This is the accepted manuscript made available via CHORUS. The article has been published as:

Higher-order scheme-independent series expansions of $\gamma_{-}\left\{\psi\left[\right.\right.$ over $\left.\left.^{-}\right] \psi, I R\right\}$ and $\beta_{-}\{I R\}^{\wedge}\left\{^{\prime}\right\}$ in conformal field theories
Thomas A. Ryttov and Robert Shrock
Phys. Rev. D 95, 105004 - Published 26 May 2017
DOI: 10.1103/PhysRevD.95.105004

Higher-Order Scheme-Independent Series Expansions of $\gamma_{\bar{\psi} \psi, I R}$ and $\beta_{I R}^{\prime}$ in Conformal Field Theories

Thomas A. Ryttov ${ }^{a}$ and Robert Shrock b
(a) CP33-Origins and Danish Institute for Advanced Study
Southern Denmark University, Campusvej 55, Odense, Denmark and
(b) C. N. Yang Institute for Theoretical Physics and Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794, USA

Abstract

We study a vectorial asymptotically free gauge theory, with gauge group G and N_{f} massless fermions in a representation R of this group, that exhibits an infrared (IR) zero in its beta function, β, at the coupling $\alpha=\alpha_{I R}$ in the non-Abelian Coulomb phase. For general G and R, we calculate the scheme-independent series expansions of (i) the anomalous dimension of the fermion bilinear, $\gamma_{\bar{\psi} \psi, I R}$, to $O\left(\Delta_{f}^{4}\right)$ and (ii) the derivative $\beta^{\prime}=d \beta / d \alpha$, to $O\left(\Delta_{f}^{5}\right)$, both evaluated at $\alpha_{I R}$, where Δ_{f} is an N_{f}-dependent expansion variable. These are the highest orders to which these expansions have been calculated. We apply these general results to theories with $G=\mathrm{SU}\left(N_{c}\right)$ and R equal to the fundamental, adjoint, and symmetric and antisymmetric rank-2 tensor representations. It is shown that for all of these representations, $\gamma_{\bar{\psi} \psi, I R}$, calculated to the order Δ_{f}^{p}, with $1 \leq p \leq 4$, increases monotonically with decreasing N_{f} and, for fixed N_{f}, is a monotonically increasing function of p. Comparisons of our scheme-independent calculations of $\gamma_{\bar{\psi} \psi, I R}$ and $\beta_{I R}^{\prime}$ are made with our earlier higher n-loop values of these quantities, and with lattice measurements. For $R=F$, we present results for the limit $N_{c} \rightarrow \infty$ and $N_{f} \rightarrow \infty$ with N_{f} / N_{c} fixed. We also present expansions for $\alpha_{I R}$ calculated to $O\left(\Delta_{f}^{4}\right)$.

I. INTRODUCTION

An important advance in the understanding of quantum field theory was the realization that the properties of a theory depend on the Euclidean energy/momentum scale μ at which they are measured. This is of particular interest in an asymptotically free non-Abelian gauge theory, in which the running gauge coupling $g(\mu)$ and the associated quantity $\alpha(\mu)=g(\mu)^{2} /(4 \pi)$ approach zero at large μ in the deep ultraviolet (UV). We shall consider a theory of this type, with gauge group G and N_{f} massless fermions $\psi_{j}, j=1, \ldots, N_{f}$, in a representation R of G. The dependence of $\alpha(\mu)$ on μ is described by the renormalization-group (RG) [1] beta function, $\beta=d \alpha(\mu) / d t$, where $d t=d \ln \mu$. The condition that the theory be asymptotically free implies that N_{f} be less than a certain value, N_{u}, given below in Eq. (2.4). Since $\alpha(\mu)$ is small at large μ, one can self-consistently calculate β as a power series in $\alpha(\mu)$. As μ decreases from large values in the UV to small values in the infrared (IR), $\alpha(\mu)$ increases. A situation of special interest occurs if the beta function has a zero at some value away from the origin. For a given G and R, this can happen for sufficiently large N_{f}, while still in the asymptotically free regime. In this case, as μ decreases from large values in the UV toward $\mu=0$ in the IR, the coupling increases, but approaches the value of α at this zero in the beta function, which is thus denoted $\alpha_{I R}$. Since $\beta=0$ at $\alpha=\alpha_{I R}$, the resultant theory in this IR limit is scale-invariant, and generically also conformally invariant [2,3]. A fundamental question concerns the properties of the interacting theory at such an IR fixed point (IRFP) of the renormalization group. There is convincing evidence that if $\alpha_{I R}$ is small enough, then the IR theory is in a (deconfined) non-Abelian Coulomb phase (NACP), also called the conformal window [4]. In terms of N_{f}, this phase occurs if N_{f} is in the interval $N_{f, c r}<N_{f}<N_{u}$, where N_{u} and $N_{f, c r}$ depend on G and R. Here, $N_{f, c r}$ denotes the value of N_{f} below which the running $\alpha(\mu)$ becomes large enough to cause spontaneous chiral symmetry breaking and dynamical fermion mass generation.

Physical quantities in the IR-limit theory at $\alpha_{I R}$ cannot depend on the scheme used for the regularization and subtraction procedure in renormalization. In conventional computations of these quantities, first, one expresses them as series expansions in powers of α, calculated to n-loop order; second, one computes the IR zero of the beta function at the n-loop $(n \ell)$ level, denoted $\alpha_{I R, n \ell}$; and third, one sets $\alpha=\alpha_{I R, n \ell}$ in the series expansion for the given quantity to obtain its value at the IR zero of the beta function to this n-loop order. However, these conventional series expansions in powers of α, calculated to a finite order, are scheme-dependent beyond the leading one or two terms. Specifically, the terms in the beta function are scheme-dependent at loop order $\ell \geq 3$ and the terms in an anomalous dimension are scheme-dependent at loop order $\ell \geq 2$ [5]. Indeed, as is well-known, the presence of scheme-dependence in higher-order perturbative calculations is a general property in quantum field theory.

It is therefore of great value to use a complementary approach in which one expresses these physical quantities at $\alpha_{I R}$ as an expansion in powers of a variable such that, at every order in this expansion, the result is schemeindependent. A very important property is that one can recast the expressions for physical quantities in a manner that is scheme-independent. A crucial point here is that, for a given gauge group G and fermion representation R,
as N_{f} (formally generalized from non-negative integers to the real numbers) approaches the upper limit allowed by asymptotic freedom, denoted N_{u} (given by Eq. (2.4) below), the resultant value of $\alpha_{I R}$ approaches zero. This means that one can equivalently express a physical quantity in a scheme-independent manner as a series in powers of the variable

$$
\begin{equation*}
\Delta_{f}=N_{u}-N_{f}=\frac{11 C_{A}}{4 T_{f}}-N_{f} \tag{1.1}
\end{equation*}
$$

where C_{A} is the quadratic Casimir invariant for the adjoint representation, and T_{f} is the trace invariant for the fermion representation $R[6]$. Here, $\alpha_{I R} \rightarrow 0 \Longleftrightarrow \Delta_{f} \rightarrow 0$. Hence, for N_{f} less than, but close to N_{u}, this expansion variable Δ_{f} is reasonably small, and one can envision reliable perturbative calculations of physical quantities at this IR fixed point in powers of Δ_{f}. Following the original calculations of the one- and two-loop coefficients of the beta function [7]-[9], some early work on this was reported in [10, 11].

In this paper we consider a vectorial, asymptotically free gauge theory and present scheme-independent calculations, for a general gauge group G and fermion representation R, of two physical quantities in the IR theory at $\alpha_{I R}$ of considerable importance, namely (i) the anomalous dimension, denoted $\gamma_{\bar{\psi} \psi, I R}$, of the (gauge-invariant) fermion bilinear $\bar{\psi} \psi=\sum_{j=1}^{N_{f}} \bar{\psi}_{j} \psi_{j}$ to $O\left(\Delta_{f}^{4}\right)$ and (ii) the derivative $\beta_{I R}^{\prime}=d \beta / d \alpha$ to $O\left(\Delta_{f}^{5}\right)$, both evaluated at $\alpha=\alpha_{I R}$. These are the highest orders in powers of Δ_{f} to which these quantities have been calculated. We give explicit expressions for these quantities in the special cases where $G=\mathrm{SU}\left(N_{c}\right)$ and the fermion representation R is the fundamental (F), adjoint (adj), and symmetric and antisymmetric rank-2 tensors, (S_{2}, A_{2}). Our results extend our previous scheme-independent calculations of $\gamma_{\bar{\psi} \psi, I R}$ to $O\left(\Delta_{f}^{3}\right)$ in [12] and of the derivative $\beta_{I R}^{\prime}$ to $O\left(\Delta_{f}^{4}\right)$ in [13] for general G and R, and our scheme-independent calculation of $\gamma_{\bar{\psi} \psi, I R}$ to $O\left(\Delta_{f}^{4}\right)$ for $G=\mathrm{SU}(3)$ and $R=F$ in [14] (see also [15]). A brief report on some of our results was given in [16].

Scheme-independent series expansions of $\gamma_{\bar{\psi} \psi, I R}$ and $\beta_{I R}^{\prime}$ can be written as

$$
\begin{equation*}
\gamma_{\bar{\psi} \psi, I R}=\sum_{j=1}^{\infty} \kappa_{j} \Delta_{f}^{j} \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta_{I R}^{\prime}=\sum_{j=1}^{\infty} d_{j} \Delta_{f}^{j} \tag{1.3}
\end{equation*}
$$

where $d_{1}=0$ for all G and $R[12-14]$. In general, the calculation of the coefficient κ_{j} in Eq. (1.2) requires, as inputs, the values of the b_{ℓ} for $1 \leq \ell \leq j+1$ and the c_{ℓ} for $1 \leq \ell \leq j$. The calculation of the coefficient d_{j} in Eq. (1.3) requires, as inputs the values of the b_{ℓ} for $1 \leq \ell \leq j$. We refer the reader to [12] and [13] for discussions of the procedure for calculating the coefficients κ_{j} and d_{j}. We denote the truncation of these series to maximal power $j=p$ as $\gamma_{\bar{\psi} \psi, I R, \Delta_{f}^{p}}$ and $\beta_{I R, \Delta_{f}^{p}}^{\prime}$, respectively. Where it is necessary for clarity, we will also indicate the fermion representation R in the subscript.

Our main new results here include the general expressions, for arbitrary gauge group G and fermion representation R, for the coefficient, κ_{4} in Eq. (3.5) below, and for the coefficient d_{5}, given in Eq. (4.9) below, as well as reductions of these formulas for special cases and, for $R=F$, calculations in the LNN limit (3.21). As will be discussed further below, the derivative $\beta_{I R}^{\prime}$ is equivalent to the anomalous dimension of the non-Abelian field strength squared, $\operatorname{Tr}\left(F_{\mu \nu} F^{\mu \nu}\right)$. Our present calculations make use of the newly computed five-loop coefficient in the beta function for this gauge theory for general G and R in [17], as our work in [14, 15] made use of the calculation of this five-loop coefficient for the case $G=\mathrm{SU}(3)$ and $R=F$ in [18].

In addition to being of interest and value in their own right, our new scheme-independent calculations, performed to the highest order yet achieved, are useful in several ways. First, we will compare our results for $\gamma_{\bar{\psi} \psi, I R}$ and $\beta_{I R}^{\prime}$ for various G and R with the values that we obtained at comparable order with the conventional n-loop approach in [19]-[21]. Our new results have the merit of being scheme-independent at each order in Δ_{f}, in contrast to schemedependent series expansions of $\gamma_{\bar{\psi} \psi, I R}$ and $\beta_{I R}^{\prime}$ in powers of the IR coupling. Second, there is, at present, an intensive program to study this IR behavior on the lattice [22]. Thus, it is of considerable interest to compare our schemeindependent results for $\gamma_{\bar{\psi} \psi, I R}$ for various theories with values measured in lattice simulations of these theories. We have done this in $[13,14,16]$ (as well as in our work on conventional n-loop calculations $[15,19]$), and we will expand upon this comparison here. Third, we believe that our scheme-independent expansions for these physical quantities are of interest in the context of the great current resurgence of research activity on conformal field theories (CFT). Much of this current activity makes use of operator-product expansions and the associated bootstrap approach [23].

Our method of scheme-independent series expansions for physical quantities at an IR fixed point is complementary to this bootstrap approach in yielding information about a conformal field theory.

Our calculations rely on $\alpha_{I R}$ being an exact zero of the beta function and thus an exact IR fixed point of the renormalization group, and this property holds in the non-Abelian Couloumb phase (conformal window). In this phase, the chiral symmetry associated with the massless fermions is preserved in the presence of the gauge interaction. However, there has also been interest in vectorial asymptotically free gauge theories that exhibit quasi-conformal behavior associated with an approximate IRFP in the phase with broken chiral symmetry, which could feature a substantial value of an effective $\gamma_{\bar{\psi} \psi, I R} \sim O(1)$ [24]. Our scheme-independent calculations are also relevant to this area of research in two ways: (i) if $N_{f} \lesssim N_{f, c r}$, then the effective values of quantities such as $\gamma_{\bar{\psi} \psi, I R}$ may be close to the values calculated via the Δ_{f} expansion from within the NACP; (ii) combining our calculations of $\gamma_{\bar{\psi} \psi, I R}$ with an upper bound on this anomalous dimension from conformal invariance and an assumption that this bound is saturated as $N_{f} \searrow N_{f, c r}$ yields an estimate of the value of $N_{f, c r}$. This is useful, since the value of $N_{f, c r}$ for a given G and R is not known exactly at present and is the subject of current investigation, including lattice studies, as discussed further below.

Although most of our paper deals with new scheme-independent results for physical quantities, one of the ouputs of our calculations is a new type of series expansion for a scheme-dependent quantity, namely $\alpha_{I R}$. The conventional procedure for calculating the IR zero of a beta function at the n-loop order, which we have applied in earlier work to four-loop order for arbitrary G and R [19]-[21] (see also [25]) is to examine the n-loop beta function, which has the form of α^{2} times a polynomial of degree $n-1$ in α, and then determine the n-loop value $\alpha_{I R, n \ell}$ as the (real, positive) root of this polynomial closest to the origin. However, in [15], we investigated the five-loop beta function for $G=\mathrm{SU}(3)$ and $R=F$, as calculated in the standard $\overline{\mathrm{MS}}$ scheme, and found that, over a substantial range of values of N_{f} in the non-Abelian Coulomb phase, it does not have any positive real root. We were able to circumvent this problem in [15] by the use of Padé approximants, but nevertheless, it is a complication for this conventional approach to calculating $\alpha_{I R}$. The new calculation of $\alpha_{I R}$ as an expansion in powers of Δ_{f} up to $O\left(\Delta_{f}^{4}\right)$ for general G and R that we present here has the advantage that it always yields a physical value, in contrast to the situation with the n-loop beta function.

The paper is organized as follows. Some relevant background and methods are discussed in Section II. We present our calculation of κ_{4} in the scheme-independent expansion of $\gamma_{\bar{\psi} \psi, I R}$ for general G and R in Section III, together with evaluations for $G=\mathrm{SU}\left(N_{c}\right)$ and $R=F, a d j, S_{2}$, and A_{2}. These are compared with values from n-loop calculations and with lattice measurements. In this section we also present results for case $R=F$ in the limit $N_{c} \rightarrow \infty, N_{f} \rightarrow \infty$, with N_{f} / N_{c} fixed, which we call the LNN limit. In Section IV we present our calculation of the coefficient d_{5} in the schemeindependent expansion of $\beta_{I R}^{\prime}$ for general G and R, with evaluations for the above-mentioned specific representations. Section V gives an analysis of the five-loop rescaled beta function in the LNN limit and a determination of the interval over which it exhibits a physical IR zero. Section VI is devoted to the calculation of the coefficients in an expansion of $\alpha_{I R}$ in powers of Δ_{f} up to $O\left(\Delta_{f}^{4}\right)$. Our conclusions are given in Section VII, and some auxiliary formulas are listed in an appendix.

II. BACKGROUND AND METHODS

In this section we review some background and methods relevant for our calculations. The series expansion of β in powers of α is

$$
\begin{equation*}
\beta=-2 \alpha \sum_{\ell=1}^{\infty} b_{\ell}\left(\frac{\alpha}{4 \pi}\right)^{\ell} \tag{2.1}
\end{equation*}
$$

where b_{ℓ} is the ℓ-loop coefficient. For a general operator \mathcal{O}, we denote the full scaling dimension as $D_{\mathcal{O}}$ and its free-field value as $D_{\mathcal{O}, \text { free }}$. The anomalous dimension of this operator, denoted $\gamma_{\mathcal{O}}$, is defined via the relation [26]

$$
\begin{equation*}
D_{\mathcal{O}}=D_{\mathcal{O}, \text { free }}-\gamma_{\mathcal{O}} \tag{2.2}
\end{equation*}
$$

An operator of particular interest is the (gauge-invariant) fermion bilinear, $\bar{\psi} \psi$. The expansion of the anomalous dimension of this operator, $\gamma_{\bar{\psi} \psi}$, in powers of α is

$$
\begin{equation*}
\gamma_{\bar{\psi} \psi}=\sum_{\ell=1}^{\infty} c_{\ell}\left(\frac{\alpha}{4 \pi}\right)^{\ell} \tag{2.3}
\end{equation*}
$$

where c_{ℓ} is the ℓ-loop coefficient. As noted above, the coefficients b_{1}, b_{2}, and c_{1} are scheme-independent, while the b_{ℓ} with $\ell \geq 3$ and the c_{ℓ} with $\ell \geq 2$ are scheme-dependent [5]. For a general gauge group G and fermion representation
R, the coefficients b_{1} and b_{2} were calculated in [7] and [8], and b_{3} and b_{4} were calculated in [27] and [28] (and checked in [29]) in the commonly used $\overline{\mathrm{MS}}$ scheme [30]. For $G=\mathrm{SU}(3)$ and $R=F, b_{5}$ was calculated in [18] and recently, an impressive calculation of b_{5} for general gauge group G and fermion representation R was presented in [17], again in the $\overline{\mathrm{MS}}$ scheme. We also make use of the c_{ℓ} up to loop order $\ell=4$, calculated in [31]. Although we use these coefficients as calculated in the $\overline{\mathrm{MS}}$ scheme below, we emphasize that the main results of this paper are calculations of the quantities κ_{4} and d_{5} which, like all of the κ_{j} and d_{j}, are scheme-independent. We denote the n-loop β, β^{\prime}, and $\gamma_{\bar{\psi} \psi}$ as $\beta_{n \ell}, \beta_{n \ell}^{\prime}$, and $\gamma_{\bar{\psi} \psi, n \ell}$. As discussed above, we denote the IR zero of $\beta_{n \ell}$ as $\alpha_{I R, n \ell}$, and the corresponding evaluations of $\beta_{n \ell}^{\prime}$ and $\gamma_{\bar{\psi} \psi, n \ell}$ at $\alpha_{I R, n \ell}$ as $\beta_{I R, n \ell}^{\prime}$ and $\gamma_{\bar{\psi} \psi, I R, n \ell}$. The symbols $\alpha_{I R}, \gamma_{\bar{\psi} \psi, I R}$, and $\beta_{I R}^{\prime}$ refer to the exact values of these quantities.

For a given G and R, as N_{f} increases, b_{1} decreases through positive values and vanishes with sign reversal at $N_{f}=N_{u}$, with

$$
\begin{equation*}
N_{u}=\frac{11 C_{A}}{4 T_{f}} \tag{2.4}
\end{equation*}
$$

where C_{A} and T_{f} are group invariants [6, 32]. Hence, the asymptotic freedom condition yields the upper bound $N_{f}<N_{u}$.

There is a range of $N_{f}<N_{u}$ where $b_{2}<0$, so the two-loop beta function has an IR zero, at the value

$$
\begin{equation*}
\alpha_{I R, 2 \ell}=-\frac{4 \pi b_{1}}{b_{2}} \tag{2.5}
\end{equation*}
$$

The n-loop beta function has a double UV zero at $\alpha=0$ and $n-1$ zeros away from the origin. Among the latter zeros of the beta function, the smallest (real, positive) zero, if there is such a zero, is the physical IR zero, $\alpha_{I R, n \ell}$, of $\beta_{n \ell}$. As N_{f} decreases below N_{u}, b_{2} passes through zero to positive values as N_{f} decreases through

$$
\begin{equation*}
N_{\ell}=\frac{17 C_{A}^{2}}{2 T_{f}\left(5 C_{A}+3 C_{f}\right)} \tag{2.6}
\end{equation*}
$$

Hence, with N_{f} formally extended from nonnegative integers to nonnegative real numbers [32], $\beta_{2 \ell}$ has an IR zero (IRZ) for N_{f} in the interval

$$
\begin{equation*}
I_{I R Z}: \quad N_{\ell}<N_{f}<N_{u} \tag{2.7}
\end{equation*}
$$

Thus, N_{ℓ} is the lower (ℓ) end of this interval [33]
As N_{f} decreases in this interval, $\alpha_{I R, 2 \ell}$ increases. Therefore, in order to investigate the IR zero of the beta function for N_{f} toward the middle and lower part of $I_{I R Z}$ with reasonable accuracy, one requires higher-loop calculations. These were performed in [34, 35], [19]-[21], [25],[15] for $\alpha_{I R, n \ell}$ and for the anomalous dimension of the fermion bilinear operator (see also $[36,37]$). Since the b_{ℓ} with $\ell \geq 3$ are scheme-dependent, it is necessary to determine the degree of sensitivity of the value obtained for $\alpha_{I R, n \ell}$ for $n \geq 3$ to the scheme used for the calculation. This was done in [38]-[41].

The nonanomalous global flavor symmetry of the theory is

$$
\begin{equation*}
G_{f l}=\mathrm{SU}\left(N_{f}\right)_{L} \otimes \mathrm{SU}\left(N_{f}\right)_{R} \otimes \mathrm{U}(1)_{V} \tag{2.8}
\end{equation*}
$$

This $G_{f l}$ symmetry is preserved in the (deconfined) non-Abelian Coulomb phase. As in [12-16], we focus on this phase in the present work, since both the expansion in a small $\alpha_{I R}$ and the scheme-independent expansion in powers of Δ_{f} start from the upper end of the interval $I_{I R Z}$ in this phase. In contrast, in the phase with confinement and spontaneous chiral symmetry breaking, the gauge interaction produces a bilinear fermion condensate, $\langle\bar{\psi} \psi\rangle$, and this breaks $G_{f l}$ to $\mathrm{SU}\left(N_{f}\right)_{V} \otimes \mathrm{U}(1)_{V}$, where $\mathrm{SU}\left(N_{f}\right)_{V}$ is the diagonal subgroup of $\mathrm{SU}\left(N_{f}\right)_{L} \otimes \mathrm{SU}\left(N_{f}\right)_{R}$.

We will consider the flavor-nonsinglet $(f n s)$ and flavor-singlet ($f s$) bilinear fermion operators $\sum_{j, k=1}^{N_{f}} \bar{\psi}_{j}\left(T_{a}\right)_{j k} \psi_{k}$ and $\sum_{j=1}^{N_{f}} \bar{\psi}_{j} \psi_{j}$, where here T_{a} with $a=1, \ldots, N_{f}^{2}-1$ is an generator of the global flavor group $\operatorname{SU}\left(N_{f}\right)$. We will usually suppress the explicit flavor indices and thus write these operators as $\bar{\psi} T_{a} \psi$ and $\bar{\psi} \psi$. These have the same anomalous dimension (e.g., [42]), which we denote simply as the anomalous dimension for the flavor-singlet operator, $\gamma_{\bar{\psi} \psi}$. In vectorial gauge theories of the type considered here, these fermion bilinear operators are gauge-invariant, and hence the anomalous dimension $\gamma_{\bar{\psi} \psi}$ and its IR value, $\gamma_{\bar{\psi} \psi, I R}$, are physical. (In contrast, in a chiral gauge theory, fermion bilinears are generically not gauge-invariant, and hence neither are their anomalous dimensions.)

Since $\alpha_{I R}$ vanishes (linearly) with Δ_{f} as $\Delta_{f} \rightarrow 0$, we can express it as a series expansion in this variable, Δ_{f}. We thus write

$$
\begin{equation*}
\alpha_{I R} \equiv 4 \pi a_{I R}=4 \pi \sum_{j=1}^{\infty} a_{j} \Delta_{f}^{j} \tag{2.9}
\end{equation*}
$$

The calculation of the a_{j} requires, as input, the b_{ℓ} with $1 \leq \ell \leq j+1[12,13]$.
A basic question concerns the part of the interval $I_{I R Z}$ in which the series expansions for $\gamma_{\bar{\psi} \psi, I R}$ and $\beta_{I R}^{\prime}$ in Eqs. (1.2) and (1.3) are reliable. We analyzed this question in $[12-14,16]$ and concluded that these expansions for $\gamma_{I R}$ and $\beta_{I R}^{\prime}$ should be reasonably reliable throughout much of the interval $I_{I R Z}$ and non-Abelian Coulomb phase. We will use our higher-order calculations in this paper to extend this analysis here. We recall that the properties of the theory change qualitatively as N_{f} decreases through the value $N_{f, c r}$ and spontaneous chiral symmetry breaking occurs, with the fermions gaining dynamical masses. The (chirally symmetric) non-Abelian Coulomb phase with $N_{f, c r}<N_{f}<N_{u}$ is clearly qualitatively different from the confined phase with spontaneous chiral symmetry breaking at smaller N_{f} below $N_{f, c r}$. Therefore, one does not, in general, expect the small- Δ_{f} series expansion to hold below $N_{f, c r}$. Estimating the range of applicability of this expansion is thus connected with estimating the value of $N_{f, c r}$. For general G and R, as N_{f}, formally continued from the nonnegative integers to the nonnegative real numbers, decreases from the upper end of the interval $I_{I R Z}$ at N_{u} to the lower end of this interval at $N_{f}=N_{\ell}, \Delta_{f}$ increases from 0 to the maximal value

$$
\begin{align*}
& \left(\Delta_{f}\right)_{\max }=N_{u}-N_{\ell} \\
= & \frac{3 C_{A}\left(7 C_{A}+11 C_{f}\right)}{4 T_{f}\left(5 C_{A}+3 C_{f}\right)} \quad \text { for } N_{f} \in I_{I R Z} \tag{2.10}
\end{align*}
$$

Recall that for a function $f(z)$ that is analytic about $z=0$ and has a Taylor series expansion

$$
\begin{equation*}
f(z)=\sum_{j=1}^{\infty} f_{j} z^{j} \tag{2.11}
\end{equation*}
$$

the radius of convergence of this series, z_{c}, can be determined by the ratio test

$$
\begin{equation*}
z_{c}=\lim _{j \rightarrow \infty} \frac{\left|f_{j-1}\right|}{\left|f_{j}\right|} . \tag{2.12}
\end{equation*}
$$

Of course, we cannot apply the full ratio test here, since we have only calculated the κ_{j} and d_{j} to finite order. However, we can get a rough measure of the range of applicability of the series expansions in Δ_{f} (and also Δ_{r} in the LNN limit [21] discussed below) by computing the ratios $\kappa_{j-1} / \kappa_{j}$ and d_{j-1} / d_{j} for the values of j for which we have calculated these coefficients.

The series expansion (1.2) for $\gamma_{I R}$ starts at $\Delta_{f}=0$, i.e., at the upper end of the non-Abelian Coulomb phase, and extends downward through this phase. Given that the theory at $\alpha_{I R}$ in this phase is conformal, there is an upper bound from conformal invariance, namely [44]

$$
\begin{equation*}
\gamma_{\bar{\psi} \psi, I R} \leq 2 \tag{2.13}
\end{equation*}
$$

We have used this in our earlier work $[12-16,19]$ and we will apply it with our higher-order calculations here. As discussed in [19], in the phase with spontaneous chiral symmetry breaking ($\mathrm{S} \chi \mathrm{SB}$), there is a similar upper bound, $\gamma_{\bar{\psi} \psi, I R}<2$. This follows from the requirement that if $m(k)$ is the momentum-dependent running dynamical mass generated in association with the $\mathrm{S} \chi \mathrm{SB}$, then $\lim _{k \rightarrow \infty} m(k)=0$ (see Eqs. (4.1)-(4.2) of [19]). Thus, if the approximate calculation of the anomalous dimension of a given quantity at a fixed value of Δ_{f}, computed up to order Δ_{f}^{p}, yields a value greater than 2 , then we can infer that the perturbative calculation is not applicable at this value of Δ_{f} or equivalently, N_{f}.

In particular, this can give information on the extent of the non-Abelian Coulomb phase and the value of $N_{f, c r}$. The application of this bound is particularly powerful in the context of our present scheme-independent calculations because we find that the κ_{j} in Eq. (1.2) are positive for all of the representations considered here, and hence, for a given $p, \gamma_{I R, \Delta_{f}^{p}}$ is a monotonically increasing function of Δ_{f} or equivalently it increases monotonically as N_{f} decreases from its upper limit, N_{u}. If one assumes that $\gamma_{I R}$ saturates its upper bound, (2.13) and if a calculation of $\gamma_{I R}$ is reliable in the regime where it is approaching 2 from below, then one can, in principle, determine the value of $N_{f, c r}$, where $\gamma_{I R}$ reaches this upper bound after approaching it from below. In this context, it should be mentioned that in a supersymmetric (vectorial) gauge theory (SGT) with N_{f} pairs of massless chiral superfields transforming according the representations R and \bar{R} of a gauge group G, the exact expression for $\gamma_{I R}$ is known [45, 46], and (i) it increases monotonically with decreasing N_{f} in the NACP; and (ii) it saturates its upper bound (which, in the SGT case is $\gamma_{I R, S G T} \leq 1$) at the lower end of the non-Abelian Coulomb phase. Specifically, in this supersymmetric gauge theory, the upper and lower ends of the NACP occur at [32]

$$
\begin{equation*}
N_{u, S G T}=\frac{3 C_{A}}{2 T_{f}} \tag{2.14}
\end{equation*}
$$

and

$$
\begin{equation*}
N_{\ell, S G T}=\frac{3 C_{A}}{4 T_{f}}=\frac{N_{u}}{2} \tag{2.15}
\end{equation*}
$$

and

$$
\begin{align*}
\gamma_{\bar{\psi} \psi, I R, S G T} & =\frac{3 C_{A}-2 T_{f} N_{f}}{2 T_{f} N_{f}}=\frac{N_{u}}{N_{f}}-1 \\
& =\frac{\frac{2 T_{f}}{3 C_{A}} \Delta_{f}}{1-\frac{2 T_{f}}{3 C_{A}} \Delta_{f}} \tag{2.16}
\end{align*}
$$

Thus, $\gamma_{\bar{\psi} \psi, I R, S G T}$ increases from 0 to 1 as N_{f} decreases from $N_{u, S G T}$ to $N_{\ell, S G T}$. However, it is not known if this saturation occurs in the non-supersymmetric case. In practice, we are only able to apply this test in an approximate manner because for a given G and R, as N_{f} decreases toward the lower part of $I_{I R Z}$, the ratio test already shows that higher-order terms in the Δ_{f} expansion are becoming increasingly non-negligible, so that the truncation of the infinite series (1.2) to maximal power $p=4$ involves an increasingly great uncertainty, as does an extrapolation to $p=\infty$.

For some perspective, we note that in order to asses the accuracy of the Δ_{f} expansion, the coefficients $\kappa_{j, S G T}$ were calculated for $j=1,2$ in [12] and were found to be in perfect agreement with the corresponding Taylor series expansion of the exact expression (2.16). This check was carried to one higher order in [16] for the case $G=\mathrm{SU}\left(N_{c}\right)$ and $R=F$ with a calculation of $\gamma_{I R, S G T, \Delta_{f}^{3}}$, and again, perfect agreement was found with the exact result. This agreement explicitly demonstrated the scheme independence of the $\kappa_{j, S G T}$, since the calculations were carried out using inputs computed in the $\overline{D R}$ scheme, while (2.16) was derived in the NSVZ scheme [45]. Furthermore, as a consequence of electric-magnetic duality [46], as $N_{f} \searrow N_{\ell, S G T}$ in the non-Abelian Coulomb phase, the physics is described by a magnetic theory with coupling strength going to zero, or equivalently, by an electric theory with divergent $\alpha_{I R}$. Therefore, this perfect agreement, order-by-order, between the $\kappa_{j, S G T}$ and the expansion of the exact expression (2.16) for $\gamma_{I R, S G T}$ in powers of Δ_{f}, showed that the Δ_{f} expansion in this supersymmetric gauge theory is able to treat situations with strong, as well as weak, coupling. This could not be done with conventional perturbative series expansions in powers of $\alpha[36,37]$.

III. CALCULATION OF $\gamma_{\bar{\psi} \psi, I R}$ TO $O\left(\Delta_{f}^{4}\right)$

A. General G and R

The coefficients κ_{j} in the scheme-independent expansion of $\gamma_{\bar{\psi} \psi, I R}$ in powers of Δ_{f}, Eq. (1.2), contain important information about the theory. For a general asymptotically free vectorial gauge theory with gauge group G and N_{f} massless fermions in a representation R, the coefficients κ_{j} were given in [12] up to order $j=3$, yielding the expansion of $\gamma_{\bar{\psi} \psi, I R}$ to order Δ_{f}^{3}. It is convenient to define

$$
\begin{equation*}
D=7 C_{A}+11 C_{f}, \tag{3.1}
\end{equation*}
$$

since this factor occurs repeatedly in denominators of various expressions. For reference, we list the κ_{j} for $1 \leq j \leq 3$ below:

$$
\begin{gather*}
\kappa_{1}=\frac{8 C_{f} T_{f}}{C_{A} D} \tag{3.2}\\
\kappa_{2}=\frac{4 C_{f} T_{f}^{2}\left(5 C_{A}+88 C_{f}\right)\left(7 C_{A}+4 C_{f}\right)}{3 C_{A}^{2} D^{3}} \tag{3.3}
\end{gather*}
$$

and

$$
\kappa_{3}=\frac{4 C_{f} T_{f}}{3^{4} C_{A}^{4} D^{5}}\left[3 C_{A} T_{f}^{2}\left(-18473 C_{A}^{4}+144004 C_{A}^{3} C_{f}+650896 C_{A}^{2} C_{f}^{2}+356928 C_{A} C_{f}^{3}+569184 C_{f}^{4}\right)\right.
$$

$$
\begin{align*}
& -2560 T_{f}^{2} D \frac{d_{A}^{a b c d} d_{A}^{a b c d}}{d_{A}}+45056 C_{A} T_{f} D \frac{d_{R}^{a b c d} d_{A}^{a b c d}}{d_{A}}-170368 C_{A}^{2} D \frac{d_{R}^{a b c d} d_{R}^{a b c d}}{d_{A}} \\
& \left.+33 \cdot 2^{10} D\left(2 T_{f}^{2} \frac{d_{A}^{a b c d} d_{A}^{a b c d}}{d_{A}}-13 C_{A} T_{f} \frac{d_{R}^{a b c d} d_{A}^{a b c d}}{d_{A}}+11 C_{A}^{2} \frac{d_{R}^{a b c d} d_{R}^{a b c d}}{d_{A}}\right) \zeta_{3}\right] \tag{3.4}
\end{align*}
$$

Here, $\zeta_{s}=\sum_{n=1}^{\infty} n^{-s}$ is the Riemann zeta function, the quantities C_{A}, C_{f}, and T_{f} are group invariants, the contractions $d_{A}^{a b c d} d_{A}^{a b c c}, d_{R}^{a b c d} d_{A}^{a b c d}, d_{R}^{a b c d} d_{R}^{a b c d}$ are additional group-theoretic quantities given in [28], and d_{A} is the dimension of the adjoint representation of G. In $[12,13]$, the expression for κ_{3} was given with terms written in order of descending powers of C_{A}. It is also useful to express this coefficient κ_{3} in an equivalent form that renders certain factors of D explicit and shows the simple factorization of terms multiplying ζ_{3}, and we have done this in Eq. (3.4).

Our new result here for κ_{4} for a general gauge group G and fermion representation R is

$$
\begin{align*}
& \kappa_{4}=\frac{T_{f}^{2}}{3^{5} C_{A}^{5} D^{7}}\left[C _ { A } C _ { f } T _ { f } ^ { 2 } \left(19515671 C_{A}^{6}-131455044 C_{A}^{5} C_{f}+1289299872 C_{A}^{4} C_{f}^{2}+2660221312 C_{A}^{3} C_{f}^{3}\right.\right. \\
+ & \left.1058481072 C_{A}^{2} C_{f}^{4}+6953709312 C_{A} C_{f}^{5}+1275715584 C_{f}^{6}\right)+2^{10} C_{f} T_{f}^{2} D\left(5789 C_{A}^{2}-4168 C_{A} C_{f}-6820 C_{f}^{2}\right) \frac{d_{A}^{a b c d} d_{A}^{a b c d}}{d_{A}} \\
- & 2^{10} C_{A} C_{f} T_{f} D\left(41671 C_{A}^{2}-125477 C_{A} C_{f}-53240 C_{f}^{2}\right) \frac{d_{R}^{a b c d} d_{A}^{a b c d}}{d_{A}} \\
- & 2^{8} \cdot 11^{2} C_{A}^{2} C_{f} D\left(2569 C_{A}^{2}+18604 C_{A} C_{f}-7964 C_{f}^{2}\right) \frac{d_{R}^{a b c d} d_{R}^{a b c d}}{d_{A}} \\
- & 2^{14} \cdot 3 C_{A} T_{f}^{2} D^{3} \frac{d_{R}^{a b c d} d_{A}^{a b c d}}{d_{R}}+2^{13} \cdot 33 C_{A}^{2} T_{f} D^{3} \frac{d_{R}^{a b c d} d_{R}^{a b c d}}{d_{R}} \\
+ & 2^{8} D\left[-3 C_{A} C_{f} T_{f}^{2} D\left(4991 C_{A}^{4}-17606 C_{A}^{3} C_{f}+33240 C_{A}^{2} C_{f}^{2}-30672 C_{A} C_{f}^{3}+9504 C_{f}^{4}\right)\right. \\
- & 2^{4} C_{f} T_{f}^{2} \frac{d_{A}^{a b c d} d_{A}^{a b c d}}{d_{A}}\left(17206 C_{A}^{2}-60511 C_{A} C_{f}-45012 C_{f}^{2}\right)+40 C_{A} C_{f} T_{f} \frac{d_{R}^{a b c d} d_{A}^{a b c d}}{d_{A}}\left(35168 C_{A}^{2}-154253 C_{A} C_{f}-88572 C_{f}^{2}\right) \\
- & \left.88 C_{A}^{2} C_{f} \frac{d_{R}^{a b c d} d_{R}^{a b c d}}{d_{A}}\left(973 C_{A}^{2}-93412 C_{A} C_{f}-56628 C_{f}^{2}\right)+1440 C_{A} T_{f}^{2} D^{2} \frac{d_{R}^{a b c d} d_{A}^{a b c d}}{d_{R}}-7920 C_{A}^{2} T_{f} D^{2} \frac{d_{R}^{a b c d} d_{R}^{a b c d}}{d_{R}}\right] \zeta_{3} \\
+ & \left.\frac{4505600 C_{A} C_{f} D^{2}}{d_{A}}\left[-4 T_{f}^{2} d_{A}^{a b c d} d_{A}^{a b c d}+2 T_{f} d_{R}^{a b c d} d_{A}^{a b c d}\left(10 C_{A}+3 C_{f}\right)+11 C_{A} d_{R}^{a b c d} d_{R}^{a b c d}\left(C_{A}-3 C_{f}\right)\right] \zeta_{5}\right] . \tag{3.5}
\end{align*}
$$

Here, d_{R} is the dimension of the fermion representation R. As before, we have indicated the simple factors in the prefactor and, for sufficiently simple cases, also factorizations of numbers in numerator terms. We will follow the same format for indicating numerical factorizations below. We proceed to evaluate this general expression for the gauge group $G=\mathrm{SU}\left(N_{c}\right)$ and several specific fermion representations R, namely the fundamental, adjoint, and symmetric and antisymmetric rank-2 tensor. As stated in the introduction, we will use the abbreviations $F, a d j, S_{2}$, and A_{2} to refer to these representations. It is also worthwhile to evaluate our general formulas for other gauge groups and their representations, including orthogonal, symplectic, and exceptional groups. We will report these evaluations for other groups and their representations elsewhere. There has, indeed, been interest in conformal phases for theories with these other gauge groups [47].

The coefficients κ_{1} and κ_{2} are manifestly positive for all G and R. For $G=\mathrm{SU}\left(N_{c}\right)$ with all physical N_{c}, and for representations $R=F$, adj, S_{2}, we have found that κ_{3} and κ_{4} are also positive [12]-[16]. As one of the results in the present paper, we generalize this further to include $R=A_{2}$. That is, for all physical N_{c} and for all of these representations, we find that $\kappa_{j}>0$ for $j=3,4$ as well as the manifestly positive cases $j=1,2$. Thus, extending our previous discussion in [12]-[16], the property that, for all of these representations $R, \kappa_{j}>0$ for $1 \leq j \leq 4$ and for all N_{c} implies two important monotonicity results: (i) for these R, and with a fixed p in the interval $1 \leq p \leq 4, \gamma_{\bar{\psi} \psi, I R, \Delta_{f}^{p}}$ is a monotonically increasing function of Δ_{f}, i.e., it increases monotonically with decreasing N_{f}; and (ii) for these R, and with a fixed $N_{f} \in I_{I R Z}, \gamma_{\bar{\psi} \psi, I R, \Delta_{f}^{p}}$ is a monotonically increasing function of p in the range $1 \leq p \leq 4$. In addition to the manifestly positive κ_{1} and κ_{2}, a plausible conjecture is that, for these $R, \kappa_{j}>0$ for all $j \geq 3$. Assuming that this conjecture is valid, then three consequences are that for these representations R, (iii) for fixed $N_{f}, \gamma_{\bar{\psi} \psi, I R, \Delta_{f}^{p}}$ is a monotonically increasing function of p for all p; (iv) $\gamma_{\bar{\psi} \psi, I R, \Delta_{f}^{p}}$ is a monotonically increasing function of Δ_{f}, i.e. it increases with decreasing N_{f}, for all p; and hence (v) (assuming that the infinite series (1.2) converges), the quantity $\gamma_{\bar{\psi} \psi, I R}$ defined by this infinite series, and equivalent to $\lim _{p \rightarrow \infty} \gamma_{\bar{\psi} \psi, I R, \Delta_{f}^{p}}$, is a monotonically increasing function of Δ_{f}, i.e., it increases monotonically with decreasing N_{f}.

$$
\text { B. } \quad \gamma_{\bar{\psi} \psi, I R, \Delta_{f}^{4}} \text { for } G=\operatorname{SU}\left(N_{c}\right) \text { and } R=F
$$

An important special case is $G=\mathrm{SU}\left(N_{c}\right)$ with R being the fundamental representation. For this case, the general expression for the interval $I_{I R Z}$, Eq. (2.7), is [32]

$$
\begin{equation*}
I_{I R Z}: \quad \frac{34 N_{c}^{3}}{13 N_{c}^{2}-3}<N_{f}<\frac{11 N_{c}}{2} \quad \text { for } R=F \tag{3.6}
\end{equation*}
$$

The factor D in Eq. (3.1) has the explicit form

$$
\begin{equation*}
D=\frac{25 N_{c}^{2}-11}{2 N_{c}} \quad \text { for } R=\text { fund } \tag{3.7}
\end{equation*}
$$

The general results for κ_{p} with $1 \leq p \leq 3$ in (3.2)-(3.4) from [12] take the following forms given in [13]:

$$
\begin{gather*}
\kappa_{1, F}=\frac{4\left(N_{c}^{2}-1\right)}{N_{c}\left(25 N_{c}^{2}-11\right)} \tag{3.8}\\
\kappa_{2, F}=\frac{4\left(N_{c}^{2}-1\right)\left(9 N_{c}^{2}-2\right)\left(49 N_{c}^{2}-44\right)}{3 N_{c}^{2}\left(25 N_{c}^{2}-11\right)^{3}} \tag{3.9}
\end{gather*}
$$

and

$$
\begin{align*}
\kappa_{3, F} & =\frac{8\left(N_{c}^{2}-1\right)}{3^{3} N_{c}^{3}\left(25 N_{c}^{2}-11\right)^{5}}\left[\left(274243 N_{c}^{8}-455426 N_{c}^{6}-114080 N_{c}^{4}+47344 N_{c}^{2}+35574\right)\right. \\
& \left.-4224 N_{c}^{2}\left(4 N_{c}^{2}-11\right)\left(25 N_{c}^{2}-11\right) \zeta_{3}\right] \tag{3.10}
\end{align*}
$$

For $\kappa_{4, F}$, we have [16]

$$
\begin{align*}
\kappa_{4, F} & =\frac{4\left(N_{c}^{2}-1\right)}{3^{4} N_{c}^{4}\left(25 N_{c}^{2}-11\right)^{7}}\left[\left(263345440 N_{c}^{12}-673169750 N_{c}^{10}+256923326 N_{c}^{8}\right.\right. \\
& \left.-290027700 N_{c}^{6}+557945201 N_{c}^{4}-208345544 N_{c}^{2}+6644352\right) \\
& +384\left(25 N_{c}^{2}-11\right)\left(4400 N_{c}^{10}-123201 N_{c}^{8}+480349 N_{c}^{6}-486126 N_{c}^{4}+84051 N_{c}^{2}+1089\right) \zeta_{3} \\
& \left.+211200 N_{c}^{2}\left(25 N_{c}^{2}-11\right)^{2}\left(N_{c}^{6}+3 N_{c}^{4}-16 N_{c}^{2}+22\right) \zeta_{5}\right] \tag{3.11}
\end{align*}
$$

We have checked that when we substitute the value $N_{c}=3$ in our expression for $\kappa_{4, F}$ in Eq. (3.11), the result agrees with our previous calculation of $\kappa_{4, F}$ for this case in Eq. (9) of Ref. [14].

The explicit numerical expressions for the scheme-independent series expansions of $\gamma_{\bar{\psi} \psi, I R}$ to order Δ_{f}^{4} for $R=F$ and $N_{c}=2,3,4$ are as follows:

$$
\begin{align*}
& \mathrm{SU}(2): \gamma_{\bar{\psi} \psi, I R, F, \Delta_{f}^{4}}=\Delta_{f}\left[0.067416+\left(0.73308 \times 10^{-2}\right) \Delta_{f}+\left(0.60531 \times 10^{-3}\right) \Delta_{f}^{2}+\left(1.62662 \times 10^{-4}\right) \Delta_{f}^{3}\right] \tag{3.12}\\
& \mathrm{SU}(3): \gamma_{\bar{\psi} \psi, I R, F, \Delta_{f}^{4}}=\Delta_{f}\left[0.049844+\left(0.37928 \times 10^{-2}\right) \Delta_{f}+\left(0.23747 \times 10^{-3}\right) \Delta_{f}^{2}+\left(0.36789 \times 10^{-4}\right) \Delta_{f}^{3}\right] \tag{3.13}
\end{align*}
$$

and

$$
\begin{equation*}
\mathrm{SU}(4): \gamma_{\bar{\psi} \psi, I R, F, \Delta_{f}^{4}}=\Delta_{f}\left[0.038560+\left(0.22314 \times 10^{-2}\right) \Delta_{f}+\left(0.11230 \times 10^{-3}\right) \Delta_{f}^{2}+\left(0.126505 \times 10^{-4}\right) \Delta_{f}^{3}\right] \tag{3.14}
\end{equation*}
$$

FIG. 1: Plot of $\gamma_{\bar{\psi} \psi, I R, F, \Delta_{f}^{p}}$ (labelled as $\gamma_{\bar{\psi} \psi, I R}$ on the vertical axis in this and subsequent graphs) for $N_{c}=2$, i.e., $G=\mathrm{SU}(2)$, and $1 \leq p \leq 4$ as a function of $N_{f} \in I_{I R Z}$. From bottom to top, the curves (with colors online) refer to $\gamma_{\bar{\psi} \psi, I R, F, \Delta_{f}}$ (red), $\gamma_{\bar{\psi} \psi, I R, F, \Delta_{f}^{2}}$ (green), $\gamma_{\bar{\psi} \psi, I R, F, \Delta_{f}^{3}}$ (blue), and $\gamma_{\bar{\psi} \psi, I R, F, \Delta_{f}^{4}}$ (black).

FIG. 2: Plot of $\gamma_{\bar{\psi} \psi, I R, F, \Delta_{f}^{p}}$ for $N_{c}=3$ and $1 \leq p \leq 4$ as a function of $N_{f} \in I_{I R Z}$. From bottom to top, the curves (with colors online) refer to $\gamma_{\bar{\psi} \psi, I R, F, \Delta_{f}}$ (red), $\gamma_{\bar{\psi} \psi, I R, F, \Delta_{f}^{2}}$ (green), $\gamma_{\bar{\psi} \psi, I R, F, \Delta_{f}^{3}}$ (blue), and $\gamma_{\bar{\psi} \psi, I R, F, \Delta_{f}^{4}}$ (black).

In these equations,

$$
\begin{equation*}
\Delta_{f}=\frac{11 N_{c}}{2}-N_{f} \quad \text { for } R=F \tag{3.15}
\end{equation*}
$$

Plots of $\gamma_{\bar{\psi} \psi, I R, F, \Delta_{f}^{p}}$ for $N_{c}=2$ and $N_{c}=3$ and $1 \leq p \leq 4$ were given in [16]. These showed the two monotonicity properties mentioned above. For an extended comparison, we show the plots of $\gamma_{\bar{\psi} \psi, I R, F, \Delta_{f}^{p}}$ for $2 \leq N_{c} \leq 4$ and $1 \leq p \leq 4$ in Figs. 1-3.

In Table I we list the values of $\gamma_{\bar{\psi} \psi, I R, F, \Delta_{f}^{p}}$ for $1 \leq p \leq 4$ for the $\mathrm{SU}(2), \mathrm{SU}(3)$, and $\mathrm{SU}(4)$ theories, with N_{f} in the respective interval $I_{I R Z}$ for each. For comparison, we also include the values of $\gamma_{\bar{\psi} \psi, I R, n \ell}$ obtained with our earlier n-loop calculations in [19], using series expansions in powers of α evaluated at $\alpha=\alpha_{I R, n \ell}$ for $1 \leq n \leq 4$ with b_{3} and b_{4} and $c_{n}, 2 \leq n \leq 4$ calculated in the $\overline{\mathrm{MS}}$ scheme. (See Table VI in [19] for a list of numerical values of values of $\gamma_{\bar{\psi} \psi, I R, n \ell}$.) As discussed above, if, for a given N_{c} and N_{f}, a calculated value of $\gamma_{\bar{\psi} \psi, I R}$ violates the upper bound $\gamma_{\bar{\psi} \psi, I R} \leq 2$ in (2.13), this is unphysical (marked with a symbol "u" in Table I) and indicates that the perturbative calculation is unreliable and hence not applicable for this N_{f}. In the case of the n-loop values $\gamma_{I R, n \ell}$, if this occurs at the two-loop level, it also leads to caution concerning $\gamma_{I R, n \ell}$ for $n=3,4$, and this is similarly indicated with

FIG. 3: Plot of $\gamma_{\bar{\psi} \psi, I R, F, \Delta_{f}^{p}}$ for $N_{c}=4$ and $1 \leq p \leq 4$ as a function of $N_{f} \in I_{I R Z}$. From bottom to top, the curves (with colors online) refer to $\gamma_{\bar{\psi} \psi, I R, F, \Delta_{f}}$ (red), $\gamma_{\bar{\psi} \psi, I R, F, \Delta_{f}^{2}}$ (green), $\gamma_{\bar{\psi} \psi, I R, F, \Delta_{f}^{3}}$ (blue), and $\gamma_{\bar{\psi} \psi, I R, F, \Delta_{f}^{4}}$ (black).
a "u". The computations of $\gamma_{I R, n \ell}$ in [19, 25] made use of the b_{n} and c_{n} up to the $n=4$ loop level, where the scheme-dependent b_{3}, b_{4}, and c_{n} with $2 \leq n \leq 4$ had been calculated in the widely used $\overline{M S}$ scheme [27-29, 31]. As we pointed out in [15], the five-loop beta function in the $\overline{\mathrm{MS}}$ scheme does not exhibit a physical IR zero over a substantial lower part of $I_{I R Z}$. We discuss this further below. For compact notation, we will often leave the subscript $\bar{\psi} \psi$ implicit on these and other quantities and thus write $\gamma_{\bar{\psi} \psi, I R} \equiv \gamma_{I R}, \gamma_{\bar{\psi} \psi, I R, n \ell} \equiv \gamma_{I R, n \ell}$, etc. From Eqs. (2.4) and (2.6) it follows that the respective lower and upper ends of the intervals $I_{I R Z}$ for these theories are $\left(N_{u}, N_{\ell}\right)=(5.55,11)$, $(8.05,16.5)$, and $(10.61,22)$ for $\mathrm{SU}(2), \mathrm{SU}(3)$, and $\mathrm{SU}(4)$, and hence the physical intervals $I_{I R Z}$ are $6 \leq N_{f} \leq 10$ for $\mathrm{SU}(2), 9 \leq N_{f} \leq 16$ for $\mathrm{SU}(3)$, and $11 \leq N_{f} \leq 21$ for $\mathrm{SU}(4)$.

Since the calculation of κ_{j} and the resultant $\gamma_{I R, \Delta_{f}^{j}}$ uses information from the $(j+1)$-loop beta function from (2.1) and the j-loop expansion of $\gamma_{\bar{\psi} \psi}$ in (2.3), it is natural to compare the (SI) $\gamma_{I R, \Delta_{f}^{p}}$ with the (SD) $\gamma_{I R, p^{\prime} \ell}$ for $p^{\prime}=p$ and $p^{\prime}=p+1$. In the upper and middle part of the interval $I_{I R Z}$ for a given N_{c}, we find that $\gamma_{I R, \Delta_{f}^{4}}$ is slightly larger than $\gamma_{I R, 4 \ell}$, with the difference increasing as N_{f} decreases below N_{u}, i.e., as Δ_{f} increases.

It is important to assess the range of applicability and reliability of these results from the Δ_{f} expansion. We did this in $[12-14]$ and extend our analysis here, using our new result for κ_{4}. Following our discussion above on the ratio test for the determination of the radius of convergence of a Taylor series, the ratios of successive coefficients, $\kappa_{j-1} / \kappa_{j}$, give an approximate measure of the range of applicability of the Δ_{f} expansion for $\gamma_{I R}$. For a given G and R, this range may be compared with the maximum size of Δ_{f} in the interval $I_{I R Z}$ where the scheme-independent two-loop beta function $\beta_{2 \ell}$ has an IR zero. For the present case of $G=\mathrm{SU}\left(N_{c}\right)$ and $R=F$, the general formula (2.10) takes the form

$$
\begin{equation*}
R=F: \quad\left(\Delta_{f}\right)_{\max }=\frac{3 N_{c}\left(25 N_{c}^{2}-11\right)}{2\left(13 N_{c}^{2}-3\right)} \tag{3.16}
\end{equation*}
$$

This has the respective values

$$
\begin{equation*}
\left(\Delta_{f}\right)_{\max }=5.45,8.45,11.39 \text { for } N_{c}=2,3,4 \tag{3.17}
\end{equation*}
$$

We begin by reviewing the $\mathrm{SU}(3)$ theory, for which

$$
\begin{align*}
& \mathrm{SU}(3): \quad \frac{\kappa_{F, 1}}{\kappa_{, F, 2}}=13.14, \quad \frac{\kappa_{F, 2}}{\kappa_{F, 3}}=15.97 \\
& \frac{\kappa_{F, 3}}{\kappa_{F, 4}}=6.455 \tag{3.18}
\end{align*}
$$

As discussed in [12-14], these results suggest that for the $\mathrm{SU}(3)$ theory with $R=F$, the Δ_{f} expansion calculated to this order should be reasonably reliable over a substantial part, including the upper and middle portions, of the interval $I_{I R Z}$ and the non-Abelian Coulomb phase.

Using our new results, we now extend this analysis to the $\mathrm{SU}(2)$ and $\mathrm{SU}(4)$ theories (and will give a further analysis in the LNN limit of Eq. (3.21)). We find

$$
\begin{array}{ll}
\mathrm{SU}(2): \quad & \frac{\kappa_{F, 1}}{\kappa_{, F, 2}}=9.20, \quad \frac{\kappa_{F, 2}}{\kappa_{F, 3}}=12.11 \\
& \frac{\kappa_{F, 3}}{\kappa_{F, 4}}=3.72 \tag{3.19}
\end{array}
$$

and

$$
\begin{align*}
& \mathrm{SU}(4): \quad \frac{\kappa_{F, 1}}{\kappa_{, F, 2}}=17.28, \quad \frac{\kappa_{F, 2}}{\kappa_{F, 3}}=19.87 \\
& \frac{\kappa_{F, 3}}{\kappa_{F, 4}}=8.88 \tag{3.20}
\end{align*}
$$

Since $\left(\Delta_{f}\right)_{\max }$ has the respective values 5.45 and 11.39 for the $\mathrm{SU}(2)$ and $\mathrm{SU}(4)$ theories, we are led to the same conclusion for these theories that we reached for the $\mathrm{SU}(3)$ theory, namely that the Δ_{f} expansion should be reasonably reliable over a substantial portion of the respective intervals $I_{I R Z}$.

As discussed above, another way to assess the range of applicability of the Δ_{f} expansion is to check to see whether the resultant values of $\gamma_{I R, \Delta_{f}^{p}}$ obey the upper bound $\gamma_{I R} \leq 2$ in (2.13). As is evident from Table I, all of our values of $\gamma_{I R, \Delta_{f}^{p}}$ listed there obey this bound. This again shows the advantages of the scheme-independent Δ_{f} expansion as a way of calculating $\gamma_{I R}$ to a given order, as compared with the conventional n-loop calculation of $\gamma_{I R, n \ell}$. As is also evident from Table I for each of the cases listed there, namely $N_{c}=2,3,4$, one finds unphysically large values of $\gamma_{I R, n \ell}$ for values of N_{f} in the lower portions of the respective intervals $I_{I R Z}$. In [19] and later works we explained this as a consequence of the fact that, for a given G and R, as N_{f} decreases toward N_{ℓ} in the interval $I_{I R Z}$, the coupling $\alpha_{I R}$ increases from weak toward strong coupling. Thus, toward the lower end of the respective intervals $I_{I R Z}$, the IR coupling $\alpha_{I R, n \ell}$ become too large for the perturbative n-loop calculations of $\gamma_{I R, n \ell}$ to be applicable. In contrast, the Δ_{f} expansion can be applied over a considerably greater portion of the interval $I_{I R Z}$ to yield results for $\gamma_{I R, \Delta_{f}^{p}}$ that obey the upper bound (2.13). We will show this further below for the LNN limit (3.21). This also demonstrates that the Δ_{f} expansion for $\gamma_{I R}$ is able to be used in situations with substantially stronger IR coupling than is the case with the conventional expansion in powers of this coupling yielding the n-loop value $\gamma_{I R, n \ell}$.

We proceed to compare our values in Table I with lattice measurements. The $\mathrm{SU}(3)$ theory with $R=F$ and $N_{f}=12$ has been the subject of many lattice measurements. In [14], we compared our results for this theory with lattice measurements, so we only briefly review that discussion here. We recall that there is not, at present, a consensus among all lattice groups as to whether this theory is in an IR-conformal phase or is in a chirally broken phase [22]. There is a considerable spread of values of $\gamma_{I R}$ in published papers, including the values (where uncertainties in the last digits are indicated in parentheses) $\gamma_{I R} \sim 0.414(16)$ [48], $\gamma_{I R} \simeq 0.35$ [49], $\gamma_{I R} \simeq 0.4$ [50], $\gamma_{I R}=0.27(3)$ [51], $\gamma_{I R} \simeq 0.25[52]$ (see also [53]), $\gamma_{I R}=0.235(46)$ [54], and $0.2 \lesssim \gamma_{I R} \lesssim 0.4$ [55]. We refer the reader to [22] and [48]-[55] for discussions of estimates of overall uncertaintites in these measurements. Our value $\gamma_{I R, \Delta_{f}^{4}}=0.338$ and our extrapolated value for $\lim _{p \rightarrow \infty} \gamma_{I R, \Delta_{f}^{p}}=\gamma_{I R}$, namely $\gamma_{I R}=0.40$, are consistent with this range of lattice measurements and are somewhat higher than our five-loop value $\gamma_{I R, 5 \ell}=0.255$ from the conventional α series that we obtained in [15]. It is hoped that further work by lattice groups will lead to a consensus concerning whether this theory is IR conformal or not and concerning the value of $\gamma_{I R}$.

The $\operatorname{SU}(3)$ theory with $N_{f}=10$ has been investigated on the lattice in [56], with the result $\gamma_{I R} \sim 1$. While our highest-order n-loop values, namely our four-loop result, $\gamma_{I R, 4 \ell}=0.156$ [19], and our five-loop result, $\gamma_{I R, 5 \ell}=0.211$ obtained using Padé methods [15], are smaller than this lattice value, our extrapolated scheme-independent value, $\gamma_{I R}=0.95 \pm 0.06$ [14], is consistent with it.

There have also been a number of lattice studies of the $\mathrm{SU}(3)$ theory with $N_{f}=8$ [57-59], which have yielded the estimate $\gamma_{I R} \simeq 1$. As is evident from Fig. 2, if we were to continue the curve for $\gamma_{I R, \Delta}^{4}$ plotted there downward further to $N_{f}=8$, the resultant value would be compatible with $\gamma_{I R} \sim 1$. We note that this theory may well be in the chirally broken phase, and there is not yet a clear consensus as to whether it is in this phase or possibly near the lower end of the IR-conformal non-Abelian Coulomb phase. In this context, one may recall that if, for a given G and $R, N_{f}<N_{f, c r}$, so that there is spontaneous chiral symmetry breaking, then the IR zero of the beta function is only approximate, since the theory flows away from this value as the fermions gain dynamical mass and are integrated out, leaving a pure gluonic low-energy effective field theory. For such a theory, the quantity extracted from either continuum or lattice analyses as $\gamma_{I R}$ is only an effective anomalous dimension that describes the renormalizationgroup behavior as the theory is flowing near to the approximate zero of the beta function. A general comment is that the determination of $N_{f, c r}$ relies upon effective methods to analyze the lattice data [22]; progress on this continues [48]-[61].

Theories with an $\mathrm{SU}(2)$ gauge group and $N_{f}=8$ have been of interest in the context of certain ideas for physics beyond the Standard Model (SM) [62], in which the number of Dirac fermions is $N_{f}=N_{w k}\left(N_{c}+1\right)=8$, where $N_{w k}=2$, corresponding to the $\mathrm{SU}(2)$ factor group in the SM and $N_{c}=3$ colors. There have been several lattice of this $\mathrm{SU}(2)$ theory with $N_{f}=8$, including [22, 63, 64]. These are consistent with this theory being IR-conformal, and the recent study [64] has reported the measurement $\gamma_{I R}=0.15 \pm 0.02$. For comparison, as listed in Table I, our previous higher n-loop values were $\gamma_{I R, 3 \ell}=0.272$ and $\gamma_{I R, 4 \ell}=0.204$ [19], and our current highest-order scheme-independent value is $\gamma_{I R, \Delta_{f}^{4}}=0.298$. These are somewhat higher than this lattice result.

There have also been a number of lattice studies of the $\mathrm{SU}(2)$ theory with $N_{f}=6$ [22, 65-67]. From this work, it is not yet clear if this theory is IR-conformal or chirally broken. Ref. [66] obtained the range $0.26<\gamma_{I R}<0.74$, while Ref. [67] found $\gamma_{I R} \simeq 0.275$. Our higher-order scheme-independent values, as listed in Table I, in particular, $\gamma_{I R, \Delta_{f}^{4}}=0.698$, are in agreement with the range given in [66] and are somewhat higher than the value from [67].

C. LNN Limit for $G=\operatorname{SU}\left(N_{c}\right)$ and $R=F$

For $G=\mathrm{SU}\left(N_{c}\right)$ and $R=F$, it is of interest to consider the limit

$$
\begin{align*}
& L N N: \quad N_{c} \rightarrow \infty, \quad N_{f} \rightarrow \infty \\
& \text { with } r \equiv \frac{N_{f}}{N_{c}} \text { fixed and finite } \\
& \text { and } \xi(\mu) \equiv \alpha(\mu) N_{c} \text { is a finite function of } \mu . \tag{3.21}
\end{align*}
$$

We will use the symbol $\lim _{L N N}$ for this limit, where "LNN" stands for "large N_{c} and N_{f} " with the constraints in Eq. (3.21) imposed. This is also called the 't Hooft-Veneziano limit. Anticipating our later discussion of theories with fermions in two-index representations (adjoint and symmetric and antisymmetric rank-2 tensor), we will use the symbol $\lim _{L N}$, where "LN" stands for "large N_{c} ", to denote the original 't Hooft limit

$$
\begin{align*}
& L N: \quad N_{c} \rightarrow \infty \\
& \text { with } \xi(\mu) \equiv \alpha(\mu) N_{c} \text { a finite function of } \mu \tag{3.22}
\end{align*}
$$

and N_{f} fixed and finite.
Continuing our discussion of the LNN limit, as relevant to theories with fermions in the fundamental represention, we define the following quantities in this limit:

$$
\begin{gather*}
\xi=4 \pi x=\lim _{L N N} \alpha N_{c} \tag{3.23}\\
r_{u}=\lim _{L N N} \frac{N_{u}}{N_{c}} \tag{3.24}
\end{gather*}
$$

and

$$
\begin{equation*}
r_{\ell}=\lim _{L N N} \frac{N_{\ell}}{N_{c}} \tag{3.25}
\end{equation*}
$$

with values

$$
\begin{equation*}
r_{\ell}=\frac{11}{2}=5.5 \tag{3.26}
\end{equation*}
$$

and

$$
\begin{equation*}
r_{\ell}=\frac{34}{13}=2.615 \tag{3.27}
\end{equation*}
$$

(to the indicated floating-point accuracy). With $I_{I R Z}: N_{\ell}<N_{f}<N_{u}$, it follows that the corresponding interval in the ratio r is

$$
\begin{equation*}
I_{I R Z, r}: \quad \frac{34}{13}<r<\frac{11}{2}, \text { i.e., } 2.615<r<5.5 \tag{3.28}
\end{equation*}
$$

The critical value of r such that for $r>r_{c r}$, the LNN theory is IR-conformal and for $r<r_{c r}$, it exhibits spontaneous chiral symmetry breaking is denoted $r_{c r}$ and is defined as

$$
\begin{equation*}
r_{c r}=\lim _{L N N} \frac{N_{f, c r}}{N_{c}} \tag{3.29}
\end{equation*}
$$

We define the scaled scheme-independent expansion parameter for the LNN limit

$$
\begin{equation*}
\Delta_{r} \equiv \frac{\Delta_{f}}{N_{c}}=r_{u}-r=\frac{11}{2}-r \tag{3.30}
\end{equation*}
$$

As r decreases from r_{u} to r_{ℓ} in the interval $I_{I R Z, r}, \Delta_{r}$ increases from 0 to a maximal value

$$
\begin{equation*}
\left(\Delta_{r}\right)_{\max }=r_{u}-r_{\ell}=\frac{75}{26}=2.8846 \quad \text { for } r \in I_{I R Z, r} \tag{3.31}
\end{equation*}
$$

We define rescaled coefficients $\hat{\kappa}_{j, F}$

$$
\begin{equation*}
\hat{\kappa}_{j, F} \equiv \lim _{N_{c} \rightarrow \infty} N_{c}^{j} \kappa_{j, F} \tag{3.32}
\end{equation*}
$$

that are finite in this LNN limit. The anomalous dimension $\gamma_{I R}$ is also finite in this limit and is given by

$$
\begin{equation*}
R=F: \quad \lim _{L N N} \gamma_{I R}=\sum_{j=1}^{\infty} \kappa_{j, F} \Delta_{f}^{j}=\sum_{j=1}^{\infty} \hat{\kappa}_{j, F} \Delta_{r}^{j} \tag{3.33}
\end{equation*}
$$

From the results for $\kappa_{j}, j=1,2,3$ in [12] or the special cases given above for $G=\mathrm{SU}\left(N_{c}\right)$ and $R=F$ in Eqs. (3.8)-(3.10), we have

$$
\begin{gather*}
\hat{\kappa}_{1, F}=\frac{2^{2}}{5^{2}}=0.1600 \tag{3.34}\\
\hat{\kappa}_{2, F}=\frac{588}{5^{6}}=0.037632 \tag{3.35}
\end{gather*}
$$

and

$$
\begin{equation*}
\hat{\kappa}_{3, F}=\frac{2193944}{3^{3} \cdot 5^{10}}=0.83207 \times 10^{-2} \tag{3.36}
\end{equation*}
$$

where, as above, we indicate the factorizations of the denominators. (The numerators do not, in general, have such simple factorizations; for example, in $\kappa_{3, F}, 2193944=2^{3} \cdot 274243$.) From our new expression for κ_{4}, we calculate

$$
\begin{align*}
\hat{\kappa}_{4, F} & =\frac{210676352}{3^{4} \cdot 5^{13}}+\frac{90112}{3^{3} \cdot 5^{10}} \zeta_{3}+\frac{11264}{3^{3} \cdot 5^{8}} \zeta_{5} \\
& =0.36489 \times 10^{-2} \tag{3.37}
\end{align*}
$$

Hence, numerically, to order $O\left(\Delta_{r}^{4}\right)$,

$$
\begin{align*}
R=F: & \gamma_{I R, L N N, \Delta_{r}^{4}}=\Delta_{r}\left[0.160000+0.037632 \Delta_{r}\right. \\
& \left.+0.0083207 \Delta_{r}^{2}+0.003649 \Delta_{r}^{3}\right] \tag{3.38}
\end{align*}
$$

 extrapolation to $p=\infty$. To do this, we fit an expression for $\gamma_{I R, F, \Delta_{r}^{p}}$ with some subset of the p terms to a polynomial in $1 / p$. We denote the resultant value generically as $\gamma_{I R, F, s}$, where here s denotes the subset of the p terms used for the extrapolation. We shall use, as a necessary condition for $\gamma_{I R, F, s}$ to be reliable, the requirement that it not differ too much from the highest-order value, $\gamma_{I R, F, \Delta_{r}^{4}}$. Quantitatively, we require that for the given subset s, $\gamma_{I R, F, s} / \gamma_{I R, F, \Delta_{r}^{4}}<1.5$. We find that this condition is satisfied if $r \in I_{I R Z, r}$ is $r \gtrsim 3.5$, but that it is not satisfied as r decreases below this value toward the lower end of the interval $I_{I R Z, r}$ at $r_{\ell}=2.615$. As an example, at $r=4.0$, depending on the subset of terms used for the extrapolation, we obtain $\gamma_{I R, F, s} / \gamma_{I R, F, \Delta_{r}^{4}} \simeq 1.2$, while at $r=3.6$, this ratio increases to $\simeq 1.4$. We remark that the value $r=4.0$ corresponds to $N_{f}=12$ for the $\mathrm{SU}(3)$ theory and $N_{f}=8$ for the $\mathrm{SU}(2)$ theory.

Previously, in [14] we performed this analysis for the special case $G=\mathrm{SU}(3)$ and $R=F$ and, for that work, we studied how the extrapolated value depends on the subset of terms that one includes for the fit. We perform the corresponding analysis here for this LNN case. We study three sets of terms:

$$
\begin{gather*}
\operatorname{set}_{34}:\left\{\gamma_{I R, F, \Delta_{r}^{3}}, \gamma_{\left.I R, F, \Delta_{r}^{4}\right\}}\right. \tag{3.39}\\
\operatorname{set}_{234}: \quad\left\{\gamma_{I R, F, \Delta_{r}^{2}}, \gamma_{I R, F, \Delta_{r}^{3}}, \gamma_{I R, F, \Delta_{r}^{4}}\right\} \tag{3.40}\\
\operatorname{set}_{1234}: \quad\left\{\gamma_{I R, F, \Delta_{r}}, \gamma_{I R, F, \Delta_{r}^{2}}, \gamma_{I R, F, \Delta_{r}^{3}}, \gamma_{I R, F, \Delta_{r}^{4}}\right\} \tag{3.41}
\end{gather*}
$$

There are countervailing advantages of these sets of terms. The two-term set (3.39) has the advantage of using the two highest-order terms, while the three-term and four-term sets have the advantage of using progressively more terms in the fit. The fits to the sets (3.39)-(3.41) yield polynomials in the variable p^{-1} of the respective forms

$$
\begin{gather*}
\operatorname{set}_{34} \Rightarrow \gamma_{I R, F, e x 34, p}=s_{34,0}+s_{34,1} p^{-1} \tag{3.42}\\
\operatorname{set}_{234} \Rightarrow \gamma_{I R, F, e x 234, p}=s_{234,0}+s_{234,1} p^{-1}+s_{234,2} p^{-2} \tag{3.43}
\end{gather*}
$$

and

$$
\begin{align*}
\operatorname{set}_{1234} & \Rightarrow \gamma_{I R, F, e x 1234, p}=s_{1234,0}+s_{1234,1} p^{-1} \\
& +s_{1234,2} p^{-2}+s_{1234,3} p^{-3} \tag{3.44}
\end{align*}
$$

The extrapolated values in the limit $p \rightarrow \infty$ given by these fits are, respectively, as

$$
\begin{gather*}
\lim _{p \rightarrow \infty} \gamma_{I R, F, e x 34, p}=s_{34,0} \equiv \gamma_{I R, F, e x 34} \tag{3.45}\\
\lim _{p \rightarrow \infty} \gamma_{I R, F, e x 234, p}=s_{234,0} \equiv \gamma_{I R, F, e x 234} \tag{3.46}
\end{gather*}
$$

and

$$
\begin{equation*}
\lim _{p \rightarrow \infty} \gamma_{I R, F, e x 1234, p}=s_{1234,0} \equiv \gamma_{I R, F, e x 1234} \tag{3.47}
\end{equation*}
$$

We have calculated these quantities analytically. Below, we list the corresponding expressions with coefficients given to the indicated floating-point precision:

$$
\begin{align*}
\gamma_{I R, F, e x 34} & =16.758754-11.042531 r+2.8240528 r^{2} \\
& -0.32942724 r^{3}+0.014595750 r^{4} \tag{3.48}\\
\gamma_{I R, F, e x 234} & =27.346053-19.2457889 r+5.1985972 r^{2} \\
& -0.63389228 r^{3}+0.0291915006 r^{4} \tag{3.49}
\end{align*}
$$

and

$$
\begin{align*}
\gamma_{I R, F, e x 1234} & =33.901799-24.4060664 r+6.71925275 r^{2} \\
& -0.832708600 r^{3}+0.038922001 r^{4} \tag{3.50}
\end{align*}
$$

Note that there are strong cancellations between individual terms for relevant values of $r \in I_{I R Z, r}$. Some examples will show the range of resultant values of extrapolations for these different choices of sets of terms used in the fits. As anticipated, for values of r in the upper part of the interval $I_{I R Z, r}$, all of the different types of extrapolation give quite similar results. For example,

$$
\begin{gather*}
r=5.0 \Longrightarrow \quad \gamma_{I R, F, e x, 34}=0.0914, \quad \gamma_{I R, F, e x 234}=0.0902 \\
 \tag{3.51}\\
\gamma_{I R, F, e x 1234}=0.0905
\end{gather*}
$$

As r decreases in the interval $I_{I R Z, r}$, the differences between the extrapolations using the different sets of terms increase slightly, e.g., for a value roughly in the middle of this interval, namely $r=4.0$, we find

$$
\begin{gather*}
r=4.0 \Longrightarrow \gamma_{I R, F, e x 34}=0.427, \quad \gamma_{I R, F, e x 234}=0.444, \\
 \tag{3.52}\\
\gamma_{I R, F, e x 1234}=0.456 .
\end{gather*}
$$

Toward the lower part of the interval $I_{I R Z, r}$, these differences increase further, but also, as discussed above, for a given r, all of the different types of extrapolations involve greater uncertainties, since each of the extrapolated values differs more from the value of highest-order explicitly calculated quantity, $\gamma_{I R, \Delta_{r}^{4}}$. For example, for $r=3.0$,

$$
\begin{gather*}
r=3.0 \Longrightarrow \quad \gamma_{I R, F, e x 34}=1.335, \quad \gamma_{I R, F, e x 234}=1.645, \\
 \tag{3.53}\\
\gamma_{I R, F, e x 1234}=1.826 .
\end{gather*}
$$

The ratios of these values divided by the highest-order explicitly calculated value, $\gamma_{I R, F, \Delta_{r}^{4}}$, are

$$
\begin{align*}
r=3.0 \Longrightarrow & \frac{\gamma_{I R, F, e x 34}}{\gamma_{I R, F, \Delta_{r}^{4}}}=1.47, \quad \frac{\gamma_{I R, F, e x 234}}{\gamma_{I R, F, \Delta_{r}^{4}}}=1.82 \tag{3.54}\\
& \frac{\gamma_{I R, F, e x 1234}}{\gamma_{I R, F, \Delta_{r}^{4}}}=2.01 .
\end{align*}
$$

Given our fiducial requirement that the ratio of the extrapolated value for $p \rightarrow \infty$ divided by the highest-order explicitly calculated value, should not be greater than 1.5 for the extrapolation to be considered reasonably reliable, it follows that we would not consider the latter two extrapolations in Eq. (3.53) to be sufficiently reliable to meet this requirement.

It is interesting to compare these scheme-independent calculations of $\gamma_{I R, F, \Delta_{r}^{p}}$ to order $1 \leq p \leq 4$ with the results from the conventional n-loop calculations as truncated expansions in $\alpha_{I R, F, n \ell}$, denoted $\gamma_{I R, F, n \ell}$ from Table V of [21] up to $n=4$ loop order. We list our scheme-independent values together with these n-loop values in Table II. For each value of r, we also include the extrapolated value, $\gamma_{I R, F, e x 234}$ for the $p \rightarrow \infty$ limit, and the ratio $\gamma_{I R, F, e x 234} / \gamma_{I R, \Delta_{r}^{4}}$. We do not include the results from the $n=5$ loop conventional calculation, because of the absence of a physical IR zero in the five-loop beta function for $2.615<r<4.323$ in $I_{I R Z, r}$. Although the extrapolated values $\gamma_{I R, F, \text { ex } 234}$ for r values below $r=3.5$ are included, we caution that these do not satisfy our fiducial criterion for sufficient reliability of extrapolation, since they differ by too much from our highest-order calculated values, $\gamma_{I R, \Delta_{r}^{4}}$. For this reason, although we can roughly apply the method discussed in Section II to use the extrapolated value of $\gamma_{I R}$ to estimate the lower end, $r_{c r}$, of the IR-conformal non-Abelian Coulomb phase (defined in Eq. (5.3)), this involves a substantial degree of uncertainty. Bearing this caveat in mind, the resulting estimate would be that $r_{c r} \sim 2.7$. If one were to pull back from the LNN limit and multiply this value of $r_{c r}$ by a specific finite value of N_{c} to get an estimate of the corresponding $N_{f, c r}$, then, for example, for $N_{c}=3$, i.e., $G=\mathrm{SU}(3)$, this would yield $N_{f, c r} \sim 8$. This estimate is consistent with the estimate $8 \lesssim N_{f, c r} \lesssim 9$ that we derived from our calculation of $\gamma_{I R, F, \Delta_{f}^{4}}$ for this theory and extrapolation to obtain $\lim _{p \rightarrow \infty} \gamma_{I R, F, \Delta_{f}^{p}}$ in [14]. Clearly, the lower that one goes in N_{c} away from the LNN limit, the greater is the error in performing this conversion from a specific r value in the LNN limit to a corresponding ratio N_{f} / N_{c} with finite N_{f} and N_{c}, so we do not perform this conversion for $N_{c}=2$.

In Fig. 4 we plot $\gamma_{I R, F, \Delta_{r}^{p}}$, i.e., the value of $\gamma_{I R}$ for $R=F$, calculated to order Δ_{r}^{p} with $1 \leq p \leq 4$, in the scheme-independent expansion, as a function of $r \in I_{I R Z, r}$. As a consequence of the positivity of the $\hat{\kappa}_{p, F}$ in Eqs.

FIG. 4: Plot of $\gamma_{I R, F, \Delta_{r}^{p}}$ for $1 \leq p \leq 4$ as a function of $r \in I_{I R Z, r}$ in the LNN limit (3.21). From bottom to top, the curves (with colors online) refer to $\gamma_{I R, F, \Delta_{r}}$ (red), $\gamma_{I R, F, \Delta_{r}^{2}}$ (green) $\gamma_{I R, F, \Delta_{r}^{3}}$ (blue) $\gamma_{I R, F, \Delta_{r}^{4}}$ (black).
(3.34)-(3.36), for a fixed $r, \gamma_{I R, F, \Delta_{r}^{p}}$ is a monotonically increasing function of the order of calculation, p. As r decreases toward the lower end of the interval $I_{I R Z, r}$ at $r=r_{\ell}=2.615$, the value of $\gamma_{I R}$ calculated to the highest order in this LNN limit, namely $O\left(\Delta_{r}^{4}\right)$, is slightly greater than 1.

As we did for specific $\mathrm{SU}\left(N_{c}\right)$ theories above, here we proceed to investigate the range of applicability of the schemeindependent series expansion for $\gamma_{I R}$ in the LNN limit. As is evident from Table II, all of our values of $\gamma_{I R, F, \Delta_{r}^{p}}$ for $1 \leq p \leq 4$ satisfy the bound $\gamma_{I R} \leq 2$. This is also true for all of our extrapolated values, $\gamma_{I R, F, e x 234}$, except for the lowest value of r listed, namely $r=2.8$, for which $\gamma_{I R, F, e x 234}=2.09$, slightly above this bound. Thus, these results in the LNN limit again demonstrate the advantage of the scheme-independent expansions, since they enable us to calculate self-consistent values of $\gamma_{I R, F, \Delta_{r}}$ over a greater range of the interval $I_{I R Z, r}$ than is the case with the conventional n-loop calculations. To show the latter in detail, we have explicitly listed the values of $\gamma_{I R, F, 3 \ell}$ and $\gamma_{I R, F, 4 \ell}$ for values of r where $\gamma_{I R, F, 2 \ell}$ was unphysically large.

To investigate the range of applicability of the scheme-independent expansions further, it is worthwhile to obtain an estimate of this range from ratios of successive coefficients. From the coefficients $\hat{\kappa}_{j, F}$ that we have calculated with $1 \leq n \leq 3$, we compute the ratios

$$
\begin{align*}
& \frac{\hat{\kappa}_{1, F}}{\hat{\kappa}_{2, F}}=4.252 \tag{3.55}\\
& \frac{\hat{\kappa}_{2, F}}{\hat{\kappa}_{3, F}}=4.523 \tag{3.56}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{\hat{\kappa}_{3, F}}{\hat{\kappa}_{4, F}}=2.280 \tag{3.57}
\end{equation*}
$$

Recalling that the maximal value of Δ_{r} in the interval $I_{I R Z, r}$ is 2.885 (Eq. (3.31), these ratios are consistent with the inference that the small- Δ_{r} series expansion may be reasonably accurate throughout most of this interval $I_{I R Z, r}$.

$$
\text { D. } \gamma_{\bar{\psi} \psi, I R, \Delta_{f}^{4}} \text { for } G=\mathrm{SU}\left(N_{c}\right) \text { and } R=a d j
$$

Here we present our results for the κ_{j} coefficients and thus $\gamma_{\bar{\psi} \psi, I R, \Delta_{f}^{j}}$ with $1 \leq j \leq 4$ for $G=\operatorname{SU}\left(N_{c}\right)$ and N_{f} fermions in the adjoint representation, $R=a d j$. We will usually denote these as $\kappa_{j, a d j}$ and $\gamma_{\bar{\psi} \psi, I R, a d j, \Delta_{f}^{j}}$ but sometimes, when no confusion will result, we will omit this adj subscript for brevity of notation.

In this theory, Eqs. (2.6) and (2.6) yield, for the upper and lower ends of the interval $I_{I R Z}$, the values

$$
\begin{equation*}
N_{u, a d j}=\frac{11}{4}=2.75 \tag{3.58}
\end{equation*}
$$

and

$$
\begin{equation*}
N_{\ell, a d j}=\frac{17}{16}=1.0625 \tag{3.59}
\end{equation*}
$$

so this interval includes only one integral value of N_{f}, namely $N_{f}=2$. We note that since the adjoint representation is self-conjugate, a theory with N_{f} Dirac fermions with $R=a d j$ is equivalent to a theory with $N_{f, M a j}=2 N_{f}$ Majorana fermions. Hence, here, one may also allow the half-integral values $N_{f}=3 / 2,5 / 2$ corresponding to $N_{f, M a j}=3,5$. We have

$$
\begin{equation*}
R=a d j: \quad \Delta_{f}=N_{u}-N_{f}=\frac{11}{4}-N_{f} \tag{3.60}
\end{equation*}
$$

For this case, the factor D in Eq. (3.1) is simply $D=18$. In [13] we gave the coefficients $\kappa_{j, a d j}$ for $1 \leq n \leq 3$. These are as follows:

$$
\begin{align*}
& \kappa_{1, a d j}=\left(\frac{2}{3}\right)^{2}=0.44444 \tag{3.61}\\
& \kappa_{2, a d j}=\frac{341}{2 \cdot 3^{6}}=0.23388 \tag{3.62}
\end{align*}
$$

and

$$
\begin{align*}
\kappa_{3, a d j} & =\frac{61873}{2^{3} \cdot 3^{10}}-\frac{592}{3^{8} N_{c}^{2}} \\
& =0.130978-0.090230 N_{c}^{-2} \tag{3.63}
\end{align*}
$$

where, as before, we indicate the simple factorizations of the denominators. The coefficient $\kappa_{4, a d j}$ is

$$
\begin{align*}
\kappa_{4, a d j} & =\frac{53389393}{2^{7} \cdot 3^{14}}+\frac{368}{3^{10}} \zeta_{3} \\
& +\left(-\frac{2170}{3^{10}}+\frac{33952}{3^{11}} \zeta_{3}\right) N_{c}^{-2} \\
& =0.0946976+0.193637 N_{c}^{-2} \tag{3.64}
\end{align*}
$$

The coefficients $\kappa_{1, a d j}$ and $\kappa_{2, a d j}$ are manifestly positive, and we find that for all physical N_{c}, the coefficients $\kappa_{3, a d j}$ and $\kappa_{4, a d j}$ are also positive. Although $\kappa_{1, a d j}$ and $\kappa_{2, a d j}$ are independent of N_{c}, the coefficients $\kappa_{j, a d j}$ for $j=3,4$ do depend on N_{c}. We find that $\kappa_{3, a d j}$ and $\kappa_{4, a d j}$ are, respectively, monotonically increasing and monotonically decreasing functions of N_{c}. The $N_{c} \rightarrow \infty$ limits of $\kappa_{3, a d j}$ and $\kappa_{4, a d j}$ are given by the respective first terms in Eqs. (3.63) and (3.64).

Thus, to order Δ_{f}^{4}, we have

$$
\begin{equation*}
\gamma_{\bar{\psi} \psi, I R, a d j, \Delta_{f}^{4}}=\Delta_{f}\left[0.44444+0.23388 \Delta_{f}+\left(0.13098-0.090230 N_{c}^{-2}\right) \Delta_{f}^{2}+\left(0.094698+0.19364 N_{c}^{-2}\right) \Delta_{f}^{3}\right] \tag{3.65}
\end{equation*}
$$

 from the nonnegative integers to the real numbers. In Table III we list values of $\gamma_{\bar{\psi} \psi, I R, a d j, \Delta_{f}^{p}}$ with $1 \leq p \leq 4$ for $N_{f}=2$ and $N_{c}=2$ and $N_{c}=3$. For comparison, we also include our n-loop values $\gamma_{\bar{\psi} \psi, I R, a d j, n \ell}$ calculated in the conventional manner via power series in the coupling (in the $\overline{\mathrm{MS}}$ scheme), from Table VIII of [19].

Among $\mathrm{SU}\left(N_{c}\right)$ theories with fermions in the adjoint representation, the $\mathrm{SU}(2)$ theory with $N_{f}=2$ (Dirac) fermions has been of particular interest [69]. In the following, for notational brevity, the subscript adj is understood implicitly. For this theory, as listed in Table III we obtain the values $\gamma_{I R, \Delta_{f}^{2}}=0.465, \gamma_{I R, \Delta_{f}^{3}}=0.511$, and $\gamma_{I R, \Delta_{f}^{4}}=0.556$, which are close to our earlier higher-order n-loop calculations in [19], namely $\gamma_{I R, 3 \ell}=0.543$ and $\gamma_{I R, 4 \ell}=0.500$. It is of interest to compare these values with the results of lattice studies. There have been a number of such studies, and these are consistent with the conclusion that this theory is conformal in the infrared [70]-[77],[22]. These studies have yielded a rather large range of measured values for $\gamma_{I R}$, including the following (where the published estimated uncertainties in the last digits are indicated in parentheses): $\gamma_{I R}=0.49(13)[70], \gamma_{I R}=0.22(6)[71], \gamma_{I R}=0.31(6)$

FIG. 5: Plot of $\gamma_{\bar{\psi} \psi, I R, a d j, \Delta_{f}^{p}}$ for $G=\mathrm{SU}(2)$ and $1 \leq p \leq 4$ as a function of $N_{f} \in I_{I R Z}$ for $R=a d j$ and $N_{f}=2$. From bottom to top, the curves (with colors online) refer to $\gamma_{I R, a d j, \Delta_{f}}$ (red), $\gamma_{I R, a d j, \Delta_{f}^{2}}$ (green), $\gamma_{I R, a d j, \Delta_{f}^{3}}$ (blue), and $\gamma_{I R, a d j, \Delta_{f}^{4}}$ (black).
[72], $\gamma_{I R}=0.17(5)[73], \gamma_{I R}=0.37(2)[74], \gamma_{I R}=0.20(3)[75]$, and $\gamma_{I R}=0.50(26)$ [76]. (See these references and [77] for additional discussion of estimates of overall uncertainties.) Our scheme-independent calculation of $\gamma_{I R}$ to $O\left(\Delta_{f}^{4}\right)$ and our earlier n-loop calculations of $\gamma_{I R, n \ell}$ up to $n=4$ loops are clearly consistent with the larger among these lattice values. Before carrying out a comparison of our results with the full set of lattice values, it will be necessary to narrow the current wide range of lattice measurements.

It is of interest to investigate the $N_{c} \rightarrow \infty$ limit for an $\mathrm{SU}\left(N_{c}\right)$ gauge theory with fermions in the adjoint representation. Since in this case, the upper and lower ends of the interval $I_{I R Z}$, given by $N_{u}=11 / 4$ in Eq. (3.58) and $N_{\ell}=17 / 16$ in Eq. (2.6) are independent of N_{c}, it follows that Δ_{f} is also independent of N_{c}. Hence, for $R=a d j$,

$$
\begin{equation*}
\lim _{L N} \gamma_{I R}=\sum_{j=1}^{\infty} \hat{\kappa}_{j, a d j} \Delta_{f}^{j} \tag{3.66}
\end{equation*}
$$

where

$$
\begin{equation*}
\hat{\kappa}_{j, a d j}=\lim _{L N} \kappa_{j, a d j} \tag{3.67}
\end{equation*}
$$

The values of $\hat{\kappa}_{j, a d j}$ are evident from the full expressions for $\kappa_{j, a d j}$ that we have given above in Eqs. (3.61)-(3.64); for example, $\hat{\kappa}_{3, a d j}=61873 /\left(2^{3} \cdot 3^{10}\right)$.

$$
\text { E. } \gamma_{\bar{\psi} \psi, I R, \Delta_{f}^{4}} \text { for } G=\operatorname{SU}\left(N_{c}\right) \text { and } R=S_{2}, A_{2}
$$

Here we present our results for the κ_{j} coefficients and thus $\gamma_{\bar{\psi} \psi, I R, \Delta_{f}^{j}}$ with $1 \leq j \leq 4$ for $G=\mathrm{SU}\left(N_{c}\right)$ and N_{f} fermions in the symmetric and antisymmetric rank- 2 tensor representations of $\mathrm{SU}\left(N_{c}\right), S_{2}$ and A_{2}. Since many formulas for these two cases are simply related to each other by sign reversals in certain terms, it is convenient to treat these cases together. As before [19], we shall use the symbol T_{2} (rank-2 tensor) to refer to these cases together. (Do not confuse this use of T with our use of the symbol T in Section VII of Ref. [13] for the anomalous dimension of the operators $\bar{\psi} \sigma_{\mu \nu} \psi$ and operators $\bar{\psi} T_{a} \sigma_{\mu \nu} \psi$, where it referred to the antisymmetric Dirac tensor $\sigma_{\mu \nu}=(i / 2)\left[\gamma_{\mu}, \gamma_{\nu}\right]$.)

The values of N_{u} and N_{ℓ} for $R=T_{2}$ are [19]

$$
\begin{equation*}
N_{u, T_{2}}=\frac{11 N_{c}}{2\left(N_{c} \pm 2\right)} \tag{3.68}
\end{equation*}
$$

and

$$
\begin{equation*}
N_{\ell, T_{2}}=\frac{17 N_{c}^{3}}{\left(N_{c} \pm 2\right)\left(8 N_{c}^{2} \pm 3 N_{c}-6\right)} \tag{3.69}
\end{equation*}
$$

so that

$$
\begin{equation*}
R=T_{2}: \quad \Delta_{f}=\frac{11 N_{c}}{2\left(N_{c} \pm 2\right)}-N_{f} \tag{3.70}
\end{equation*}
$$

The factor D in Eq. (3.1) takes the explicit form

$$
\begin{equation*}
R=T_{2}: \quad D=\frac{18 N_{c}^{2} \pm 11 N_{c}-22}{N_{c}} \equiv \frac{F_{ \pm}}{N_{c}} \tag{3.71}
\end{equation*}
$$

whence

$$
\begin{equation*}
F_{ \pm}=18 N_{c}^{2} \pm 11 N_{c}-22 \tag{3.72}
\end{equation*}
$$

Both F_{+}and F_{-}are positive-definite for the physical range $N_{c} \geq 2$. At the lower end of the interval $I_{I R Z}, \Delta_{f}$ takes on the maximum value

$$
\begin{equation*}
R=T_{2}: \quad\left(\Delta_{f}\right)_{\max }=\frac{3 N_{c} F_{ \pm}}{2\left(N_{c} \pm 2\right)\left(8 N_{c}^{2} \pm 3 N_{c}-6\right)} \tag{3.73}
\end{equation*}
$$

If $N_{c}=2$, then S_{2} is the same as the adjoint representation, so we focus on $N_{c} \geq 3$ here. For this $R=S_{2}$ theory, the illustrative values $N_{c}=3$ and $N_{c}=4$ yield the respective intervals $I_{I R Z} 1.22<N_{f}<3.30$ and $1.35<N_{f}<3.67$. Hence, the physical integral values of N_{f} in these respective intervals $I_{I R Z}$ are $N_{f}=2,3$ for both $N_{c}=3$ and $N_{c}=4$. Furthermore, the A_{2} representation is the singlet if $N_{c}=2$ and is the same as the conjugate fundamental, \bar{F} if $N_{c}=3$, so in the case of A_{2}, we restrict to $N_{c} \geq 3$ and focus mainly on $N_{c} \geq 4$. In the $\mathrm{SU}(4)$ theory with $R=A_{2}$, the interval $I_{I R Z}$ is $4.945<N_{f}<11$, including the integral values $5 \leq N_{f} \leq 10$.

Here, using our general results (3.2)-(3.5), we give explicit expressions for the κ_{j} with $1 \leq j \leq 4$ for the case $G=\mathrm{SU}\left(N_{c}\right)$ and fermion representation $R=T_{2}$. From the general expressions for κ_{j} with $1 \leq j \leq 4$, Eqs. (3.2)(3.5), we calculate the following. In each expression, the + and - signs refer to the S_{2} and A_{2} special cases of T_{2}, respectively:

$$
\begin{gather*}
\kappa_{1, T_{2}}=\frac{4\left(N_{c} \mp 1\right)\left(N_{c} \pm 2\right)^{2}}{N_{c} F_{ \pm}} \tag{3.74}\\
\kappa_{2, T_{2}}=\frac{\left(N_{c} \mp 1\right)\left(N_{c} \pm 2\right)^{3}\left(11 N_{c}^{2} \pm 4 N_{c}-8\right)\left(93 N_{c}^{2} \pm 88 N_{c}-176\right)}{3 N_{c}^{2} F_{ \pm}^{3}} \tag{3.75}\\
\kappa_{3, T_{2}}=\frac{\left(N_{c} \mp 1\right)\left(N_{c} \pm 2\right)^{3}}{2 \cdot 3^{3} N_{c}^{3} F_{ \pm}^{5}}\left[\left(1670571 N_{c}^{9} \pm 7671402 N_{c}^{8}+2181584 N_{c}^{7} \mp 25294256 N_{c}^{6}\right.\right. \\
\left.-13413856 N_{c}^{5} \pm 17539136 N_{c}^{4}+16707328 N_{c}^{3} \mp 3046912 N_{c}^{2}-27320832 N_{c} \pm 18213888\right) \\
\left. \pm 8448 N_{c}^{2}\left(N_{c} \mp 2\right) F_{ \pm}\left(3 N_{c}^{3} \pm 28 N_{c}^{2} \mp 176\right) \zeta_{3}\right] \tag{3.76}
\end{gather*}
$$

and

$$
\begin{align*}
\kappa_{4, T_{2}} & =\frac{\left(N_{c} \mp 1\right)\left(N_{c} \pm 2\right)^{4}}{2^{4} \cdot 3^{4} N_{c}^{4} F_{ \pm}^{7}}\left[\left(4324540833 N_{c}^{13} \pm 26924228982 N_{c}^{12}+30086550336 N_{c}^{11} \mp 106026091536 N_{c}^{10}\right.\right. \\
& -224952825968 N_{c}^{9} \pm 105492861344 N_{c}^{8}+600583055488 N_{c}^{7} \pm 45292329216 N_{c}^{6}-1067559840512 N_{c}^{5} \\
& \left. \pm 68261028352 N_{c}^{4}+982655860736 N_{c}^{3} \mp 385868775424 N_{c}^{2}-136076328960 N_{c} \pm 54430531584\right) \\
& +2^{9} F_{ \pm}\left(33534 N_{c}^{11} \pm 702000 N_{c}^{10}+4448403 N_{c}^{9} \mp 2216812 N_{c}^{8}-38600660 N_{c}^{7} \pm 22594304 N_{c}^{6}\right. \\
& \left.+124680384 N_{c}^{5} \mp 82679040 N_{c}^{4}-90554112 N_{c}^{3} \pm 64551168 N_{c}^{2}-6690816 N_{c} \pm 3345408\right) \zeta_{3} \\
& \left.\mp 563200 N_{c}^{2}\left(N_{c} \mp 2\right) F_{ \pm}^{2}\left(15 N_{c}^{5} \pm 158 N_{c}^{4}+240 N_{c}^{3} \mp 912 N_{c}^{2}-1056 N_{c} \pm 2112\right) \zeta_{5}\right] \tag{3.77}
\end{align*}
$$

We comment on some factors in these $\kappa_{j, T_{2}}$ expressions. The property that the $\kappa_{j, A_{2}}$ coefficients contain an overall factor of $\left(N_{c}-2\right)$ (possibly raised to a power higher than 1), and hence vanish for $N_{c}=2$, is a consequence of the fact that for $N_{c}=2$, the A_{2} representation is a singlet, so for $\mathrm{SU}(2)$, fermions in the $A_{2}=$ singlet representation have no gauge interactions and hence no anomalous dimensions. Clearly, this property holds in general; i.e., the coefficients $\kappa_{j, A_{2}}$ for all j contain an overall factor of $\left(N_{c}-2\right)$ (as well as possible additional factors of $\left(N_{c}-2\right)$).

As noted above, if $N_{c}=2$, then the S_{2} representation is the same as the adjoint representation, so the coefficients must satisfy the equality $\kappa_{j, S_{2}}=\kappa_{j, a d j}$ for this $\mathrm{SU}(2)$ case, and we have checked that they do. Note that this equality requires (i) that the term proportional to ζ_{3} in $\kappa_{3, S_{2}}$ must be absent if $N_{c}=2$, since $\kappa_{3, a d j}$ does not contain any ζ_{3} term, and, indeed, this is accomplished by the factor $\left(N_{c}-2\right)$ multiplying the ζ_{3} term in $\kappa_{3, S_{2}}$; and (ii) the term proportional to ζ_{5} in $\kappa_{4, S_{2}}$ must be absent if $N_{c}=2$, since $\kappa_{4, a d j}$ does not contain any ζ_{5} term, and this is accomplished by the factor $\left(N_{c}-2\right)$ multiplying this ζ_{5} term in $\kappa_{4, S_{2}}$. Similarly, as we observed above, if $N_{c}=3$, then the A_{2} representation is the same as the conjugate fundamental representation, \bar{F}, so the coefficients must satisfy the equality $\kappa_{j, A_{2}}=\kappa_{j, F}$ for this $\mathrm{SU}(3)$ case, and we have checked that they do.

The resultant Δ_{f} expansions for $\gamma_{\bar{\psi} \psi, I R, S_{2}, \Delta_{f}^{4}}$ with $2 \leq N_{c} \leq 4$ are

$$
\begin{gather*}
\mathrm{SU}(2): \quad \gamma_{\bar{\psi} \psi, I R, S_{2}, \Delta_{f}^{4}}=\Delta_{f}\left[0.44444+0.23388 \Delta_{f}+0.10842 \Delta_{f}^{2}+0.14311 \Delta_{f}^{3}\right] \tag{3.78}\\
\mathrm{SU}(3): \quad \gamma_{\bar{\psi} \psi, I R, S_{2}, \Delta_{f}^{4}}=\Delta_{f}\left[0.38536+0.17038 \Delta_{f}+0.078062 \Delta_{f}^{2}+0.060081 \Delta_{f}^{3}\right] \tag{3.79}
\end{gather*}
$$

and

$$
\begin{equation*}
\mathrm{SU}(4): \quad \gamma_{\bar{\psi} \psi, I R, S_{2}, \Delta_{f}^{4}}=\Delta_{f}\left[0.34839+0.13875 \Delta_{f}+0.059680 \Delta_{f}^{2}+0.38102 \Delta_{f}^{3}\right] \tag{3.80}
\end{equation*}
$$

For $R=A_{2}$, we give illustrative results for the Δ_{f} expansion of $\gamma_{\bar{\psi} \psi, I R}$ for $N_{c}=4,5$:

$$
\begin{equation*}
\mathrm{SU}(4): \quad \gamma_{\bar{\psi} \psi, I R, A_{2}, \Delta_{f}^{4}}=\Delta_{f}\left[0.090090+\left(1.1114 \times 10^{-2}\right) \Delta_{f}+\left(1.6013 \times 10^{-3}\right) \Delta_{f}^{2}+\left(2.9668 \times 10^{-4}\right) \Delta_{f}^{3}\right] \tag{3.81}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{SU}(5): \quad \gamma_{\bar{\psi} \psi, I R, A_{2}, \Delta_{f}^{4}}=\Delta_{f}\left[0.11582+\left(1.7570 \times 10^{-2}\right) \Delta_{f}+\left(2.9243 \times 10^{-3}\right) \Delta_{f}^{2}+\left(0.59791 \times 10^{-3}\right) \Delta_{f}^{3}\right] \tag{3.82}
\end{equation*}
$$

In Fig. 6 we present a plot of $\gamma_{\bar{\psi} \psi, S_{2}, I R, \Delta_{f}^{p}}$ for $G=\operatorname{SU}(3), R=S_{2}$, and $1 \leq p \leq 4$, as a function of N_{f}. We list values of the $\gamma_{I R, S_{2}, \Delta_{f}^{p}}$ with $1 \leq p \leq 4$ for the $\mathrm{SU}(3)$ and $\mathrm{SU}(4)$ theories with $R=S_{2}$ in Table IV. In both of these theories, the interval $I_{I R Z}$ includes the two integer values $N_{f}=2,3$. For comparison, we also include the values $\gamma_{I R, S_{2}, n \ell}$ for $2 \leq n \leq 4$ calculated via the conventional power series expansion to n-loop order and evaluated at $\alpha=\alpha_{I R, n \ell}$ from Table XI in our previous work, Ref. [19]. As is evident from this table, for a given N_{c} and N_{f}, there is reasonable agreement between the $n=4$ loop values $\gamma_{I R, S_{2}, \Delta_{f}^{4}}$ and $\gamma_{I R, S_{2}, 4 \ell}$. For example, for $\mathrm{SU}(3)$ and $N_{f}=2$, $\gamma_{I R, S_{2}, 4 \ell}=1.12$ while $\gamma_{I R, S_{2}, \Delta_{f}^{4}}=1.13$.

We next compare our calculation of $\gamma_{\bar{\psi} \psi, I R, S_{2}, \Delta_{f}^{p}}$ to order $p=4$ with lattice measurements. A theory of particular interest is the $\mathrm{SU}(3)$ gauge theory with $N_{f}=2$ flavors of fermions in the S_{2} representation, and lattice studies of this theory include [78] and [79] (see also [22]). As indicated in Table IV, our higher-order scheme-independent results are $\gamma_{I R, \Delta_{f}^{3}}=0.960$, and $\gamma_{I R, \Delta_{f}^{4}}=1.132$, in agreement with our n-loop results from [19] for this theory, $\gamma_{I R, 3 \ell}=1.28$ and $\gamma_{I R, 4 \ell}=1.12$. The lattice study [78] concluded that this theory is IR-conformal and obtained $\gamma_{I R}<0.45$ [78], while Ref. [79] concluded that it is not IR-conformal and got an effective $\gamma_{I R} \sim 1$ [79]. One hopes that further work by lattice groups will lead to a consensus concerning whether this theory is IR conformal or not and concerning the value of $\gamma_{I R}$.

Regarding the range of applicability of the Δ_{f} expansion for these cases, we compute the following ratios of successive coefficients for the $G=\mathrm{SU}(3), R=S_{2}$ case:

$$
\begin{equation*}
\frac{\kappa_{1, S_{2}}}{\kappa_{2, S_{2}}}=2.26176 \tag{3.83}
\end{equation*}
$$

FIG. 6: Plot of $\gamma_{\bar{\psi} \psi, I R, S_{2}, \Delta_{f}^{p}}$ for $N_{c}=3$ and $1 \leq p \leq 4$ as a function of N_{f}. Here, S_{2} denotes the symmetric rank-2 tensor representation. From bottom to top, the curves (with colors online) refer to $\gamma_{\bar{\psi} \psi, I R, S_{2}, \Delta_{f}}$ (red), $\gamma_{\bar{\psi} \psi, I R, S_{2}, \Delta_{f}^{2}}$ (green), $\gamma_{\bar{\psi} \psi, I R, S_{2}, \Delta_{f}^{3}}$ (blue), and $\gamma_{\bar{\psi} \psi, I R, S_{2}, \Delta_{f}^{4}}$ (black).

$$
\begin{equation*}
\frac{\kappa_{2, S_{2}}}{\kappa_{3, S_{2}}}=2.1826 \tag{3.84}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\kappa_{3, S_{2}}}{\kappa_{4, S_{2}}}=1.2993 \tag{3.85}
\end{equation*}
$$

The first two ratios, (3.83) and (3.84), are slightly larger than $\left(\Delta_{f}\right)_{\max , S_{2}}=519 / 250=2.076$ in $I_{I R Z}$ for this theory. However, the third ratio is about 40% less than this maximal value of $\Delta_{f, S_{2}}$. This suggests that because of slow convergence, one must use the Δ_{f} expansion with caution in the lower part of the interval $I_{I R Z}$ in this theory.

We list values of the $\gamma_{I R, A_{2}, \Delta_{f}^{p}}$ with $1 \leq p \leq 4$ for the $\mathrm{SU}(4)$ theory with $R=A_{2}$ and $N_{f} \in I_{I R Z}$ for this theory in Table V. Again, for comparison, we include the values $\gamma_{I R, A_{2}, n \ell}$ for $2 \leq n \leq 4$ calculated via the conventional power series expansion to n-loop order and evaluated at $\alpha=\alpha_{I R, n \ell}$ from Table XII in our previous work [19]. As expected, the agreement between the two methods of calculation is best at the upper end of the interval $I_{I R Z}$, where the IRFP occurs at weak coupling. For example, for $N_{f}=9, \gamma_{I R, A_{2}, \Delta_{f}^{4}}=0.242$, while $\gamma_{I R, 4 \ell}=0.232$.

It is of interest to consider the $N_{c} \rightarrow \infty$ (LN) limit of Eq. (3.22) for these theories with $R=S_{2}$ and A_{2}. In this LN limit, the upper ends of the interval $I_{I R Z}$ for the S_{2} and A_{2} representations approach the same limit, and similarly for the lower ends:

$$
\begin{gather*}
\lim _{L N} N_{u, T_{2}}=\frac{11}{2}=5.5 \tag{3.86}\\
\lim _{L N} N_{\ell, T_{2}}=\frac{17}{8}=2.125 . \tag{3.87}
\end{gather*}
$$

Hence, in this $N_{c} \rightarrow \infty$ limit, the interval $I_{I R Z}$ is formally $2.125<N_{f}<5.5$, including the physical integer values $3 \leq N_{f} \leq 5$. Similarly, in this limit, the variable Δ_{f} is given by $\Delta_{f}=(11 / 2)-N_{f}$ and reaches a maximum value, at $N_{f}=N_{\ell, T_{2}}$, of

$$
\begin{equation*}
\lim _{L N}\left(\Delta_{f}\right)_{\max , T_{2}}=\frac{27}{8}=3.375 \tag{3.88}
\end{equation*}
$$

This the $N_{c} \rightarrow \infty$ limit of (3.73).
As with the adjoint representation, we define

$$
\begin{equation*}
\hat{\kappa}_{j, T_{2}}=\lim _{L N} \kappa_{j, T_{2}} \tag{3.89}
\end{equation*}
$$

We find that

$$
\begin{equation*}
\hat{\kappa}_{j, S_{2}}=\hat{\kappa}_{j, A_{2}} . \tag{3.90}
\end{equation*}
$$

From our general expressions for $\kappa_{j, T_{2}}$ with $1 \leq j \leq 4$, we calculate

$$
\begin{gather*}
\hat{\kappa}_{1, T_{2}}=\frac{2}{3^{2}}=0.2222 \tag{3.91}\\
\hat{\kappa}_{2, T_{2}}=\frac{341}{2^{3} \cdot 3^{6}}=0.0584705 \tag{3.92}\\
\hat{\kappa}_{3, T_{2}}=\frac{61873}{2^{6} \cdot 3^{10}}=0.016372 \tag{3.93}
\end{gather*}
$$

and

$$
\begin{equation*}
\hat{\kappa}_{4, T_{2}}=\frac{53389393}{2^{11} \cdot 3^{14}}+\frac{23 \zeta_{3}}{3^{10}}=0.59186 \times 10^{-2} . \tag{3.94}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\lim _{L N} \gamma_{I R, S_{2}, \Delta_{f}^{p}}=\lim _{L N} \gamma_{I R, A_{2}, \Delta_{f}^{p}} \tag{3.95}
\end{equation*}
$$

and, in the limit $p \rightarrow \infty$,

$$
\begin{equation*}
\lim _{L N} \gamma_{I R, S_{2}}=\lim _{L N} \gamma_{I R, A_{2}} . \tag{3.96}
\end{equation*}
$$

Thus, for both $R=S_{2}$ and $R=A_{2}$,

$$
\begin{align*}
& \lim _{L N} \gamma_{\bar{\psi} \psi, I R, T_{2}, \Delta_{f}^{4}}=\Delta_{f}\left[0.22222+0.0584705 \Delta_{f}\right. \\
+ & \left.0.016372 \Delta_{f}^{2}+0.0059186 \Delta_{f}^{3}\right] . \tag{3.97}
\end{align*}
$$

We observe that for all of the cases we have calculated, namely $1 \leq j \leq 4$,

$$
\begin{equation*}
\hat{\kappa}_{j, T_{2}}=2^{-j} \hat{\kappa}_{j, a d j} . \tag{3.98}
\end{equation*}
$$

One can understand this relation from the structure of the relevant group invariants, including the fact that the trace invariant $T(R)$ satisfies

$$
\begin{equation*}
\lim _{N_{c} \rightarrow \infty} \frac{T_{T_{2}}}{T_{a d j}}=\frac{1}{2} . \tag{3.99}
\end{equation*}
$$

We thus infer more generally that the relation (3.98) holds for all j. In Table VI we list the resultant common values of $\gamma_{I R, T_{2}, \Delta_{f}^{p}}$ for $1 \leq p \leq 4$ and $N_{f} \in I_{I R Z}$ in the LN limit. As noted above, in this LN limit, this interval consists of the integral values $N_{f}=3,4,5$.

Concerning the range of applicability of the Δ_{f} expansion in this LN limit, we compute the ratios

$$
\begin{align*}
& \frac{\hat{\kappa}_{1, T_{2}}}{\hat{\kappa}_{2, T_{2}}}=\frac{1296}{341}=3.8006 \tag{3.100}\\
& \frac{\hat{\kappa}_{2, T_{2}}}{\hat{\kappa}_{3, T_{2}}}=\frac{220968}{61873}=3.5713 \tag{3.101}
\end{align*}
$$

and

$$
\begin{align*}
\frac{\hat{\kappa}_{3, T_{2}}}{\hat{\kappa}_{4, T_{2}}} & =\frac{160374816}{53389393+3815424 \zeta_{3}} \\
& =2.76624 . \tag{3.102}
\end{align*}
$$

The first two ratios, (3.100) and (3.101), are slightly greater than the maximum value $\left(\Delta_{f}\right)_{\max , T_{2}}=3.375$, but the third ratio, (3.102), is smaller than this maximum value, suggesting that in this limit, for these tensor representations, because of slow convergence, one must use caution in applying the Δ_{f} expansion in the lower part of the interval $I_{I R Z}$. This is similar to what we found for the S_{2} representation in the $\mathrm{SU}(3)$ theory.

IV. CALCULATION OF $\beta_{I R}^{\prime}$ TO $O\left(\Delta_{f}^{5}\right)$

A. General G and R

The derivative $\beta_{I R}^{\prime}$ is an important physical quantity characterizing the conformal field theory at $\alpha_{I R}$. We denote the gauge field of the theory as A_{μ}^{a} (where a is a group index), the field strength-tensor as $F_{\mu \nu}^{a}=\partial_{\mu} A_{\nu}^{a}-\partial_{\nu} A_{\mu}^{a}+g c_{a b c} A_{\mu}^{b} A_{\nu}^{c}$ (where $c_{a b c}$ is the structure constant of the Lie algebra of G) and the rescaled field-strength tensor as $F_{\mu \nu, r}^{a}=g F_{\mu \nu}^{a}$, so that the gauge field kinetic term in the Lagrangian is $\mathcal{L}_{g}=-\left[1 /\left(4 g^{2}\right)\right] F_{\mu \nu, r}^{a} F_{r}^{a \mu \nu}$. The trace anomaly states that the trace of the energy-momentum tensor T_{ν}^{μ} satisfies the relation [81]

$$
\begin{equation*}
T_{\mu}^{\mu}=\frac{\beta}{16 \pi \alpha^{2}} F_{\mu \nu, r}^{a} F_{r}^{a \mu \nu} \tag{4.1}
\end{equation*}
$$

Therefore, the full scaling dimension of the operator $F_{r, \mu \nu} F_{r}^{a \mu \nu}$, which we denote as $D_{F^{2}}$, satisfies [82]

$$
\begin{equation*}
D_{F^{2}}=4+\beta^{\prime}-\frac{2 \beta}{\alpha} \tag{4.2}
\end{equation*}
$$

where we use the shorthand notation $F^{2} \equiv F_{r, \mu \nu}^{a} F_{r}^{a \mu \nu}$. We denote the anomalous dimension of $F^{2}, \gamma_{F^{2}}$ via the equation [26]

$$
\begin{equation*}
D_{F^{2}}=D_{F^{2}, \text { free }}-\gamma_{F^{2}}=4-\gamma_{F^{2}} \tag{4.3}
\end{equation*}
$$

and its evaluation at $\alpha=\alpha_{I R}$ as $\gamma_{F^{2}, I R}$. From Eq. (4.2), it follows that at a zero of the beta function away from the origin, in particular, at $\alpha_{I R}$, the derivative $\beta_{I R}^{\prime}$ is equivalent to the anomalous dimension of the operator $F_{r, \mu \nu}^{a} F_{r}^{a \mu \nu}$:

$$
\begin{equation*}
\beta_{I R}^{\prime}=-\gamma_{F^{2}, I R} \tag{4.4}
\end{equation*}
$$

In [13] we calculated the expansion coefficients d_{j} of $\beta_{I R}^{\prime}$ in Eq. (1.3) to order Δ_{f}^{4} for general G and R, and to order Δ_{f}^{5} for the special case $G=\mathrm{SU}(3)$ and fermion representation $R=F$, the fundamental. Here we calculate the next higher-order coefficient, namely d_{5}, for general G and R. For this purpose, we make use of the recent computation of the five-loop beta function coefficient, b_{5}, in [17]. The computation in [17] was performed in the $\overline{\mathrm{MS}}$ scheme, so that we can combine it with the scheme-independent b_{1} and $b_{2}[7,8]$ and the results for b_{3} and b_{4} that have also been calculated in the $\overline{\mathrm{MS}}$ scheme [27, 28]. However, we again stress that since the d_{n} coefficients are scheme-independent, it does not matter which scheme one uses to calculate them. We first recall our previous results from Ref. [13]:

$$
\begin{gather*}
d_{1}=0 \tag{4.5}\\
d_{2}=\frac{2^{5} T_{f}^{2}}{3^{2} C_{A} D} \tag{4.6}\\
d_{3}=\frac{2^{7} T_{f}^{3}\left(5 C_{A}+3 C_{f}\right)}{3^{3} C_{A}^{2} D^{2}}, \tag{4.7}
\end{gather*}
$$

and

$$
\begin{align*}
d_{4} & =-\frac{2^{3} T_{f}^{2}}{3^{6} C_{A}^{4} D^{5}}\left[-3 C_{A} T_{f}^{2}\left(137445 C_{A}^{4}+103600 C_{A}^{3} C_{f}+72616 C_{A}^{2} C_{f}^{2}+951808 C_{A} C_{f}^{3}-63888 C_{f}^{4}\right)\right. \\
& -5120 T_{f}^{2} D \frac{d_{A}^{a b c d} d_{A}^{a b c d}}{d_{A}}+90112 C_{A} T_{f} D \frac{d_{R}^{a b c d} d_{A}^{a b c d}}{d_{A}}-340736 C_{A}^{2} D \frac{d_{R}^{a b c d} d_{R}^{a b c d}}{d_{A}} \\
& \left.+8448 D\left[C_{A}^{2} T_{f}^{2}\left(21 C_{A}^{2}+12 C_{A} C_{f}-33 C_{f}^{2}\right)+16 T_{f}^{2} \frac{d_{A}^{a b c d} d_{A}^{a b c d}}{d_{A}}-104 C_{A} T_{f} \frac{d_{R}^{a b c d} d_{A}^{a b c d}}{d_{A}}+88 C_{A}^{2} \frac{d_{R}^{a b c d} d_{R}^{a b c d}}{d_{A}}\right] \zeta_{3}\right] \tag{4.8}
\end{align*}
$$

In Ref. [13] we presented the expression for d_{4} with terms written in order of descending powers of C_{A}. It is also useful to express this coefficient d_{4} in an equivalent form that renders certain factors of D explicit and shows the simple factorization of terms multiplying ζ_{3}, and we have done this in Eq. (4.8).

Here we present our calculation of d_{5} for arbitrary G and R :

$$
\begin{align*}
d_{5} & =\frac{2^{4} T_{f}^{3}}{3^{7} C_{A}^{5} D^{7}}\left[-C_{A} T_{f}^{2}\left(39450145 C_{A}^{6}+235108272 C_{A}^{5} C_{f}+1043817726 C_{A}^{4} C_{f}^{2}+765293216 C_{A}^{3} C_{f}^{3}\right.\right. \\
& \left.-737283360 C_{A}^{2} C_{f}^{4}+730646400 C_{A} C_{f}^{5}-356750592 C_{f}^{6}\right)-2^{9} T_{f}^{2} D \frac{d_{A}^{a b c d} d_{A}^{a b c d}}{d_{A}}\left(6139 C_{A}^{2}+2192 C_{A} C_{f}-3300 C_{f}^{2}\right) \\
& +2^{9} C_{A} T_{f} D \frac{d_{R}^{a b c d} d_{A}^{a b c d}}{d_{A}}\left(43127 C_{A}^{2}-28325 C_{A} C_{f}-2904 C_{f}^{2}\right)+15488 C_{A}^{2} D \frac{d_{R}^{a b c d} d_{R}^{a b c d}}{d_{A}}\left(2975 C_{A}^{2}+8308 C_{A} C_{f}-12804 C_{f}^{2}\right) \\
& +2^{7} D\left[3 C_{A} T_{f}^{2} D\left(6272 C_{A}^{4}-49823 C_{A}^{3} C_{f}+40656 C_{A}^{2} C_{f}^{2}+13200 C_{A} C_{f}^{3}+2112 C_{f}^{4}\right)\right. \\
& +2^{4} T_{f}^{2} \frac{d_{A}^{a b c d} d_{A}^{a b c d}}{d_{A}}\left(19516 C_{A}^{2}-18535 C_{A} C_{f}-21780 C_{f}^{2}\right)-2^{3} C_{A} T_{f} \frac{d_{R}^{a b c d} d_{A}^{a b c d}}{d_{A}}\left(182938 C_{A}^{2}-297649 C_{A} C_{f}-197472 C_{f}^{2}\right) \\
& \left.-88 C_{A}^{2} \frac{d_{R}^{a b c d} d_{R}^{a b c d}}{d_{A}}\left(245 C_{A}^{2}+62524 C_{A} C_{f}+42108 C_{f}^{2}\right)\right] \zeta_{3} \\
& +2^{10} \cdot 55 C_{A} D^{2}\left[9 C_{A} T_{f}^{2} D\left(C_{A}+2 C_{f}\right)\left(C_{A}-C_{f}\right)+160 T_{f}^{2} \frac{d_{A}^{a b c d} d_{A}^{a b c d}}{d_{A}}\right. \\
& \left.\left.-80 T_{f}\left(10 C_{A}+3 C_{f}\right) \frac{d_{R}^{a b c d} d_{A}^{a b c d}}{d_{A}}-440 C_{A}\left(C_{A}-3 C_{f}\right) \frac{d_{R}^{a b c d} d_{R}^{a b c d}}{d_{A}}\right] \zeta_{5}\right] \tag{4.9}
\end{align*}
$$

We proceed to evaluate these coefficients d_{j} up to $j=5$, and hence the derivative $\beta_{I R}^{\prime}$ up to $O\left(\Delta_{f}^{5}\right)$ below for $G=\mathrm{SU}\left(N_{c}\right)$ and several specific representations. The coefficients d_{2} and d_{3} are manifestly positive for arbitrary G and R. These signs are indicated in Table VII. We discuss the signs of d_{4} and d_{5} for various representations below.
B. $\beta_{I R, \Delta_{f}^{4}}^{\prime}$ for $G=\operatorname{SU}\left(N_{c}\right)$ and $R=F$

Here we present the evaluation of our general result (4.9) for the case $G=\mathrm{SU}\left(N_{c}\right)$ and $R=F$. For reference, we first recall our results from [13] for d_{j} with $2 \leq j \leq 4$ (and also recall that $d_{1}=0$ for all G and R):

$$
\begin{gather*}
d_{2, F}=\frac{2^{4}}{3^{2}\left(25 N_{c}^{2}-11\right)}, \tag{4.10}\\
d_{3, F}=\frac{2^{5}\left(13 N_{c}^{2}-3\right)}{3^{3} N_{c}\left(25 N_{c}^{2}-11\right)^{2}}, \tag{4.11}
\end{gather*}
$$

and

$$
\begin{align*}
d_{4, F} & =-\frac{2^{4}}{3^{5} N_{c}^{2}\left(25 N_{c}^{2}-11\right)^{5}}\left[N_{c}^{8}\left(-366782+660000 \zeta_{3}\right)+N_{c}^{6}\left(865400-765600 \zeta_{3}\right)\right. \\
& \left.+N_{c}^{4}\left(-1599316+2241888 \zeta_{3}\right)+N_{c}^{2}\left(571516-894432 \zeta_{3}\right)+3993\right] \tag{4.12}
\end{align*}
$$

This coefficient can be written equivalently in a form that shows the simple factorization of the terms multiplying ζ_{3} :

$$
\begin{align*}
d_{4, F} & =-\frac{2^{4}}{3^{5} N_{c}^{2}\left(25 N_{c}^{2}-11\right)^{5}}\left[\left(-366782 N_{c}^{8}+865400 N_{c}^{6}-1599316 N_{c}^{4}+571516 N_{c}^{2}+3993\right)\right. \\
& \left.+1056 N_{c}^{2}\left(25 N_{c}^{2}-11\right)\left(25 N_{c}^{4}-18 N_{c}^{2}+77\right) \zeta_{3}\right] \tag{4.13}
\end{align*}
$$

In [16] we presented the expression for $d_{5, F}$ with terms ordered as descending powers of N_{c}. As with $d_{4, F}$, it is also useful to display this coefficient in an equivalent form that shows the simple factorizations of the terms multiplying ζ_{3} and ζ_{5} :

$$
d_{5, F}=\frac{2^{5}}{3^{6} N_{c}^{3}\left(25 N_{c}^{2}-11\right)^{7}}\left[\left(-298194551 N_{c}^{12}+414681770 N_{c}^{10}+80227411 N_{c}^{8}\right.\right.
$$

$$
\begin{align*}
& \left.+210598856 N_{c}^{6}-442678324 N_{c}^{4}+129261880 N_{c}^{2}+3716152\right) \\
& -96\left(25 N_{c}^{2}-11\right)\left(176375 N_{c}^{10}-564526 N_{c}^{8}+1489367 N_{c}^{6}-1470392 N_{c}^{4}+290620 N_{c}^{2}+968\right) \zeta_{3} \\
& \left.+21120 N_{c}^{2}\left(25 N_{c}^{2}-11\right)^{2}\left(40 N_{c}^{6}-27 N_{c}^{4}+124 N_{c}^{2}-209\right) \zeta_{5}\right] \tag{4.14}
\end{align*}
$$

We have checked that when we set $N_{c}=3$ in our general result for $d_{5, F}$ in Eq. (4.14), the result agrees with our earlier calculation of $d_{5, F}$ in Eq. (5.20) of Ref. [13].

As observed above, the coefficients d_{2} and d_{3} are manifestly positive for any G and R. We find that $d_{4, F}$ and $d_{5, F}$ are negative-definite for $G=\mathrm{SU}\left(N_{c}\right)$ and all physical values of $N_{c} \geq 2$. These results are summarized in Table VII.

We list below the explicit numerical expressions for $\beta_{I R}^{\prime}$ to order Δ_{f}^{5}, denoted $\beta_{I R, \mathrm{SU}\left(N_{c}\right), F, \Delta_{f}^{5}}^{\prime}$, for the gauge groups $\mathrm{SU}\left(N_{c}\right)$ with $N_{c}=2,3,4$, with fermions in the fundamental representation, to the indicated floating-point precision:

$$
\begin{align*}
& \mathrm{SU}(2): \quad \beta_{I R, F, \Delta_{f}^{5}}^{\prime}=\Delta_{f}^{2}\left[\left(1.99750 \times 10^{-2}+\left(3.66583 \times 10^{-3}\right) \Delta_{f}-\left(3.57303 \times 10^{-4}\right) \Delta_{f}^{2}-\left(2.64908 \times 10^{-5}\right) \Delta_{f}^{3}\right]\right. \tag{4.15}\\
& \mathrm{SU}(3): \quad \beta_{I R, F, \Delta_{f}^{5}}^{\prime}=\Delta_{f}^{2}\left[\left(0.83074 \times 10^{-2}\right)+\left(0.98343 \times 10^{-3} \Delta_{f}-\left(0.46342 \times 10^{-4}\right) \Delta_{f}^{2}-\left(0.56435 \times 10^{-5}\right) \Delta_{f}^{3}\right]\right. \tag{4.16}
\end{align*}
$$

and

$$
\begin{equation*}
\mathrm{SU}(4): \quad \beta_{I R, F, \Delta_{f}^{5}}^{\prime}=\Delta_{f}^{2}\left[\left(0.45701 \times 10^{-2}\right)+\left(0.40140 \times 10^{-3} \Delta_{f}-\left(0.12938 \times 10^{-4}\right) \Delta_{f}^{2}-\left(0.15498 \times 10^{-5}\right) \Delta_{f}^{3}\right]\right. \tag{4.17}
\end{equation*}
$$

In Table VIII we list the (scheme-independent) values that we calculate for $\beta_{I R, F, \Delta_{f}^{p}}^{\prime}$ with $2 \leq p \leq 4$ for the illustrative gauge groups $G=\mathrm{SU}(2), \mathrm{SU}(3)$, and $\mathrm{SU}(4)$, as functions of N_{f} in the respective intervals $I_{I R Z}$ given in Eq. (2.7). For comparison, we list the n-loop values of $\beta_{I R, F, n \ell}^{\prime}$ with the $2 \leq n \leq 4$ from [13, 20], where $\beta_{I R, F, 3 \ell}^{\prime}$ and $\beta_{I R, F, 4 \ell}^{\prime}$ are computed in the $\overline{\mathrm{MS}}$ scheme. Although, for completeness, we list values of $\beta_{I R, F, 2 \ell}^{\prime}$ with N_{f} extending down to the lower end of the respective intervals $I_{I R Z}$ for each value of N_{c}, we caution that in a number of cases, including $N_{f}=6$ for $\mathrm{SU}(2), N_{f}=9$ for $\mathrm{SU}(3)$, and $10 \leq N_{f} \leq 12$ for $\mathrm{SU}(4)$, the corresponding values of $\alpha_{I R, 2 \ell}$ (discussed further below) are too large for the perturbative n-loop calculations to be applicable. Moreover, since for a considerable range of values of $N_{f} \in I_{I R Z}$ for each N_{c}, the five-loop beta function $\beta_{5 \ell}$ calculated via the conventional power series expansion has no physical IR zero, we restrict the resultant $\beta_{I R, F, n \ell}^{\prime}$ evalulations to $1 \leq n \leq 4$ loops.

In Figs. 7-9 we plot the values of $\beta_{I R}^{\prime}$, calculated to order Δ_{f}^{p} with $2 \leq p \leq 5$, for $R=F$ for the gauge groups $\mathrm{SU}(2)$, $\mathrm{SU}(3)$, and $\mathrm{SU}(4)$. In the general calculations of $\gamma_{I R}$ as a series in powers of Δ_{f} to maximal power $p=3$ (i.e., order Δ_{f}^{3}) in [12] and, for $G=\mathrm{SU}(3)$ and $R=F$, to maximal power $p=4$ in [14], it was found that, for a fixed value of N_{f}, or equivalently, Δ_{f}, in the interval $I_{I R Z}$, these anomalous dimensions increased monotonically as a function of p. This feature motivated our extrapolation to $p=\infty$ in [12] to obtain estimates for the exact $\gamma_{I R}$. In contrast, here we find that, for a fixed value of N_{f}, or equivalently, Δ_{f}, in $I_{I R Z}$, as a consequence of the fact that different coefficients d_{n} do not all have the same sign, $\beta_{I R, \Delta_{f}^{p}}^{\prime}$ is not a monotonic function of p. Because of this non-monotonicity, we do not attempt to extrapolate our series to $p=\infty$.

A lattice measurement of $\beta_{I R}^{\prime}$ has been reported in [83] for the $\mathrm{SU}(3)$ theory with $R=F$ and $N_{f}=12$, namely $\beta_{I R}^{\prime}=0.26(2)$. The earlier higher-order values calculated in [20] via n-loop expansions in the coupling are $\beta_{I R, 3 \ell}^{\prime}=$ 0.2955 and $\beta_{I R, 4 \ell}^{\prime}=0.282$, which agree with this lattice measurement. As indicated in Table VIII, our higher-order scheme-independent values for this theory are $\beta_{I R, \Delta_{f}^{3}}^{\prime}=0.258, \beta_{I R, \Delta_{f}^{4}}^{\prime}=0.239$, and $\beta_{I R, \Delta_{f}^{5}}^{\prime}=0.228$. Given the possible contributions of higher-order terms in the Δ_{f} expansion, we consider that our scheme-independent calculation of $\beta_{I R}^{\prime}$ to this order is also consistent with the lattice measurement from Ref. [83].

To get a rough estimate of the range of accuracy and applicability of the series expansion for $\beta_{I R}^{\prime}$ for this $R=F$ case, we can compute ratios of coefficients, as discussed before. For the illustrative case of $\operatorname{SU}(3)$, we have

$$
\begin{equation*}
\frac{d_{2, F}}{d_{3, F}}=8.447 \quad \text { for } \mathrm{SU}(3) \tag{4.18}
\end{equation*}
$$

FIG. 7: Plot of $\beta_{I R, F, \Delta_{f}^{p}}^{\prime}$ (labelled as $\beta_{I R}^{\prime}$ on the vertical axis) for $N_{c}=2$ and $2 \leq p \leq 5$ as a function of $N_{f} \in I_{I R Z}$. From bottom to top, the curves (with colors online) refer to $\beta_{I R, F, \Delta_{f}^{2}}^{\prime}(\mathrm{red}), \beta_{I R, F, \Delta_{f}^{3}}^{\prime}$ (green), $\beta_{I R, F, \Delta_{f}^{4}}^{\prime}$ (blue), and $\beta_{I R, F, \Delta_{f}^{5}}^{\prime}$ (black).

FIG. 8: Plot of $\beta_{I R, F, \Delta_{f}^{p}}^{\prime}$ for $N_{c}=3$ and $2 \leq p \leq 5$ as a function of $N_{f} \in I_{I R Z}$. From bottom to top, the curves (with colors online) refer to $\beta_{I R, F, \Delta_{f}^{2}}^{\prime}(\mathrm{red}), \beta_{I R, F, \Delta_{f}^{3}}^{\prime}$ (green), $\beta_{I R, F, \Delta_{f}^{4}}^{\prime}$ (blue), and $\beta_{I R, F, \Delta_{f}^{5}}^{\prime}$ (black).

$$
\begin{equation*}
\frac{d_{3, F}}{\left|d_{4, F}\right|}=21.221 \quad \text { for } \mathrm{SU}(3) \tag{4.19}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\left|d_{4, F}\right|}{\left|d_{5, F}\right|}=8.2115 \quad \text { for } \mathrm{SU}(3) \tag{4.20}
\end{equation*}
$$

Since $N_{u}=16.5$ and $N_{\ell}=153 / 19=8.053$ in this $\mathrm{SU}(3)$ theory, the maximal value of Δ_{f} in the interval $I_{I R Z}$, as given by (3.16), is

$$
\begin{equation*}
\left(\Delta_{f}\right)_{\max }=\frac{321}{38}=8.447 \quad \text { for } \mathrm{SU}(3), N_{f} \in I_{I R Z} \tag{4.21}
\end{equation*}
$$

Therefore, these ratios suggest that the small- Δ_{f} expansion may be reasonably reliable in most of this interval, $I_{I R Z}$ and the associated non-Abelian Coulomb phase.

FIG. 9: Plot of $\beta_{I R, F, \Delta_{f}^{p}}^{\prime}$ for $N_{c}=4$ and $2 \leq p \leq 5$ as a function of $N_{f} \in I_{I R Z}$. From bottom to top, the curves (with colors online) refer to $\beta_{I R, F, \Delta_{f}^{2}}^{\prime}(\mathrm{red}), \beta_{I R, F, \Delta_{f}^{3}}^{\prime}$ (green), $\beta_{I R, F, \Delta_{f}^{4}}^{\prime}$ (blue), and $\beta_{I R, F, \Delta_{f}^{5}}^{\prime}$ (black).

C. $\beta_{I R, \Delta_{f}^{5}}^{\prime}$ in LNN Limit

The appropriately rescaled beta function that is finite in the LNN limit is

$$
\begin{equation*}
\beta_{\xi}=\frac{d \xi}{d t}=\lim _{L N N} N_{c} \beta \tag{4.22}
\end{equation*}
$$

where $\xi=4 \pi x=\lim _{L N N} \alpha N_{c}$ was defined in Eq. (3.21). This has the series expansion

$$
\begin{equation*}
\beta_{\xi} \equiv \frac{d \xi}{d t}=-8 \pi x \sum_{\ell=1}^{\infty} \hat{b}_{\ell} x^{\ell}=-2 \xi \sum_{\ell=1}^{\infty} \tilde{b}_{\ell} \xi^{\ell} \tag{4.23}
\end{equation*}
$$

where

$$
\begin{equation*}
\hat{b}_{\ell}=\lim _{L N N} \frac{b_{\ell}}{N_{c}^{\ell}} \tag{4.24}
\end{equation*}
$$

and $\tilde{b}_{\ell}=\hat{b}_{\ell} /(4 \pi)^{\ell}$. The \hat{b}_{ℓ} with $1 \leq \ell \leq 4$ were analyzed in $[20,21]$ and are listed for the reader's convenience in the Appendix.

From the recent calculation of b_{5} in [17], for general G and R, in the $\overline{\mathrm{MS}}$ scheme [17], we calculate

$$
\begin{align*}
\hat{b}_{5} & =\frac{8268479}{3888}+\frac{38851}{162} \zeta_{3}-\frac{121}{6} \zeta_{4}-330 \zeta_{5} \\
& +\left(-\frac{11204369}{5184}-\frac{231619}{648} \zeta_{3}+\frac{77}{6} \zeta_{4}+\frac{4090}{9} \zeta_{5}\right) r \\
& +\left(\frac{3952801}{7776}+\frac{33125}{108} \zeta_{3}-\frac{241}{6} \zeta_{4}-\frac{1630}{9} \zeta_{5}\right) r^{2} \\
& +\left(-\frac{5173}{432}-\frac{1937}{81} \zeta_{3}+7 \zeta_{4}+\frac{20}{3} \zeta_{5}\right) r^{3} \\
& +\left(\frac{61}{486}-\frac{52}{81} \zeta_{3}\right) r^{4} \\
& =2050.932-2105.880 r+645.7474 r^{2} \\
& -26.2309 r^{3}-0.64618 r^{4} . \tag{4.25}
\end{align*}
$$

(In this expression although ζ_{4} could be expressed explicitly as $\zeta_{4}=\pi^{4} / 90$, we leave it in abstract form to be parallel with the ζ_{3} and ζ_{5} terms.) We find that this coefficient \hat{b}_{5} is positive throughout the entire asymptotically
free interval $0 \leq r<5.5$. (Considered formally as a function of $r \in \mathbb{R}, \hat{b}_{5}$ is negative for $r<-58.609$, positive for $-58.609<\bar{r}<14.336$, and negative for $r>14.336$, where the numbers are quoted to the given floating-point accuracy.)

Since the derivative $d \beta_{\xi} / d \xi$ satisfies the relation

$$
\begin{equation*}
\frac{d \beta_{\xi}}{d \xi}=\frac{d \beta}{d \alpha} \equiv \beta^{\prime} \tag{4.26}
\end{equation*}
$$

it follows that β^{\prime} is finite in the LNN limit (3.21). In terms of the variable x defined in Eq. (3.23), we have

$$
\begin{equation*}
\beta^{\prime}=-2 \sum_{\ell=1}^{\infty}(\ell+1) \hat{b}_{\ell} x^{\ell} \tag{4.27}
\end{equation*}
$$

Because $\beta_{I R}^{\prime}$ is scheme-independent and is finite in the LNN limit, one is motivated to calculate the LNN limit of the scheme-independent expansion (1.3). For this purpose, in addition to the rescaled quantities Δ_{r} defined in Eq. (3.30), we define the rescaled coefficient

$$
\begin{equation*}
\hat{d}_{j, F}=\lim _{L N N} N_{c}^{j} d_{j, F} \tag{4.28}
\end{equation*}
$$

which is finite. Then each term

$$
\begin{equation*}
\lim _{L N N} d_{j, F} \Delta_{f}^{j}=\left(N_{c}^{j} d_{j, F}\right)\left(\frac{\Delta_{f}}{N_{c}}\right)^{j}=\hat{d}_{j, F} \Delta_{r}^{j} \tag{4.29}
\end{equation*}
$$

is finite in this limit. Thus, writing $\lim _{L N N} \beta_{I R}^{\prime}$ as $\beta_{I R, L N N}^{\prime}$ for this $R=F$ case, we have

$$
\begin{equation*}
\beta_{I R, L N N}^{\prime}=\sum_{j=1}^{\infty} d_{j, F} \Delta_{f}^{j}=\sum_{j=1}^{\infty} \hat{d}_{j, F} \Delta_{r}^{j} \tag{4.30}
\end{equation*}
$$

We denote the value of $\beta_{I R, L N N}^{\prime}$ obtained from this series calculated to order $O\left(\Delta_{f}^{p}\right)$ as $\beta_{I R, L N N, \Delta_{f}^{p}}^{\prime}$.
From Eqs. (4.5)-(4.8), we find that the approach to the LNN limits for $\hat{d}_{j, F}$ involves correction terms that vanish like $1 / N_{c}^{2}$. This is the same property that was found in $[20,21]$ and, in the same way, it means that the approach to the LNN limit for finite N_{c} and N_{f} with fixed $r=N_{f} / N_{c}$ is rather rapid, as discussed in [21]. In [13] we gave the $\hat{d}_{j, F}$ for $1 \leq n \leq 4$; in addition to $\hat{d}_{1}=0$ (which holds for any G and R), these are

$$
\begin{gather*}
\hat{d}_{2, F}=\frac{2^{4}}{3^{2} \cdot 5^{2}}=0.0711111 \tag{4.31}\\
\hat{d}_{3, F}=\frac{416}{3^{3} \cdot 5^{4}}=2.465185 \times 10^{-2} \tag{4.32}
\end{gather*}
$$

and

$$
\begin{equation*}
\hat{d}_{4, F}=\frac{5868512}{3^{5} \cdot 5^{10}}-\frac{5632}{3^{4} \cdot 5^{6}} \zeta_{3}=-\left(2.876137 \times 10^{-3}\right) \tag{4.33}
\end{equation*}
$$

Here we give the next higher coefficient:

$$
\begin{align*}
\hat{d}_{5, F} & =-\frac{9542225632}{3^{6} \cdot 5^{14}}-\frac{1444864}{3^{5} \cdot 5^{9}} \zeta_{3}+\frac{360448}{3^{5} \cdot 5^{8}} \zeta_{5} \\
& =-\left(1.866490 \times 10^{-3}\right) \tag{4.34}
\end{align*}
$$

In these equations we have indicated the simple factorizations of the denominators that were already evident in the general analytic expressions (4.5)-(4.8). Although the numerical coefficients in the numerators of terms in Eq. (4.34) do not, in general, have simple factorizations, they do contain various powers of 2 ; for example, in $\hat{d}_{5, F}$, $1444864=2^{10} \cdot 17 \cdot 83$, etc. Thus, numerically, to order Δ_{r}^{5}, for the LNN limit of this theory with $R=F$, we have

$$
\beta_{I R, L N N}^{\prime}=\Delta_{r}^{2}\left[7.1111 \times 10^{-2}+\left(2.4652 \times 10^{-2}\right) \Delta_{r}\right.
$$

$$
\begin{align*}
& -\left(2.8761 \times 10^{-3}\right) \Delta_{r}^{2}-\left(1.8665 \times 10^{-3}\right) \Delta_{r}^{3} \\
& \left.+O\left(\Delta_{r}^{4}\right)\right] \tag{4.35}
\end{align*}
$$

where the coefficients are given to the indicated floating-point precision. We may again calculate ratios of successive magnitudes of these coefficients to get a rough estimate of the range over which the small- Δ_{r} expansion is reliable in this LNN limit. We find

$$
\begin{align*}
& \frac{\hat{d}_{2, F}}{\hat{d}_{3, F}}=2.885 \tag{4.36}\\
& \frac{\hat{d}_{3, F}}{\left|\hat{d}_{4, F}\right|}=8.571 \tag{4.37}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{\left|\hat{d}_{4, F}\right|}{\left|\hat{d}_{5, F}\right|}=1.541 \tag{4.38}
\end{equation*}
$$

For $r \in I_{I R Z, r}$, the maximal value of Δ_{r} is $\left(\Delta_{r}\right)_{\max }=75 / 26=2.885$. The first two ratios, (4.36) and (4.37) suggest that the Δ_{r} expansion for $\beta_{I R}^{\prime}$ may be reasonably reliable over a reasonable fraction of the interval $I_{I R Z, r}$. From the third ratio, (4.38), we infer that the expansion is expected to be more accurate in the upper portion of the interval $I_{I R Z, r}$ than the lower portion.

In Ref. [13] we presented a comparison of these scheme-independent calculations of $\beta_{I R, L N N}^{\prime}$ calculated up to the Δ_{r}^{4} order with the results of conventional n-loop calculations, denoted $\beta_{I R, n \ell, L N N}^{\prime}$, computed up to the $n=4$ loop order for which the b_{n} were known at that time. We refer the reader to [13] for details of this discussion. Here we shall extend this comparison to the Δ_{r}^{5} order. In Table IX we list the numerical values of these conventional n-loop calculations up to $n=4$, in comparison with our scheme-independent results calculated to $O\left(\Delta_{r}^{p}\right)$ with p up to 5 . (The conventional 4-loop values $\beta_{I R, 4 \ell}^{\prime}$ for some values of r toward the lower part of $I_{I R Z, r}$ supersede the corresponding entries in Table II of [13].) Both $\beta_{I R, n \ell}^{\prime}$ and $\beta_{I R, \Delta_{r}^{n}}^{\prime}$ use, as inputs, the coefficients of the beta function up to loop order n, although $\beta_{I R, \Delta_{r}^{n}}^{\prime}$ does this in a scheme-independent manner. We see that, especially for r values in the upper part of the interval $I_{I R Z, r}$, the results are rather close, and, furthermore, that, as expected, for a given r, the higher the loop level n and the truncation order p in the respective calculations of $\beta_{I R, n \ell}^{\prime}$ in the $\overline{\mathrm{MS}}$ scheme and the scheme-independent $\beta_{I R, \Delta_{r}^{p}}^{\prime}$, the better the agreement between these two results. Toward the lower end of the interval $I_{I R Z, r}$, both the conventional expansion of $\beta_{I R}^{\prime}$ and the scheme-independent expansion of $\beta_{I R}^{\prime}$ in powers of Δ_{r} become less reliable, and hence it is understandable that the results differ from each other in this lower part of $I_{I R Z, r}$.

$$
\text { D. } \quad \beta_{I R, \Delta_{f}^{5}}^{\prime} \text { for } G=\operatorname{SU}\left(N_{c}\right) \text { and } R=a d j
$$

Here we calculate the d_{j} and hence $\beta_{I R, \Delta_{f}^{j}}^{\prime}$ for j up to $j=5$ in the $\mathrm{SU}\left(N_{c}\right)$ gauge theory with fermion representation $R=a d j$. As was discussed above, in this case, the interval $I_{I R Z}$ contains the single Dirac value, $N_{f}=2$. For this value of N_{f}, Eq. (3.60) yields $\Delta_{f}=3 / 4$. We recall that the d_{j} for $2 \leq j \leq 4$ are [13]

$$
\begin{gather*}
d_{2, a d j}=\left(\frac{2}{3}\right)^{4}=0.19753 \tag{4.39}\\
d_{3, a d j}=\frac{2^{8}}{3^{7}}=0.11706 \tag{4.40}
\end{gather*}
$$

and

$$
d_{4, a d j}=\frac{46871}{2^{2} \cdot 3^{12}}+\frac{2368}{3^{10} N_{c}^{2}}
$$

$$
\begin{equation*}
=0.022049+0.040102 N_{c}^{-2} \tag{4.41}
\end{equation*}
$$

Here, from our new general result (4.9) for d_{5}, we obtain the next coefficient for this case of the adjoint representation:

$$
\begin{align*}
d_{5, a d j} & =-\frac{7141205}{2^{3} \cdot 3^{16}}+\frac{5504}{3^{12}} \zeta_{3} \\
& -\left(\frac{30928}{3^{14}}+\frac{465152}{3^{13}} \zeta_{3}\right) N_{c}^{-2} \\
& =-\left(0.828739 \times 10^{-2}\right)-0.357173 N_{c}^{-2} \tag{4.42}
\end{align*}
$$

While the $d_{j, a d j}$ with $2 \leq j \leq 4$ are positive-definite, we thus find that $d_{5, a d j}$ is negative-definite. These results on signs are listed in Table VII. In the $N_{c} \rightarrow \infty$ (LN) limit of Eq. (3.22), the values of $\hat{d}_{j, a d j}$ can be read off directly from our general results in Eqs. (4.39)-(4.42); for example, $\hat{d}_{4, a d j}=46871 /\left(2^{2} \cdot 3^{12}\right)$, etc.

With these coefficients, one can again compute ratios to obtain a crude idea of the region over which the small- Δ_{f} series expansion is reliable. We have

$$
\begin{equation*}
\frac{d_{2, a d j}}{d_{3, a d j}}=\frac{3^{3}}{2^{4}}=1.687 \tag{4.43}
\end{equation*}
$$

and, taking the large- N_{c} limit for simplicity,

$$
\begin{gather*}
\lim _{N_{c} \rightarrow \infty} \frac{d_{3, a d j}}{d_{4, a d j}}=\frac{3^{5} \cdot 2^{10}}{46871}=5.309 \tag{4.44}\\
\lim _{N_{c} \rightarrow \infty} \frac{d_{4, a d j}}{\left|d_{5, a d j}\right|}=\frac{7593102}{7141205-3566592 \zeta_{3}}=2.6606 \tag{4.45}
\end{gather*}
$$

Since $\Delta_{f}=0.75$ for $N_{f}=2$, these ratios indicate that the small- Δ_{f} expansion should be reasonably accurate here.

$$
\text { E. } \quad \beta_{I R, \Delta_{f}^{5}}^{\prime} \text { for } G=\operatorname{SU}\left(N_{c}\right) \text { and } R=S_{2}, A_{2}
$$

Here we present our results for the d_{j} coefficients and hence $\beta_{I R, \Delta_{f}^{j}}^{\prime}$ with j up to 5 for $G=\operatorname{SU}\left(N_{c}\right)$ and N_{f} fermions in the symmetric and antisymmetric rank- 2 tensor representations, S_{2} and A_{2}. As before with $\gamma_{\bar{\psi} \psi, I R, \Delta_{f}^{p}}$, since many formulas for these two cases are simply related to each other by sign reversals in certain terms, it is convenient to treat these two cases together, denoting them collectively as T_{2}. We recall that for $R=A_{2}$, we restrict to $N_{c} \geq 3$.

From our general formulas (4.5)-(4.9), we obtain the following, where the upper and lower signs refer to the S_{2} and A_{2} special cases of T_{2}, respectively, and $F_{ \pm}$was defined in Eq. (3.72):

$$
\begin{gather*}
d_{2, T_{2}}=\frac{2^{3}\left(N_{c} \pm 2\right)^{2}}{3^{2} F_{ \pm}} \tag{4.46}\\
d_{3, T_{2}}=\frac{2^{4}\left(N_{c} \pm 2\right)^{3}\left(8 N_{c}^{2} \pm 3 N_{c}-6\right)}{3^{3} N_{c} F_{ \pm}^{2}} \tag{4.47}\\
d_{4, T_{2}}=\frac{\left(N_{c} \pm 2\right)^{3}}{2 \cdot 3^{5} N_{c}^{2} F_{ \pm}^{5}}\left[\left(1265517 N_{c}^{9} \pm 6305850 N_{c}^{8}+8455112 N_{c}^{7} \mp 18825808 N_{c}^{6}-47225264 N_{c}^{5}\right.\right. \\
\left. \pm 61021088 N_{c}^{4}+70598528 N_{c}^{3} \mp 72131840 N_{c}^{2}+3066624 N_{c} \mp 2044416\right) \\
\left. \pm 8448 N_{c}^{2}\left(N_{c} \mp 2\right)\left(18 N_{c}^{2} \pm 11 N_{c}-22\right)\left(12 N_{c}^{3} \mp 9 N_{c}^{2} \pm 308\right) \zeta_{3}\right] \tag{4.48}
\end{gather*}
$$

and

$$
\begin{align*}
d_{5, T_{2}} & =\frac{\left(N_{c} \pm 2\right)^{4}}{2 \cdot 3^{6} N_{c}^{3} F_{ \pm}^{7}}\left[\left(-578437605 N_{c}^{13} \mp 2353001022 N_{c}^{12}-1643220810 N_{c}^{11} \pm 1685855300 N_{c}^{10}\right.\right. \\
& +12567177608 N_{c}^{9} \pm 29240054768 N_{c}^{8}-75390007296 N_{c}^{7} \mp 70417381376 N_{c}^{6}+243309040128 N_{c}^{5} \\
& \left.\mp 27199484928 N_{c}^{4}-228577603584 N_{c}^{3} \pm 143780184064 N_{c}^{2}-38053396480 N_{c} \pm 15221358592\right) \\
& +2^{7} F_{ \pm}\left(125388 N_{c}^{11} \pm 372762 N_{c}^{10}-7324047 N_{c}^{9} \mp 9682414 N_{c}^{8}+52934332 N_{c}^{7} \mp 12735976 N_{c}^{6}\right. \\
& \left.-192234240 N_{c}^{5} \pm 112670976 N_{c}^{4}+164609280 N_{c}^{3} \mp 111598080 N_{c}^{2}+2973696 N_{c} \mp 1486848\right) \zeta_{3} \\
& \left.+2^{10} \cdot 55 N_{c}^{2}\left(N_{c} \mp 2\right) F_{ \pm}^{2}\left(\mp 87 N_{c}^{5}+259 N_{c}^{4} \pm 1134 N_{c}^{3}-3600 N_{c}^{2} \mp 5016 N_{c}+10032\right) \zeta_{5}\right] \tag{4.49}
\end{align*}
$$

We find that, in addition to the manifestly positive $d_{2, T_{2}}$, the coefficient $d_{3, T_{2}}$ is also positive for all relevant N_{c}. Here, by "relevant N_{c} ", we mean $N_{c} \geq 2$ for S_{2} and $N_{c} \geq 3$ for A_{2}. In contrast, while $d_{4, S_{2}}$ is positive for all relevant N_{c}, we find that $d_{4, A_{2}}$ is negative for $N_{c}=3,4,5$, passes through zero at $N_{c}=5.515$, and is positive for $N_{c} \geq 6$. Further, we find that $d_{5, S_{2}}$ and $d_{5, A_{2}}$ are both negative for their respective physical ranges, $N_{c} \geq 2$ and $N_{c} \geq 3$. These sign properties are listed in Table VII.

Some general comments are in order concerning these $d_{j, T_{2}}$ expressions. These are analogous to the comments that we made for the $\kappa_{j, T_{2}}$ coefficients. The property that all of the $d_{j, A_{2}}$ coefficients contain an overall factor of $\left(N_{c}-2\right)$ (possibly raised to a power higher than 1), and hence vanish for $N_{c}=2$, is a consequence of the fact that for $N_{c}=2$, the A_{2} representation is a singlet, so for $\mathrm{SU}(2)$, fermions in the $A_{2}=$ singlet representation have no gauge interactions and do not contribute to the beta function or $\beta_{I R}^{\prime}$.

Furthermore, if $N_{c}=2$, then the S_{2} representation is the same as the adjoint representation, so the coefficients must satisfy the equality $d_{j, S_{2}}=d_{j, a d j}$ for this $\mathrm{SU}(2)$ case, and we have checked that they do. This equality requires (i) that the term proportional to ζ_{3} in $d_{4, S_{2}}$ must be absent if $N_{c}=2$, since $d_{4, a d j}$ does not contain any ζ_{3} term, and this is accomplished by the factor of $\left(N_{c}-2\right)$ multiplying the ζ_{3} term in $d_{4, S_{2}}$; and (ii) the term proportional to ζ_{5} in $d_{5, S_{2}}$ must be absent if $N_{c}=2$, since $d_{5, a d j}$ does not contain any ζ_{5} term, and this is accomplished by the factor $\left(N_{c}-2\right)$ multiplying this ζ_{5} term in $d_{5, S_{2}}$. Similarly, as observed before, if $N_{c}=3$, then the A_{2} representation is the same as the conjugate fundamental representation, \bar{F}, so the coefficients must satisfy the equality $d_{j, A_{2}}=d_{j, F}$ for this $\mathrm{SU}(3)$ case, and we have checked that they do.

In the LN limit (3.22), as discussed above in the case of the anomalous dimension $\gamma_{I R, T_{2}}$, the upper ends of the interval $I_{I R Z}$ for the S_{2} and A_{2} theories approach the same value, $N_{u, T_{2}}$, given in Eq. (3.86), and similarly the lower ends of this interval for these S_{2} and A_{2} theories approach the same value, $N_{\ell, T_{2}}$, given in Eq. (3.87). We denote

$$
\begin{equation*}
\hat{d}_{j, T_{2}}=\lim _{L N} d_{j, T_{2}} \tag{4.50}
\end{equation*}
$$

and we find

$$
\begin{equation*}
\hat{d}_{j, S_{2}}=\hat{d}_{j, A_{2}} \tag{4.51}
\end{equation*}
$$

which we denote simply as $\hat{d}_{j, T_{2}}$. Hence,

$$
\begin{equation*}
\lim _{L N} \beta_{I R, S_{2}}^{\prime}=\lim _{L N} \beta_{I R, A_{2}}^{\prime} \tag{4.52}
\end{equation*}
$$

Further, again in analogy with Eq. (3.98) and for the same reasons concerning group invariants in the LN limit, we have

$$
\begin{equation*}
\hat{d}_{j, T_{2}}=2^{-j} \hat{d}_{j, a d j} \tag{4.53}
\end{equation*}
$$

From our general expressions, we calculate

$$
\begin{equation*}
\hat{d}_{2, T_{2}}=\frac{2^{2}}{3^{4}}=0.049383 \tag{4.54}
\end{equation*}
$$

$$
\begin{gather*}
\hat{d}_{3, T_{2}}=\frac{2^{5}}{3^{7}}=1.46319 \times 10^{-2} \tag{4.55}\\
\hat{d}_{4, T_{2}}=\frac{46871}{2^{6} \cdot 3^{12}}=1.37806 \times 10^{-3} \tag{4.56}
\end{gather*}
$$

and

$$
\begin{align*}
\hat{d}_{5, T_{2}} & =-\frac{7141205}{2^{8} \cdot 3^{16}}+\frac{172}{3^{12}} \zeta_{3} \\
& =-\left(2.58981 \times 10^{-4}\right) \tag{4.57}
\end{align*}
$$

To estimate the region over which the Δ_{f} expansion converges, we calculate the ratios of adjacent coefficients. We have

$$
\begin{equation*}
\frac{d_{2, T_{2}}}{d_{3, T_{2}}}=\frac{3 N_{c}\left(18 N_{c}^{2} \pm 11 N_{c}-22\right)}{\left(N_{c} \pm 2\right)\left(8 N_{c}^{2} \pm 3 N_{c}-6\right)} \tag{4.58}
\end{equation*}
$$

and similarly for the ratios $d_{j-1, T_{2}} / d_{j, T_{2}}$ for $j=4,5$. For the LN limit,

$$
\begin{gather*}
\frac{\hat{d}_{2, T_{2}}}{\hat{d}_{3, T_{2}}}=\left(\frac{3}{2}\right)^{3}=3.375 \tag{4.59}\\
\frac{\hat{d}_{3, T_{2}}}{\hat{d}_{4, T_{2}}}=\frac{497664}{46871}=10.618 \tag{4.60}
\end{gather*}
$$

and

$$
\begin{equation*}
\frac{\hat{d}_{4, T_{2}}}{\left|\hat{d}_{5, T_{2}}\right|}=5.321 \tag{4.61}
\end{equation*}
$$

Since formally, $\left(\Delta_{f}\right)_{\max }=3.375$ from Eq. (3.88) and $\Delta_{f}=5.5$ for $N_{f}=2$, these ratios indicate that the Δ_{f} expansion for the LN limit of this $R=T_{2}$ case should be reasonably accurate in the interval $I_{I R Z}$ for this case.

V. IR ZERO OF β_{ξ} IN THE LNN LIMIT

In this section we analyze the zeros of the rescaled five-loop beta function in the LNN limit. This elucidates further the result that we first found for a finite value of N_{c}, namely $N_{c}=3$, in [15], namely that for $\mathrm{SU}(3)$, the five-loop beta function only has a physical IR zero in the upper range of the interval $I_{I R Z}$. We denote the n-loop rescaled beta function (4.22) in this LNN limit as $\beta_{\xi, n \ell}$, and its IR zero (if such a zero exists) as $\xi_{I R, n \ell}=4 \pi x_{I R, n \ell}$. The analytic expressions of $\xi_{I R, 2 \ell}$ and $\xi_{I R, 3 \ell}$ were given in [21], together with numerical values of $\xi_{I R, n \ell}$ for $1 \leq n \leq 4$. Here we extend these results to the five-loop level, using the coefficient \hat{b}_{5} in Eq. (4.25). As noted before, we use the \hat{b}_{n} with $3 \leq n \leq 5$ calculated in the $\overline{\mathrm{MS}}$ scheme. The reader is referred to [21] for analysis of these zeros up to the four-loop level.

In general, the IR zero of the n-loop beta function, $\beta_{\xi, n \ell}$, is the positive real root closest to the origin (if such a root exists) of the equation

$$
\begin{equation*}
\sum_{\ell=1}^{n} \hat{b}_{\ell} x^{\ell-1}=0 \tag{5.1}
\end{equation*}
$$

of degree $n-1$ in the variable x. The roots of Eq. (5.1) depend on the $n-1$ ratios $\hat{b}_{\ell} / \hat{b}_{1}$ for $2 \leq \ell \leq n$. In particular, at the five-loop level, Eq. (5.1) is the quartic equation

$$
\begin{equation*}
\hat{b}_{1}+\hat{b}_{2} x+\hat{b}_{3} x^{2}+\hat{b}_{4} x^{3}+\hat{b}_{5} x^{4}=0 \tag{5.2}
\end{equation*}
$$

To analyze the roots of this equation, it is natural to start with r in the vicinity of $r_{u}=11 / 2$, where $\hat{b}_{1} \rightarrow 0$ and hence one solution of Eq. (5.2) approaches zero, matching the behavior of $x_{I R, n \ell}$ for $2 \leq n \leq 4$ in this limit. As we reduce r
from the value r_{u} in the interval $I_{I R Z, r}$, we can thus calculate how the physical IR root, $x_{I R, 5 \ell}=\xi_{I R, 5 \ell} /(4 \pi)$, changes. We find that, in contrast to the behavior of the IR zero of the lower-loop beta functions $\beta_{\xi, n \ell}$ with $2 \leq n \leq 4$, here at the five-loop level, as r decreases past a certain value $r_{c x}$, Eq. (5.2) (with $\hat{b}_{n}, n=3,4,5$ calculated in the $\overline{\mathrm{MS}}$ scheme) ceases to have a physical IR zero. We find that the value of $r_{c x}$ is

$$
\begin{equation*}
r_{c x}=4.32264 \tag{5.3}
\end{equation*}
$$

to the indicated floating-point accuracy. This is determined as the relevant root of the discriminant of Eq. (5.2), which is a polynomial of degree 15 in the variable r. (The discriminants of the corresponding equations at loop levels 3 and 4 are polynomials of degree 3 and 8 in r.) For example, for the illustrative value $r=5$, near to the upper end of the interval $I_{I R Z, r}$, Eq. (5.2) has the solutions in x, expressed in terms of $\xi=4 \pi x$: $\xi=0.36300,1.69540$, and $-1.48884 \pm 1.08446 i$. Of these, we identify the first as the IR zero, $\xi_{I R, 5 \ell}$. As r decreases and approaches $r_{c x}$ from above, the two real roots approach a common value, $\xi \simeq 1.312$ and as r decreases below $r_{c x}$, Eq. (5.2) has only two complex-conjugate pairs of solutions, roots, but no real positive solution. In Table X we list our new results for $\xi_{I R, 5 \ell}$, in comparison with the previously calculated values of $\xi_{I R, n \ell}$ in the LNN limit with $2 \leq n \leq 4$ from Table III of [21]. Although we list $\xi_{I R, n \ell}$ values extending to the lower part of the interval $I_{I R Z, r}$ for completeness, it is clear that a number of these values are too large for the perturbative calculations to be reliable. For values of r where the five-loop beta function (calculated in the $\overline{\mathrm{MS}}$ scheme) has no physical IR zero, we denote this as unphysical (u).

We note that the absence of a physical IR zero in the five-loop beta function (calculated in the $\overline{\mathrm{MS}}$ scheme) for N_{f} values in the lower portion of the interval $I_{I R Z}$ does not necessarily imply that higher-loop calculations would yield similarly unphysical results. We gave an example of this in Section VIII of the second paper in [38], using an illustrative exact beta function. In this example, it was shown that a certain order of truncation of the Taylor series expansion in powers of α for this beta function did not yield any physical IR zero, but higher orders did converge toward this zero.

VI. Δ_{f} EXPANSION FOR $\alpha_{I R}$ TO $O\left(\Delta_{f}^{4}\right)$

A. General G and R

Since the exact $\alpha_{I R}$ (and also the n-loop approximation to this exact $\alpha_{I R}$) vanishes as functions of Δ_{f}, it follows that one can expand it as a power series in this variable. This expansion was given above as Eq. (2.9), and it was noted that the calculation of the coefficient a_{j} requires, as input, the ℓ-loop beta function coefficients b_{ℓ} with $1 \leq \ell \leq j+1$. We denote the truncation of this infinite series (2.9) to maximal power $j=p$ as $\alpha_{I R, \Delta_{f}^{p}}$. Here we present a calculation of this series to $O\left(\Delta_{f}^{4}\right)$, which is the highest order to which it has been calculated. Since $\alpha_{I R}$ is scheme-dependent, it follows that the a_{j} coefficients in Eq. (2.9) are also scheme-dependent, in contrast to the scheme-independent coefficients κ_{j} and d_{j} in Eqs. (1.2) and (1.3). Nevertheless, it is still worthwhile to calculate these coefficients a_{j} and the resultant finite-order approximations $\alpha_{I R, \Delta_{f}^{p}}$, for several reasons. First, this method has the advantage that $\alpha_{I R, \Delta_{f}^{p}}$ is always physical and thus avoids the problem that we found in [15] and have further studied above, that the five-loop beta function calculated in the $\overline{\mathrm{MS}}$ scheme does not have a physical IR zero in the lower part of the interval $I_{I R Z}$. In [14], for the special case $G=\mathrm{SU}(3)$ and $R=F$, we presented the a_{j} (denoted \tilde{a}_{j} there) for $1 \leq j \leq 4$.

Here, as a new result, we present the expressions for the a_{j} for arbitrary G and R, for $1 \leq j \leq 4$. For this purpose, we use the n-loop beta function coefficients b_{n} with $3 \leq n \leq 5$ calculated in the $\overline{\mathrm{MS}}$ scheme. In particular, our result for a_{4} makes use of the recently calculated five-loop beta function for general G and R [17].

For general G and R, recalling the definition of the denominator factor $D=7 C_{A}+11 C_{f}$ in Eq. (3.1), we find

$$
\begin{gather*}
a_{1}=\frac{4 T_{f}}{3 C_{A} D} \tag{6.1}\\
a_{2}=\frac{2 T_{f}^{2}\left(-287 C_{A}^{2}+1208 C_{A} C_{f}+924 C_{f}^{2}\right)}{3^{3} C_{A}^{2} D^{3}} \tag{6.2}\\
a_{3}=\frac{2 T_{f}}{3^{5} C_{A}^{4} D^{5}}\left[C_{A} T_{f}^{2}\left(-71491 C_{A}^{4}+372680 C_{A}^{3} C_{f}+2102252 C_{A}^{2} C_{f}^{2}+835560 C_{A} C_{f}^{3}+836352 C_{f}^{4}\right)\right.
\end{gather*}
$$

$$
\begin{align*}
& -2560 T_{f}^{2} D \frac{d_{A}^{a b c d} d_{A}^{a b c d}}{d_{A}}+45056 C_{A} T_{f} D \frac{d_{R}^{a b c d} d_{A}^{a b c d}}{d_{A}}-170368 C_{A}^{2} T_{f} D \frac{d_{R}^{a b c d} d_{R}^{a b c d}}{d_{A}} \\
& \left.+4224 D\left[3 C_{A}^{2} T_{f}^{2} D\left(C_{A}-C_{f}\right)+16 T_{f}^{2} \frac{d_{A}^{a b c d} d_{A}^{a b c d}}{d_{A}}-104 C_{A} T_{f} \frac{d_{R}^{a b c d} d_{A}^{a b c d}}{d_{A}}+88 C_{A}^{2} \frac{d_{R}^{a b c d} d_{R}^{a b c d}}{d_{A}}\right] \zeta_{3}\right] \tag{6.3}
\end{align*}
$$

and

$$
\begin{align*}
a_{4} & =\frac{T_{f}^{2}}{2 \cdot 3^{7} C_{A}^{5} D^{7}}\left[C _ { A } T _ { f } ^ { 2 } \left(194849725 C_{A}^{6}-684457480 C_{A}^{5} C_{f}+4175949036 C_{A}^{4} C_{f}^{2}+13292017040 C_{A}^{3} C_{f}^{3}\right.\right. \\
& \left.+2617931536 C_{A}^{2} C_{f}^{4}+8758858944 C_{A} C_{f}^{5}+85865472 C_{f}^{6}\right) \\
& +2^{10} T_{f}^{2} D \frac{d_{A}^{a b c d} d_{A}^{a b c d}}{d_{A}}\left(21287 C_{A}^{2}-5504 C_{A} C_{f}-19140 C_{f}^{2}\right) \\
& +2^{10} C_{A} T_{f} D \frac{d_{R}^{a b c d} d_{A}^{a b c d}}{d_{A}}\left(-194005 C_{A}^{2}+253231 C_{A} C_{f}+136488 C_{f}^{2}\right) \\
& +2^{8} \cdot 11^{2} C_{A}^{2} D \frac{d_{R}^{a b c d} d_{R}^{a b c d}}{d_{A}}\left(917 C_{A}^{2}-40412 C_{A} C_{f}+26796 C_{f}^{2}\right) \\
& -2304 D\left[C_{A} T_{f}^{2} D\left(15456 C_{A}^{4}-75039 C_{A}^{3} C_{f}+45716 C_{A}^{2} C_{f}^{2}+23848 C_{A} C_{f}^{3}+2112 C_{f}^{4}\right)\right. \\
& +16 T_{f}^{2} \frac{d_{A}^{a b c d} d_{A}^{a b c d}}{d_{A}}\left(8610 C_{A}^{2}-15037 C_{A} C_{f}-14036 C_{f}^{2}\right)-8 C_{A} T_{f} \frac{d_{R}^{a b c d} d_{A}^{a b c d}}{d_{A}}\left(95984 C_{A}^{2}-190355 C_{A} C_{f}-135036 C_{f}^{2}\right) \\
& \left.+88 C_{A}^{2} \frac{d_{R}^{a b c d} d_{R}^{a b c d}}{d_{A}}\left(3199 C_{A}^{2}-26004 C_{A} C_{f}-17908 C_{f}^{2}\right)\right] \zeta_{3} \\
& +337920 C_{A} D^{2}\left[-9 C_{A} T_{f}^{2} D\left(C_{A}-C_{f}\right)\left(C_{A}+2 C_{f}\right)-160 T_{f}^{2} \frac{d_{A}^{a b c d} d_{A}^{a b c d}}{d_{A}}\right. \\
& \left.\left.+80 T_{f}\left(10 C_{A}+3 C_{f}\right) \frac{d_{R}^{a b c d} d_{A}^{a b c d}}{d_{A}}+440 C_{A}\left(C_{A}-3 C_{f}\right) \frac{d_{R}^{a b c d} d_{R}^{a b c d}}{d_{A}}\right] \zeta_{5}\right] . \tag{6.4}
\end{align*}
$$

We next specialize to the case $G=\mathrm{SU}\left(N_{c}\right)$ and give explicit reductions of these general formulas for the representations of interest here.

$$
\text { B. } \quad R=F
$$

For $R=F$, our general results (6.1)-(6.4) reduce to the following expressions:

$$
\begin{gather*}
a_{1, F}=\frac{4}{3\left(25 N_{c}^{2}-11\right)} \tag{6.5}\\
a_{2, F}=\frac{4\left(548 N_{c}^{4}-1066 N_{c}^{2}+231\right)}{3^{3} N_{c}\left(25 N_{c}^{2}-11\right)^{3}} \tag{6.6}\\
a_{3, F}=\frac{2^{3}}{3^{5} N_{c}^{2}\left(25 N_{c}^{2}-11\right)^{5}}\left[\left(730529 N_{c}^{8}-1105385 N_{c}^{6}-719758 N_{c}^{4}+389235 N_{c}^{2}+52272\right)\right. \\
\left.+1584 N_{c}^{2}\left(25 N_{c}^{2}-11\right)\left(25 N_{c}^{4}-18 N_{c}^{2}+77\right) \zeta_{3}\right] \tag{6.7}
\end{gather*}
$$

and

$$
a_{4, F}=\frac{2^{2}}{3^{7} N_{c}^{3}\left(25 N_{c}^{2}-11\right)^{7}}\left[\left(2783259085 N_{c}^{12}-7278665930 N_{c}^{10}+4578046419 N_{c}^{8}-1719569282 N_{c}^{6}\right.\right.
$$

FIG. 10: Plot of $\alpha_{I R, F, \Delta_{f}^{p}}$ (denoted as $\alpha_{I R}$ on the vertical axis) with $1 \leq p \leq 4$ for $G=\mathrm{SU}(2)$, as functions of $N_{f} \in I_{I R Z}$. From bottom to top, the curves (with colors online) refer to $\alpha_{I R, F, \Delta_{f}}$ (red), $\alpha_{I R, F, \Delta_{f}^{2}}$ (green), $\alpha_{I R, F, \Delta_{f}^{3}}$ (blue), $\alpha_{I R, F, \Delta_{f}^{4}}$ (black). Note that the curves for $\alpha_{I R, F, \Delta_{f}^{3}}$ and $\alpha_{I R, \Delta_{f}^{4}}$ are so close as to be indistinguishable in this figure.

$$
\begin{align*}
& \left.+2905511455 N_{c}^{4}-1137735654 N_{c}^{2}+1341648\right) \\
& +288\left(25 N_{c}^{2}-11\right)\left(548025 N_{c}^{10}-1857036 N_{c}^{8}+4694107 N_{c}^{6}-5482510 N_{c}^{4}+1098130 N_{c}^{2}+2904\right) \zeta_{3} \\
& \left.-190080 N_{c}^{2}\left(25 N_{c}^{2}-11\right)^{2}\left(40 N_{c}^{6}-27 N_{c}^{4}+124 N_{c}^{2}-209\right) \zeta_{5}\right] \tag{6.8}
\end{align*}
$$

We have checked that setting $N_{c}=3$ in our new a_{4} coefficient in Eq. (6.8) yields agreement with the value that we obtained previous for this special case in (Eq. (14) of) Ref. [14].

We comment next on the signs of these coefficients. The coefficient a_{1} is manifestly positive for arbitrary group G and fermion representation R. We find that $a_{2, F}$ and $a_{3, F}$ are also positive for all physical $N_{c} \geq 2$. In contrast, we find that $a_{4, F}$ is negative for $N_{c}=2$ and positive for $N_{c} \geq 3$. With N_{c} generalized from positive integers to positive real numbers in the range $N_{c} \geq 2$, we calculate that as N_{c} increases through the value $N_{c}=2.1184$ (given to the indicated accuracy), $a_{4, F}$ passes through zero with positive slope.

We list below the explicit numerical expressions for $\alpha_{I R}$ to order Δ_{f}^{4}, for $N_{c}=2,3,4$ and $R=F$, denoted, the indicated floating-point precision:

$$
\begin{align*}
& \mathrm{SU}(2): \quad \alpha_{I R, F, \Delta_{f}^{4}}=\Delta_{f}\left[\left(0.18826+\left(0.62521 \times 10^{-2}\right) \Delta_{f}+\left(0.70548 \times 10^{-2}\right) \Delta_{f}^{2}-\left(0.45387 \times 10^{-4}\right) \Delta_{f}^{3}\right]\right. \tag{6.9}\\
& \mathrm{SU}(3): \quad \alpha_{I R, F, \Delta_{f}^{4}}=\Delta_{f}\left[\left(0.078295+\left(2.2178 \times 10^{-3}\right) \Delta_{f}+\left(1.1314 \times 10^{-3}\right) \Delta_{f}^{2}+\left(2.1932 \times 10^{-5}\right) \Delta_{f}^{3}\right]\right. \tag{6.10}
\end{align*}
$$

and

$$
\begin{equation*}
\mathrm{SU}(4): \quad \alpha_{I R, F, \Delta_{f}^{4}}=\Delta_{f}\left[\left(0.043072+\left(0.97619 \times 10^{-3}\right) \Delta_{f}+\left(0.33823 \times 10^{-3}\right) \Delta_{f}^{2}+\left(0.71999 \times 10^{-5}\right) \Delta_{f}^{3}\right]\right. \tag{6.11}
\end{equation*}
$$

In Figs. $10-12$ we show $\alpha_{I R, F, \Delta_{f}^{p}}$ for $N_{c}=2,3,4$ and $1 \leq p \leq 4$ as a function of N_{f}. Note that in Fig. 10 the curves for $p=3$ and $p=4$ are so close as to be indistinguishable for this this range of N_{f}.

In Table XI we compare the values of the IR zero of the n-loop beta function for $1 \leq n \leq 4$ from [19] with our values of $\alpha_{I R, F, \Delta_{f}^{p}}$ for $1 \leq p \leq 4$ and $N_{c}=2,3,4$. Since the calculation of $\alpha_{I R, n \ell}$ uses the ℓ-loop beta function

FIG. 11: Plot of $\alpha_{I R, F, \Delta_{f}^{p}}$ with $1 \leq p \leq 4$ for $G=\mathrm{SU}(3)$, as functions of $N_{f} \in I_{I R Z}$. From bottom to top, the curves (with colors online) refer to $\alpha_{I R, F, \Delta_{f}}$ (red), $\alpha_{I R, F, \Delta_{f}^{2}}$ (green), $\alpha_{I R, F, \Delta_{f}^{3}}$ (blue), $\alpha_{I R, F, \Delta_{f}^{4}}$ (black).

FIG. 12: Plot of $\alpha_{I R, F, \Delta_{f}^{p}}$ with $1 \leq p \leq 4$ for $G=\mathrm{SU}(4)$, as functions of $N_{f} \in I_{I R Z}$. From bottom to top, the curves (with colors online) refer to $\alpha_{I R, F, \Delta_{f}}$ (red), $\alpha_{I R, F, \Delta_{f}^{2}}$ (green), $\alpha_{I R, F, \Delta_{f}^{3}}$ (blue), $\alpha_{I R, F, \Delta_{f}^{4}}$ (black).
coefficients b_{ℓ} with $1 \leq \ell \leq n$, while the calculation of $\alpha_{I R, \Delta_{f}^{p}}$ uses the b_{ℓ} for $1 \leq \ell \leq p+1$, the closest comparison is of $\alpha_{I R, n \ell}$ with $\alpha_{I R, \Delta_{f}^{n-1}}$, which both use n-loop information from the beta function. Although, for completeness, we include values of $\alpha_{I R, 2 \ell}$ for N_{f} extending down to the lower end of the respective intervals $I_{I R Z}$ for each value of N_{c}, we caution that in a number of cases, including $N_{f}=6$ for $\mathrm{SU}(2), N_{f}=9$ for $\mathrm{SU}(3)$, and $10 \leq N_{f} \leq 12$ for $\mathrm{SU}(4)$, these values of $\alpha_{I R, 2 \ell}$ are too large for the perturbative n-loop calculations to be reliable. Concerning the comparison of the higher-order n-loop values of $\alpha_{I R, n \ell}$ with our values of $\alpha_{I R, F, \Delta_{f}^{p}}$, we see that for a given N_{c} and N_{f}, at the upper end of the non-Abelian Coulomb phase, the values of $\alpha_{I R, \Delta_{f}^{n-1}}$ and $\alpha_{I R, n \ell}$ are quite close to each other, but N_{f} decreases in this NACP in in the interval $I_{I R Z}, \alpha_{I R, \Delta_{f}^{n-1}}$ becomes slightly larger than $\alpha_{I R, n \ell}$.

In the LNN limit, for the IR zero of the rescaled beta function, we write

$$
\begin{equation*}
\xi_{I R}=4 \pi \sum_{j=1}^{\infty} \hat{a}_{j, F} \Delta_{r}^{j} \quad(\text { LNN limit }), \tag{6.12}
\end{equation*}
$$

where

$$
\begin{equation*}
\hat{a}_{j, F}=\lim _{L N N} N_{c}^{j+1} a_{j, F} . \tag{6.13}
\end{equation*}
$$

From our results for $a_{j, F}$, we calculate

$$
\begin{gather*}
\hat{a}_{1, F}=\frac{4}{3 \cdot 5^{2}}=0.053333 \tag{6.14}\\
\hat{a}_{2, F}=\frac{2192}{3^{3} \cdot 5^{6}}=0.519585 \times 10^{-2} \tag{6.15}\\
\hat{a}_{3, F}=\frac{5844232}{3^{5} \cdot 5^{10}}+\frac{1408}{3^{3} \cdot 5^{6}} \zeta_{3}=0.647460 \times 10^{-2} \tag{6.16}
\end{gather*}
$$

and

$$
\begin{align*}
\hat{a}_{4, F} & =\frac{2226607268}{3^{7} \cdot 5^{13}}+\frac{935296}{3^{4} \cdot 5^{10}} \zeta_{3}-\frac{45056}{3^{4} \cdot 5^{8}} \zeta_{5} \\
& =0.778770 \times 10^{-3} \tag{6.17}
\end{align*}
$$

Thus, in the LNN limit, the expansion of $\xi_{I R}$, to $O\left(\Delta_{r}^{4}\right)$, is

$$
\begin{align*}
& \xi_{I R, \Delta_{r}^{4}}=4 \pi \Delta_{r}\left[0.053333+\left(0.519585 \times 10^{-2}\right) \Delta_{r}\right. \\
+ & \left.\left(0.647460 \times 10^{-2}\right) \Delta_{r}^{2}+\left(0.778770 \times 10^{-3}\right) \Delta_{r}^{3}\right] . \tag{6.18}
\end{align*}
$$

$$
\text { C. } \quad R=a d j
$$

For $R=a d j$, our general results (6.1)-(6.4) reduce to the following expressions:

$$
\begin{align*}
a_{1, a d j} & =\frac{2}{3^{3} N_{c}}=\frac{0.074747}{N_{c}} \tag{6.19}\\
a_{2, a d j} & =\frac{205}{2^{2} \cdot 3^{7} N_{c}}=\frac{0.023434}{N_{c}} \tag{6.20}\\
a_{3, a d j} & =\frac{49129}{2^{4} \cdot 3^{11} N_{c}}-\frac{296}{3^{9} N_{c}^{3}} \\
& =\frac{0.017333}{N_{c}}-\frac{0.015038}{N_{c}^{3}} \tag{6.21}
\end{align*}
$$

and

$$
\begin{align*}
a_{4, a d j} & =\left(\frac{38811689}{2^{8} \cdot 3^{15}}-\frac{40}{3^{9}} \zeta_{3}\right) \frac{1}{N_{c}} \\
& +\left(-\frac{3157}{3^{13}}+\frac{25616}{3^{12}}\right) \frac{1}{N_{c}^{3}} \\
& =\frac{0.0081230}{N_{c}}+\frac{0.055960}{N_{c}^{3}} \tag{6.22}
\end{align*}
$$

The coefficients $a_{j, a d j}$ with $j=1,2,4$ are manifestly positive, and we find that $a_{3, a d j}$ is also positive for all $N_{c} \geq 2$.
Since for the adjoint representation, $R=a d j$, the upper and lower boundaries of the interval $I_{I R Z}, N_{u, T_{2}}=11 / 2$ in Eq. (3.58) and $N_{\ell, a d j}=17 / 16$ in (3.59), are independent of N_{f}, it follows that $\Delta_{f}=N_{u}-N_{f}$ is also independent of N_{c}. From the general formula (2.9), in the LN limit of a theory with fermions in a two-index representation R_{2}, including the adjoint and symmetric and antisymmetric tensors, we can write

$$
\begin{equation*}
\xi_{I R}=4 \pi \sum_{j=1}^{\infty} \hat{a}_{j, R_{2}} \Delta_{f}^{j} \quad(\text { LN limit }) \tag{6.23}
\end{equation*}
$$

where

$$
\begin{equation*}
\hat{a}_{j, R_{2}}=\lim _{L N} N_{c} a_{j, R_{2}} \tag{6.24}
\end{equation*}
$$

From our calculations above, setting $R_{2}=a d j$, we have

$$
\begin{gather*}
\hat{a}_{1, a d j}=\frac{2}{3^{3}}=0.074747 \tag{6.25}\\
\hat{a}_{2, a d j}=\frac{205}{2^{2} \cdot 3^{7}}=0.023434 \tag{6.26}\\
\hat{a}_{3, a d j}=\frac{49129}{2^{4} \cdot 3^{11}}=0.017333 \tag{6.27}
\end{gather*}
$$

and

$$
\begin{equation*}
\hat{a}_{4, a d j}=\frac{38811689}{2^{8} \cdot 3^{15}}-\frac{40}{3^{9}} \zeta_{3}=0.0081230 \tag{6.28}
\end{equation*}
$$

$$
\text { D. } \quad R=S_{2}, A_{2}
$$

For R equal to the symmetric or antisymmetric rank- 2 tensor representations, S_{2} and A_{2}, we give the reductions of our general results (6.1)-(6.4) next. As before, it is convenient to consider these together, since many terms differ only by sign reversal. As above, the upper and lower signs refer to the S_{2} and A_{2} representations, respectively. Also, as before, for A_{2}, we require that $N_{c} \geq 3$. Recalling the definition of the denominator factor $F_{ \pm}$in Eq. (3.72), we have

$$
\begin{gather*}
a_{1, T_{2}}=\frac{2\left(N_{c} \pm 2\right)}{3 F_{ \pm}} \tag{6.29}\\
a_{2, T_{2}}=\frac{\left(N_{c} \pm 2\right)^{2}\left(1845 N_{c}^{4} \pm 3056 N_{c}^{3}-5188 N_{c}^{2} \mp 3696 N_{c}+3696\right)}{2 \cdot 3^{3} N_{c} F_{ \pm}^{3}} \tag{6.30}\\
a_{3, T_{2}}=\frac{\left(N_{c} \pm 2\right)^{2}}{2^{2} \cdot 3^{5} N_{c}^{2} F_{ \pm}^{5}}\left[\left(3979449 N_{c}^{9} \pm 16999002 N_{c}^{8}+761444 N_{c}^{7} \mp 52233472 N_{c}^{6}-3099440 N_{c}^{5}\right.\right. \\
\left. \pm 11578144 N_{c}^{4}-16368000 N_{c}^{3} \pm 36440448 N_{c}^{2}-40144896 N_{c} \pm 26763264\right) \\
\left.\mp 12672 N_{c}^{2}\left(N_{c} \mp 2\right) F_{ \pm}\left(12 N_{c}^{3} \mp 9 N_{c}^{2} \pm 308\right) \zeta_{3}\right] \tag{6.31}
\end{gather*}
$$

and

$$
\begin{align*}
& a_{4, T_{2}}=\frac{\left(N_{c} \pm 2\right)^{3}}{2^{5} \cdot 3^{7} N_{c}^{3} F_{ \pm}^{7}}\left[\left(28293721281 N_{c}^{13} \pm 156860406306 N_{c}^{12}+13832572748 N_{c}^{11} \mp 547968555432 N_{c}^{10}\right.\right. \\
- & 929147053664 N_{c}^{9} \pm 428226859968 N_{c}^{8}+2279581786496 N_{c}^{7} \pm 586028410624 N_{c}^{6}-4633121830656 N_{c}^{5} \\
\pm & \left.143588589056 N_{c}^{4}+4686268342272 N_{c}^{3} \mp 2321839534080 N_{c}^{2}-27476951040 N_{c} \pm 10990780416\right) \\
- & 2304 F_{ \pm}\left(131220 N_{c}^{11} \pm 695898 N_{c}^{10}-6916683 N_{c}^{9} \mp 10687114 N_{c}^{8}+60333108 N_{c}^{7} \mp 12100440 N_{c}^{6}\right. \\
- & \left.239418432 N_{c}^{5} \pm 140804928 N_{c}^{4}+208053120 N_{c}^{3} \mp 140560640 N_{c}^{2}+2973696 N_{c} \mp 1486848\right) \zeta_{3} \\
+ & \left.1013760 N_{c}^{2}\left(N_{c} \mp 2\right) F_{ \pm}^{2}\left(\pm 87 N_{c}^{5}-259 N_{c}^{4} \mp 1134 N_{c}^{3}+3600 N_{c}^{2} \pm 5016 N_{c}-10032\right) \zeta_{5}\right] \tag{6.32}
\end{align*}
$$

The same general comments that we made before concerning factors in the $\kappa_{j, T_{2}}$ and $d_{j, T_{2}}$ coefficients also apply here. Thus, for arbitrary j, the $a_{j, A_{2}}$ coefficients contain at least one overall factor of $\left(N_{c}-2\right)$ and hence vanish for $N_{c}=2$, as a result of the fact that for $N_{c}=2$, the A_{2} representation is a singlet, so for $\mathrm{SU}(2)$, fermions in the $A_{2}=$ singlet representation are free fields and hence make no contribution to the beta function. Moreover, if $N_{c}=2$, then the S_{2} representation is the same as the adjoint representation, so the a_{j} coefficients must satisfy the equality $a_{j, S_{2}}=a_{j, a d j}$ for this $\mathrm{SU}(2)$ case, and we have checked that they do. Similarly, if $N_{c}=3$, then the A_{2} representation is the same as the conjugate fundamental representation, \bar{F}, so these coefficients must satisfy the equality $a_{j, A_{2}}=a_{j, F}$ for this $\mathrm{SU}(3)$ case, and we have checked that they do.

We next consider the LN limit of the theory with fermions in the S_{2} or A_{2} representations. Using the definition (6.24) with $R_{2}=S_{2}$ and $R_{2}=A_{2}$, we find that

$$
\begin{equation*}
\hat{a}_{j, S_{2}}=\hat{a}_{j, A_{2}} \tag{6.33}
\end{equation*}
$$

so we denote these simply as $\hat{a}_{j, T_{2}}$. In general, for the same group-theoretical reasons as led to the LN relation $\hat{\kappa}_{j, T_{2}}=2^{-j} \hat{\kappa}_{j, a d j}$ in Eq. (3.98) and the LN relation $\hat{d}_{j, T_{2}}=2^{-j} \hat{d}_{j, a d j}$ in Eq. (4.53), we have, in the LN limit,

$$
\begin{equation*}
\hat{a}_{j, T_{2}}=2^{-j} \hat{a}_{j, a d j} \tag{6.34}
\end{equation*}
$$

Explicitly, we calculate

$$
\begin{gather*}
\hat{a}_{1, T_{2}}=\frac{1}{3^{3}}=0.05333 \tag{6.35}\\
\hat{a}_{2, T_{2}}=\frac{205}{2^{4} \cdot 3^{7}}=0.58585 \times 10^{-2} \tag{6.36}\\
\hat{a}_{3, T_{2}}=\frac{49129}{2^{7} \cdot 3^{11}}=2.16668 \times 10^{-3} \tag{6.37}
\end{gather*}
$$

and

$$
\begin{equation*}
\hat{a}_{4, T_{2}}=\frac{38811689}{2^{12} \cdot 3^{15}}-\frac{5}{2 \cdot 3^{9}} \zeta_{3}=0.50769 \times 10^{-3} \tag{6.38}
\end{equation*}
$$

VII. CONCLUSIONS

In conclusion, in this paper we have presented a number of new results on scheme-independent calculations of various quantities in an asymptotically free vectorial gauge theory having an IR zero of the beta function. We have presented scheme-independent series expansions of the anomalous dimension $\gamma_{\bar{\psi} \psi, I R}$ to $O\left(\Delta_{f}^{4}\right)$ and the derivative of the beta function, $\beta_{I R}^{\prime}$, to $O\left(\Delta_{f}^{5}\right)$ for a theory with a general gauge group G and N_{f} fermions in a representation R of G. We have given reductions of our general formulas for theories with $G=\mathrm{SU}\left(N_{c}\right)$ and R equal to the fundamental, adjoint, and symmetric and antisymmetric rank-2 tensor representations. We have compared our scheme-independent calculations of $\gamma_{\bar{\psi} \psi, I R}$ and $\beta_{I R}^{\prime}$ with previous n-loop values of these quantities calculated via series expansions in powers of the coupling. For a number of specific theories we have also compared our new scheme-independent calculations of $\gamma_{\bar{\psi} \psi, I R}$ and $\beta_{I R}^{\prime}$ with lattice measurements. We have shown that for all of the representations we have studied, and for the full range $1 \leq p \leq 4$ for which we have performed calculations, $\gamma_{\bar{\psi} \psi, I R}$ calculated to $O\left(\Delta_{f}^{p}\right)$, denoted $\gamma_{\bar{\psi} \psi, I R, \Delta_{f}^{p}}$, increases monotonically with decreasing N_{f} (i.e., increasing Δ_{f}) and, for a fixed $N_{f}, \gamma_{\bar{\psi} \psi, I R, \Delta_{f}^{p}}$, increases monotonically with the order p. For the representation $R=F$, we have presented results for the limit $N_{c} \rightarrow \infty$ and $N_{f} \rightarrow \infty$ with N_{f} / N_{c} fixed. These higher-order results have been applied to obtain estimates of the lower end of the (IR-conformal) non-Abelian Coulomb phase. We have confirmed and extended our earlier finding that our expansions in powers of Δ_{f} should be reasonably accurate throughout a substantial portion of the non-Abelian Coulomb phase. We have also given expansions for $\alpha_{I R}$ calculated to $O\left(\Delta_{f}^{4}\right)$ which provide a useful complementary approach to calculating $\alpha_{I R}$. Our scheme-independent calculations of physical quantities at a conformal IR fixed point yield new information about the properties of a conformal field theory.

Acknowledgments

This research was supported in part by the Danish National Research Foundation grant DNRF90 to CP ${ }^{3}$-Origins at SDU (T.A.R.) and by the U.S. NSF Grant NSF-PHY-16-1620628 (R.S.)

Appendix A: Series Coefficients for β_{ξ} and $\gamma_{\bar{\psi} \psi}$ in the LNN Limit

For reference, we list here the rescaled series coefficients for β_{ξ} and $\gamma_{\bar{\psi} \psi}$ in the LNN limit (3.21). From the (schemeindependent) one-loop and two-loop coefficients in the beta function [7, 8], it follows that in the LNN limit the \hat{b}_{ℓ} with $\ell=1,2$ are

$$
\begin{align*}
\hat{b}_{1} & =\frac{1}{3}(11-2 r) \\
& =3.667-0.667 r \tag{A1}
\end{align*}
$$

and

$$
\begin{align*}
\hat{b}_{2} & =\frac{1}{3}(34-13 r) \\
& =11.333-4.333 r \tag{A2}
\end{align*}
$$

The coefficients b_{3} and b_{4} have been calculated in the $\overline{\mathrm{MS}}$ scheme [27, 28]. With these inputs, one has [21]

$$
\begin{align*}
\hat{b}_{3} & =\frac{1}{54}\left(2857-1709 r+112 r^{2}\right) \\
& =52.907-31.648 r+2.074 r^{2} \tag{A3}
\end{align*}
$$

and

$$
\begin{align*}
\hat{b}_{4} & =\left(\frac{150473}{486}+\frac{44}{9} \zeta_{3}\right)-\left(\frac{485513}{1944}+\frac{20}{9} \zeta_{3}\right) r \\
& +\left(\frac{8654}{243}+\frac{28}{3} \zeta_{3}\right) r^{2}+\left(\frac{130}{243}\right) r^{3} \\
& =315.492-252.421 r+46.832 r^{2}+0.5350 r^{3} \tag{A4}
\end{align*}
$$

The behavior of these coefficients \hat{b}_{ℓ} as functions of r was discussed in [21] for $1 \leq \ell \leq 4$. The positivity of \hat{b}_{1} is equivalent to the asymptotic freedom of the theory, and requires r to lie in the interval $0 \leq r<11 / 2$. The existence of an IR zero in the two-loop beta function is equivalent to the condition that $\hat{b}_{2}<0$, which, in turn, is equivalent to the condition that $r \in I_{I R Z, r}$ as given in Eq. (3.28). In this interval, \hat{b}_{3} is negative-definite, while \hat{b}_{4} is negative for for $2.615<r<3.119$ and positive for $3.119<r<5.5$ [21].

For the coefficients \hat{c}_{ℓ} in Eq. (3.33), from [31] and references therein, one has [21]

$$
\begin{gather*}
\hat{c}_{1}=3 \tag{A5}\\
\hat{c}_{2}=\frac{203}{12}-\frac{5}{3} r \tag{A6}\\
\hat{c}_{3}=\frac{11413}{108}-\left(\frac{1177}{54}+12 \zeta_{3}\right) r-\frac{35}{27} r^{2} \tag{A7}
\end{gather*}
$$

and

$$
\begin{align*}
\hat{c}_{4} & =\frac{460151}{576}-\frac{23816}{81} r+\frac{899}{162} r^{2}-\frac{83}{81} r^{3} \\
& +\left(\frac{1157}{9}-\frac{889}{3} r+20 r^{2}+\frac{16}{9} r^{3}\right) \zeta_{3} \\
& +r(66-12 r) \zeta_{4}+(-220+160 r) \zeta_{5} \tag{A8}
\end{align*}
$$

[1] Some early discussions of the renormalization group in quantum field theory include E. C. G. Stueckelberg and A. Peterman, Helv. Phys. Acta 26, 499 (1953); M. Gell-Mann and F. Low, Phys. Rev. 95, 1300 (1954); N. N. Bogolubov and D. V. Shirkov, Doklad. Akad. Nauk SSSR 103, 391 (1955); C. G. Callan, Phys. Rev. D 2, 1541 (1970); K. Symanzik, Commun. Math. Phys. 18, 227 (1970); K. Wilson, Phys. Rev. D 3, 1818 (1971).
[2] Some early analyses of connections between scale and conformal invariance include A. Salam, Ann. Phys. (NY) 53, 174 (1969); A. M. Polyakov, JETP Lett. 12, 381 (1970); D. J. Gross and J. Wess, Phys. Rev. D 2, 753 (1970); C. G. Callan, S. Coleman, and R. Jackiw, Ann. Phys. (NY) 59, 42 (1970). More recent works include J. Polchinski, Nucl. Phys. B 303, 226 (1988); J.-F. Fortin, B. Grinstein and A. Stergiou, JHEP 01 (2013) 184 (2013); A. Dymarsky, Z. Komargodski, A. Schwimmer, and S. Thiessen, JHEP 10, 171 (2015) and references therein.
[3] Note that our assumption that the fermions are massless does not produce any loss of generality, since if a fermion had a nonzero mass m_{0}, it would be integrated out of the low-energy effective field theory at scales $\mu<m_{0}$, and hence would not affect the IR limit $\mu \rightarrow 0$ under consideration here.
[4] Fully nonperturbative evidence for the non-Abelian Coulomb phase comes from lattice simulations, as discussed below. Furthermore, in the case where $G=\mathrm{SU}\left(N_{c}\right)$ and the fermions are in the fundamental representation, one can take the limit in Eq. (3.21), namely $N_{c} \rightarrow \infty$ and $N_{f} \rightarrow \infty$ with $r=N_{f} / N_{c}$ fixed and finite. In this case, $\alpha_{I R}$ can be made arbitrarily small so that strength of the gauge coupling at the IR fixed point approaches arbitrarily close to zero.
[5] D. J. Gross, in R. Balian and J. Zinn-Justin, eds. Methods in Field Theory, Les Houches 1975 (North Holland, Amsterdam, 1976), p. 141.
[6] The Casimir invariants $C_{2}(R)$ and $T(R)$ are defined as $\sum_{a} \sum_{j} \mathcal{D}_{R}\left(T_{a}\right)_{i j} \mathcal{D}_{R}\left(T_{a}\right)_{j k} \equiv C_{2}(R) \delta_{i k}$ and $\sum_{i, j} \mathcal{D}_{R}\left(T_{a}\right)_{i j} \mathcal{D}_{R}\left(T_{b}\right)_{j i} \equiv T(R) \delta_{a b}$, where R is the representation, T_{a} are the generators of G, normalized according to $\operatorname{Tr}\left(T_{a} T_{b}\right)=(1 / 2) \delta_{a b}$ and \mathcal{D}_{R} is the matrix representation (Darstellung) of R. For the adjoint representation, we denote $C_{2}(a d j) \equiv C_{A}$, and for fermions transforming according to the representation R, we denote $C_{2}(R) \equiv C_{f}$ and $T(R) \equiv T_{f}$.
[7] D. J. Gross and F. Wilczek, Phys. Rev. Lett. 30, 1343 (1973); H. D. Politzer, Phys. Rev. Lett. 30, 1346 (1973); G. 't Hooft, unpublished.
[8] W. E. Caswell, Phys. Rev. Lett. 33, 244 (1974); D. R. T. Jones, Nucl. Phys. B 75, 531 (1974).
[9] D. J. Gross and F. Wilczek, Phys. Rev. D 8, 3633 (1973).
[10] T. Banks and A. Zaks, Nucl. Phys. B 196, 189 (1982).
[11] G. Grunberg, Phys. Rev. D 46, 2228 (1992).
[12] T. A. Ryttov, Phys. Rev. Lett. 117, 071601 (2016) [arXiv:1604.00687]. Our $b_{\ell}=2^{\ell} \beta_{\ell-1}$ in this paper.
[13] T. A. Ryttov and R. Shrock, Phys. Rev. D 94, 125005 (2016) [arXiv:1610.00387].
[14] T. A. Ryttov and R. Shrock, Phys. Rev. D 94, 105014 (2016) [arXiv:1608.00068].
[15] T. A. Ryttov and R. Shrock, Phys. Rev. D 94, 105015 (2016) [arXiv:1607.06866].
[16] T. A. Ryttov and R. Shrock, Phys. Rev. D 95, 085012 (2017) [arXiv:1701.06083].
[17] F. Herzog, B. Ruijl, T. Ueda, J. A. M. Vermaseren, and A. Vogt, JHEP 02 (2017) 090 [arXiv:1701.01404]. Our $b_{\ell}=\beta_{\ell-1}$ in this paper.
[18] P. A. Baikov, K. G. Chetyrkin, and J. H. Kühn, Phys. Rev. Lett. 118, 082002 (2017) [arXiv:1606.08659]. Our $b_{\ell}=4^{\ell} \beta_{\ell-1}$ in this paper.
[19] T. A. Ryttov, R. Shrock, Phys. Rev. D 83, 056011 (2011) [arXiv:1011.4542].
[20] R. Shrock, Phys. Rev. D 87, 105005 (2013).
[21] R. Shrock, Phys. Rev. D 87, 116007 (2013).
[22] See, e.g., talks in the CP3 Workshop at http://cp3-origins.dk/events/meetings/mass2013; Lattice-2014 at https://www.bnl.gov/lattice2014; SCGT15 at http://www.kmi.nagoya-u.ac.jp/workshop/SCGT15; Lattice-2015 at http://www.aics.riken.jp/sympo/lattice2015; Lattice-2016 at http://www.southampton.ac.uk/lattice2016; see also T. Degrand, Rev. Mod. Phys. 88, 015001 (2016).
[23] Some recent reviews include S. Rychkov, EPFL Lectures on Conformal Field Theory in $D \geq 3$ Dimensions [arXiv:1601.05000]; D. Simmons-Duffin, 2015 TASI Lectures on the Conformal Bootstrap [arXiv:1602.07982], and D. Poland, Nature Phys. 12, 535 (2016).
[24] B. Holdom, Phys. Lett. B 150, 301 (1985); K. Yamawaki, M. Bando, and K. Matumoto, Phys. Rev. Lett. 56, 1335 (1986); T. Appelquist, D. Karabali, and L. C. R. Wijewardhana, Phys. Rev. Lett. 57, 957 (1986).
[25] C. Pica, F. Sannino, Phys. Rev. D 83, 035013 (2011) [arXiv:1011.5917].
[26] Some authors use the opposite sign convention for the anomalous dimension, writing $D_{\mathcal{O}}=D_{\mathcal{O} \text {,free }}+\gamma_{\mathcal{O}}$. Our sign convention is the same as the one used in [24] and the lattice gauge theory literature.
[27] O. V. Tarasov, A. A. Vladimirov, and A. Yu. Zharkov, Phys. Lett. B 93, 429 (1980); S. A. Larin and J. A. M. Vermaseren, Phys. Lett. B 303, 334 (1993).
[28] T. van Ritbergen, J. A. M. Vermaseren, and S. A. Larin, Phys. Lett. B 400, 379 (1997).
[29] M. Czakon, Nucl. Phys. B 710, 485 (2005).
[30] W. A. Bardeen et al., Phys. Rev. D 18, 3998 (1978).
[31] K. G. Chetyrkin, Phys. Lett. B 404, 161 (1997); J. A. M. Vermaseren, S. A. Larin, and T. van Ritbergen, Phys. Lett. B 405, 327 (1997).
[32] Here and below, if an expression for N_{f} formally evaluates to a non-integral real value, it is understood implicitly that one
infers an appropriate integral value from it.
[33] N_{u} and N_{ℓ} were denoted $N_{f, b 1 z}$ and $N_{f, b 2 z}$ in [19] and some of our subsequent works. In principle, for an appropriate G and R, between the confining phase with spontaneous chiral symmetry breaking at small N_{f} and the (deconfined) non-Abelian Coulomb phase at larger $N_{f} \lesssim N_{u}$, there could be an intermediate phase with confinement but no chiral symmetry breaking, provided that the 't Hooft anomaly-matching conditions are satisfied (a necessary but not sufficient condition for such a phase).
[34] E. Gardi and M. Karliner, Nucl. Phys. B 529, 383 (1998); E. Gardi and G. Grunberg, JHEP 03, 024 (1999).
[35] F. A. Chishtie, V. Elias, V. A. Miransky, and T. G. Steele, Prog. Theor. Phys. 104, 603 (2000).
[36] T. A. Ryttov and R. Shrock, Phys. Rev. D 85, 076009 (2012); A. L. Kataev and K. V. Stepanyantz, Phys. Lett. B 730, 184 (2014); Theor. Math. Phys. 181, 1531 (2014).
[37] R. Shrock, Phys. Rev. D 91, 125039 (2015); G. Choi and R. Shrock, Phys. Rev. D 93, 065013 (2016).
[38] T. A. Ryttov and R. Shrock, Phys. Rev. D 86, 065032 (2012); T. A. Ryttov and R. Shrock, Phys. Rev. D 86, 085005 (2012).
[39] R. Shrock, Phys. Rev. D 88, 036003 (2013); R. Shrock, Phys. Rev. D 90, 045011 (2014); R. Shrock, Phys. Rev. D 91, 125039 (2015); G. Choi and R. Shrock, Phys. Rev. D 90, 125029 (2014); G. Choi and R. Shrock, Phys. Rev. D 94, 065038 (2016); G. Choi, T. A. Ryttov, and R. Shrock, Phys. Rev. D 95, 025012 (2017).
[40] T. A. Ryttov, Phys. Rev. D 89, 016013 (2014); T. A. Ryttov, Phys. Rev. D 89, 056001 (2014); T. A. Ryttov, Phys. Rev. D 90, 056007 (2014).
[41] J. A. Gracey and R. M. Simms, Phys. Rev. D 91, 085037 (2015).
[42] J. A. Gracey, Phys. Lett. B 488, 175 (2000).
[43] P. A. Baikov, K. G. Chetyrkin, and J. H. Kühn, JHEP 10, 076 (2014) [arXiv:1402.6611]. Our $c_{\ell}=2^{1+2 \ell} \gamma_{\ell-1}$ in this paper.
[44] G. Mack, Commun. Math. Phys. 55, 1 (1977); B. Grinstein, K. Intriligator, and I. Rothstein, Phys. Lett. B 662, 367 (2008); Y. Nakayama, Phys. Repts. 569, 1 (2015).
[45] V. A. Novikov, M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov (NSVZ), Nucl. Phys. B 229, 381, 407 (1983).
[46] N. Seiberg, Phys. Rev. D 49, 6857 (1994).
[47] F. Sannino, Phys. Rev. D 79, 096007 (2009); M. Mojaza, C. Pica, T. A. Ryttov, and F. Sannino, Phys. Rev. D 86, 076012 (2012).
[48] T. Appelquist et al. (LSD Collab.), Phys. Rev. D 84, 054501 (2011).
[49] T. DeGrand, Phys. Rev. D 84, 116901 (2011).
[50] Y. Aoki et al. (LatKMI Collab.), Phys. Rev. D 86, 054506 (2012).
[51] A. Hasenfratz, A. Cheng, G. Petropoulos, and D. Schaich, in Proc. Lattice-2012 [arXiv:1207.7162].
[52] A. Hasenfratz, A. Cheng, G. Petropoulos, and D. Schaich, in Proc. Lattice-2013 [arXiv:1310.1124].
[53] A. Hasenfratz and D. Schaich, arXiv:1610.10004 and private communications.
[54] M. P. Lombardo, K. Miura, T. J. Nunes da Silva, and E. Pallante, JHEP 12, 183 (2014). See also A. Deuzeman, M. P. Lombardo, T. Nunes Da Silva, and E. Pallante, Phys. Lett. B 720, 358 (2013); K. Miura, M. P. Lombardo, and E. Pallante, Phys. Lett. B 710, 676 (2012).
[55] Z. Fodor, K. Holland, J. Kuti, D. Nogradi, C. Schroeder, and C.H. Wong, in Proc. Lattice-2012 [arXiv:1211.4238]; Z. Fodor, K. Holland, J. Kuti, S. Mondal, D. Nogradi, and C. H. Wong, Phys. Rev. D 94091501 (2016).
[56] T. Appelquist et al. (LSD Collab.), arXiv:1204.6000.
[57] Y. Aoki et al. (LatKMI Collab.), Phys. Rev. D 87, 094511 (2013); Y. Aoki et al. (LatKMI Collab.), Phys. Rev. D 89, 111502 (2014); Y. Aoki et al. (LatKMI Collab.), Nuclear and Particle Physics Proc. 270-272, 242 (2016).
[58] T. Appelquist et al. (LSD Collab.), Phys. Rev. D 90, 114502 (2014); T. Appelquist et al. (LSD Collab.), Phys. Rev. D 93, 114514 (2016) and references therein.
[59] T. Appelquist, J. Ingoldby, and M. Piai, arXiv:1702.04410.
[60] M. Hansen, K. Langæble, and F. Sannino, Phys. Rev. D 95, 036005 (2017).
[61] A. D. Gasbarro and G. T. Fleming, arXiv:1702.00480.
[62] T. Appelquist and R. Shrock, Phys. Lett. B 548, 204 (2002); T. Appelquist and R. Shrock, Phys. Rev. Lett. 90, 201801 (2003); T. Appelquist, M. Piai, and R. Shrock, Phys. Rev. D 69, 015002 (2004); N. C. Christensen and R. Shrock, Phys. Rev. Lett. 94, 241801 (2005) and references therein.
[63] H. Ohki et al., PoS Lattice2010, 066, arXiv:1011.0373; C. Y.-H. Huang et al., PoS Lattice2015, arXiv:1511.01968.
[64] V. Leino et al., arXiv:1701.04666.
[65] F. Bursa et al., Phys. Lett. B696, 374 (2011); T. Karavirta et al., JHEP 1205 (2012) 003; M. Tomii et al., arXiv:1311.0099. T. Appelquist et al. (LSD Collab.), Phys. Rev. Lett. 112, 111601 (2014).
[66] M. Hayakawa, K.-I. Ishikawa, S. Takeda, and N. Yamada, Phys. Rev. D 88, 094504, 094506 (2013);
[67] J. M. Suorsa et al., arXiv:1611.02022; see also V. Leino et al., arXiv:1610.09989.
[68] P. M. Stevenson, Mod. Phys. Lett. A 31, 1650226 (2016).
[69] D. D. Dietrich and F. Sannino, Phys. Rev. D 75, 085018 (2007); S. Catterall and F. Sannino, Phys. Rev. D 76, 034504 (2007).
[70] S. Catterall, L. Del Debbio, J. Giedt, and L. Keegan, PoS Lattice2010, 057 (2010) [arXiv:1010.5909].
[71] L. Del Debbio, B. Lucini, A. Patella, C. Pica, and A. Rago, Phys. Rev. D 82, 014510 (2010).
[72] T. DeGrand, Y. Shamir, and B. Svetitsky, Phys. Rev. D 83, 074507 (2011).
[73] T. Appelquist et al. (LSD Collab.), Phys. Rev. D 84, 054501 (2011).
[74] L. Del Debbio, B. Lucini, A. Patella, C. Pica, and A. Rago, Phys. Rev. D 93, 054505 (2016).
[75] J. Rantaharju, T. Rantalaiho, K. Rummukainen, and K. Tuominen, Phys. Rev. D 93, 094509 (2016).
[76] J. Giedt, Int. J. Mod. Phys. A 31, 1630011 (2016).
[77] G. Bergner, P. Giudice, G. Münster, I. Montvay, and S. Piemonte, arXiv:1610.01576.
[78] T. DeGrand, Y. Shamir, and B. Svetitsky, Phys. Rev. D 87, 074507 (2013).
[79] Z. Fodor, K. Holland, J. Kuti, D. Nogradi, C. Schroeder, and C. H. Wong, Phys. Lett. B 718, 657 (2012).
[80] J. B. Kogut and D. K. Sinclair, Phys. Rev. D 81, 114507 (2010); Phys. Rev. D 92, 054508 (2015).
[81] S. L. Adler, J. C. Collins, and A. Duncan, Phys. Rev. D 15, 1712 (1977); J. C. Collins, A. Duncan, and S. Joglekar, Phys. Rev. D 16, 438 (1977); N. K. Nielsen, Nucl. Phys. B 120, 212 (1977); see also H. Kluberg-Stern and J.-B. Zuber, Phys. Rev. D 12, 467 (1975).
[82] See, e.g., S. S. Gubser, A. Nellore, S. S. Pufu, and E. D. Rocha, Phys. Rev. Lett. 101, 131601 (2008); see also M. Kurachi, S. Matsuzaki, and K. Yamawaki, Phys. Rev. D 90, 055028 (2014); R. J. Crewther and L. C. Tunstall, Phys. Rev. D 91, 034016 (2015). See also T. Nunes da Silva, E. Pallante, and L. Robroek, arXiv:1609.06298, arXiv:1506.06396.
[83] A. Hasenfratz and D. Schaich, arXiv:1610.10004.

TABLE I: Values of the anomalous dimension $\gamma_{\bar{\psi} \psi, I R, F}$ calculated to $O\left(\Delta_{f}^{p}\right)$, i.e., $\gamma_{\bar{\psi} \psi, I R, F, \Delta_{f}^{p}}$, with $1 \leq p \leq 4$, for $G=\operatorname{SU}\left(N_{c}\right)$, as a function of N_{c} and N_{f} for $2 \leq N_{c} \leq 4$ and N_{f} in the respective intervals $I_{I R Z}$ for each N_{c}. For comparison, we also include the n-loop values $\gamma_{\bar{\psi} \psi, I R, F, n \ell}$ with $2 \leq n \leq 4$ from Table VI of [19]. Values that exceed the bound $\gamma_{\bar{\psi} \psi, I R} \leq 2$ in Eq. (2.13) are marked as unphysical (u). For notational brevity in this and successive tables, we omit the subscript $\bar{\psi} \psi$. See text for further details.

N_{c}	N_{f}	$\gamma_{I R, F, 2 \ell}$	$\gamma_{I R, F, 3 \ell}$	$\gamma_{I R, F, 4 \ell}$	$\gamma_{I R, F, \Delta_{f}}$	$\gamma_{I R, F, \Delta_{f}^{2}}$	$\gamma_{I R, F, \Delta_{f}^{3}} \gamma_{I R, F, \Delta_{f}^{4}}$	
2	6	u	u	u	0.337	0.520	0.596	0.698
2	7	u	u	u	0.270	0.387	0.426	0.467
2	8	0.752	0.272	0.204	0.202	0.268	0.285	0.298
2	9	0.275	0.161	0.157	0.135	0.164	0.169	0.172
2	10	0.0910	0.0738	0.0748	0.0674	0.07475	0.07535	0.0755
3	9	u	u	u	0.374	0.587	0.687	0.804
3	10	u	u	u	0.324	0.484	0.549	0.615
3	11	1.61	0.439	0.250	0.274	0.389	0.428	0.462
3	12	0.773	0.312	0.253	0.224	0.301	0.323	0.338
3	13	0.404	0.220	0.210	0.174	0.221	0.231	0.237
3	14	0.212	0.146	0.147	0.125	0.148	0.152	0.153
3	15	0.0997	0.0826	0.0836	0.0748	0.0833	0.0841	0.0843
3	16	0.0272	0.0258	0.0259	0.0249	0.0259	0.0259	0.0259
4	11	u	u	u	0.424	0.694	0.844	1.029
4	12	u	u	u	0.386	0.609	0.721	0.8475
4	13	u	u	u	0.347	0.528	0.610	0.693
4	14	u	u	u	0.308	0.451	0.509	0.561
4	15	1.32	0.420	0.281	0.270	0.379	0.418	0.448
4	16	0.778	0.325	0.269	0.231	0.312	0.336	0.352
4	17	0.481	0.251	0.234	0.193	0.249	0.263	0.2705
4	18	0.301	0.189	0.187	0.154	0.190	0.197	0.200
4	19	0.183	0.134	0.136	0.116	0.136	0.139	0.140
4	20	0.102	0.0854	0.0865	0.0771	0.0860	0.0869	0.0871
4	21	0.0440	0.0407	0.0409	0.0386	0.0408	0.0409	0.0409

TABLE II: Values of the scheme-independent $\gamma_{I R, F, \Delta_{r}^{p}}$ in the LNN limit (3.21) for $1 \leq p \leq 4$, together with $\gamma_{I R, F, n \ell}$ with $n=$ $2,3,4$ from Table V of [21] for comparison, as a function of r for $r \in I_{I R Z, r}$. Values that exceed the bound $\gamma_{I R} \leq 2$ are marked as unphysical (u) or placed in parentheses. We also list the extrapolated estimate $\gamma_{I R, F, \text { ex } 234}$ of $\gamma_{I R, F, \Delta_{r}^{\infty}}$ and, in the last column, the ratio $\gamma_{I R, F, e x 234} / \gamma_{I R, F, \Delta_{r}^{4}}$.

r	$\gamma_{I R, F, 2 \ell}$	$\gamma_{I R, F, 3 \ell}$	$\gamma_{I R, F, 4 \ell}$	$\gamma_{I R, F, \Delta_{r}}$	$\gamma_{I R, F, \Delta_{r}^{2}}$	$\gamma_{I R, F, \Delta_{r}^{3}}$	$\gamma_{I R, F, \Delta_{r}^{4}}$	$\gamma_{I R, F, e x 234}$	$\frac{\gamma_{I R, F, e x 234}}{\gamma_{I R, F, \Delta_{r}^{4}}}$
2.8	u	1.708	0.190	0.432	0.706	0.870	1.064	(2.09)	1.96
3.0	u	1.165	0.225	0.400	0.635	0.765	0.908	1.645	1.82
3.2	u	0.854	0.264	0.368	0.567	0.668	0.770	1.28	1.66
3.4	u	0.656	0.293	0.336	0.502	0.579	0.650	0.993	1.53
3.6	1.853	0.520	0.308	0.304	0.440	0.497	0.5445	0.763	1.40
3.8	1.178	0.420	0.306	0.272	0.381	0.422	0.452	0.584	1.29
4.0	0.785	0.341	0.288	0.240	0.325	0.353	0.371	0.444	1.20
4.2	0.537	0.277	0.257	0.208	0.272	0.290	0.300	0.337	1.12
4.4	0.371	0.222	0.217	0.176	0.2215	0.233	0.238	0.253	1.06
4.6	0.254	0.1735	0.1745	0.144	0.1745	0.1805	0.183	0.188	1.03
4.8	0.170	0.129	0.131	0.112	0.130	0.133	0.134	0.135	1.01
5.0	0.106	0.0889	0.0900	0.0800	0.0894	0.09045	0.0907	0.0905	1.00
5.2	0.0562	0.0512	0.0516	0.0480	0.0514	0.0516	0.0516	0.0516	1.00
5.4	0.0168	0.0164	0.0164	0.0160	0.0164	0.0164	0.0164	0.0164	1.00

TABLE III: Values of the anomalous dimension $\gamma_{I R, a d j, \Delta_{f}^{p}}$ with $1 \leq p \leq 4$, for $N_{f}=2$ and $G=\operatorname{SU}\left(N_{c}\right)$ with $N_{c}=2$, 3. For comparison, we also list our n-loop values, $\gamma_{I R, a d j, n \ell}$ for this theory from Table VIII of Ref. [19].

N_{c}	$\gamma_{I R, a d j, 2 \ell}$	$\gamma_{I R, a d j, 3 \ell}$	$\gamma_{I R, a d j, 4 \ell}$	$\gamma_{I R, a d j, \Delta_{f}}$	$\gamma_{I R, a d j, \Delta_{f}^{2}}$	$\gamma_{I R, a d j, \Delta_{f}^{3}}$	$\gamma_{I R, a d j, \Delta_{f}^{4}}$
2	0.820	0.543	0.500	0.333	0.465	0.511	0.556
3	0.820	0.543	0.523	0.333	0.465	0.516	0.553

TABLE IV: Values of the anomalous dimension $\gamma_{I R, S_{2}, \Delta_{f}^{p}}$ with $1 \leq p \leq 4$, for $G=\operatorname{SU}\left(N_{c}\right)$ with $N_{c}=3,4$ and $N_{f}=2$, 3 (so $N_{f} \in I_{I R Z}$). For comparison, we also include values of $\gamma_{I R, S_{2}, n \ell}$ with $2 \leq n \leq 4$ for this theory from Table XI in our Ref. [19]. Values that exceed the upper bound $\gamma_{I R}<2$ are marked as unphysical (u).

N_{c}	N_{f}	$\gamma_{I R, S_{2}, 2 \ell}$	$\gamma_{I R, S_{2}, 3 \ell}$	$\gamma_{I R, S_{2}, 4 \ell}$	$\gamma_{I R, S_{2}, \Delta_{f}}$	$\gamma_{I R, S_{2}, \Delta_{f}^{2}}$	$\gamma_{I R, S_{2}, \Delta_{f}^{3}}$	$\gamma_{I R, S_{2}, \Delta_{f}^{4}}$
3	2	u	1.28	1.12	0.501	0.789	0.960	1.132
3	3	0.144	0.133	0.133	0.116	0.131	0.133	0.1335
4	2	u	u	1.79	0.581	0.966	1.242	1.536
4	3	0.381	0.313	0.315	0.232	0.294	0.312	0.319

 we also include values of $\gamma_{I R, A_{2}, n \ell}$ with $2 \leq n \leq 4$ for this theory from Table XII in [19]. Values that exceed the upper bound $\gamma_{I R}<2$ are marked as unphysical (u).

N_{c}	N_{f}	$\gamma_{I R, A_{2}, 2 \ell}$	$\gamma_{I R, A_{2}, 3 \ell}$	$\gamma_{I R, A_{2}, 4 \ell}$	$\gamma_{I R, A_{2}, \Delta_{f}}$	$\gamma_{I R, A_{2}, \Delta_{f}^{2}}$	$\gamma_{I R, A_{2}, \Delta_{f}^{3}}$	$\gamma_{I R, A_{2}, \Delta_{f}^{4}}$
4	5	u	u	u	0.5405	0.941	1.287	1.671
4	6	u	1.38	0.293	0.450	0.728	0.928	1.114
4	7	u	0.695	0.435	0.360	0.538	0.641	0.717
4	8	0.802	0.402	0.368	0.270	0.370	0.4135	0.438
4	9	0.331	0.228	0.232	0.180	0.225	0.237	0.242
4	10	0.117	0.101	0.103	0.0901	0.101	0.103	0.103

TABLE VI: Values of the anomalous dimension $\gamma_{I R, T_{2}, \Delta_{f}^{p}}$ for $T_{2}=S_{2}$ or $T_{2}=A_{2}$, calculated to order $1 \leq p \leq 4$, in the limit $N_{c} \rightarrow \infty$ with $N_{f} \in I_{I R Z}$ for this limit, namely $3 \leq N_{f} \leq 5$.

N_{f}	$\gamma_{I R, T_{2}, \Delta_{f}}$	$\gamma_{I R, T_{2}, \Delta_{f}^{2}}$	$\gamma_{I R, T_{2}, \Delta_{f}^{3}}$	$\gamma_{I R, T_{2}, \Delta_{f}^{4}}$
3	0.5555	0.921	1.177	1.408
4	0.333	0.465	0.520	0.550
5	0.111	0.126	0.128	0.128

TABLE VII: Signs of the $d_{j, R}$ coefficients for $2 \leq j \leq 5$ for gauge group $G=\operatorname{SU}\left(N_{c}\right)$ and fermion representations R equal to F (fundamental), adj (adjoint), S_{2}, and A_{2} (symmetric and antisymmetric rank- 2 tensor). Note that $d_{1}=0$ for all G and R. In the case $R=A_{2}$, we restrict to $N_{c} \geq 3$.

j	$d_{j, F}$	$d_{j, a d j}$	$d_{j, S_{2}}$	$d_{j, A_{2}}$
2	+	+	+	+
3	+	+	+	+
4	-	+	+	- for $N_{c}=3,4,5$ + for $N_{c} \geq 6$
5	-	-	-	-

TABLE VIII: Scheme-independent values of $\beta_{I R, F, \Delta_{f}^{\prime}}^{\prime}$ with $2 \leq p \leq 4$ for $G=\mathrm{SU}(2), \mathrm{SU}(3)$, and $\mathrm{SU}(4)$, as functions of N_{f} in the respective intervals $I_{I R Z}$. For comparison, we list the n-loop values of $\beta_{I R, F, n \ell}^{\prime}$ with $2 \leq n \leq 5$, where $\beta_{I R, F, n \ell}^{\prime}$ with $n=3,4$, 5 are computed in the $\overline{\mathrm{MS}}$ scheme. The notation $a \mathrm{e}-n$ means $a \times 10^{-n}$.

N_{c}	N_{f}	$\beta_{I R, F, 2 \ell}^{\prime}$	$\beta_{I R, F, 3 \ell, \overline{\mathrm{MS}}}^{\prime}$	$\beta_{I R, F, 4 \ell, \overline{\mathrm{MS}}}^{\prime}$	$\beta_{I R, F, \Delta_{f}^{2}}^{\prime}$	$\beta_{I R, F, \Delta_{f}^{\prime}}^{\prime}$	$\beta_{I R, F, \Delta_{f}^{4}}^{\prime}$	$\beta_{I R, F, \Delta_{f}^{\prime}}^{\prime}$
2	6	6.061	1.620	0.975	0.499	0.957	0.734	0.6515
2	7	1.202	0.728	0.677	0.320	0.554	0.463	0.436
2	8	0.400	0.318	0.300	0.180	0.279	0.250	0.243
2	9	0.126	0.115	0.110	0.0799	0.109	0.1035	0.103
2	10	0.0245	0.0239	0.0235	0.0200	0.0236	0.0233	0.0233
3	9	4.167	1.475	1.464	0.467	0.882	0.7355	0.602
3	10	1.523	0.872	0.853	0.351	0.621	0.538	0.473
3	11	0.720	0.517	0.498	0.251	0.415	0.3725	0.344
3	12	0.360	0.2955	0.282	0.168	0.258	0.239	0.228
3	13	0.174	0.1556	0.149	0.102	0.144	0.137	0.134
3	14	0.0737	0.0699	0.0678	0.0519	0.0673	0.0655	0.0649
3	15	0.0227	0.0223	0.0220	0.0187	0.0220	0.0218	0.0217
3	16	$2.21 \mathrm{e}-3$	$2.20 \mathrm{e}-3$	$2.20 \mathrm{e}-3$	$2.08 \mathrm{e}-3$	$2.20 \mathrm{e}-3$	$2.20 \mathrm{e}-3$	$2.20 \mathrm{e}-3$
4	11	16.338	2.189	2.189	0.553	1.087	0.898	0.648
4	12	3.756	1.430	1.429	0.457	0.858	0.729	0.574
4	13	1.767	0.965	0.955	0.370	0.663	0.578	0.486
4	14	0.984	0.655	0.639	0.292	0.498	0.445	0.394
4	15	0.581	0.440	0.424	0.224	0.362	0.331	0.3045
4	16	0.348	0.288	0.276	0.1645	0.251	0.234	0.222
4	17	0.204	0.180	0.1725	0.114	0.164	0.156	0.1515
4	18	0.113	0.105	0.101	0.0731	0.0988	0.0955	0.0939
4	19	0.0558	0.0536	0.0522	0.0411	0.0520	0.0509	0.0505
4	20	0.0222	0.0218	0.0215	0.0183	0.0215	0.0213	0.0212
4	21	$5.01 \mathrm{e}-3$	$4.99 \mathrm{e}-3$	$4.96 \mathrm{e}-3$	$4.57 \mathrm{e}-3$	$4.97 \mathrm{e}-3$	$4.96 \mathrm{e}-3$	$4.96 \mathrm{e}-3$

TABLE IX: Scheme-independent values of $\beta_{I R, \Delta_{r}^{p}}^{\prime}$ for $2 \leq p \leq 5$ in the LNN limit (3.21) as functions of $r=5.5-\Delta_{r}$. For comparison, we also list the n-loop values $\beta_{I R, n \ell}^{\prime}$ with $2 \leq n \leq 5$, where $\beta_{I R, n \ell}^{\prime}$ with $n=3,4,5$ are computed in the $\overline{\mathrm{MS}}$ scheme. The notation $a \mathrm{e}-n$ means $a \times 10^{-n}$.

r	$\beta_{I R, 2 \ell}^{\prime}$	$\beta_{I R, 3 \ell}^{\prime}$	$\beta_{I R, 4 \ell}^{\prime}$	$\beta_{I R, \Delta_{r}^{2}}^{\prime}$	$\beta_{I R, \Delta_{r}^{3}}^{\prime}$	$\beta_{I R, \Delta_{r}^{4}}^{\prime}$	$\beta_{I R, \Delta_{r}^{5}}^{\prime}$
2.8	8.100	1.918	1.913	0.518	1.004	0.851	0.583
3.0	3.333	1.376	1.379	0.444	0.830	0.717	0.535
3.2	1.856	1.006	1.003	0.376	0.676	0.596	0.4755
3.4	1.153	0.7395	0.729	0.314	0.542	0.486	0.410
3.6	0.752	0.542	0.527	0.257	0.426	0.388	0.342
3.8	0.500	0.393	0.378	0.2055	0.327	0.303	0.276
4.0	0.333	0.279	0.267	0.160	0.243	0.229	0.214
4.2	0.219	0.193	0.184	0.120	0.174	0.166	0.159
4.4	0.139	0.128	0.122	0.0860	0.119	0.115	0.112
4.6	0.0837	0.0792	0.0766	0.0576	0.0756	0.0737	0.0726
4.8	0.0460	0.0445	0.0435	0.0348	0.0433	0.0426	0.0423
5.0	0.0215	0.0212	0.0208	0.0178	0.0209	0.0207	0.0206
5.2	$0.714 \mathrm{e}-2$	$0.710 \mathrm{e}-2$	$0.706 \mathrm{e}-2$	$0.640 \mathrm{e}-2$	$0.707 \mathrm{e}-2$	$0.704 \mathrm{e}-2$	$0.704 \mathrm{e}-3$
5.4	$0.737 \mathrm{e}-3$	$0.736 \mathrm{e}-3$	$0.7356 \mathrm{e}-3$	$0.7111 \mathrm{e}-3$	$0.7358 \mathrm{e}-3$	$0.7355 \mathrm{e}-3$	$0.7355 \mathrm{e}-3$

TABLE X: Values of the IR zero $\xi_{I R, n \ell}$ of the $\beta_{\xi, n \ell}$ function in the LNN limit for $2 \leq n \leq 5$ and $r \in I_{r}$. Notation u (unphysical) means that there is no physical IR zero $\xi_{I R, 5 \ell}$ of the 5 -loop beta function.

r	$\xi_{I R, 2 \ell}$	$\xi_{I R, 3 \ell}$	$\xi_{I R, 4 \ell}$	$\xi_{I R, 5 \ell}$
2.8	28.274	3.573	3.323	u
3.0	12.566	2.938	2.868	u
3.2	7.606	2.458	2.494	u
3.4	5.174	2.076	2.168	u
3.6	3.731	1.759	1.873	u
3.8	2.774	1.489	1.601	u
4.0	2.095	1.252	1.349	u
4.2	1.586	1.041	1.115	u
4.4	1.192	0.8490	0.9003	1.0353
4.6	0.8767	0.6725	0.7038	0.7439
4.8	0.6195	0.5083	0.5244	0.5364
5.0	0.4054	0.3538	0.3603	0.3630
5.2	0.2244	0.2074	0.2089	0.2093
5.4	0.06943	0.06769	0.06775	0.06776

TABLE XI: Values of $\alpha_{I R, \Delta_{f}^{p}}$ with $1 \leq p \leq 4$ for $N_{c}=2,3,4$ and $R=F$, as functions of $N_{f} \in I_{I R Z}$, together with $\alpha_{I R, 2 \ell}$ and $\overline{\mathrm{MS}}$ values of n-loop $\alpha_{I R, n \ell}$ with $3 \leq n \leq 4$ from [19], for comparison.

N_{c}	N_{f}	$\alpha_{I R, 2 \ell}$	$\alpha_{I R, 3 \ell}$	$\alpha_{I R, 4 \ell}$	$\alpha_{I R, \Delta_{f}}$	$\alpha_{I R, \Delta_{f}^{2}}$	$\alpha_{I R, \Delta_{f}^{3}}$	$\alpha_{I R, \Delta_{f}^{4}}$
2	6	11.42	1.645	2.395	0.941	1.098	1.979	1.951
2	7	2.83	1.05	1.21	0.753	0.853	1.305	1.293
2	8	1.26	0.688	0.760	0.565	0.621	0.8115	0.808
2	9	0.595	0.418	0.444	0.377	0.402	0.458	0.457
2	10	0.231	0.196	0.200	0.188	0.1945	0.202	0.2015
3	9	5.24	1.028	1.072	0.587	0.712	1.19	1.26
3	10	2.21	0.764	0.815	0.509	0.603	0.913	0.952
3	11	1.23	0.578	0.626	0.431	0.498	0.686	0.706
3	12	0.754	0.435	0.470	0.352	0.397	0.500	0.509
3	13	0.468	0.317	0.337	0.274	0.301	0.350	0.353
3	14	0.278	0.215	0.224	0.196	0.210	0.227	0.228
3	15	0.143	0.123	0.126	0.117	0.122	0.126	0.126
3	16	0.0416	0.0397	0.0398	0.0391	0.0397	0.0398	0.0398
4	11	14.00	0.972	0.943	0.474	0.592	1.042	1.1475
4	12	3.54	0.754	0.759	0.431	0.528	0.867	0.939
4	13	1.85	0.6035	0.628	0.388	0.467	0.713	0.7605
4	14	1.16	0.489	0.521	0.345	0.407	0.580	0.610
4	15	0.783	0.397	0.428	0.3015	0.349	0.465	0.483
4	16	0.546	0.320	0.345	0.258	0.294	0.367	0.376
4	17	0.384	0.254	0.271	0.215	0.240	0.282	0.2865
4	18	0.266	0.194	0.205	0.172	0.188	0.210	0.211
4	19	0.175	0.140	0.145	0.129	0.138	0.147	0.148
4	20	0.105	0.091	0.092	0.0861	0.09005	0.0928	0.0929
4	21	0.0472	0.044	0.044	0.0431	0.04405	0.0444	0.0444

