,cr and spontaneous chiral symmetry breaking occurs, with
the fermions gaining dynamical masses. The (chirally symmetric) non-Abelian Coulomb phase with Nf,cr < Nf < Nu
is clearly qualitatively different from the confined phase with spontaneous chiral symmetry breaking at smaller Nf
below Nf,cr. Therefore, one does not, in general, expect the small-∆f series expansion to hold below Nf,cr. Estimating
the range of applicability of this expansion is thus connected with estimating the value of Nf,cr. For general G and R,
as Nf , formally continued from the nonnegative integers to the nonnegative real numbers, decreases from the upper
end of the interval IIRZ at Nu to the lower end of this interval at Nf = Nℓ, ∆f increases from 0 to the maximal value

(∆f )max = Nu −Nℓ

=
3CA(7CA + 11Cf)

4Tf(5CA + 3Cf )
for Nf ∈ IIRZ . (2.10)

Recall that for a function f(z) that is analytic about z = 0 and has a Taylor series expansion

f(z) =
∞
∑

j=1

fjz
j , (2.11)

the radius of convergence of this series, zc, can be determined by the ratio test

zc = lim
j→∞

|fj−1|

|fj |
. (2.12)

Of course, we cannot apply the full ratio test here, since we have only calculated the κj and dj to finite order. However,
we can get a rough measure of the range of applicability of the series expansions in ∆f (and also ∆r in the LNN limit
[21] discussed below) by computing the ratios κj−1/κj and dj−1/dj for the values of j for which we have calculated
these coefficients.
The series expansion (1.2) for γIR starts at ∆f = 0, i.e., at the upper end of the non-Abelian Coulomb phase, and

extends downward through this phase. Given that the theory at αIR in this phase is conformal, there is an upper
bound from conformal invariance, namely [44]

γψ̄ψ,IR ≤ 2 . (2.13)

We have used this in our earlier work [12–16, 19] and we will apply it with our higher-order calculations here. As
discussed in [19], in the phase with spontaneous chiral symmetry breaking (SχSB), there is a similar upper bound,
γψ̄ψ,IR < 2. This follows from the requirement that if m(k) is the momentum-dependent running dynamical mass
generated in association with the SχSB, then limk→∞m(k) = 0 (see Eqs. (4.1)-(4.2) of [19]). Thus, if the approximate
calculation of the anomalous dimension of a given quantity at a fixed value of ∆f , computed up to order ∆p

f , yields
a value greater than 2, then we can infer that the perturbative calculation is not applicable at this value of ∆f or
equivalently, Nf .
In particular, this can give information on the extent of the non-Abelian Coulomb phase and the value of Nf,cr.

The application of this bound is particularly powerful in the context of our present scheme-independent calculations
because we find that the κj in Eq. (1.2) are positive for all of the representations considered here, and hence, for a
given p, γIR,∆p

f
is a monotonically increasing function of ∆f or equivalently it increases monotonically as Nf decreases

from its upper limit, Nu. If one assumes that γIR saturates its upper bound, (2.13) and if a calculation of γIR is
reliable in the regime where it is approaching 2 from below, then one can, in principle, determine the value of Nf,cr,
where γIR reaches this upper bound after approaching it from below. In this context, it should be mentioned that in
a supersymmetric (vectorial) gauge theory (SGT) with Nf pairs of massless chiral superfields transforming according
the representations R and R̄ of a gauge group G, the exact expression for γIR is known [45, 46], and (i) it increases
monotonically with decreasing Nf in the NACP; and (ii) it saturates its upper bound (which, in the SGT case is
γIR,SGT ≤ 1) at the lower end of the non-Abelian Coulomb phase. Specifically, in this supersymmetric gauge theory,
the upper and lower ends of the NACP occur at [32]

Nu,SGT =
3CA
2Tf

, (2.14)
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and

Nℓ,SGT =
3CA
4Tf

=
Nu
2

, (2.15)

and

γψ̄ψ,IR,SGT =
3CA − 2TfNf

2TfNf
=
Nu
Nf

− 1

=

2Tf

3CA
∆f

1−
2Tf

3CA
∆f

. (2.16)

Thus, γψ̄ψ,IR,SGT increases from 0 to 1 as Nf decreases from Nu,SGT to Nℓ,SGT . However, it is not known if this
saturation occurs in the non-supersymmetric case. In practice, we are only able to apply this test in an approximate
manner because for a given G and R, as Nf decreases toward the lower part of IIRZ , the ratio test already shows
that higher-order terms in the ∆f expansion are becoming increasingly non-negligible, so that the truncation of the
infinite series (1.2) to maximal power p = 4 involves an increasingly great uncertainty, as does an extrapolation to
p = ∞.
For some perspective, we note that in order to asses the accuracy of the ∆f expansion, the coefficients κj,SGT

were calculated for j = 1, 2 in [12] and were found to be in perfect agreement with the corresponding Taylor series
expansion of the exact expression (2.16). This check was carried to one higher order in [16] for the case G = SU(Nc)
and R = F with a calculation of γIR,SGT,∆3

f
, and again, perfect agreement was found with the exact result. This

agreement explicitly demonstrated the scheme independence of the κj,SGT , since the calculations were carried out

using inputs computed in the DR scheme, while (2.16) was derived in the NSVZ scheme [45]. Furthermore, as a
consequence of electric-magnetic duality [46], as Nf ց Nℓ,SGT in the non-Abelian Coulomb phase, the physics is
described by a magnetic theory with coupling strength going to zero, or equivalently, by an electric theory with
divergent αIR. Therefore, this perfect agreement, order-by-order, between the κj,SGT and the expansion of the exact
expression (2.16) for γIR,SGT in powers of ∆f , showed that the ∆f expansion in this supersymmetric gauge theory is
able to treat situations with strong, as well as weak, coupling. This could not be done with conventional perturbative
series expansions in powers of α [36, 37].

III. CALCULATION OF γψ̄ψ,IR TO O(∆4
f )

A. General G and R

The coefficients κj in the scheme-independent expansion of γψ̄ψ,IR in powers of ∆f , Eq. (1.2), contain important
information about the theory. For a general asymptotically free vectorial gauge theory with gauge group G and Nf
massless fermions in a representation R, the coefficients κj were given in [12] up to order j = 3, yielding the expansion
of γψ̄ψ,IR to order ∆3

f . It is convenient to define

D = 7CA + 11Cf , (3.1)

since this factor occurs repeatedly in denominators of various expressions. For reference, we list the κj for 1 ≤ j ≤ 3
below:

κ1 =
8CfTf
CAD

, (3.2)

κ2 =
4CfT

2
f (5CA + 88Cf )(7CA + 4Cf)

3C2
AD

3
, (3.3)

and

κ3 =
4CfTf
34C4

AD
5

[

3CAT
2
f

(

− 18473C4
A + 144004C3

ACf + 650896C2
AC

2
f + 356928CAC

3
f + 569184C4

f

)
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− 2560T 2
fD

dabcdA dabcdA

dA
+ 45056CATfD

dabcdR dabcdA

dA
− 170368C2

AD
dabcdR dabcdR

dA

+ 33 · 210D

(

2T 2
f

dabcdA dabcdA

dA
− 13CATf

dabcdR dabcdA

dA
+ 11C2

A

dabcdR dabcdR

dA

)

ζ3

]

. (3.4)

Here, ζs =
∑∞

n=1 n
−s is the Riemann zeta function, the quantities CA, Cf , and Tf are group invariants, the contrac-

tions dabcdA dabcdA , dabcdR dabcdA , dabcdR dabcdR are additional group-theoretic quantities given in [28], and dA is the dimension
of the adjoint representation of G. In [12, 13], the expression for κ3 was given with terms written in order of descending
powers of CA. It is also useful to express this coefficient κ3 in an equivalent form that renders certain factors of D
explicit and shows the simple factorization of terms multiplying ζ3, and we have done this in Eq. (3.4).
Our new result here for κ4 for a general gauge group G and fermion representation R is

κ4 =
T 2
f

35C5
AD

7

[

CACfT
2
f

(

19515671C6
A− 131455044C5

ACf + 1289299872C4
AC

2
f + 2660221312C3

AC
3
f

+ 1058481072C2
AC

4
f + 6953709312CAC

5
f + 1275715584C6

f

)

+ 210CfT
2
fD

(

5789C2
A − 4168CACf − 6820C2

f

)

dabcdA dabcdA

dA

− 210CACfTfD

(

41671C2
A − 125477CACf − 53240C2

f

)

dabcdR dabcdA

dA

− 28 · 112C2
ACfD(2569C2

A + 18604CACf − 7964C2
f

)

dabcdR dabcdR

dA

− 214 · 3CAT
2
fD

3 d
abcd
R dabcdA

dR
+ 213 · 33C2

ATfD
3 d

abcd
R dabcdR

dR

+ 28D

[

− 3CACfT
2
fD

(

4991C4
A − 17606C3

ACf + 33240C2
AC

2
f − 30672CAC

3
f + 9504C4

f

)

− 24CfT
2
f

dabcdA dabcdA

dA

(

17206C2
A − 60511CACf − 45012C2

f

)

+ 40CACfTf
dabcdR dabcdA

dA

(

35168C2
A − 154253CACf − 88572C2

f

)

− 88C2
ACf

dabcdR dabcdR

dA

(

973C2
A − 93412CACf − 56628C2

f

)

+ 1440CAT
2
fD

2 d
abcd
R dabcdA

dR
− 7920C2

ATfD
2 d

abcd
R dabcdR

dR

]

ζ3

+
4505600CACfD

2

dA

[

− 4T 2
f d

abcd
A dabcdA + 2Tfd

abcd
R dabcdA (10CA + 3Cf ) + 11CAd

abcd
R dabcdR (CA − 3Cf )

]

ζ5

]

. (3.5)

Here, dR is the dimension of the fermion representation R. As before, we have indicated the simple factors in the
prefactor and, for sufficiently simple cases, also factorizations of numbers in numerator terms. We will follow the same
format for indicating numerical factorizations below. We proceed to evaluate this general expression for the gauge
group G = SU(Nc) and several specific fermion representations R, namely the fundamental, adjoint, and symmetric
and antisymmetric rank-2 tensor. As stated in the introduction, we will use the abbreviations F , adj, S2, and A2 to
refer to these representations. It is also worthwhile to evaluate our general formulas for other gauge groups and their
representations, including orthogonal, symplectic, and exceptional groups. We will report these evaluations for other
groups and their representations elsewhere. There has, indeed, been interest in conformal phases for theories with
these other gauge groups [47].
The coefficients κ1 and κ2 are manifestly positive for all G and R. For G = SU(Nc) with all physical Nc, and

for representations R = F, adj, S2, we have found that κ3 and κ4 are also positive [12]-[16]. As one of the results
in the present paper, we generalize this further to include R = A2. That is, for all physical Nc and for all of these
representations, we find that κj > 0 for j = 3, 4 as well as the manifestly positive cases j = 1, 2. Thus, extending our
previous discussion in [12]-[16], the property that, for all of these representations R, κj > 0 for 1 ≤ j ≤ 4 and for all
Nc implies two important monotonicity results: (i) for these R, and with a fixed p in the interval 1 ≤ p ≤ 4, γψ̄ψ,IR,∆p

f

is a monotonically increasing function of ∆f , i.e., it increases monotonically with decreasing Nf ; and (ii) for these R,
and with a fixed Nf ∈ IIRZ , γψ̄ψ,IR,∆p

f
is a monotonically increasing function of p in the range 1 ≤ p ≤ 4. In addition

to the manifestly positive κ1 and κ2, a plausible conjecture is that, for these R, κj > 0 for all j ≥ 3. Assuming that
this conjecture is valid, then three consequences are that for these representations R, (iii) for fixed Nf , γψ̄ψ,IR,∆p

f
is

a monotonically increasing function of p for all p; (iv) γψ̄ψ,IR,∆p

f
is a monotonically increasing function of ∆f , i.e. it

increases with decreasing Nf , for all p; and hence (v) (assuming that the infinite series (1.2) converges), the quantity
γψ̄ψ,IR defined by this infinite series, and equivalent to limp→∞ γψ̄ψ,IR,∆p

f
, is a monotonically increasing function of

∆f , i.e., it increases monotonically with decreasing Nf .
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B. γψ̄ψ,IR,∆4
f
for G = SU(Nc) and R = F

An important special case is G = SU(Nc) with R being the fundamental representation. For this case, the general
expression for the interval IIRZ , Eq. (2.7), is [32]

IIRZ :
34N3

c

13N2
c − 3

< Nf <
11Nc
2

for R = F . (3.6)

The factor D in Eq. (3.1) has the explicit form

D =
25N2

c − 11

2Nc
for R = fund. (3.7)

The general results for κp with 1 ≤ p ≤ 3 in (3.2)-(3.4) from [12] take the following forms given in [13]:

κ1,F =
4(N2

c − 1)

Nc(25N2
c − 11)

(3.8)

κ2,F =
4(N2

c − 1)(9N2
c − 2)(49N2

c − 44)

3N2
c (25N

2
c − 11)3

(3.9)

and

κ3,F =
8(N2

c − 1)

33N3
c (25N

2
c − 11)5

[

(

274243N8
c − 455426N6

c − 114080N4
c + 47344N2

c + 35574
)

− 4224N2
c (4N

2
c − 11)(25N2

c − 11)ζ3

]

. (3.10)

For κ4,F , we have [16]

κ4,F =
4(N2

c − 1)

34N4
c (25N

2
c − 11)7

[

(

263345440N12
c − 673169750N10

c + 256923326N8
c

− 290027700N6
c + 557945201N4

c − 208345544N2
c + 6644352

)

+ 384(25N2
c − 11)

(

4400N10
c − 123201N8

c + 480349N6
c − 486126N4

c + 84051N2
c + 1089

)

ζ3

+ 211200N2
c (25N

2
c − 11)2(N6

c + 3N4
c − 16N2

c + 22)ζ5

]

. (3.11)

We have checked that when we substitute the value Nc = 3 in our expression for κ4,F in Eq. (3.11), the result agrees
with our previous calculation of κ4,F for this case in Eq. (9) of Ref. [14].
The explicit numerical expressions for the scheme-independent series expansions of γψ̄ψ,IR to order ∆4

f for R = F
and Nc = 2, 3, 4 are as follows:

SU(2) : γψ̄ψ,IR,F,∆4

f
= ∆f

[

0.067416 + (0.73308× 10−2)∆f + (0.60531× 10−3)∆2
f + (1.62662× 10−4)∆3

f

]

(3.12)

SU(3) : γψ̄ψ,IR,F,∆4

f
= ∆f

[

0.049844 + (0.37928× 10−2)∆f + (0.23747× 10−3)∆2
f + (0.36789× 10−4)∆3

f

]

(3.13)

and

SU(4) : γψ̄ψ,IR,F,∆4

f
= ∆f

[

0.038560+ (0.22314× 10−2)∆f + (0.11230× 10−3)∆2
f + (0.126505× 10−4)∆3

f

]

.

(3.14)
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FIG. 1: Plot of γψ̄ψ,IR,F,∆p
f
(labelled as γψ̄ψ,IR on the vertical axis in this and subsequent graphs) for Nc = 2, i.e., G = SU(2),

and 1 ≤ p ≤ 4 as a function of Nf ∈ IIRZ . From bottom to top, the curves (with colors online) refer to γψ̄ψ,IR,F,∆f
(red),

γψ̄ψ,IR,F,∆2
f
(green), γψ̄ψ,IR,F,∆3

f
(blue), and γψ̄ψ,IR,F,∆4

f
(black).

FIG. 2: Plot of γψ̄ψ,IR,F,∆p
f
for Nc = 3 and 1 ≤ p ≤ 4 as a function of Nf ∈ IIRZ . From bottom to top, the curves (with colors

online) refer to γψ̄ψ,IR,F,∆f
(red), γψ̄ψ,IR,F,∆2

f
(green), γψ̄ψ,IR,F,∆3

f
(blue), and γψ̄ψ,IR,F,∆4

f
(black).

In these equations,

∆f =
11Nc
2

−Nf for R = F . (3.15)

Plots of γψ̄ψ,IR,F,∆p

f
for Nc = 2 and Nc = 3 and 1 ≤ p ≤ 4 were given in [16]. These showed the two monotonicity

properties mentioned above. For an extended comparison, we show the plots of γψ̄ψ,IR,F,∆p

f
for 2 ≤ Nc ≤ 4 and

1 ≤ p ≤ 4 in Figs. 1-3.
In Table I we list the values of γψ̄ψ,IR,F,∆p

f
for 1 ≤ p ≤ 4 for the SU(2), SU(3), and SU(4) theories, with Nf in the

respective interval IIRZ for each. For comparison, we also include the values of γψ̄ψ,IR,nℓ obtained with our earlier
n-loop calculations in [19], using series expansions in powers of α evaluated at α = αIR,nℓ for 1 ≤ n ≤ 4 with b3
and b4 and cn, 2 ≤ n ≤ 4 calculated in the MS scheme. (See Table VI in [19] for a list of numerical values of values
of γψ̄ψ,IR,nℓ.) As discussed above, if, for a given Nc and Nf , a calculated value of γψ̄ψ,IR violates the upper bound
γψ̄ψ,IR ≤ 2 in (2.13), this is unphysical (marked with a symbol “u” in Table I) and indicates that the perturbative
calculation is unreliable and hence not applicable for this Nf . In the case of the n-loop values γIR,nℓ, if this occurs
at the two-loop level, it also leads to caution concerning γIR,nℓ for n = 3, 4, and this is similarly indicated with



10

FIG. 3: Plot of γψ̄ψ,IR,F,∆p
f
for Nc = 4 and 1 ≤ p ≤ 4 as a function of Nf ∈ IIRZ . From bottom to top, the curves (with colors

online) refer to γψ̄ψ,IR,F,∆f
(red), γψ̄ψ,IR,F,∆2

f
(green), γψ̄ψ,IR,F,∆3

f
(blue), and γψ̄ψ,IR,F,∆4

f
(black).

a “u”. The computations of γIR,nℓ in [19, 25] made use of the bn and cn up to the n = 4 loop level, where the

scheme-dependent b3, b4, and cn with 2 ≤ n ≤ 4 had been calculated in the widely used MS scheme [27–29, 31]. As we
pointed out in [15], the five-loop beta function in the MS scheme does not exhibit a physical IR zero over a substantial
lower part of IIRZ . We discuss this further below. For compact notation, we will often leave the subscript ψ̄ψ implicit
on these and other quantities and thus write γψ̄ψ,IR ≡ γIR, γψ̄ψ,IR,nℓ ≡ γIR,nℓ, etc. From Eqs. (2.4) and (2.6) it
follows that the respective lower and upper ends of the intervals IIRZ for these theories are (Nu, Nℓ) = (5.55, 11),
(8.05, 16.5), and (10.61, 22) for SU(2), SU(3), and SU(4), and hence the physical intervals IIRZ are 6 ≤ Nf ≤ 10
for SU(2), 9 ≤ Nf ≤ 16 for SU(3), and 11 ≤ Nf ≤ 21 for SU(4).
Since the calculation of κj and the resultant γ

IR,∆j

f
uses information from the (j+1)-loop beta function from (2.1)

and the j-loop expansion of γψ̄ψ in (2.3), it is natural to compare the (SI) γIR,∆p

f
with the (SD) γIR,p′ℓ for p

′ = p and

p′ = p + 1. In the upper and middle part of the interval IIRZ for a given Nc, we find that γIR,∆4

f
is slightly larger

than γIR,4ℓ, with the difference increasing as Nf decreases below Nu, i.e., as ∆f increases.
It is important to assess the range of applicability and reliability of these results from the ∆f expansion. We did

this in [12–14] and extend our analysis here, using our new result for κ4. Following our discussion above on the ratio
test for the determination of the radius of convergence of a Taylor series, the ratios of successive coefficients, κj−1/κj,
give an approximate measure of the range of applicability of the ∆f expansion for γIR. For a given G and R, this
range may be compared with the maximum size of ∆f in the interval IIRZ where the scheme-independent two-loop
beta function β2ℓ has an IR zero. For the present case of G = SU(Nc) and R = F , the general formula (2.10) takes
the form

R = F : (∆f )max =
3Nc(25N

2
c − 11)

2(13N2
c − 3)

. (3.16)

This has the respective values

(∆f )max = 5.45, 8.45, 11.39 for Nc = 2, 3, 4 . (3.17)

We begin by reviewing the SU(3) theory, for which

SU(3) :
κF,1
κ,F,2

= 13.14,
κF,2
κF,3

= 15.97,

κF,3
κF,4

= 6.455 . (3.18)

As discussed in [12–14], these results suggest that for the SU(3) theory with R = F , the ∆f expansion calculated
to this order should be reasonably reliable over a substantial part, including the upper and middle portions, of the
interval IIRZ and the non-Abelian Coulomb phase.
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Using our new results, we now extend this analysis to the SU(2) and SU(4) theories (and will give a further analysis
in the LNN limit of Eq. (3.21)). We find

SU(2) :
κF,1
κ,F,2

= 9.20,
κF,2
κF,3

= 12.11,

κF,3
κF,4

= 3.72 (3.19)

and

SU(4) :
κF,1
κ,F,2

= 17.28,
κF,2
κF,3

= 19.87,

κF,3
κF,4

= 8.88 . (3.20)

Since (∆f )max has the respective values 5.45 and 11.39 for the SU(2) and SU(4) theories, we are led to the same
conclusion for these theories that we reached for the SU(3) theory, namely that the ∆f expansion should be reasonably
reliable over a substantial portion of the respective intervals IIRZ .
As discussed above, another way to assess the range of applicability of the ∆f expansion is to check to see whether

the resultant values of γIR,∆p

f
obey the upper bound γIR ≤ 2 in (2.13). As is evident from Table I, all of our values

of γIR,∆p

f
listed there obey this bound. This again shows the advantages of the scheme-independent ∆f expansion as

a way of calculating γIR to a given order, as compared with the conventional n-loop calculation of γIR,nℓ. As is also
evident from Table I for each of the cases listed there, namely Nc = 2, 3, 4, one finds unphysically large values of
γIR,nℓ for values of Nf in the lower portions of the respective intervals IIRZ . In [19] and later works we explained this
as a consequence of the fact that, for a given G and R, as Nf decreases toward Nℓ in the interval IIRZ , the coupling
αIR increases from weak toward strong coupling. Thus, toward the lower end of the respective intervals IIRZ , the IR
coupling αIR,nℓ become too large for the perturbative n-loop calculations of γIR,nℓ to be applicable. In contrast, the
∆f expansion can be applied over a considerably greater portion of the interval IIRZ to yield results for γIR,∆p

f
that

obey the upper bound (2.13). We will show this further below for the LNN limit (3.21). This also demonstrates that
the ∆f expansion for γIR is able to be used in situations with substantially stronger IR coupling than is the case with
the conventional expansion in powers of this coupling yielding the n-loop value γIR,nℓ.
We proceed to compare our values in Table I with lattice measurements. The SU(3) theory with R = F and

Nf = 12 has been the subject of many lattice measurements. In [14], we compared our results for this theory with
lattice measurements, so we only briefly review that discussion here. We recall that there is not, at present, a consensus
among all lattice groups as to whether this theory is in an IR-conformal phase or is in a chirally broken phase [22].
There is a considerable spread of values of γIR in published papers, including the values (where uncertainties in
the last digits are indicated in parentheses) γIR ∼ 0.414(16) [48], γIR ≃ 0.35 [49], γIR ≃ 0.4 [50], γIR = 0.27(3)

[51], γIR ≃ 0.25 [52] (see also [53]), γIR = 0.235(46) [54], and 0.2 <∼ γIR <
∼ 0.4 [55]. We refer the reader to [22]

and [48]-[55] for discussions of estimates of overall uncertaintites in these measurements. Our value γIR,∆4

f
= 0.338

and our extrapolated value for limp→∞ γIR,∆p

f
= γIR, namely γIR = 0.40, are consistent with this range of lattice

measurements and are somewhat higher than our five-loop value γIR,5ℓ = 0.255 from the conventional α series that
we obtained in [15]. It is hoped that further work by lattice groups will lead to a consensus concerning whether this
theory is IR conformal or not and concerning the value of γIR.
The SU(3) theory with Nf = 10 has been investigated on the lattice in [56], with the result γIR ∼ 1. While our

highest-order n-loop values, namely our four-loop result, γIR,4ℓ = 0.156 [19], and our five-loop result, γIR,5ℓ = 0.211
obtained using Padé methods [15], are smaller than this lattice value, our extrapolated scheme-independent value,
γIR = 0.95± 0.06 [14], is consistent with it.
There have also been a number of lattice studies of the SU(3) theory with Nf = 8 [57–59], which have yielded the

estimate γIR ≃ 1. As is evident from Fig. 2, if we were to continue the curve for γIR,∆4

f
plotted there downward

further to Nf = 8, the resultant value would be compatible with γIR ∼ 1. We note that this theory may well be in
the chirally broken phase, and there is not yet a clear consensus as to whether it is in this phase or possibly near the
lower end of the IR-conformal non-Abelian Coulomb phase. In this context, one may recall that if, for a given G and
R, Nf < Nf,cr, so that there is spontaneous chiral symmetry breaking, then the IR zero of the beta function is only
approximate, since the theory flows away from this value as the fermions gain dynamical mass and are integrated
out, leaving a pure gluonic low-energy effective field theory. For such a theory, the quantity extracted from either
continuum or lattice analyses as γIR is only an effective anomalous dimension that describes the renormalization-
group behavior as the theory is flowing near to the approximate zero of the beta function. A general comment is that
the determination of Nf,cr relies upon effective methods to analyze the lattice data [22]; progress on this continues
[48]-[61].
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Theories with an SU(2) gauge group and Nf = 8 have been of interest in the context of certain ideas for physics
beyond the Standard Model (SM) [62], in which the number of Dirac fermions is Nf = Nwk(Nc + 1) = 8, where
Nwk = 2, corresponding to the SU(2) factor group in the SM and Nc = 3 colors. There have been several lattice of
this SU(2) theory with Nf = 8, including [22, 63, 64]. These are consistent with this theory being IR-conformal, and
the recent study [64] has reported the measurement γIR = 0.15±0.02. For comparison, as listed in Table I, our previous
higher n-loop values were γIR,3ℓ = 0.272 and γIR,4ℓ = 0.204 [19], and our current highest-order scheme-independent
value is γIR,∆4

f
= 0.298. These are somewhat higher than this lattice result.

There have also been a number of lattice studies of the SU(2) theory with Nf = 6 [22, 65–67]. From this work,
it is not yet clear if this theory is IR-conformal or chirally broken. Ref. [66] obtained the range 0.26 < γIR < 0.74,
while Ref. [67] found γIR ≃ 0.275. Our higher-order scheme-independent values, as listed in Table I, in particular,
γIR,∆4

f
= 0.698, are in agreement with the range given in [66] and are somewhat higher than the value from [67].

C. LNN Limit for G = SU(Nc) and R = F

For G = SU(Nc) and R = F , it is of interest to consider the limit

LNN : Nc → ∞ , Nf → ∞

with r ≡
Nf
Nc

fixed and finite

and ξ(µ) ≡ α(µ)Nc is a finite function of µ .

(3.21)

We will use the symbol limLNN for this limit, where “LNN” stands for “large Nc and Nf” with the constraints in
Eq. (3.21) imposed. This is also called the ’t Hooft-Veneziano limit. Anticipating our later discussion of theories
with fermions in two-index representations (adjoint and symmetric and antisymmetric rank-2 tensor), we will use the
symbol limLN , where “LN” stands for “large Nc”, to denote the original ’t Hooft limit

LN : Nc → ∞

with ξ(µ) ≡ α(µ)Nc a finite function of µ

(3.22)

and Nf fixed and finite.
Continuing our discussion of the LNN limit, as relevant to theories with fermions in the fundamental represention,

we define the following quantities in this limit:

ξ = 4πx = lim
LNN

αNc , (3.23)

ru = lim
LNN

Nu
Nc

, (3.24)

and

rℓ = lim
LNN

Nℓ
Nc

, (3.25)

with values

rℓ =
11

2
= 5.5 (3.26)

and

rℓ =
34

13
= 2.615 . (3.27)
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(to the indicated floating-point accuracy). With IIRZ : Nℓ < Nf < Nu, it follows that the corresponding interval in
the ratio r is

IIRZ,r :
34

13
< r <

11

2
, i.e., 2.615 < r < 5.5 (3.28)

The critical value of r such that for r > rcr, the LNN theory is IR-conformal and for r < rcr, it exhibits spontaneous
chiral symmetry breaking is denoted rcr and is defined as

rcr = lim
LNN

Nf,cr
Nc

. (3.29)

We define the scaled scheme-independent expansion parameter for the LNN limit

∆r ≡
∆f

Nc
= ru − r =

11

2
− r . (3.30)

As r decreases from ru to rℓ in the interval IIRZ,r , ∆r increases from 0 to a maximal value

(∆r)max = ru − rℓ =
75

26
= 2.8846 for r ∈ IIRZ,r .

(3.31)

We define rescaled coefficients κ̂j,F

κ̂j,F ≡ lim
Nc→∞

N j
c κj,F (3.32)

that are finite in this LNN limit. The anomalous dimension γIR is also finite in this limit and is given by

R = F : lim
LNN

γIR =
∞
∑

j=1

κj,F∆
j
f =

∞
∑

j=1

κ̂j,F∆
j
r . (3.33)

From the results for κj, j = 1, 2, 3 in [12] or the special cases given above for G = SU(Nc) and R = F in Eqs.
(3.8)-(3.10), we have

κ̂1,F =
22

52
= 0.1600 , (3.34)

κ̂2,F =
588

56
= 0.037632 , (3.35)

and

κ̂3,F =
2193944

33 · 510
= 0.83207× 10−2 , (3.36)

where, as above, we indicate the factorizations of the denominators. (The numerators do not, in general, have such
simple factorizations; for example, in κ3,F , 2193944 = 23 · 274243.) From our new expression for κ4, we calculate

κ̂4,F =
210676352

34 · 513
+

90112

33 · 510
ζ3 +

11264

33 · 58
ζ5

= 0.36489× 10−2 . (3.37)

Hence, numerically, to order O(∆4
r),

R = F : γIR,LNN,∆4
r
= ∆r

[

0.160000+ 0.037632∆r

+ 0.0083207∆2
r + 0.003649∆3

r

]

. (3.38)
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Using these results for γIR,F,∆p
r
with 1 ≤ p ≤ 4 for R = F in the LNN limit, we can now carry out a polynomial

extrapolation to p = ∞. To do this, we fit an expression for γIR,F,∆p
r
with some subset of the p terms to a polynomial

in 1/p. We denote the resultant value generically as γIR,F,s, where here s denotes the subset of the p terms used
for the extrapolation. We shall use, as a necessary condition for γIR,F,s to be reliable, the requirement that it
not differ too much from the highest-order value, γIR,F,∆4

r
. Quantitatively, we require that for the given subset s,

γIR,F,s/γIR,F,∆4
r
< 1.5. We find that this condition is satisfied if r ∈ IIRZ,r is r >∼ 3.5, but that it is not satisfied as

r decreases below this value toward the lower end of the interval IIRZ,r at rℓ = 2.615. As an example, at r = 4.0,
depending on the subset of terms used for the extrapolation, we obtain γIR,F,s/γIR,F,∆4

r
≃ 1.2, while at r = 3.6, this

ratio increases to ≃ 1.4. We remark that the value r = 4.0 corresponds to Nf = 12 for the SU(3) theory and Nf = 8
for the SU(2) theory.
Previously, in [14] we performed this analysis for the special case G = SU(3) and R = F and, for that work, we

studied how the extrapolated value depends on the subset of terms that one includes for the fit. We perform the
corresponding analysis here for this LNN case. We study three sets of terms:

set34 : {γIR,F,∆3
r
, γIR,F,∆4

r
} (3.39)

set234 : {γIR,F,∆2
r
, γIR,F,∆3

r
, γIR,F,∆4

r
} (3.40)

set1234 : {γIR,F,∆r
, γIR,F,∆2

r
, γIR,F,∆3

r
, γIR,F,∆4

r
} (3.41)

There are countervailing advantages of these sets of terms. The two-term set (3.39) has the advantage of using the two
highest-order terms, while the three-term and four-term sets have the advantage of using progressively more terms in
the fit. The fits to the sets (3.39)-(3.41) yield polynomials in the variable p−1 of the respective forms

set34 ⇒ γIR,F,ex34,p = s34,0 + s34,1p
−1 (3.42)

set234 ⇒ γIR,F,ex234,p = s234,0 + s234,1p
−1 + s234,2p

−2

(3.43)

and

set1234 ⇒ γIR,F,ex1234,p = s1234,0 + s1234,1p
−1

+ s1234,2p
−2 + s1234,3p

−3 . (3.44)

The extrapolated values in the limit p→ ∞ given by these fits are, respectively, as

lim
p→∞

γIR,F,ex34,p = s34,0 ≡ γIR,F,ex34 (3.45)

lim
p→∞

γIR,F,ex234,p = s234,0 ≡ γIR,F,ex234 (3.46)

and

lim
p→∞

γIR,F,ex1234,p = s1234,0 . ≡ γIR,F,ex1234 (3.47)

We have calculated these quantities analytically. Below, we list the corresponding expressions with coefficients given
to the indicated floating-point precision:

γIR,F,ex34 = 16.758754− 11.042531r+ 2.8240528r2

− 0.32942724r3 + 0.014595750r4 (3.48)

γIR,F,ex234 = 27.346053− 19.2457889r+ 5.1985972r2

− 0.63389228r3 + 0.0291915006r4 (3.49)
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and

γIR,F,ex1234 = 33.901799− 24.4060664r+ 6.71925275r2

− 0.832708600r3 + 0.038922001r4 . (3.50)

Note that there are strong cancellations between individual terms for relevant values of r ∈ IIRZ,r . Some examples
will show the range of resultant values of extrapolations for these different choices of sets of terms used in the fits.
As anticipated, for values of r in the upper part of the interval IIRZ,r , all of the different types of extrapolation give
quite similar results. For example,

r = 5.0 =⇒ γIR,F,ex,34 = 0.0914, γIR,F,ex234 = 0.0902,

γIR,F,ex1234 = 0.0905 . (3.51)

As r decreases in the interval IIRZ,r , the differences between the extrapolations using the different sets of terms
increase slightly, e.g., for a value roughly in the middle of this interval, namely r = 4.0, we find

r = 4.0 =⇒ γIR,F,ex34 = 0.427, γIR,F,ex234 = 0.444,

γIR,F,ex1234 = 0.456 . (3.52)

Toward the lower part of the interval IIRZ,r , these differences increase further, but also, as discussed above, for a
given r, all of the different types of extrapolations involve greater uncertainties, since each of the extrapolated values
differs more from the value of highest-order explicitly calculated quantity, γIR,∆4

r
. For example, for r = 3.0,

r = 3.0 =⇒ γIR,F,ex34 = 1.335, γIR,F,ex234 = 1.645,

γIR,F,ex1234 = 1.826 . (3.53)

The ratios of these values divided by the highest-order explicitly calculated value, γIR,F,∆4
r
, are

r = 3.0 =⇒
γIR,F,ex34
γIR,F,∆4

r

= 1.47,
γIR,F,ex234
γIR,F,∆4

r

= 1.82

γIR,F,ex1234
γIR,F,∆4

r

= 2.01 . (3.54)

Given our fiducial requirement that the ratio of the extrapolated value for p → ∞ divided by the highest-order
explicitly calculated value, should not be greater than 1.5 for the extrapolation to be considered reasonably reliable,
it follows that we would not consider the latter two extrapolations in Eq. (3.53) to be sufficiently reliable to meet
this requirement.
It is interesting to compare these scheme-independent calculations of γIR,F,∆p

r
to order 1 ≤ p ≤ 4 with the results

from the conventional n-loop calculations as truncated expansions in αIR,F,nℓ, denoted γIR,F,nℓ from Table V of [21]
up to n = 4 loop order. We list our scheme-independent values together with these n-loop values in Table II. For each
value of r, we also include the extrapolated value, γIR,F,ex234 for the p → ∞ limit, and the ratio γIR,F,ex234/γIR,∆4

r
.

We do not include the results from the n = 5 loop conventional calculation, because of the absence of a physical IR
zero in the five-loop beta function for 2.615 < r < 4.323 in IIRZ,r . Although the extrapolated values γIR,F,ex234 for r
values below r = 3.5 are included, we caution that these do not satisfy our fiducial criterion for sufficient reliability
of extrapolation, since they differ by too much from our highest-order calculated values, γIR,∆4

r
. For this reason,

although we can roughly apply the method discussed in Section II to use the extrapolated value of γIR to estimate
the lower end, rcr, of the IR-conformal non-Abelian Coulomb phase (defined in Eq. (5.3)), this involves a substantial
degree of uncertainty. Bearing this caveat in mind, the resulting estimate would be that rcr ∼ 2.7. If one were to
pull back from the LNN limit and multiply this value of rcr by a specific finite value of Nc to get an estimate of
the corresponding Nf,cr, then, for example, for Nc = 3, i.e., G = SU(3), this would yield Nf,cr ∼ 8. This estimate

is consistent with the estimate 8 <∼ Nf,cr <∼ 9 that we derived from our calculation of γIR,F,∆4

f
for this theory and

extrapolation to obtain limp→∞ γIR,F,∆p

f
in [14]. Clearly, the lower that one goes in Nc away from the LNN limit, the

greater is the error in performing this conversion from a specific r value in the LNN limit to a corresponding ratio
Nf/Nc with finite Nf and Nc, so we do not perform this conversion for Nc = 2.
In Fig. 4 we plot γIR,F,∆p

r
, i.e., the value of γIR for R = F , calculated to order ∆p

r with 1 ≤ p ≤ 4, in the
scheme-independent expansion, as a function of r ∈ IIRZ,r . As a consequence of the positivity of the κ̂p,F in Eqs.
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FIG. 4: Plot of γIR,F,∆p
r
for 1 ≤ p ≤ 4 as a function of r ∈ IIRZ,r in the LNN limit (3.21). From bottom to top, the curves

(with colors online) refer to γIR,F,∆r (red), γIR,F,∆2
r
(green) γIR,F,∆3

r
(blue) γIR,F,∆4

r
(black).

(3.34)-(3.36), for a fixed r, γIR,F,∆p
r
is a monotonically increasing function of the order of calculation, p. As r decreases

toward the lower end of the interval IIRZ,r at r = rℓ = 2.615, the value of γIR calculated to the highest order in this
LNN limit, namely O(∆4

r), is slightly greater than 1.
As we did for specific SU(Nc) theories above, here we proceed to investigate the range of applicability of the scheme-

independent series expansion for γIR in the LNN limit. As is evident from Table II, all of our values of γIR,F,∆p
r
for

1 ≤ p ≤ 4 satisfy the bound γIR ≤ 2. This is also true for all of our extrapolated values, γIR,F,ex234, except for
the lowest value of r listed, namely r = 2.8, for which γIR,F,ex234 = 2.09, slightly above this bound. Thus, these
results in the LNN limit again demonstrate the advantage of the scheme-independent expansions, since they enable
us to calculate self-consistent values of γIR,F,∆r

over a greater range of the interval IIRZ,r than is the case with the
conventional n-loop calculations. To show the latter in detail, we have explicitly listed the values of γIR,F,3ℓ and
γIR,F,4ℓ for values of r where γIR,F,2ℓ was unphysically large.
To investigate the range of applicability of the scheme-independent expansions further, it is worthwhile to obtain

an estimate of this range from ratios of successive coefficients. From the coefficients κ̂j,F that we have calculated with
1 ≤ n ≤ 3, we compute the ratios

κ̂1,F
κ̂2,F

= 4.252 (3.55)

κ̂2,F
κ̂3,F

= 4.523 (3.56)

and

κ̂3,F
κ̂4,F

= 2.280 . (3.57)

Recalling that the maximal value of ∆r in the interval IIRZ,r is 2.885 (Eq. (3.31), these ratios are consistent with the
inference that the small-∆r series expansion may be reasonably accurate throughout most of this interval IIRZ,r .

D. γψ̄ψ,IR,∆4

f
for G = SU(Nc) and R = adj

Here we present our results for the κj coefficients and thus γ
ψ̄ψ,IR,∆j

f
with 1 ≤ j ≤ 4 for G = SU(Nc) and

Nf fermions in the adjoint representation, R = adj. We will usually denote these as κj,adj and γ
ψ̄ψ,IR,adj,∆j

f
but

sometimes, when no confusion will result, we will omit this adj subscript for brevity of notation.
In this theory, Eqs. (2.6) and (2.6) yield, for the upper and lower ends of the interval IIRZ , the values

Nu,adj =
11

4
= 2.75 (3.58)
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and

Nℓ,adj =
17

16
= 1.0625 , (3.59)

so this interval includes only one integral value of Nf , namely Nf = 2. We note that since the adjoint representation is
self-conjugate, a theory with Nf Dirac fermions with R = adj is equivalent to a theory with Nf,Maj = 2Nf Majorana
fermions. Hence, here, one may also allow the half-integral values Nf = 3/2, 5/2 corresponding to Nf,Maj = 3, 5.
We have

R = adj : ∆f = Nu −Nf =
11

4
−Nf . (3.60)

For this case, the factor D in Eq. (3.1) is simply D = 18. In [13] we gave the coefficients κj,adj for 1 ≤ n ≤ 3. These
are as follows:

κ1,adj =

(

2

3

)2

= 0.44444 , (3.61)

κ2,adj =
341

2 · 36
= 0.23388 , (3.62)

and

κ3,adj =
61873

23 · 310
−

592

38N2
c

= 0.130978− 0.090230N−2
c , (3.63)

where, as before, we indicate the simple factorizations of the denominators. The coefficient κ4,adj is

κ4,adj =
53389393

27 · 314
+

368

310
ζ3

+

(

−
2170

310
+

33952

311
ζ3

)

N−2
c

= 0.0946976+ 0.193637N−2
c . (3.64)

The coefficients κ1,adj and κ2,adj are manifestly positive, and we find that for all physical Nc, the coefficients κ3,adj
and κ4,adj are also positive. Although κ1,adj and κ2,adj are independent of Nc, the coefficients κj,adj for j = 3, 4 do
depend on Nc. We find that κ3,adj and κ4,adj are, respectively, monotonically increasing and monotonically decreasing
functions of Nc. The Nc → ∞ limits of κ3,adj and κ4,adj are given by the respective first terms in Eqs. (3.63) and
(3.64).
Thus, to order ∆4

f , we have

γψ̄ψ,IR,adj,∆4

f
= ∆f

[

0.44444 + 0.23388∆f + (0.13098− 0.090230N−2
c )∆2

f + (0.094698 + 0.19364N−2
c )∆3

f

]

. (3.65)

In Fig. 5 we show γψ̄ψ,IR,adj,∆p

f
with 1 ≤ p ≤ 4 for the SU(2) theory, as a function of Nf , formally generalized

from the nonnegative integers to the real numbers. In Table III we list values of γψ̄ψ,IR,adj,∆p

f
with 1 ≤ p ≤ 4 for

Nf = 2 and Nc = 2 and Nc = 3. For comparison, we also include our n-loop values γψ̄ψ,IR,adj,nℓ calculated in the

conventional manner via power series in the coupling (in the MS scheme), from Table VIII of [19].
Among SU(Nc) theories with fermions in the adjoint representation, the SU(2) theory with Nf = 2 (Dirac) fermions

has been of particular interest [69]. In the following, for notational brevity, the subscript adj is understood implicitly.
For this theory, as listed in Table III we obtain the values γIR,∆2

f
= 0.465, γIR,∆3

f
= 0.511, and γIR,∆4

f
= 0.556,

which are close to our earlier higher-order n-loop calculations in [19], namely γIR,3ℓ = 0.543 and γIR,4ℓ = 0.500. It
is of interest to compare these values with the results of lattice studies. There have been a number of such studies,
and these are consistent with the conclusion that this theory is conformal in the infrared [70]-[77],[22]. These studies
have yielded a rather large range of measured values for γIR, including the following (where the published estimated
uncertainties in the last digits are indicated in parentheses): γIR = 0.49(13) [70], γIR = 0.22(6) [71], γIR = 0.31(6)
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FIG. 5: Plot of γψ̄ψ,IR,adj,∆p
f
for G = SU(2) and 1 ≤ p ≤ 4 as a function of Nf ∈ IIRZ for R = adj and Nf = 2. From bottom

to top, the curves (with colors online) refer to γIR,adj,∆f
(red), γIR,adj,∆2

f
(green), γIR,adj,∆3

f
(blue), and γIR,adj,∆4

f
(black).

[72], γIR = 0.17(5) [73], γIR = 0.37(2) [74], γIR = 0.20(3) [75], and γIR = 0.50(26) [76]. (See these references and [77]
for additional discussion of estimates of overall uncertainties.) Our scheme-independent calculation of γIR to O(∆4

f )
and our earlier n-loop calculations of γIR,nℓ up to n = 4 loops are clearly consistent with the larger among these
lattice values. Before carrying out a comparison of our results with the full set of lattice values, it will be necessary
to narrow the current wide range of lattice measurements.
It is of interest to investigate the Nc → ∞ limit for an SU(Nc) gauge theory with fermions in the adjoint repre-

sentation. Since in this case, the upper and lower ends of the interval IIRZ , given by Nu = 11/4 in Eq. (3.58) and
Nℓ = 17/16 in Eq. (2.6) are independent of Nc, it follows that ∆f is also independent of Nc. Hence, for R = adj,

lim
LN

γIR =

∞
∑

j=1

κ̂j,adj∆
j
f (3.66)

where

κ̂j,adj = lim
LN

κj,adj . (3.67)

The values of κ̂j,adj are evident from the full expressions for κj,adj that we have given above in Eqs. (3.61)-(3.64); for
example, κ̂3,adj = 61873/(23 · 310).

E. γψ̄ψ,IR,∆4
f
for G = SU(Nc) and R = S2, A2

Here we present our results for the κj coefficients and thus γ
ψ̄ψ,IR,∆j

f
with 1 ≤ j ≤ 4 for G = SU(Nc) and Nf

fermions in the symmetric and antisymmetric rank-2 tensor representations of SU(Nc), S2 and A2. Since many
formulas for these two cases are simply related to each other by sign reversals in certain terms, it is convenient to
treat these cases together. As before [19], we shall use the symbol T2 (rank-2 tensor) to refer to these cases together.
(Do not confuse this use of T with our use of the symbol T in Section VII of Ref. [13] for the anomalous dimension of
the operators ψ̄σµνψ and operators ψ̄Taσµνψ, where it referred to the antisymmetric Dirac tensor σµν = (i/2)[γµ, γν ].)
The values of Nu and Nℓ for R = T2 are [19]

Nu,T2
=

11Nc
2(Nc ± 2)

(3.68)

and

Nℓ,T2
=

17N3
c

(Nc ± 2)(8N2
c ± 3Nc − 6)

, (3.69)
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so that

R = T2 : ∆f =
11Nc

2(Nc ± 2)
−Nf . (3.70)

The factor D in Eq. (3.1) takes the explicit form

R = T2 : D =
18N2

c ± 11Nc − 22

Nc
≡
F±

Nc
(3.71)

whence

F± = 18N2
c ± 11Nc − 22 . (3.72)

Both F+ and F− are positive-definite for the physical range Nc ≥ 2. At the lower end of the interval IIRZ , ∆f takes
on the maximum value

R = T2 : (∆f )max =
3NcF±

2(Nc ± 2)(8N2
c ± 3Nc − 6)

. (3.73)

If Nc = 2, then S2 is the same as the adjoint representation, so we focus on Nc ≥ 3 here. For this R = S2 theory,
the illustrative values Nc = 3 and Nc = 4 yield the respective intervals IIRZ 1.22 < Nf < 3.30 and 1.35 < Nf < 3.67.
Hence, the physical integral values of Nf in these respective intervals IIRZ are Nf = 2, 3 for both Nc = 3 and Nc = 4.
Furthermore, the A2 representation is the singlet if Nc = 2 and is the same as the conjugate fundamental, F̄ if Nc = 3,
so in the case of A2, we restrict to Nc ≥ 3 and focus mainly on Nc ≥ 4. In the SU(4) theory with R = A2, the interval
IIRZ is 4.945 < Nf < 11, including the integral values 5 ≤ Nf ≤ 10.
Here, using our general results (3.2)-(3.5), we give explicit expressions for the κj with 1 ≤ j ≤ 4 for the case

G = SU(Nc) and fermion representation R = T2. From the general expressions for κj with 1 ≤ j ≤ 4, Eqs. (3.2)-
(3.5), we calculate the following. In each expression, the + and − signs refer to the S2 and A2 special cases of T2,
respectively:

κ1,T2
=

4(Nc ∓ 1)(Nc ± 2)2

NcF±

(3.74)

κ2,T2
=

(Nc ∓ 1)(Nc ± 2)3(11N2
c ± 4Nc − 8)(93N2

c ± 88Nc − 176)

3N2
cF

3
±

(3.75)

κ3,T2
=

(Nc ∓ 1)(Nc ± 2)3

2 · 33N3
c F

5
±

[

(

1670571N9
c ± 7671402N8

c + 2181584N7
c ∓ 25294256N6

c

− 13413856N5
c ± 17539136N4

c + 16707328N3
c ∓ 3046912N2

c − 27320832Nc± 18213888
)

± 8448N2
c (Nc ∓ 2)F±(3N

3
c ± 28N2

c ∓ 176)ζ3

]

(3.76)

and

κ4,T2
=

(Nc ∓ 1)(Nc ± 2)4

24 · 34N4
c F

7
±

[

(

4324540833N13
c ± 26924228982N12

c + 30086550336N11
c ∓ 106026091536N10

c

− 224952825968N9
c ± 105492861344N8

c + 600583055488N7
c ± 45292329216N6

c − 1067559840512N5
c

± 68261028352N4
c + 982655860736N3

c ∓ 385868775424N2
c − 136076328960Nc± 54430531584

)

+ 29F±

(

33534N11
c ± 702000N10

c + 4448403N9
c ∓ 2216812N8

c − 38600660N7
c ± 22594304N6

c

+ 124680384N5
c ∓ 82679040N4

c − 90554112N3
c ± 64551168N2

c − 6690816Nc ± 3345408
)

ζ3

∓ 563200N2
c (Nc ∓ 2)F 2

±

(

15N5
c ± 158N4

c + 240N3
c ∓ 912N2

c − 1056Nc ± 2112
)

ζ5

]

. (3.77)
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We comment on some factors in these κj,T2
expressions. The property that the κj,A2

coefficients contain an overall
factor of (Nc− 2) (possibly raised to a power higher than 1), and hence vanish for Nc = 2, is a consequence of the fact
that for Nc = 2, the A2 representation is a singlet, so for SU(2), fermions in the A2 = singlet representation have no
gauge interactions and hence no anomalous dimensions. Clearly, this property holds in general; i.e., the coefficients
κj,A2

for all j contain an overall factor of (Nc − 2) (as well as possible additional factors of (Nc − 2)).
As noted above, if Nc = 2, then the S2 representation is the same as the adjoint representation, so the coefficients

must satisfy the equality κj,S2
= κj,adj for this SU(2) case, and we have checked that they do. Note that this equality

requires (i) that the term proportional to ζ3 in κ3,S2
must be absent if Nc = 2, since κ3,adj does not contain any ζ3

term, and, indeed, this is accomplished by the factor (Nc − 2) multiplying the ζ3 term in κ3,S2
; and (ii) the term

proportional to ζ5 in κ4,S2
must be absent if Nc = 2, since κ4,adj does not contain any ζ5 term, and this is accomplished

by the factor (Nc − 2) multiplying this ζ5 term in κ4,S2
. Similarly, as we observed above, if Nc = 3, then the A2

representation is the same as the conjugate fundamental representation, F̄ , so the coefficients must satisfy the equality
κj,A2

= κj,F for this SU(3) case, and we have checked that they do.
The resultant ∆f expansions for γψ̄ψ,IR,S2,∆4

f
with 2 ≤ Nc ≤ 4 are

SU(2) : γψ̄ψ,IR,S2,∆4

f
= ∆f

[

0.44444 + 0.23388∆f + 0.10842∆2
f + 0.14311∆3

f

]

(3.78)

SU(3) : γψ̄ψ,IR,S2,∆4

f
= ∆f

[

0.38536+ 0.17038∆f + 0.078062∆2
f + 0.060081∆3

f

]

(3.79)

and

SU(4) : γψ̄ψ,IR,S2,∆4

f
= ∆f

[

0.34839 + 0.13875∆f + 0.059680∆2
f + 0.38102∆3

f

]

. (3.80)

For R = A2, we give illustrative results for the ∆f expansion of γψ̄ψ,IR for Nc = 4, 5:

SU(4) : γψ̄ψ,IR,A2,∆4

f
= ∆f

[

0.090090+ (1.1114× 10−2)∆f + (1.6013× 10−3)∆2
f + (2.9668× 10−4)∆3

f

]

(3.81)

and

SU(5) : γψ̄ψ,IR,A2,∆4

f
= ∆f

[

0.11582 + (1.7570× 10−2)∆f + (2.9243× 10−3)∆2
f + (0.59791× 10−3)∆3

f

]

. (3.82)

In Fig. 6 we present a plot of γψ̄ψ,S2,IR,∆
p

f
for G = SU(3), R = S2, and 1 ≤ p ≤ 4, as a function of Nf . We

list values of the γIR,S2,∆
p

f
with 1 ≤ p ≤ 4 for the SU(3) and SU(4) theories with R = S2 in Table IV. In both

of these theories, the interval IIRZ includes the two integer values Nf = 2, 3. For comparison, we also include the
values γIR,S2,nℓ for 2 ≤ n ≤ 4 calculated via the conventional power series expansion to n-loop order and evaluated at
α = αIR,nℓ from Table XI in our previous work, Ref. [19]. As is evident from this table, for a given Nc and Nf , there
is reasonable agreement between the n = 4 loop values γIR,S2,∆4

f
and γIR,S2,4ℓ. For example, for SU(3) and Nf = 2,

γIR,S2,4ℓ = 1.12 while γIR,S2,∆4

f
= 1.13.

We next compare our calculation of γψ̄ψ,IR,S2,∆
p

f
to order p = 4 with lattice measurements. A theory of particular

interest is the SU(3) gauge theory with Nf = 2 flavors of fermions in the S2 representation, and lattice studies of this
theory include [78] and [79] (see also [22]). As indicated in Table IV, our higher-order scheme-independent results
are γIR,∆3

f
= 0.960, and γIR,∆4

f
= 1.132, in agreement with our n-loop results from [19] for this theory, γIR,3ℓ = 1.28

and γIR,4ℓ = 1.12. The lattice study [78] concluded that this theory is IR-conformal and obtained γIR < 0.45 [78],
while Ref. [79] concluded that it is not IR-conformal and got an effective γIR ∼ 1 [79]. One hopes that further work
by lattice groups will lead to a consensus concerning whether this theory is IR conformal or not and concerning the
value of γIR.
Regarding the range of applicability of the ∆f expansion for these cases, we compute the following ratios of successive

coefficients for the G = SU(3), R = S2 case:

κ1,S2

κ2,S2

= 2.26176 (3.83)
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FIG. 6: Plot of γψ̄ψ,IR,S2,∆
p
f

for Nc = 3 and 1 ≤ p ≤ 4 as a function of Nf . Here, S2 denotes the symmetric rank-2

tensor representation. From bottom to top, the curves (with colors online) refer to γψ̄ψ,IR,S2,∆f
(red), γψ̄ψ,IR,S2,∆

2
f
(green),

γψ̄ψ,IR,S2,∆
3
f
(blue), and γψ̄ψ,IR,S2,∆

4
f
(black).

κ2,S2

κ3,S2

= 2.1826 (3.84)

and

κ3,S2

κ4,S2

= 1.2993 . (3.85)

The first two ratios, (3.83) and (3.84), are slightly larger than (∆f )max,S2
= 519/250 = 2.076 in IIRZ for this theory.

However, the third ratio is about 40 % less than this maximal value of ∆f,S2
. This suggests that because of slow

convergence, one must use the ∆f expansion with caution in the lower part of the interval IIRZ in this theory.
We list values of the γIR,A2,∆

p

f
with 1 ≤ p ≤ 4 for the SU(4) theory with R = A2 and Nf ∈ IIRZ for this theory in

Table V. Again, for comparison, we include the values γIR,A2,nℓ for 2 ≤ n ≤ 4 calculated via the conventional power
series expansion to n-loop order and evaluated at α = αIR,nℓ from Table XII in our previous work [19]. As expected,
the agreement between the two methods of calculation is best at the upper end of the interval IIRZ , where the IRFP
occurs at weak coupling. For example, for Nf = 9, γIR,A2,∆4

f
= 0.242, while γIR,4ℓ = 0.232.

It is of interest to consider the Nc → ∞ (LN) limit of Eq. (3.22) for these theories with R = S2 and A2. In this LN
limit, the upper ends of the interval IIRZ for the S2 and A2 representations approach the same limit, and similarly
for the lower ends:

lim
LN

Nu,T2
=

11

2
= 5.5 (3.86)

lim
LN

Nℓ,T2
=

17

8
= 2.125 . (3.87)

Hence, in this Nc → ∞ limit, the interval IIRZ is formally 2.125 < Nf < 5.5, including the physical integer values
3 ≤ Nf ≤ 5. Similarly, in this limit, the variable ∆f is given by ∆f = (11/2)−Nf and reaches a maximum value, at
Nf = Nℓ,T2

, of

lim
LN

(∆f )max,T2
=

27

8
= 3.375 . (3.88)

This the Nc → ∞ limit of (3.73).
As with the adjoint representation, we define

κ̂j,T2
= lim

LN
κj,T2

. (3.89)
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We find that

κ̂j,S2
= κ̂j,A2

. (3.90)

From our general expressions for κj,T2
with 1 ≤ j ≤ 4, we calculate

κ̂1,T2
=

2

32
= 0.2222 (3.91)

κ̂2,T2
=

341

23 · 36
= 0.0584705 (3.92)

κ̂3,T2
=

61873

26 · 310
= 0.016372 (3.93)

and

κ̂4,T2
=

53389393

211 · 314
+

23ζ3
310

= 0.59186× 10−2 . (3.94)

Hence,

lim
LN

γIR,S2,∆
p

f
= lim

LN
γIR,A2,∆

p

f
(3.95)

and, in the limit p→ ∞,

lim
LN

γIR,S2
= lim

LN
γIR,A2

. (3.96)

Thus, for both R = S2 and R = A2,

lim
LN

γψ̄ψ,IR,T2,∆4

f
= ∆f

[

0.22222+ 0.0584705∆f

+ 0.016372∆2
f + 0.0059186∆3

f

]

. (3.97)

We observe that for all of the cases we have calculated, namely 1 ≤ j ≤ 4,

κ̂j,T2
= 2−jκ̂j,adj . (3.98)

One can understand this relation from the structure of the relevant group invariants, including the fact that the trace
invariant T (R) satisfies

lim
Nc→∞

TT2

Tadj
=

1

2
. (3.99)

We thus infer more generally that the relation (3.98) holds for all j. In Table VI we list the resultant common values
of γIR,T2,∆

p

f
for 1 ≤ p ≤ 4 and Nf ∈ IIRZ in the LN limit. As noted above, in this LN limit, this interval consists of

the integral values Nf = 3, 4, 5.
Concerning the range of applicability of the ∆f expansion in this LN limit, we compute the ratios

κ̂1,T2

κ̂2,T2

=
1296

341
= 3.8006 (3.100)

κ̂2,T2

κ̂3,T2

=
220968

61873
= 3.5713 (3.101)

and

κ̂3,T2

κ̂4,T2

=
160374816

53389393+ 3815424ζ3

= 2.76624 . (3.102)

The first two ratios, (3.100) and (3.101), are slightly greater than the maximum value (∆f )max,T2
= 3.375, but the

third ratio, (3.102), is smaller than this maximum value, suggesting that in this limit, for these tensor representations,
because of slow convergence, one must use caution in applying the ∆f expansion in the lower part of the interval
IIRZ . This is similar to what we found for the S2 representation in the SU(3) theory.
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IV. CALCULATION OF β′

IR TO O(∆5
f )

A. General G and R

The derivative β′
IR is an important physical quantity characterizing the conformal field theory at αIR. We denote the

gauge field of the theory as Aaµ (where a is a group index), the field strength-tensor as F aµν = ∂µA
a
ν−∂νA

a
µ+gcabcA

b
µA

c
ν

(where cabc is the structure constant of the Lie algebra of G) and the rescaled field-strength tensor as F aµν,r = gF aµν ,

so that the gauge field kinetic term in the Lagrangian is Lg = −[1/(4g2)]F aµν,rF
a µν
r . The trace anomaly states that

the trace of the energy-momentum tensor T µν satisfies the relation [81]

T µµ =
β

16πα2
F aµν,rF

a µν
r . (4.1)

Therefore, the full scaling dimension of the operator Fr,µνF
a µν
r , which we denote as DF 2 , satisfies [82]

DF 2 = 4 + β′ −
2β

α
, (4.2)

where we use the shorthand notation F 2 ≡ F ar,µνF
a µν
r . We denote the anomalous dimension of F 2, γF 2 via the

equation [26]

DF 2 = DF 2,free − γ
F2

= 4− γ
F2

(4.3)

and its evaluation at α = αIR as γ
F2,IR

. From Eq. (4.2), it follows that at a zero of the beta function away from the

origin, in particular, at αIR, the derivative β′
IR is equivalent to the anomalous dimension of the operator F ar,µνF

a µν
r :

β′

IR = −γ
F2,IR

. (4.4)

In [13] we calculated the expansion coefficients dj of β
′
IR in Eq. (1.3) to order ∆4

f for general G and R, and to order

∆5
f for the special case G = SU(3) and fermion representation R = F , the fundamental. Here we calculate the next

higher-order coefficient, namely d5, for general G and R. For this purpose, we make use of the recent computation
of the five-loop beta function coefficient, b5, in [17]. The computation in [17] was performed in the MS scheme, so
that we can combine it with the scheme-independent b1 and b2 [7, 8] and the results for b3 and b4 that have also been
calculated in the MS scheme [27, 28]. However, we again stress that since the dn coefficients are scheme-independent,
it does not matter which scheme one uses to calculate them. We first recall our previous results from Ref. [13]:

d1 = 0 , (4.5)

d2 =
25T 2

f

32CAD
, (4.6)

d3 =
27T 3

f (5CA + 3Cf)

33C2
AD

2
, (4.7)

and

d4 = −
23T 2

f

36C4
AD

5

[

− 3CAT
2
f

(

137445C4
A + 103600C3

ACf + 72616C2
AC

2
f + 951808CAC

3
f − 63888C4

f

)

− 5120T 2
fD

dabcdA dabcdA

dA
+ 90112CATfD

dabcdR dabcdA

dA
− 340736C2

AD
dabcdR dabcdR

dA

+ 8448D

[

C2
AT

2
f

(

21C2
A + 12CACf − 33C2

f

)

+ 16T 2
f

dabcdA dabcdA

dA
− 104CATf

dabcdR dabcdA

dA
+ 88C2

A

dabcdR dabcdR

dA

]

ζ3

]

.

(4.8)

In Ref. [13] we presented the expression for d4 with terms written in order of descending powers of CA. It is also
useful to express this coefficient d4 in an equivalent form that renders certain factors of D explicit and shows the
simple factorization of terms multiplying ζ3, and we have done this in Eq. (4.8).
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Here we present our calculation of d5 for arbitrary G and R:

d5 =
24T 3

f

37C5
AD

7

[

− CAT
2
f

(

39450145C6
A+ 235108272C5

ACf + 1043817726C4
AC

2
f + 765293216C3

AC
3
f

− 737283360C2
AC

4
f + 730646400CAC

5
f − 356750592C6

f

)

− 29T 2
fD

dabcdA dabcdA

dA
(6139C2

A + 2192CACf − 3300C2
f)

+ 29CATfD
dabcdR dabcdA

dA
(43127C2

A − 28325CACf − 2904C2
f) + 15488C2

AD
dabcdR dabcdR

dA
(2975C2

A + 8308CACf − 12804C2
f)

+ 27D

[

3CAT
2
fD

(

6272C4
A − 49823C3

ACf + 40656C2
AC

2
f + 13200CAC

3
f + 2112C4

f

)

+ 24T 2
f

dabcdA dabcdA

dA
(19516C2

A − 18535CACf − 21780C2
f)− 23CATf

dabcdR dabcdA

dA
(182938C2

A − 297649CACf − 197472C2
f)

− 88C2
A

dabcdR dabcdR

dA
(245C2

A + 62524CACf + 42108C2
f)

]

ζ3

+ 210 · 55CAD
2

[

9CAT
2
fD(CA + 2Cf )(CA − Cf ) + 160T 2

f

dabcdA dabcdA

dA

− 80Tf(10CA + 3Cf )
dabcdR dabcdA

dA
− 440CA(CA − 3Cf )

dabcdR dabcdR

dA

]

ζ5

]

. (4.9)

We proceed to evaluate these coefficients dj up to j = 5, and hence the derivative β′
IR up to O(∆5

f ) below for

G = SU(Nc) and several specific representations. The coefficients d2 and d3 are manifestly positive for arbitrary G
and R. These signs are indicated in Table VII. We discuss the signs of d4 and d5 for various representations below.

B. β′

IR,∆4
f
for G = SU(Nc) and R = F

Here we present the evaluation of our general result (4.9) for the case G = SU(Nc) and R = F . For reference, we
first recall our results from [13] for dj with 2 ≤ j ≤ 4 (and also recall that d1 = 0 for all G and R):

d2,F =
24

32(25N2
c − 11)

, (4.10)

d3,F =
25(13N2

c − 3)

33Nc(25N2
c − 11)2

, (4.11)

and

d4,F = −
24

35N2
c (25N

2
c − 11)5

[

N8
c

(

− 366782 + 660000ζ3

)

+N6
c

(

865400− 765600ζ3

)

+ N4
c

(

− 1599316+ 2241888ζ3

)

+N2
c

(

571516− 894432ζ3

)

+ 3993

]

. (4.12)

This coefficient can be written equivalently in a form that shows the simple factorization of the terms multiplying ζ3:

d4,F = −
24

35N2
c (25N

2
c − 11)5

[

(

− 366782N8
c + 865400N6

c − 1599316N4
c + 571516N2

c + 3993
)

+ 1056N2
c (25N

2
c − 11)(25N4

c − 18N2
c + 77)ζ3

]

. (4.13)

In [16] we presented the expression for d5,F with terms ordered as descending powers of Nc. As with d4,F , it is also
useful to display this coefficient in an equivalent form that shows the simple factorizations of the terms multiplying
ζ3 and ζ5:

d5,F =
25

36N3
c (25N

2
c − 11)7

[

(

− 298194551N12
c + 414681770N10

c + 80227411N8
c
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+ 210598856N6
c − 442678324N4

c + 129261880N2
c + 3716152

)

− 96(25N2
c − 11)

(

176375N10
c − 564526N8

c + 1489367N6
c − 1470392N4

c + 290620N2
c + 968

)

ζ3

+ 21120N2
c (25N

2
c − 11)2

(

40N6
c − 27N4

c + 124N2
c − 209

)

ζ5

]

. (4.14)

We have checked that when we set Nc = 3 in our general result for d5,F in Eq. (4.14), the result agrees with our
earlier calculation of d5,F in Eq. (5.20) of Ref. [13].
As observed above, the coefficients d2 and d3 are manifestly positive for any G and R. We find that d4,F and d5,F

are negative-definite for G = SU(Nc) and all physical values of Nc ≥ 2. These results are summarized in Table VII.
We list below the explicit numerical expressions for β′

IR to order ∆5
f , denoted β

′

IR,SU(Nc),F,∆5

f

, for the gauge groups

SU(Nc) with Nc = 2, 3, 4, with fermions in the fundamental representation, to the indicated floating-point precision:

SU(2) : β′

IR,F,∆5

f
= ∆2

f

[

(1.99750× 10−2 + (3.66583× 10−3)∆f − (3.57303× 10−4)∆2
f − (2.64908× 10−5)∆3

f

]

(4.15)

SU(3) : β′

IR,F,∆5

f
= ∆2

f

[

(0.83074× 10−2) + (0.98343× 10−3∆f − (0.46342× 10−4)∆2
f − (0.56435× 10−5)∆3

f

]

(4.16)

and

SU(4) : β′

IR,F,∆5

f
= ∆2

f

[

(0.45701× 10−2) + (0.40140× 10−3∆f − (0.12938× 10−4)∆2
f − (0.15498× 10−5)∆3

f

]

.

(4.17)

In Table VIII we list the (scheme-independent) values that we calculate for β′

IR,F,∆p

f

with 2 ≤ p ≤ 4 for the

illustrative gauge groups G = SU(2), SU(3), and SU(4), as functions of Nf in the respective intervals IIRZ given in
Eq. (2.7). For comparison, we list the n-loop values of β′

IR,F,nℓ with the 2 ≤ n ≤ 4 from [13, 20], where β′

IR,F,3ℓ and

β′
IR,F,4ℓ are computed in the MS scheme. Although, for completeness, we list values of β′

IR,F,2ℓ with Nf extending
down to the lower end of the respective intervals IIRZ for each value of Nc, we caution that in a number of cases,
including Nf = 6 for SU(2), Nf = 9 for SU(3), and 10 ≤ Nf ≤ 12 for SU(4), the corresponding values of αIR,2ℓ
(discussed further below) are too large for the perturbative n-loop calculations to be applicable. Moreover, since for a
considerable range of values of Nf ∈ IIRZ for each Nc, the five-loop beta function β5ℓ calculated via the conventional
power series expansion has no physical IR zero, we restrict the resultant β′

IR,F,nℓ evalulations to 1 ≤ n ≤ 4 loops.

In Figs. 7-9 we plot the values of β′
IR, calculated to order ∆p

f with 2 ≤ p ≤ 5, for R = F for the gauge groups SU(2),

SU(3), and SU(4). In the general calculations of γIR as a series in powers of ∆f to maximal power p = 3 (i.e., order
∆3
f ) in [12] and, for G = SU(3) and R = F , to maximal power p = 4 in [14], it was found that, for a fixed value of

Nf , or equivalently, ∆f , in the interval IIRZ , these anomalous dimensions increased monotonically as a function of p.
This feature motivated our extrapolation to p = ∞ in [12] to obtain estimates for the exact γIR. In contrast, here we
find that, for a fixed value of Nf , or equivalently, ∆f , in IIRZ , as a consequence of the fact that different coefficients
dn do not all have the same sign, β′

IR,∆p

f

is not a monotonic function of p. Because of this non-monotonicity, we do

not attempt to extrapolate our series to p = ∞.
A lattice measurement of β′

IR has been reported in [83] for the SU(3) theory with R = F and Nf = 12, namely
β′
IR = 0.26(2). The earlier higher-order values calculated in [20] via n-loop expansions in the coupling are β′

IR,3ℓ =

0.2955 and β′

IR,4ℓ = 0.282, which agree with this lattice measurement. As indicated in Table VIII, our higher-order

scheme-independent values for this theory are β′

IR,∆3

f

= 0.258, β′

IR,∆4

f

= 0.239, and β′

IR,∆5

f

= 0.228. Given the possible

contributions of higher-order terms in the ∆f expansion, we consider that our scheme-independent calculation of β′
IR

to this order is also consistent with the lattice measurement from Ref. [83].
To get a rough estimate of the range of accuracy and applicability of the series expansion for β′

IR for this R = F
case, we can compute ratios of coefficients, as discussed before. For the illustrative case of SU(3), we have

d2,F
d3,F

= 8.447 for SU(3), (4.18)
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FIG. 7: Plot of β′

IR,F,∆
p
f
(labelled as β′

IR on the vertical axis) for Nc = 2 and 2 ≤ p ≤ 5 as a function of Nf ∈ IIRZ . From

bottom to top, the curves (with colors online) refer to β′

IR,F,∆2

f
(red), β′

IR,F,∆3

f
(green), β′

IR,F,∆4

f
(blue), and β′

IR,F,∆5

f
(black).

FIG. 8: Plot of β′

IR,F,∆
p
f
for Nc = 3 and 2 ≤ p ≤ 5 as a function of Nf ∈ IIRZ . From bottom to top, the curves (with colors

online) refer to β′

IR,F,∆2

f
(red), β′

IR,F,∆3

f
(green), β′

IR,F,∆4

f
(blue), and β′

IR,F,∆5

f
(black).

d3,F
|d4,F |

= 21.221 for SU(3), (4.19)

and

|d4,F |

|d5,F |
= 8.2115 for SU(3) . (4.20)

Since Nu = 16.5 and Nℓ = 153/19 = 8.053 in this SU(3) theory, the maximal value of ∆f in the interval IIRZ , as
given by (3.16), is

(∆f )max =
321

38
= 8.447 for SU(3), Nf ∈ IIRZ . (4.21)

Therefore, these ratios suggest that the small-∆f expansion may be reasonably reliable in most of this interval, IIRZ
and the associated non-Abelian Coulomb phase.
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FIG. 9: Plot of β′

IR,F,∆
p
f
for Nc = 4 and 2 ≤ p ≤ 5 as a function of Nf ∈ IIRZ . From bottom to top, the curves (with colors

online) refer to β′

IR,F,∆2

f
(red), β′

IR,F,∆3

f
(green), β′

IR,F,∆4

f
(blue), and β′

IR,F,∆5

f
(black).

C. β′

IR,∆5
f
in LNN Limit

The appropriately rescaled beta function that is finite in the LNN limit is

βξ =
dξ

dt
= lim
LNN

Ncβ , (4.22)

where ξ = 4πx = limLNN αNc was defined in Eq. (3.21). This has the series expansion

βξ ≡
dξ

dt
= −8πx

∞
∑

ℓ=1

b̂ℓx
ℓ = −2ξ

∞
∑

ℓ=1

b̃ℓξ
ℓ (4.23)

where

b̂ℓ = lim
LNN

bℓ
N ℓ
c

. (4.24)

and b̃ℓ = b̂ℓ/(4π)
ℓ. The b̂ℓ with 1 ≤ ℓ ≤ 4 were analyzed in [20, 21] and are listed for the reader’s convenience in the

Appendix.
From the recent calculation of b5 in [17], for general G and R, in the MS scheme [17], we calculate

b̂5 =
8268479

3888
+

38851

162
ζ3 −

121

6
ζ4 − 330ζ5

+

(

−
11204369

5184
−

231619

648
ζ3 +

77

6
ζ4 +

4090

9
ζ5

)

r

+

(

3952801

7776
+

33125

108
ζ3 −

241

6
ζ4 −

1630

9
ζ5

)

r2

+

(

−
5173

432
−

1937

81
ζ3 + 7ζ4 +

20

3
ζ5

)

r3

+

(

61

486
−

52

81
ζ3

)

r4

= 2050.932− 2105.880r+ 645.7474r2

− 26.2309r3 − 0.64618r4 . (4.25)

(In this expression although ζ4 could be expressed explicitly as ζ4 = π4/90, we leave it in abstract form to be

parallel with the ζ3 and ζ5 terms.) We find that this coefficient b̂5 is positive throughout the entire asymptotically
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free interval 0 ≤ r < 5.5. (Considered formally as a function of r ∈ R, b̂5 is negative for r < −58.609, positive
for −58.609 < r < 14.336, and negative for r > 14.336, where the numbers are quoted to the given floating-point
accuracy.)
Since the derivative dβξ/dξ satisfies the relation

dβξ
dξ

=
dβ

dα
≡ β′ , (4.26)

it follows that β′ is finite in the LNN limit (3.21). In terms of the variable x defined in Eq. (3.23), we have

β′ = −2
∞
∑

ℓ=1

(ℓ+ 1)b̂ℓ x
ℓ . (4.27)

Because β′
IR is scheme-independent and is finite in the LNN limit, one is motivated to calculate the LNN limit of

the scheme-independent expansion (1.3). For this purpose, in addition to the rescaled quantities ∆r defined in Eq.
(3.30), we define the rescaled coefficient

d̂j,F = lim
LNN

N j
c dj,F , (4.28)

which is finite. Then each term

lim
LNN

dj,F∆
j
f = (N j

c dj,F )
(∆f

Nc

)j

= d̂j,F∆
j
r (4.29)

is finite in this limit. Thus, writing limLNN β
′
IR as β′

IR,LNN for this R = F case, we have

β′

IR,LNN =

∞
∑

j=1

dj,F∆
j
f =

∞
∑

j=1

d̂j,F∆
j
r .

(4.30)

We denote the value of β′
IR,LNN obtained from this series calculated to order O(∆p

f ) as β
′

IR,LNN,∆p

f

.

From Eqs. (4.5)-(4.8), we find that the approach to the LNN limits for d̂j,F involves correction terms that vanish
like 1/N2

c . This is the same property that was found in [20, 21] and, in the same way, it means that the approach to
the LNN limit for finite Nc and Nf with fixed r = Nf/Nc is rather rapid, as discussed in [21]. In [13] we gave the

d̂j,F for 1 ≤ n ≤ 4; in addition to d̂1 = 0 (which holds for any G and R), these are

d̂2,F =
24

32 · 52
= 0.0711111 , (4.31)

d̂3,F =
416

33 · 54
= 2.465185× 10−2 , (4.32)

and

d̂4,F =
5868512

35 · 510
−

5632

34 · 56
ζ3 = −(2.876137× 10−3) . (4.33)

Here we give the next higher coefficient:

d̂5,F = −
9542225632

36 · 514
−

1444864

35 · 59
ζ3 +

360448

35 · 58
ζ5

= −(1.866490× 10−3) . (4.34)

In these equations we have indicated the simple factorizations of the denominators that were already evident in
the general analytic expressions (4.5)-(4.8). Although the numerical coefficients in the numerators of terms in Eq.

(4.34) do not, in general, have simple factorizations, they do contain various powers of 2; for example, in d̂5,F ,
1444864 = 210 · 17 · 83, etc. Thus, numerically, to order ∆5

r, for the LNN limit of this theory with R = F , we have

β′

IR,LNN = ∆2
r

[

7.1111× 10−2 + (2.4652× 10−2)∆r
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− (2.8761× 10−3)∆2
r − (1.8665× 10−3)∆3

r

+ O(∆4
r)
]

, (4.35)

where the coefficients are given to the indicated floating-point precision. We may again calculate ratios of successive
magnitudes of these coefficients to get a rough estimate of the range over which the small-∆r expansion is reliable in
this LNN limit. We find

d̂2,F

d̂3,F
= 2.885 , (4.36)

d̂3,F

|d̂4,F |
= 8.571 , (4.37)

and

|d̂4,F |

|d̂5,F |
= 1.541 . (4.38)

For r ∈ IIRZ,r , the maximal value of ∆r is (∆r)max = 75/26 = 2.885. The first two ratios, (4.36) and (4.37) suggest
that the ∆r expansion for β′

IR may be reasonably reliable over a reasonable fraction of the interval IIRZ,r . From the
third ratio, (4.38), we infer that the expansion is expected to be more accurate in the upper portion of the interval
IIRZ,r than the lower portion.
In Ref. [13] we presented a comparison of these scheme-independent calculations of β′

IR,LNN calculated up to the

∆4
r order with the results of conventional n-loop calculations, denoted β′

IR,nℓ,LNN , computed up to the n = 4 loop

order for which the bn were known at that time. We refer the reader to [13] for details of this discussion. Here we
shall extend this comparison to the ∆5

r order. In Table IX we list the numerical values of these conventional n-loop
calculations up to n = 4, in comparison with our scheme-independent results calculated to O(∆p

r) with p up to 5. (The
conventional 4-loop values β′

IR,4ℓ for some values of r toward the lower part of IIRZ,r supersede the corresponding

entries in Table II of [13].) Both β′

IR,nℓ and β′
IR,∆n

r
use, as inputs, the coefficients of the beta function up to loop

order n, although β′
IR,∆n

r
does this in a scheme-independent manner. We see that, especially for r values in the

upper part of the interval IIRZ,r , the results are rather close, and, furthermore, that, as expected, for a given r, the

higher the loop level n and the truncation order p in the respective calculations of β′

IR,nℓ in the MS scheme and the

scheme-independent β′

IR,∆p
r
, the better the agreement between these two results. Toward the lower end of the interval

IIRZ,r , both the conventional expansion of β′
IR and the scheme-independent expansion of β′

IR in powers of ∆r become
less reliable, and hence it is understandable that the results differ from each other in this lower part of IIRZ,r.

D. β′

IR,∆5

f
for G = SU(Nc) and R = adj

Here we calculate the dj and hence β′

IR,∆j

f

for j up to j = 5 in the SU(Nc) gauge theory with fermion representation

R = adj. As was discussed above, in this case, the interval IIRZ contains the single Dirac value, Nf = 2. For this
value of Nf , Eq. (3.60) yields ∆f = 3/4. We recall that the dj for 2 ≤ j ≤ 4 are [13]

d2,adj =

(

2

3

)4

= 0.19753 , (4.39)

d3,adj =
28

37
= 0.11706 , (4.40)

and

d4,adj =
46871

22 · 312
+

2368

310N2
c
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= 0.022049+ 0.040102N−2
c . (4.41)

Here, from our new general result (4.9) for d5, we obtain the next coefficient for this case of the adjoint representation:

d5,adj = −
7141205

23 · 316
+

5504

312
ζ3

−

(

30928

314
+

465152

313
ζ3

)

N−2
c

= −(0.828739× 10−2)− 0.357173N−2
c .

. (4.42)

While the dj,adj with 2 ≤ j ≤ 4 are positive-definite, we thus find that d5,adj is negative-definite. These results on

signs are listed in Table VII. In the Nc → ∞ (LN) limit of Eq. (3.22), the values of d̂j,adj can be read off directly

from our general results in Eqs. (4.39)-(4.42); for example, d̂4,adj = 46871/(22 · 312), etc.
With these coefficients, one can again compute ratios to obtain a crude idea of the region over which the small-∆f

series expansion is reliable. We have

d2,adj
d3,adj

=
33

24
= 1.687 (4.43)

and, taking the large-Nc limit for simplicity,

lim
Nc→∞

d3,adj
d4,adj

=
35 · 210

46871
= 5.309 (4.44)

lim
Nc→∞

d4,adj
|d5,adj |

=
7593102

7141205− 3566592ζ3
= 2.6606 . (4.45)

Since ∆f = 0.75 for Nf = 2, these ratios indicate that the small-∆f expansion should be reasonably accurate here.

E. β′

IR,∆5

f
for G = SU(Nc) and R = S2, A2

Here we present our results for the dj coefficients and hence β′

IR,∆j

f

with j up to 5 for G = SU(Nc) and Nf fermions

in the symmetric and antisymmetric rank-2 tensor representations, S2 and A2. As before with γψ̄ψ,IR,∆p

f
, since many

formulas for these two cases are simply related to each other by sign reversals in certain terms, it is convenient to
treat these two cases together, denoting them collectively as T2. We recall that for R = A2, we restrict to Nc ≥ 3.
From our general formulas (4.5)-(4.9), we obtain the following, where the upper and lower signs refer to the S2 and

A2 special cases of T2, respectively, and F± was defined in Eq. (3.72):

d2,T2
=

23(Nc ± 2)2

32F±

(4.46)

d3,T2
=

24(Nc ± 2)3(8N2
c ± 3Nc − 6)

33NcF 2
±

(4.47)

d4,T2
=

(Nc ± 2)3

2 · 35N2
c F

5
±

[

(

1265517N9
c ± 6305850N8

c + 8455112N7
c ∓ 18825808N6

c − 47225264N5
c

± 61021088N4
c + 70598528N3

c ∓ 72131840N2
c + 3066624Nc ∓ 2044416

)

± 8448N2
c (Nc ∓ 2)(18N2

c ± 11Nc − 22)(12N3
c ∓ 9N2

c ± 308)ζ3

]

(4.48)
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and

d5,T2
=

(Nc ± 2)4

2 · 36N3
c F

7
±

[

(

− 578437605N13
c ∓ 2353001022N12

c − 1643220810N11
c ± 1685855300N10

c

+ 12567177608N9
c ± 29240054768N8

c − 75390007296N7
c ∓ 70417381376N6

c + 243309040128N5
c

∓ 27199484928N4
c − 228577603584N3

c ± 143780184064N2
c − 38053396480Nc± 15221358592

)

+ 27F±

(

125388N11
c ± 372762N10

c − 7324047N9
c ∓ 9682414N8

c + 52934332N7
c ∓ 12735976N6

c

− 192234240N5
c ± 112670976N4

c + 164609280N3
c ∓ 111598080N2

c + 2973696Nc∓ 1486848

)

ζ3

+ 210 · 55N2
c (Nc ∓ 2)F 2

±

(

∓ 87N5
c + 259N4

c ± 1134N3
c − 3600N2

c ∓ 5016Nc + 10032

)

ζ5

]

. (4.49)

We find that, in addition to the manifestly positive d2,T2
, the coefficient d3,T2

is also positive for all relevant Nc. Here,
by “relevant Nc”, we mean Nc ≥ 2 for S2 and Nc ≥ 3 for A2. In contrast, while d4,S2

is positive for all relevant Nc, we
find that d4,A2

is negative for Nc = 3, 4, 5, passes through zero at Nc = 5.515, and is positive for Nc ≥ 6. Further,
we find that d5,S2

and d5,A2
are both negative for their respective physical ranges, Nc ≥ 2 and Nc ≥ 3. These sign

properties are listed in Table VII.
Some general comments are in order concerning these dj,T2

expressions. These are analogous to the comments that
we made for the κj,T2

coefficients. The property that all of the dj,A2
coefficients contain an overall factor of (Nc − 2)

(possibly raised to a power higher than 1), and hence vanish for Nc = 2, is a consequence of the fact that for Nc = 2,
the A2 representation is a singlet, so for SU(2), fermions in the A2 = singlet representation have no gauge interactions
and do not contribute to the beta function or β′

IR.
Furthermore, if Nc = 2, then the S2 representation is the same as the adjoint representation, so the coefficients

must satisfy the equality dj,S2
= dj,adj for this SU(2) case, and we have checked that they do. This equality requires

(i) that the term proportional to ζ3 in d4,S2
must be absent if Nc = 2, since d4,adj does not contain any ζ3 term, and

this is accomplished by the factor of (Nc − 2) multiplying the ζ3 term in d4,S2
; and (ii) the term proportional to ζ5

in d5,S2
must be absent if Nc = 2, since d5,adj does not contain any ζ5 term, and this is accomplished by the factor

(Nc − 2) multiplying this ζ5 term in d5,S2
. Similarly, as observed before, if Nc = 3, then the A2 representation is the

same as the conjugate fundamental representation, F̄ , so the coefficients must satisfy the equality dj,A2
= dj,F for

this SU(3) case, and we have checked that they do.
In the LN limit (3.22), as discussed above in the case of the anomalous dimension γIR,T2

, the upper ends of the
interval IIRZ for the S2 and A2 theories approach the same value, Nu,T2

, given in Eq. (3.86), and similarly the lower
ends of this interval for these S2 and A2 theories approach the same value, Nℓ,T2

, given in Eq. (3.87). We denote

d̂j,T2
= lim

LN
dj,T2

, (4.50)

and we find

d̂j,S2
= d̂j,A2

, (4.51)

which we denote simply as d̂j,T2
. Hence,

lim
LN

β′

IR,S2
= lim

LN
β′

IR,A2
. (4.52)

Further, again in analogy with Eq. (3.98) and for the same reasons concerning group invariants in the LN limit, we
have

d̂j,T2
= 2−j d̂j,adj (4.53)

From our general expressions, we calculate

d̂2,T2
=

22

34
= 0.049383 (4.54)
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d̂3,T2
=

25

37
= 1.46319× 10−2 (4.55)

d̂4,T2
=

46871

26 · 312
= 1.37806× 10−3 (4.56)

and

d̂5,T2
= −

7141205

28 · 316
+

172

312
ζ3

= −(2.58981× 10−4) . (4.57)

To estimate the region over which the ∆f expansion converges, we calculate the ratios of adjacent coefficients. We
have

d2,T2

d3,T2

=
3Nc(18N

2
c ± 11Nc − 22)

(Nc ± 2)(8N2
c ± 3Nc − 6)

. (4.58)

and similarly for the ratios dj−1,T2
/dj,T2

for j = 4, 5. For the LN limit,

d̂2,T2

d̂3,T2

=

(

3

2

)3

= 3.375 (4.59)

d̂3,T2

d̂4,T2

=
497664

46871
= 10.618 (4.60)

and

d̂4,T2

|d̂5,T2
|
= 5.321 . (4.61)

Since formally, (∆f )max = 3.375 from Eq. (3.88) and ∆f = 5.5 for Nf = 2, these ratios indicate that the ∆f expansion
for the LN limit of this R = T2 case should be reasonably accurate in the interval IIRZ for this case.

V. IR ZERO OF βξ IN THE LNN LIMIT

In this section we analyze the zeros of the rescaled five-loop beta function in the LNN limit. This elucidates further
the result that we first found for a finite value of Nc, namely Nc = 3, in [15], namely that for SU(3), the five-loop
beta function only has a physical IR zero in the upper range of the interval IIRZ . We denote the n-loop rescaled beta
function (4.22) in this LNN limit as βξ,nℓ, and its IR zero (if such a zero exists) as ξIR,nℓ = 4πxIR,nℓ. The analytic
expressions of ξIR,2ℓ and ξIR,3ℓ were given in [21], together with numerical values of ξIR,nℓ for 1 ≤ n ≤ 4. Here we

extend these results to the five-loop level, using the coefficient b̂5 in Eq. (4.25). As noted before, we use the b̂n with
3 ≤ n ≤ 5 calculated in the MS scheme. The reader is referred to [21] for analysis of these zeros up to the four-loop
level.
In general, the IR zero of the n-loop beta function, βξ,nℓ, is the positive real root closest to the origin (if such a

root exists) of the equation

n
∑

ℓ=1

b̂ℓ x
ℓ−1 = 0 , (5.1)

of degree n− 1 in the variable x. The roots of Eq. (5.1) depend on the n− 1 ratios b̂ℓ/b̂1 for 2 ≤ ℓ ≤ n. In particular,
at the five-loop level, Eq. (5.1) is the quartic equation

b̂1 + b̂2x+ b̂3x
2 + b̂4x

3 + b̂5x
4 = 0 . (5.2)

To analyze the roots of this equation, it is natural to start with r in the vicinity of ru = 11/2, where b̂1 → 0 and hence
one solution of Eq. (5.2) approaches zero, matching the behavior of xIR,nℓ for 2 ≤ n ≤ 4 in this limit. As we reduce r
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from the value ru in the interval IIRZ,r , we can thus calculate how the physical IR root, xIR,5ℓ = ξIR,5ℓ/(4π), changes.
We find that, in contrast to the behavior of the IR zero of the lower-loop beta functions βξ,nℓ with 2 ≤ n ≤ 4, here

at the five-loop level, as r decreases past a certain value rcx, Eq. (5.2) (with b̂n, n = 3, 4, 5 calculated in the MS
scheme) ceases to have a physical IR zero. We find that the value of rcx is

rcx = 4.32264 , (5.3)

to the indicated floating-point accuracy. This is determined as the relevant root of the discriminant of Eq. (5.2),
which is a polynomial of degree 15 in the variable r. (The discriminants of the corresponding equations at loop levels
3 and 4 are polynomials of degree 3 and 8 in r.) For example, for the illustrative value r = 5, near to the upper
end of the interval IIRZ,r , Eq. (5.2) has the solutions in x, expressed in terms of ξ = 4πx: ξ = 0.36300, 1.69540,
and −1.48884± 1.08446i. Of these, we identify the first as the IR zero, ξIR,5ℓ. As r decreases and approaches rcx
from above, the two real roots approach a common value, ξ ≃ 1.312 and as r decreases below rcx, Eq. (5.2) has only
two complex-conjugate pairs of solutions, roots, but no real positive solution. In Table X we list our new results for
ξIR,5ℓ, in comparison with the previously calculated values of ξIR,nℓ in the LNN limit with 2 ≤ n ≤ 4 from Table III
of [21]. Although we list ξIR,nℓ values extending to the lower part of the interval IIRZ,r for completeness, it is clear
that a number of these values are too large for the perturbative calculations to be reliable. For values of r where the
five-loop beta function (calculated in the MS scheme) has no physical IR zero, we denote this as unphysical (u).
We note that the absence of a physical IR zero in the five-loop beta function (calculated in the MS scheme) for

Nf values in the lower portion of the interval IIRZ does not necessarily imply that higher-loop calculations would
yield similarly unphysical results. We gave an example of this in Section VIII of the second paper in [38], using an
illustrative exact beta function. In this example, it was shown that a certain order of truncation of the Taylor series
expansion in powers of α for this beta function did not yield any physical IR zero, but higher orders did converge
toward this zero.

VI. ∆f EXPANSION FOR αIR TO O(∆4
f )

A. General G and R

Since the exact αIR (and also the n-loop approximation to this exact αIR) vanishes as functions of ∆f , it follows
that one can expand it as a power series in this variable. This expansion was given above as Eq. (2.9), and it
was noted that the calculation of the coefficient aj requires, as input, the ℓ-loop beta function coefficients bℓ with
1 ≤ ℓ ≤ j + 1. We denote the truncation of this infinite series (2.9) to maximal power j = p as αIR,∆p

f
. Here we

present a calculation of this series to O(∆4
f ), which is the highest order to which it has been calculated. Since αIR

is scheme-dependent, it follows that the aj coefficients in Eq. (2.9) are also scheme-dependent, in contrast to the
scheme-independent coefficients κj and dj in Eqs. (1.2) and (1.3). Nevertheless, it is still worthwhile to calculate
these coefficients aj and the resultant finite-order approximations αIR,∆p

f
, for several reasons. First, this method has

the advantage that αIR,∆p

f
is always physical and thus avoids the problem that we found in [15] and have further

studied above, that the five-loop beta function calculated in the MS scheme does not have a physical IR zero in the
lower part of the interval IIRZ . In [14], for the special case G = SU(3) and R = F , we presented the aj (denoted ãj
there) for 1 ≤ j ≤ 4.
Here, as a new result, we present the expressions for the aj for arbitrary G and R, for 1 ≤ j ≤ 4. For this purpose,

we use the n-loop beta function coefficients bn with 3 ≤ n ≤ 5 calculated in the MS scheme. In particular, our result
for a4 makes use of the recently calculated five-loop beta function for general G and R [17].
For general G and R, recalling the definition of the denominator factor D = 7CA + 11Cf in Eq. (3.1), we find

a1 =
4Tf

3CAD
(6.1)

a2 =
2T 2

f (−287C2
A + 1208CACf + 924C2

f )

33C2
AD

3
(6.2)

a3 =
2Tf

35C4
AD

5

[

CAT
2
f

(

− 71491C4
A + 372680C3

ACf + 2102252C2
AC

2
f + 835560CAC

3
f + 836352C4

f

)
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− 2560T 2
fD

dabcdA dabcdA

dA
+ 45056CATfD

dabcdR dabcdA

dA
− 170368C2

ATfD
dabcdR dabcdR

dA

+ 4224D

[

3C2
AT

2
fD(CA − Cf ) + 16T 2

f

dabcdA dabcdA

dA
− 104CATf

dabcdR dabcdA

dA
+ 88C2

A

dabcdR dabcdR

dA

]

ζ3

]

(6.3)

and

a4 =
T 2
f

2 · 37C5
AD

7

[

CAT
2
f

(

194849725C6
A− 684457480C5

ACf + 4175949036C4
AC

2
f + 13292017040C3

AC
3
f

+ 2617931536C2
AC

4
f + 8758858944CAC

5
f + 85865472C6

f

)

+ 210T 2
fD

dabcdA dabcdA

dA

(

21287C2
A − 5504CACf − 19140C2

f

)

+ 210CATfD
dabcdR dabcdA

dA

(

− 194005C2
A + 253231CACf + 136488C2

f

)

+ 28 · 112C2
AD

dabcdR dabcdR

dA

(

917C2
A − 40412CACf + 26796C2

f

)

− 2304D

[

CAT
2
fD

(

15456C4
A − 75039C3

ACf + 45716C2
AC

2
f + 23848CAC

3
f + 2112C4

f

)

+ 16T 2
f

dabcdA dabcdA

dA

(

8610C2
A − 15037CACf − 14036C2

f

)

− 8CATf
dabcdR dabcdA

dA

(

95984C2
A − 190355CACf − 135036C2

f

)

+ 88C2
A

dabcdR dabcdR

dA

(

3199C2
A − 26004CACf − 17908C2

f

)

]

ζ3

+ 337920CAD
2

[

− 9CAT
2
fD(CA − Cf )(CA + 2Cf )− 160T 2

f

dabcdA dabcdA

dA

+ 80Tf(10CA + 3Cf )
dabcdR dabcdA

dA
+ 440CA(CA − 3Cf )

dabcdR dabcdR

dA

]

ζ5

]

. (6.4)

We next specialize to the caseG = SU(Nc) and give explicit reductions of these general formulas for the representations
of interest here.

B. R = F

For R = F , our general results (6.1)-(6.4) reduce to the following expressions:

a1,F =
4

3(25N2
c − 11)

(6.5)

a2,F =
4(548N4

c − 1066N2
c + 231)

33Nc(25N2
c − 11)3

(6.6)

a3,F =
23

35N2
c (25N

2
c − 11)5

[

(

730529N8
c − 1105385N6

c − 719758N4
c + 389235N2

c + 52272
)

+ 1584N2
c (25N

2
c − 11)

(

25N4
c − 18N2

c + 77
)

ζ3

]

(6.7)

and

a4,F =
22

37N3
c (25N

2
c − 11)7

[

(

2783259085N12
c − 7278665930N10

c + 4578046419N8
c − 1719569282N6

c
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FIG. 10: Plot of αIR,F,∆p
f
(denoted as αIR on the vertical axis) with 1 ≤ p ≤ 4 for G = SU(2), as functions of Nf ∈ IIRZ . From

bottom to top, the curves (with colors online) refer to αIR,F,∆f
(red), αIR,F,∆2

f
(green), αIR,F,∆3

f
(blue), αIR,F,∆4

f
(black).

Note that the curves for αIR,F,∆3

f
and αIR,∆4

f
are so close as to be indistinguishable in this figure.

+ 2905511455N4
c − 1137735654N2

c + 1341648
)

+ 288(25N2
c − 11)

(

548025N10
c − 1857036N8

c + 4694107N6
c − 5482510N4

c + 1098130N2
c + 2904

)

ζ3

− 190080N2
c (25N

2
c − 11)2

(

40N6
c − 27N4

c + 124N2
c − 209

)

ζ5

]

. (6.8)

We have checked that setting Nc = 3 in our new a4 coefficient in Eq. (6.8) yields agreement with the value that we
obtained previous for this special case in (Eq. (14) of) Ref. [14].
We comment next on the signs of these coefficients. The coefficient a1 is manifestly positive for arbitrary group G

and fermion representation R. We find that a2,F and a3,F are also positive for all physical Nc ≥ 2. In contrast, we
find that a4,F is negative for Nc = 2 and positive for Nc ≥ 3. With Nc generalized from positive integers to positive
real numbers in the range Nc ≥ 2, we calculate that as Nc increases through the value Nc = 2.1184 (given to the
indicated accuracy), a4,F passes through zero with positive slope.
We list below the explicit numerical expressions for αIR to order ∆4

f , for Nc = 2, 3, 4 and R = F , denoted , the
indicated floating-point precision:

SU(2) : αIR,F,∆4

f
= ∆f

[

(0.18826 + (0.62521× 10−2)∆f + (0.70548× 10−2)∆2
f − (0.45387× 10−4)∆3

f

]

(6.9)

SU(3) : αIR,F,∆4

f
= ∆f

[

(0.078295 + (2.2178× 10−3)∆f + (1.1314× 10−3)∆2
f + (2.1932× 10−5)∆3

f

]

(6.10)

and

SU(4) : αIR,F,∆4

f
= ∆f

[

(0.043072+ (0.97619× 10−3)∆f + (0.33823× 10−3)∆2
f + (0.71999× 10−5)∆3

f

]

.

(6.11)

In Figs. 10-12 we show αIR,F,∆p

f
for Nc = 2, 3, 4 and 1 ≤ p ≤ 4 as a function of Nf . Note that in Fig. 10 the

curves for p = 3 and p = 4 are so close as to be indistinguishable for this this range of Nf .
In Table XI we compare the values of the IR zero of the n-loop beta function for 1 ≤ n ≤ 4 from [19] with our

values of αIR,F,∆p

f
for 1 ≤ p ≤ 4 and Nc = 2, 3, 4. Since the calculation of αIR,nℓ uses the ℓ-loop beta function
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FIG. 11: Plot of αIR,F,∆p
f
with 1 ≤ p ≤ 4 for G = SU(3), as functions of Nf ∈ IIRZ . From bottom to top, the curves (with

colors online) refer to αIR,F,∆f
(red), αIR,F,∆2

f
(green), αIR,F,∆3

f
(blue), αIR,F,∆4

f
(black).

FIG. 12: Plot of αIR,F,∆p
f
with 1 ≤ p ≤ 4 for G = SU(4), as functions of Nf ∈ IIRZ . From bottom to top, the curves (with

colors online) refer to αIR,F,∆f
(red), αIR,F,∆2

f
(green), αIR,F,∆3

f
(blue), αIR,F,∆4

f
(black).

coefficients bℓ with 1 ≤ ℓ ≤ n, while the calculation of αIR,∆p

f
uses the bℓ for 1 ≤ ℓ ≤ p+ 1, the closest comparison is

of αIR,nℓ with αIR,∆n−1

f
, which both use n-loop information from the beta function. Although, for completeness, we

include values of αIR,2ℓ for Nf extending down to the lower end of the respective intervals IIRZ for each value of Nc,
we caution that in a number of cases, including Nf = 6 for SU(2), Nf = 9 for SU(3), and 10 ≤ Nf ≤ 12 for SU(4),
these values of αIR,2ℓ are too large for the perturbative n-loop calculations to be reliable. Concerning the comparison
of the higher-order n-loop values of αIR,nℓ with our values of αIR,F,∆p

f
, we see that for a given Nc and Nf , at the

upper end of the non-Abelian Coulomb phase, the values of αIR,∆n−1

f
and αIR,nℓ are quite close to each other, but

Nf decreases in this NACP in in the interval IIRZ , αIR,∆n−1

f
becomes slightly larger than αIR,nℓ.

In the LNN limit, for the IR zero of the rescaled beta function, we write

ξIR = 4π

∞
∑

j=1

âj,F∆
j
r (LNN limit) , (6.12)

where

âj,F = lim
LNN

N j+1
c aj,F . (6.13)
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From our results for aj,F , we calculate

â1,F =
4

3 · 52
= 0.053333 (6.14)

â2,F =
2192

33 · 56
= 0.519585× 10−2 (6.15)

â3,F =
5844232

35 · 510
+

1408

33 · 56
ζ3 = 0.647460× 10−2 (6.16)

and

â4,F =
2226607268

37 · 513
+

935296

34 · 510
ζ3 −

45056

34 · 58
ζ5

= 0.778770× 10−3 . (6.17)

Thus, in the LNN limit, the expansion of ξIR, to O(∆
4
r), is

ξIR,∆4
r
= 4π∆r

[

0.053333+ (0.519585× 10−2)∆r

+ (0.647460× 10−2)∆2
r + (0.778770× 10−3)∆3

r

]

.

(6.18)

C. R = adj

For R = adj, our general results (6.1)-(6.4) reduce to the following expressions:

a1,adj =
2

33Nc
=

0.074747

Nc
(6.19)

a2,adj =
205

22 · 37Nc
=

0.023434

Nc
(6.20)

a3,adj =
49129

24 · 311Nc
−

296

39N3
c

=
0.017333

Nc
−

0.015038

N3
c

(6.21)

and

a4,adj =

(

38811689

28 · 315
−

40

39
ζ3

)

1

Nc

+

(

−
3157

313
+

25616

312

)

1

N3
c

=
0.0081230

Nc
+

0.055960

N3
c

. (6.22)

The coefficients aj,adj with j = 1, 2, 4 are manifestly positive, and we find that a3,adj is also positive for all Nc ≥ 2.
Since for the adjoint representation, R = adj, the upper and lower boundaries of the interval IIRZ , Nu,T2

= 11/2
in Eq. (3.58) and Nℓ,adj = 17/16 in (3.59), are independent of Nf , it follows that ∆f = Nu −Nf is also independent
of Nc. From the general formula (2.9), in the LN limit of a theory with fermions in a two-index representation R2,
including the adjoint and symmetric and antisymmetric tensors, we can write

ξIR = 4π

∞
∑

j=1

âj,R2
∆j
f (LN limit) , (6.23)
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where

âj,R2
= lim

LN
Ncaj,R2

. (6.24)

From our calculations above, setting R2 = adj, we have

â1,adj =
2

33
= 0.074747 (6.25)

â2,adj =
205

22 · 37
= 0.023434 (6.26)

â3,adj =
49129

24 · 311
= 0.017333 (6.27)

and

â4,adj =
38811689

28 · 315
−

40

39
ζ3 = 0.0081230 . (6.28)

D. R = S2, A2

For R equal to the symmetric or antisymmetric rank-2 tensor representations, S2 and A2, we give the reductions
of our general results (6.1)-(6.4) next. As before, it is convenient to consider these together, since many terms differ
only by sign reversal. As above, the upper and lower signs refer to the S2 and A2 representations, respectively. Also,
as before, for A2, we require that Nc ≥ 3. Recalling the definition of the denominator factor F± in Eq. (3.72), we
have

a1,T2
=

2(Nc ± 2)

3F±

(6.29)

a2,T2
=

(Nc ± 2)2(1845N4
c ± 3056N3

c − 5188N2
c ∓ 3696Nc + 3696)

2 · 33NcF 3
±

(6.30)

a3,T2
=

(Nc ± 2)2

22 · 35N2
c F

5
±

[

(

3979449N9
c ± 16999002N8

c + 761444N7
c ∓ 52233472N6

c − 3099440N5
c

± 11578144N4
c − 16368000N3

c ± 36440448N2
c − 40144896Nc± 26763264

)

∓ 12672N2
c (Nc ∓ 2)F±(12N

3
c ∓ 9N2

c ± 308)ζ3

]

(6.31)

and

a4,T2
=

(Nc ± 2)3

25 · 37N3
c F

7
±

[

(

28293721281N13
c ± 156860406306N12

c + 13832572748N11
c ∓ 547968555432N10

c

− 929147053664N9
c ± 428226859968N8

c + 2279581786496N7
c ± 586028410624N6

c − 4633121830656N5
c

± 143588589056N4
c + 4686268342272N3

c ∓ 2321839534080N2
c − 27476951040Nc± 10990780416

)

− 2304F±

(

131220N11
c ± 695898N10

c − 6916683N9
c ∓ 10687114N8

c + 60333108N7
c ∓ 12100440N6

c

− 239418432N5
c ± 140804928N4

c + 208053120N3
c ∓ 140560640N2

c + 2973696Nc ∓ 1486848

)

ζ3

+ 1013760N2
c (Nc ∓ 2)F 2

±

(

± 87N5
c − 259N4

c ∓ 1134N3
c + 3600N2

c ± 5016Nc − 10032

)

ζ5

]

. (6.32)
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The same general comments that we made before concerning factors in the κj,T2
and dj,T2

coefficients also apply
here. Thus, for arbitrary j, the aj,A2

coefficients contain at least one overall factor of (Nc − 2) and hence vanish
for Nc = 2, as a result of the fact that for Nc = 2, the A2 representation is a singlet, so for SU(2), fermions in the
A2 = singlet representation are free fields and hence make no contribution to the beta function. Moreover, if Nc = 2,
then the S2 representation is the same as the adjoint representation, so the aj coefficients must satisfy the equality
aj,S2

= aj,adj for this SU(2) case, and we have checked that they do. Similarly, if Nc = 3, then the A2 representation
is the same as the conjugate fundamental representation, F̄ , so these coefficients must satisfy the equality aj,A2

= aj,F
for this SU(3) case, and we have checked that they do.
We next consider the LN limit of the theory with fermions in the S2 or A2 representations. Using the definition

(6.24) with R2 = S2 and R2 = A2, we find that

âj,S2
= âj,A2

(6.33)

so we denote these simply as âj,T2
. In general, for the same group-theoretical reasons as led to the LN relation

κ̂j,T2
= 2−j κ̂j,adj in Eq. (3.98) and the LN relation d̂j,T2

= 2−j d̂j,adj in Eq. (4.53),we have, in the LN limit,

âj,T2
= 2−jâj,adj . (6.34)

Explicitly, we calculate

â1,T2
=

1

33
= 0.05333 (6.35)

â2,T2
=

205

24 · 37
= 0.58585× 10−2 (6.36)

â3,T2
=

49129

27 · 311
= 2.16668× 10−3 (6.37)

and

â4,T2
=

38811689

212 · 315
−

5

2 · 39
ζ3 = 0.50769× 10−3 . (6.38)

VII. CONCLUSIONS

In conclusion, in this paper we have presented a number of new results on scheme-independent calculations of
various quantities in an asymptotically free vectorial gauge theory having an IR zero of the beta function. We have
presented scheme-independent series expansions of the anomalous dimension γψ̄ψ,IR to O(∆4

f ) and the derivative of

the beta function, β′
IR, to O(∆

5
f ) for a theory with a general gauge group G and Nf fermions in a representation R of

G. We have given reductions of our general formulas for theories with G = SU(Nc) and R equal to the fundamental,
adjoint, and symmetric and antisymmetric rank-2 tensor representations. We have compared our scheme-independent
calculations of γψ̄ψ,IR and β′

IR with previous n-loop values of these quantities calculated via series expansions in powers
of the coupling. For a number of specific theories we have also compared our new scheme-independent calculations
of γψ̄ψ,IR and β′

IR with lattice measurements. We have shown that for all of the representations we have studied,

and for the full range 1 ≤ p ≤ 4 for which we have performed calculations, γψ̄ψ,IR calculated to O(∆p
f ), denoted

γψ̄ψ,IR,∆p

f
, increases monotonically with decreasing Nf (i.e., increasing ∆f ) and, for a fixed Nf , γψ̄ψ,IR,∆p

f
, increases

monotonically with the order p. For the representation R = F , we have presented results for the limit Nc → ∞
and Nf → ∞ with Nf/Nc fixed. These higher-order results have been applied to obtain estimates of the lower
end of the (IR-conformal) non-Abelian Coulomb phase. We have confirmed and extended our earlier finding that
our expansions in powers of ∆f should be reasonably accurate throughout a substantial portion of the non-Abelian
Coulomb phase. We have also given expansions for αIR calculated to O(∆4

f ) which provide a useful complementary
approach to calculating αIR. Our scheme-independent calculations of physical quantities at a conformal IR fixed
point yield new information about the properties of a conformal field theory.
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Appendix A: Series Coefficients for βξ and γψ̄ψ in the LNN Limit

For reference, we list here the rescaled series coefficients for βξ and γψ̄ψ in the LNN limit (3.21). From the (scheme-

independent) one-loop and two-loop coefficients in the beta function [7, 8], it follows that in the LNN limit the b̂ℓ
with ℓ = 1, 2 are

b̂1 =
1

3
(11− 2r)

= 3.667− 0.667r (A1)

and

b̂2 =
1

3
(34− 13r)

= 11.333− 4.333r . (A2)

The coefficients b3 and b4 have been calculated in the MS scheme [27, 28]. With these inputs, one has [21]

b̂3 =
1

54
(2857− 1709r + 112r2)

= 52.907− 31.648r+ 2.074r2 (A3)

and

b̂4 =

(

150473

486
+

44

9
ζ3

)

−

(

485513

1944
+

20

9
ζ3

)

r

+

(

8654

243
+

28

3
ζ3

)

r2 +

(

130

243

)

r3

= 315.492− 252.421r+ 46.832r2 + 0.5350r3 .

(A4)

The behavior of these coefficients b̂ℓ as functions of r was discussed in [21] for 1 ≤ ℓ ≤ 4. The positivity of b̂1 is
equivalent to the asymptotic freedom of the theory, and requires r to lie in the interval 0 ≤ r < 11/2. The existence

of an IR zero in the two-loop beta function is equivalent to the condition that b̂2 < 0, which, in turn, is equivalent to

the condition that r ∈ IIRZ,r as given in Eq. (3.28) . In this interval, b̂3 is negative-definite, while b̂4 is negative for
for 2.615 < r < 3.119 and positive for 3.119 < r < 5.5 [21].
For the coefficients ĉℓ in Eq. (3.33), from [31] and references therein, one has [21]

ĉ1 = 3 , (A5)

ĉ2 =
203

12
−

5

3
r , (A6)

ĉ3 =
11413

108
−

(

1177

54
+ 12ζ3

)

r −
35

27
r2 , (A7)

and

ĉ4 =
460151

576
−

23816

81
r +

899

162
r2 −

83

81
r3

+

(

1157

9
−

889

3
r + 20r2 +

16

9
r3
)

ζ3

+ r
(

66− 12r
)

ζ4 +
(

− 220 + 160r
)

ζ5 . (A8)
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TABLE I: Values of the anomalous dimension γψ̄ψ,IR,F calculated to O(∆p
f
), i.e., γψ̄ψ,IR,F,∆p

f
, with 1 ≤ p ≤ 4, for G = SU(Nc), as a

function of Nc and Nf for 2 ≤ Nc ≤ 4 and Nf in the respective intervals IIRZ for each Nc. For comparison, we also include the n-loop
values γψ̄ψ,IR,F,nℓ with 2 ≤ n ≤ 4 from Table VI of [19]. Values that exceed the bound γψ̄ψ,IR ≤ 2 in Eq. (2.13) are marked as unphysical

(u). For notational brevity in this and successive tables, we omit the subscript ψ̄ψ. See text for further details.

Nc Nf γIR,F,2ℓ γIR,F,3ℓ γIR,F,4ℓ γIR,F,∆f
γIR,F,∆2

f
γIR,F,∆3

f
γIR,F,∆4

f

2 6 u u u 0.337 0.520 0.596 0.698

2 7 u u u 0.270 0.387 0.426 0.467

2 8 0.752 0.272 0.204 0.202 0.268 0.285 0.298

2 9 0.275 0.161 0.157 0.135 0.164 0.169 0.172

2 10 0.0910 0.0738 0.0748 0.0674 0.07475 0.07535 0.0755

3 9 u u u 0.374 0.587 0.687 0.804

3 10 u u u 0.324 0.484 0.549 0.615

3 11 1.61 0.439 0.250 0.274 0.389 0.428 0.462

3 12 0.773 0.312 0.253 0.224 0.301 0.323 0.338

3 13 0.404 0.220 0.210 0.174 0.221 0.231 0.237

3 14 0.212 0.146 0.147 0.125 0.148 0.152 0.153

3 15 0.0997 0.0826 0.0836 0.0748 0.0833 0.0841 0.0843

3 16 0.0272 0.0258 0.0259 0.0249 0.0259 0.0259 0.0259

4 11 u u u 0.424 0.694 0.844 1.029

4 12 u u u 0.386 0.609 0.721 0.8475

4 13 u u u 0.347 0.528 0.610 0.693

4 14 u u u 0.308 0.451 0.509 0.561

4 15 1.32 0.420 0.281 0.270 0.379 0.418 0.448

4 16 0.778 0.325 0.269 0.231 0.312 0.336 0.352

4 17 0.481 0.251 0.234 0.193 0.249 0.263 0.2705

4 18 0.301 0.189 0.187 0.154 0.190 0.197 0.200

4 19 0.183 0.134 0.136 0.116 0.136 0.139 0.140

4 20 0.102 0.0854 0.0865 0.0771 0.0860 0.0869 0.0871

4 21 0.0440 0.0407 0.0409 0.0386 0.0408 0.0409 0.0409
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TABLE II: Values of the scheme-independent γIR,F,∆p
r

in the LNN limit (3.21) for 1 ≤ p ≤ 4, together with γIR,F,nℓ with n =

2, 3, 4 from Table V of [21] for comparison, as a function of r for r ∈ IIRZ,r . Values that exceed the bound γIR ≤ 2 are marked as
unphysical (u) or placed in parentheses. We also list the extrapolated estimate γIR,F,ex234 of γIR,F,∆∞

r
and, in the last column, the ratio

γIR,F,ex234/γIR,F,∆4
r
.

r γ
IR,F,2ℓ

γ
IR,F,3ℓ

γ
IR,F,4ℓ

γIR,F,∆r γIR,F,∆2
r
γIR,F,∆3

r
γIR,F,∆4

r
γIR,F,ex234

γIR,F,ex234

γ
IR,F,∆4

r

2.8 u 1.708 0.190 0.432 0.706 0.870 1.064 (2.09) 1.96

3.0 u 1.165 0.225 0.400 0.635 0.765 0.908 1.645 1.82

3.2 u 0.854 0.264 0.368 0.567 0.668 0.770 1.28 1.66

3.4 u 0.656 0.293 0.336 0.502 0.579 0.650 0.993 1.53

3.6 1.853 0.520 0.308 0.304 0.440 0.497 0.5445 0.763 1.40

3.8 1.178 0.420 0.306 0.272 0.381 0.422 0.452 0.584 1.29

4.0 0.785 0.341 0.288 0.240 0.325 0.353 0.371 0.444 1.20

4.2 0.537 0.277 0.257 0.208 0.272 0.290 0.300 0.337 1.12

4.4 0.371 0.222 0.217 0.176 0.2215 0.233 0.238 0.253 1.06

4.6 0.254 0.1735 0.1745 0.144 0.1745 0.1805 0.183 0.188 1.03

4.8 0.170 0.129 0.131 0.112 0.130 0.133 0.134 0.135 1.01

5.0 0.106 0.0889 0.0900 0.0800 0.0894 0.09045 0.0907 0.0905 1.00

5.2 0.0562 0.0512 0.0516 0.0480 0.0514 0.0516 0.0516 0.0516 1.00

5.4 0.0168 0.0164 0.0164 0.0160 0.0164 0.0164 0.0164 0.0164 1.00

TABLE III: Values of the anomalous dimension γIR,adj,∆p
f
with 1 ≤ p ≤ 4, for Nf = 2 and G = SU(Nc) with Nc = 2, 3. For comparison,

we also list our n-loop values, γIR,adj,nℓ for this theory from Table VIII of Ref. [19].

Nc γIR,adj,2ℓ γIR,adj,3ℓ γIR,adj,4ℓ γIR,adj,∆f
γIR,adj,∆2

f
γIR,adj,∆3

f
γIR,adj,∆4

f

2 0.820 0.543 0.500 0.333 0.465 0.511 0.556

3 0.820 0.543 0.523 0.333 0.465 0.516 0.553

TABLE IV: Values of the anomalous dimension γIR,S2,∆
p
f

with 1 ≤ p ≤ 4, for G = SU(Nc) with Nc = 3, 4 and Nf = 2, 3 (so

Nf ∈ IIRZ). For comparison, we also include values of γIR,S2,nℓ with 2 ≤ n ≤ 4 for this theory from Table XI in our Ref. [19]. Values
that exceed the upper bound γIR < 2 are marked as unphysical (u).

Nc Nf γIR,S2,2ℓ γIR,S2,3ℓ γIR,S2,4ℓ γIR,S2,∆f
γIR,S2,∆

2

f
γIR,S2,∆

3

f
γIR,S2,∆

4

f

3 2 u 1.28 1.12 0.501 0.789 0.960 1.132

3 3 0.144 0.133 0.133 0.116 0.131 0.133 0.1335

4 2 u u 1.79 0.581 0.966 1.242 1.536

4 3 0.381 0.313 0.315 0.232 0.294 0.312 0.319
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TABLE V: Values of the anomalous dimension γIR,A2,∆
p
f
calculated to order 1 ≤ p ≤ 4, for G = SU(4) and Nf ∈ IIRZ . For comparison,

we also include values of γIR,A2,nℓ with 2 ≤ n ≤ 4 for this theory from Table XII in [19]. Values that exceed the upper bound γIR < 2
are marked as unphysical (u).

Nc Nf γIR,A2,2ℓ γIR,A2,3ℓ γIR,A2,4ℓ γIR,A2,∆f
γIR,A2,∆

2
f
γIR,A2,∆

3
f
γIR,A2,∆

4
f

4 5 u u u 0.5405 0.941 1.287 1.671

4 6 u 1.38 0.293 0.450 0.728 0.928 1.114

4 7 u 0.695 0.435 0.360 0.538 0.641 0.717

4 8 0.802 0.402 0.368 0.270 0.370 0.4135 0.438

4 9 0.331 0.228 0.232 0.180 0.225 0.237 0.242

4 10 0.117 0.101 0.103 0.0901 0.101 0.103 0.103

TABLE VI: Values of the anomalous dimension γIR,T2 ,∆
p
f
for T2 = S2 or T2 = A2, calculated to order 1 ≤ p ≤ 4, in the limit Nc → ∞

with Nf ∈ IIRZ for this limit, namely 3 ≤ Nf ≤ 5.

Nf γIR,T2,∆f
γIR,T2,∆2

f
γIR,T2,∆3

f
γIR,T2,∆4

f

3 0.5555 0.921 1.177 1.408

4 0.333 0.465 0.520 0.550

5 0.111 0.126 0.128 0.128

TABLE VII: Signs of the dj,R coefficients for 2 ≤ j ≤ 5 for gauge group G = SU(Nc) and fermion representations R equal to F
(fundamental), adj (adjoint), S2, and A2 (symmetric and antisymmetric rank-2 tensor). Note that d1 = 0 for all G and R. In the case
R = A2, we restrict to Nc ≥ 3.

j dj,F dj,adj dj,S2
dj,A2

2 + + + +

3 + + + +

4 − + + − for Nc = 3, 4, 5

+ for Nc ≥ 6

5 − − − −
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TABLE VIII: Scheme-independent values of β′

IR,F,∆
p
f

with 2 ≤ p ≤ 4 for G = SU(2), SU(3), and SU(4), as functions of Nf in the

respective intervals IIRZ . For comparison, we list the n-loop values of β′

IR,F,nℓ with 2 ≤ n ≤ 5, where β′

IR,F,nℓ with n = 3, 4, 5 are

computed in the MS scheme. The notation ae-n means a× 10−n.

Nc Nf β′

IR,F,2ℓ β′

IR,F,3ℓ,MS
β′

IR,F,4ℓ,MS
β′

IR,F,∆2

f
β′

IR,F,∆3

f
β′

IR,F,∆4

f
β′

IR,F,∆5

f

2 6 6.061 1.620 0.975 0.499 0.957 0.734 0.6515

2 7 1.202 0.728 0.677 0.320 0.554 0.463 0.436

2 8 0.400 0.318 0.300 0.180 0.279 0.250 0.243

2 9 0.126 0.115 0.110 0.0799 0.109 0.1035 0.103

2 10 0.0245 0.0239 0.0235 0.0200 0.0236 0.0233 0.0233

3 9 4.167 1.475 1.464 0.467 0.882 0.7355 0.602

3 10 1.523 0.872 0.853 0.351 0.621 0.538 0.473

3 11 0.720 0.517 0.498 0.251 0.415 0.3725 0.344

3 12 0.360 0.2955 0.282 0.168 0.258 0.239 0.228

3 13 0.174 0.1556 0.149 0.102 0.144 0.137 0.134

3 14 0.0737 0.0699 0.0678 0.0519 0.0673 0.0655 0.0649

3 15 0.0227 0.0223 0.0220 0.0187 0.0220 0.0218 0.0217

3 16 2.21e-3 2.20e-3 2.20e-3 2.08e-3 2.20e-3 2.20e-3 2.20e-3

4 11 16.338 2.189 2.189 0.553 1.087 0.898 0.648

4 12 3.756 1.430 1.429 0.457 0.858 0.729 0.574

4 13 1.767 0.965 0.955 0.370 0.663 0.578 0.486

4 14 0.984 0.655 0.639 0.292 0.498 0.445 0.394

4 15 0.581 0.440 0.424 0.224 0.362 0.331 0.3045

4 16 0.348 0.288 0.276 0.1645 0.251 0.234 0.222

4 17 0.204 0.180 0.1725 0.114 0.164 0.156 0.1515

4 18 0.113 0.105 0.101 0.0731 0.0988 0.0955 0.0939

4 19 0.0558 0.0536 0.0522 0.0411 0.0520 0.0509 0.0505

4 20 0.0222 0.0218 0.0215 0.0183 0.0215 0.0213 0.0212

4 21 5.01e-3 4.99e-3 4.96e-3 4.57e-3 4.97e-3 4.96e-3 4.96e-3

TABLE IX: Scheme-independent values of β′

IR,∆
p
r
for 2 ≤ p ≤ 5 in the LNN limit (3.21) as functions of r = 5.5−∆r . For comparison,

we also list the n-loop values β′

IR,nℓ with 2 ≤ n ≤ 5, where β′

IR,nℓ with n = 3, 4, 5 are computed in the MS scheme. The notation ae-n

means a× 10−n.

r β′

IR,2ℓ β′

IR,3ℓ β′

IR,4ℓ β′

IR,∆2
r

β′

IR,∆3
r

β′

IR,∆4
r

β′

IR,∆5
r

2.8 8.100 1.918 1.913 0.518 1.004 0.851 0.583

3.0 3.333 1.376 1.379 0.444 0.830 0.717 0.535

3.2 1.856 1.006 1.003 0.376 0.676 0.596 0.4755

3.4 1.153 0.7395 0.729 0.314 0.542 0.486 0.410

3.6 0.752 0.542 0.527 0.257 0.426 0.388 0.342

3.8 0.500 0.393 0.378 0.2055 0.327 0.303 0.276

4.0 0.333 0.279 0.267 0.160 0.243 0.229 0.214

4.2 0.219 0.193 0.184 0.120 0.174 0.166 0.159

4.4 0.139 0.128 0.122 0.0860 0.119 0.115 0.112

4.6 0.0837 0.0792 0.0766 0.0576 0.0756 0.0737 0.0726

4.8 0.0460 0.0445 0.0435 0.0348 0.0433 0.0426 0.0423

5.0 0.0215 0.0212 0.0208 0.0178 0.0209 0.0207 0.0206

5.2 0.714e-2 0.710e-2 0.706e-2 0.640e-2 0.707e-2 0.704e-2 0.704e-3

5.4 0.737e-3 0.736e-3 0.7356e-3 0.7111e-3 0.7358e-3 0.7355e-3 0.7355e-3
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TABLE X: Values of the IR zero ξIR,nℓ of the βξ,nℓ function in the LNN limit for 2 ≤ n ≤ 5 and r ∈ Ir. Notation u (unphysical) means
that there is no physical IR zero ξIR,5ℓ of the 5-loop beta function.

r ξIR,2ℓ ξIR,3ℓ ξIR,4ℓ ξIR,5ℓ

2.8 28.274 3.573 3.323 u

3.0 12.566 2.938 2.868 u

3.2 7.606 2.458 2.494 u

3.4 5.174 2.076 2.168 u

3.6 3.731 1.759 1.873 u

3.8 2.774 1.489 1.601 u

4.0 2.095 1.252 1.349 u

4.2 1.586 1.041 1.115 u

4.4 1.192 0.8490 0.9003 1.0353

4.6 0.8767 0.6725 0.7038 0.7439

4.8 0.6195 0.5083 0.5244 0.5364

5.0 0.4054 0.3538 0.3603 0.3630

5.2 0.2244 0.2074 0.2089 0.2093

5.4 0.06943 0.06769 0.06775 0.06776

TABLE XI: Values of αIR,∆p
f

with 1 ≤ p ≤ 4 for Nc = 2, 3, 4 and R = F , as functions of Nf ∈ IIRZ , together with αIR,2ℓ and MS

values of n-loop αIR,nℓ with 3 ≤ n ≤ 4 from [19], for comparison.

Nc Nf αIR,2ℓ αIR,3ℓ αIR,4ℓ αIR,∆f
αIR,∆2

f
αIR,∆3

f
αIR,∆4

f

2 6 11.42 1.645 2.395 0.941 1.098 1.979 1.951

2 7 2.83 1.05 1.21 0.753 0.853 1.305 1.293

2 8 1.26 0.688 0.760 0.565 0.621 0.8115 0.808

2 9 0.595 0.418 0.444 0.377 0.402 0.458 0.457

2 10 0.231 0.196 0.200 0.188 0.1945 0.202 0.2015

3 9 5.24 1.028 1.072 0.587 0.712 1.19 1.26

3 10 2.21 0.764 0.815 0.509 0.603 0.913 0.952

3 11 1.23 0.578 0.626 0.431 0.498 0.686 0.706

3 12 0.754 0.435 0.470 0.352 0.397 0.500 0.509

3 13 0.468 0.317 0.337 0.274 0.301 0.350 0.353

3 14 0.278 0.215 0.224 0.196 0.210 0.227 0.228

3 15 0.143 0.123 0.126 0.117 0.122 0.126 0.126

3 16 0.0416 0.0397 0.0398 0.0391 0.0397 0.0398 0.0398

4 11 14.00 0.972 0.943 0.474 0.592 1.042 1.1475

4 12 3.54 0.754 0.759 0.431 0.528 0.867 0.939

4 13 1.85 0.6035 0.628 0.388 0.467 0.713 0.7605

4 14 1.16 0.489 0.521 0.345 0.407 0.580 0.610

4 15 0.783 0.397 0.428 0.3015 0.349 0.465 0.483

4 16 0.546 0.320 0.345 0.258 0.294 0.367 0.376

4 17 0.384 0.254 0.271 0.215 0.240 0.282 0.2865

4 18 0.266 0.194 0.205 0.172 0.188 0.210 0.211

4 19 0.175 0.140 0.145 0.129 0.138 0.147 0.148

4 20 0.105 0.091 0.092 0.0861 0.09005 0.0928 0.0929

4 21 0.0472 0.044 0.044 0.0431 0.04405 0.0444 0.0444


