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The observational era of gravitational-wave astronomy began in the Fall of 2015 with the detection
of GW150914. One potential type of detectable gravitational wave is short-duration gravitational-
wave bursts, whose waveforms can be difficult to predict. We present the framework for a detection
algorithm for such burst events – oLIB – that can be used in low-latency to identify gravitational-
wave transients. This algorithm consists of 1) an excess-power event generator based on the Q-
transform – Omicron –, 2) coincidence of these events across a detector network, and 3) an analysis
of the coincident events using a Markov chain Monte Carlo Bayesian evidence calculator – LAL-
InferenceBurst. These steps compress the full data streams into a set of Bayes factors for each
event. Through this process, we use elements from information theory to minimize the amount
of information regarding the signal-versus-noise hypothesis that is lost. We optimally extract this
information using a likelihood-ratio test to estimate a detection significance for each event. Using
representative archival LIGO data across different burst waveform morphologies, we show that the
algorithm can detect gravitational-wave burst events of astrophysical strength in realistic instrumen-
tal noise. We also demonstrate that the combination of Bayes factors by means of a likelihood-ratio
test can improve the detection efficiency of a gravitational-wave burst search. Finally, we show that
oLIB’s performance is robust against the choice of gravitational-wave populations used to model the
likelihood-ratio test likelihoods.

I. INTRODUCTION

With the first direct detections of gravitational waves
(GWs) [1, 2], gravitational-wave astronomy has blos-
somed into an observational field. The two Advanced
LIGO detectors [3] – one in Livingston, LA and the other
in Hanford, WA – conducted their first observing run be-
tween September 2015 and January 2016, and Advanced
Virgo [4] is expected to join them in 2017. These ad-
vanced detectors are expected to reach their design sen-
sitivities within the next 2-3 years [5]. Two additional
instruments, the Japanese KAGRA [6] and LIGO India
[7] should join the global network in the next few years
(before the end of the decade for the former and in the
mid-2020’s for the latter), further increasing the sensitiv-
ity to GWs.

There are many potential astrophysical sources that
could be observed by these instruments. Some, such
as the inspiral and merger of compact stellar remnants,
known as compact binary coalescence, have well-modeled
and well-understood theoretical waveform predictions
(see e.g. Refs [8–11] for a description of the wave-
forms used to analyze the events detected by LIGO in
the first observing run). With these models in hand,
Weiner matched-filtering techniques provide optimal de-
tection schema [12]. Extensive effort goes into contin-
uously improving these models (compare e.g. the sub-
sequential versions of the SEOBNR [13] or IMRPhe-
nom [8] waveforms) and compare them with numerical
relativity simulations [14]. These efforts have already
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contributed to two high-confidence detections of binary-
black-hole mergers [1, 2]. However, there are other types
of GW sources with poorly modeled or unknown wave-
forms, such as core-collapse supernovae [15–19] and neu-
tron star glitches [20, 21]. This paper focuses on short du-
ration (≤ 1 second) unmodeled transients with frequen-
cies between ten Hz and a few kHz, commonly known as
GW bursts. Therefore, throughout this paper we make
the assumption that the targeted signals are inherently
unknown in origin and morphology, although searches for
unmodeled bursts are indeed sensitive to the better un-
derstood sources mentioned above [22]. This sensitivity
was explicitly validated with the detection of GW150914
[23].

Discovering unmodeled sources of GWs is an exciting
prospect for the advanced detectors. In particular, local-
izing generic sources in the sky [24] could provide infor-
mation about their origin, and accurate reconstruction
of the waveform could determine their emission mecha-
nism, which is especially promising for supernovae [25].
However, before this information is available or robust
enough, we must ensure that we have confidently de-
tected a GW signal. In this way, we can separate in-depth
parameter estimation from detection. This paper focuses
primarily on the detection problem and presents a new
algorithm – oLIB – that generates significance estimates
for GW burst candidates via nearly-lossless compression
of the information contained within the raw data.

Many different burst detection statistics and end-to-
end search algorithms have been used historically [26–
31]. In particular, another algorithm [32, 33] has recently
claimed the ability to make high-confidence detections
[31] using the Bayesian evidence computed by a stochas-
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tic sampler as a follow-up to other search algorithms.
This approach is similar in scheme to the end-to-end
oLIB algorithm. It is of great interest to have overlap be-
tween multiple search algorithms so that cross-validation
can be carried out for detection candidates, which is espe-
cially important for unmodeled systems. Although most
detection schemes are motivated by similar noise mod-
els for the detectors, which typically assume stationar-
ity and Gaussianity, there is uncertainty regarding how
optimal their exact search statistics are for unmodeled
bursts in real non-Gaussian detector noise. This paper
presents a method for algorithmically generating optimal
search statistics for proposed signal and noise hypotheses
through an application of information-theoretic concepts.
This method then compresses these search statistics into
a single, scalar search statistic. This compression is done
in such a manner that it minimizes the information lost
concerning the signal-versus-noise hypothesis.

oLIB is an attempt to implement this optimal scheme.
The implementation is carried out by first flagging, in
each detector, subsets of data that have excess power,
which we refer to as “events”. This step is carried out
with a time-frequency decomposition based on the Q-
transform [34–36] that we will refer to as Omicron [37].
This first step is followed by a time coincidence of such ex-
cess power among the network of detectors. The resulting
set of coincidences are handed to a follow-up algorithm,
performed with LALInference Burst (LIB) [24, 38, 39],
that analyzes all data streams simultaneously and com-
presses them into a set of Bayes factors. Applying a
likelihood-ratio test (LRT) to these Bayes factors pro-
duces a single search statistic, which is then mapped into
an estimate of the GW detection significance. At each
step in the algorithm, we take care to analyze possible
losses of information, which include modeling uncertainty
and waveform mismatch, among other sources.

Although the signals that oLIB targets are inherently
unknown, the algorithm must make some limited as-
sumptions regarding their morphology. oLIB is more
sensitive to signals that better match these assumptions,
but it can still detect generic signals at astrophysically
relevant signal amplitudes that differ significantly from
its internal models. Furthermore, the algorithm is com-
putationally efficient so that robust detection statements
can be reached in real time, allowing oLIB to initiate and
inform the rapid electromagnetic follow-up of GW can-
didates. GW150914 proved this, with oLIB being one of
two independent search algorithms to detect the event in
low-latency [23].

We explain the motivation behind the design of oLIB
in §II, and we describe oLIB’s algorithmic structure in
more detail in §III. Using archival (public) LIGO data,
we present a proof-of-concept analysis in §IV, which is
meant to validate the design choices of the algorithm.
Finally, we conclude with a summary in §V and provide
some technical details in the Appendix.

II. INFORMATION-THEORETIC MOTIVATION

While we have motivated oLIB’s design with the idea
of preserving information, we have yet to rigorously de-
fine this concept. Here we provide the framework for an
optimal search in an information-theoretic sense. While
other GW-burst search algorithms utilize components of
this optimal framework, oLIB is the first to implement
it in its entirety. First, we quantify the qualitative con-
cept of information by utilizing elements from informa-
tion theory. We define the information in the data stream
~x regarding the signal-versus-noise binary hypothesis H
to be their mutual information

I(H; ~x) = H(H)−H(H|~x) (1)

whereH(H) andH(H|~x) are the entropy and conditional
entropy, respectively, of the probability distributions for
H (see Appendix A 2 for explicit definitions of entropy).
Because entropy is a measure of distributional uncer-
tainty, the information I(H; ~x) quantifies how the uncer-
tainty in the true hypothesis H is reduced by knowledge
of the full data stream ~x.

We wish to see how the information changes when we
compress the full dimensionality of the data stream ~x into
a search statistic t(~x). The Data Processing Inequality
states that compressing a data vector into a search statis-
tic can only reduce or preserve the amount of accessible
information regarding the true hypothesis H [40]:

I(H; ~x) ≥ I(H; t(~x)). (2)

The Data Processing Inequality becomes an equality for a
certain class of statistics known as “sufficient statistics”.
A statistic t(~x) is sufficient if and only if it satisfies the
relationship

PH|x(H|~x) = PH|t(H|t(~x)) (3)

where each P is a conditional probability distribution,
which implies that identical inference of the signal-versus-
noise hypothesis can be done with both ~x and t(~x)1.

The key design feature in our algorithm is that, for
binary hypothesis testing, the likelihood ratio

Λ(~x) ≡
Px|H(~x|signal)

Px|H(~x|noise)
(4)

is a sufficient statistic (see Appendix A 1 for a proof).
We emphasize that likelihood ratios only compress data
losslessly when the likelihoods used in the ratio are the
true likelihoods. This scenario commonly breaks down
in two ways. First, the hypothesis used in the likelihood

1 This is only one of several equivalent definitions of sufficiency
for a statistic t(~x). Two other commonly used definitions are
1.) Px|t,H(~x|t(~x), H) = Px|t(~x|t(~x)) and 2.) Px|H(~x|H) =
a(t(~x), H)b(~x) for some functions a and b [41].
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FIG. 1. Schematic of how information is compressed into a significance estimate within the oLIB algorithm. Ideally, sufficient
statistics allow for lossless data compression, and the LRT allows for optimal information extraction.

might not be exactly H. Examples include the signal hy-
pothesis referring to a GW being present in the data but
with the wrong waveform morphology and the noise hy-
pothesis assuming that the non-Gaussian detector noise
is Gaussian. Second, the functional form of the proba-
bility distributions Px|H might be incorrect even if the
hypothesis models are correct. In either case, as long as
the implemented likelihood ratio is a good approxima-
tion to the true one, we expect this information loss to
be minimal.

We now explore how to utilize the sufficiency of
likelihood-ratio statistics. By construction, the Bayes
factor Bi,j computed for any two hypotheses Hi and Hj ,
where

Bi,j ≡
Px|H(~x|Hi)

Px|H(~x|Hj)
, (5)

is a likelihood ratio and, in turn, a sufficient statistic.
Thus, compressing the data vector into a Bayes factor
is lossless as long as the two hypotheses perfectly de-
scribe all possible data realizations. Nevertheless, there
might be multiple model classes for both signals and noise
within the broader signal-versus-noise hypotheses. Ex-
panding on our previous examples, GW burst signals can
have varying morphologies, and the detector noise may
behave as either Gaussian or non-Gaussian noise at dif-
ferent times [42]. We can compute Bayes factors for each
of these model class hypotheses, but then we need a way
of combining the Bayes factors without losing informa-
tion about the overall signal-versus-noise hypothesis. If
we treat the set of Bayes factors for each model hypoth-
esis as another data vector ~xB , then further compression
of the data into the likelihood ratio

Λ(~xB) ≡
PxB |H(~xB |signal)

PxB |H(~xB |noise)
(6)

is lossless (see Fig. 1). We prove in Appendix A 1 that
the likelihood ratio for the set of all possible Bayes factors
Λ(~xB) is indeed a sufficient statistic. This novel result is
important because it allows us to construct a single op-
timal search statistic for an arbitrary number of models.

There is still the question of what happens when no
model hypothesis perfectly describes the true signal-
versus-noise hypothesis. If this is the case, the compres-
sion must be lossy. It isn’t immediately clear what hap-
pens if we combine lossy search statistics. Fortunately,
we show (see Appendix A 2) that adding any additional
data point y+ into an arbitrary data vector ~y can only

increase the information contained about the hypothesis
H:

I(H; ~y, y+) ≥ I(H; ~y). (7)

Thus, we can combine lossy search statistics with loss-
less search statistics without losing information, and we
can losslessly compress the information that is contained
within lossy search statistics, both by means of a like-
lihood ratio. We stress that even though information
might have been lost in compressing data from ~x to ~xB ,
further compression of ~xB can still be lossless.

It should be noted that, to this point, we have only
discussed minimizing the loss of information when com-
pressing data. However, all of this lossless compression
is useless if we do not have an optimal way of extracting
the information from the compressed data. Just having a
compressed statistic (Λ) containing the maximal amount
of information about a model (H) does not guarantee

that any arbitrary estimator Ĥ(Λ) will be optimal. For-
tunately, the Neyman-Pearson lemma [43] argues that a
likelihood-ratio test (LRT) maximizes the probability of
detection at a given false-alarm probability, so it is an
optimal means of information extraction. As we will see
in § III D, once we have a likelihood ratio, evaluating an
LRT is straightforward.

The implementation of this information-theoretically
optimal scheme in oLIB is as follows:

1. Use Omicron to flag stretches of the detector’s data
streams that contain excess power, which will serve
as “events” in our further analysis.

2. For each event, use LIB to calculate Bayes factors
across all signal and noise model classes. If the set
of signal and noise model classes perfectly describes
every data realization, then the compression is loss-
less. If not, information loss is introduced.

3. For each event, use a likelihood ratio Λ to combine
the information contained within all of the models’
Bayes factors. As long as the signal and noise like-
lihoods used to compute the likelihood ratio are the
true likelihoods for each model class, the compres-
sion from a set of Bayes factors to Λ is lossless.

4. Extract the information contained within Λ regard-
ing the model H by using an LRT to map Λ into a
significance statement.

In the following section, we describe these steps in more
detail.
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III. SEARCH IMPLEMENTATION

In this section, we describe the workflow within oLIB.
The algorithm is graphically depicted in Fig. 2. We dis-
cuss the individual-detector event generation in §III A
and coincidence tests in §III B. §III C describes the LIB
analysis and §III D discusses how the LRT is used within
oLIB. Finally, §III E discusses different factors that can
cause oLIB’s implementation to be sub-optimal.

1

Time Segments

Omicron

Strain Data

Single-IFO Events

Coincidence

0-lag Events

LIB

Timeslide Events

BSN

BCI

Likelihood Ratio

Significance

Signal Model Noise Model

FIG. 2. A flow chart illustrating the hierarchical structure of
the oLIB algorithm. Calibrated strain data and analyzable
time segments are fed into Omicron, which produces single-
interferometer (IFO) events. The events are down-selected via
incoherent clustering, data-quality vetoes, and coincidence.
Sets of the most significant analysis (0-lag) and background
(timeslide) events are passed onto LIB. The Bayes factors
produced by LIB (BSN, BCI) are combined using an LRT.
The LRT also requires likelihood models for both the detec-
tion (signal) and non-detection (noise) hypotheses. Finally,
the LRT provides a measure of each 0-lag event’s detection
significance.

A. Omicron

Omicron provides fast and accurate identification of
statistically significant deviations from Gaussian noise in
a single interferometer’s data stream. It is based on the Q
transform, which varies the duration of data used within
a Fourier transform to maintain a constant quality factor
Q ∝ τ · f0, meaning the duration τ is inversely propor-
tional to the targeted frequency f0 [34–37]. By repeat-

edly decomposing a data stream into several planes of
constant Q, Omicron can search for excess power with dif-
ferent characteristic aspect ratios in the time-frequency
plane. In effect, the Q transform is similar to matched-
filtering with a bank of sine-Gaussian waveforms, each
of which has a characteristic shape in the time-frequency
plane and is well-localized. In this way, oLIB uses Omi-
cron to flag interesting stretches of data and later uses
the results of the Omicron analysis to perform all of the
down-selection.

B. Coincidence

As mentioned, Omicron matched-filters a bank of sine-
Gaussian templates with the entire stretch of any single-
interferometer data. Any template that has a signal-
to-noise ratio (SNR) greater-than-or-equal-to a threshold
value is recorded as an event. However, the presence of
excess power alone does not provide strong evidence of
a GW because it can also be generated by loud, non-
Gaussian noise fluctuations resulting from instrumental
or environmental causes. We will refer to these fluctu-
ations as noise “glitches”. Furthermore, many of the
events are redundant because any excess of power in the
data stream can have significant overlap with multiple
sine-Gaussian templates, so there are routinely multiple
events of different f0 and Q recorded at nearly identical
times in the data stream. For computational reasons,
we are motivated to only follow-up with LIB the most
“GW-like” events over the network of detectors.

The strategy of this down-selection naturally falls out
of how we define “GW-like”. Even though the oLIB al-
gorithm is designed to detect unmodeled GW bursts, we
hypothesize that detectable burst signals exhibit several
properties. For example, we expect a GW to leave a spe-
cific signature in the data streams of all detectors. More
precisely, Omicron models these signatures as single sine-
Gaussians, so we hypothesize that the events produced
by a single burst-like GW will cover similar ranges of f0

and Q in each detector. In addition, from General Rel-
ativity, we expect GWs to travel at the speed of light,
meaning there is a given time window, defined by the
physical separations of the detectors, in which GWs can
leave this signature. As a result, we choose to pass to
LIB only the Omicron events whose f0 and Q values are
identical across all detectors and whose detection times
are consistent with this time-of-flight time window2.

With this definition of “GW-like” in mind, our exact
down-selection takes the following form. First, for each
individual detector, we form “clusters” of Omicron events
with identical f0 and Q that are spaced closely in time.

2 We note that requiring exact f0 and Q match instead of close
f0 and Q match may result in a loss of some quieter signals
or broadband signals whose SNR spans large areas of the time-
frequency plane.
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More precisely, we open an acceptance gate at the de-
tection time of an event with given f0 and Q, and we
leave the gate open so long as an event of identical f0

and Q is found within the time interval ∆tcluster, closing
it otherwise. Each continuous stretch of acceptance is
defined as a “cluster” for a template, and we down-select
each cluster to the loudest SNR event contained within
it. The ∆tcluster used in our analyses is 100 ms, and the
analysis results are relatively invariant for time windows
of similar size.

Next, we take the set of surviving clustered events and
apply a coincidence criterion among the detectors for
events of identical f0 and Q. More precisely, we only keep
clustered events of the ith detector that have a clustered-
event counterpart of identical f0 and Q in the jth de-
tector, requiring the corresponding times to fall within a
time window ∆tcoin,ij . For the Hanford and Livingston
detectors, the time-of-flight coincidence window we need
to apply is 10 ms. For each of these coincident events,
we can also place thresholds on either the single-detector
SNRs (ρi) or the network SNR

(
ρ2
net =

∑
i∈Detectors ρ

2
i

)
.

Finally, we cluster this set of coincident events one last
time so there is at most one event per each LIB analysis
window, ∆tLIB, thereby avoiding redundant LIB runs.
We do this by iteratively keeping the loudest SNR event
in a set of non-overlapping intervals of length ∆tLIB until
all LIB events are separated by at least ∆tLIB. This set
of LIB-clustered coincident events is passed onto LIB for
analysis.

C. LIB

LALInferenceBurst is based on LALInference [39], a
Bayesian parameter estimation and model selection al-
gorithm. While LALInference assumes that the model
waveform is produced by a compact binary coalescence
system (any pairwise combination of a neutron star and
a black hole), LIB models short duration signals with ad-
hoc waveforms as sine-Gaussians, Gaussians and damped
sinusoids.

The standard configuration of oLIB uses LIB with sine-
Gaussian templates. These templates depend on 9 pa-

rameters, which we refer to as ~θ: central frequency (f0),
quality factor (Q), amplitude (the parameter actually
used is the hrss, see [24]), time, phase, sky position, po-
larization ellipticity, and orientation of the polarization
ellipse.

LIB uses the nested sampling algorithm [44] to effi-
ciently sample the 9-D parameter space. N “live points”
are evolved by sampling the prior distribution in order to
calculate the Bayesian evidence Px|H(~x|H) for the data
stream ~x and hypothesis H. For oLIB, we use the de-
fault termination condition [38] that the extra Bayesian
evidence one would lose if all of the live points had a
likelihood equal to the maximum-likelihood point found
is smaller than 0.1.

As shown in Eq. 5, the evidences calculated by LIB can

be used to construct two Bayes factors. This first com-
pares a signal model (a sine-Gaussian GW is present in
the data of all detectors) to a Gaussian-noise model (only
Gaussian noise is present in the data), and we refer to its
natural logarithm as the BSN3. Another compares the
same signal model to a noise-glitch model (uncorrelated
sine-Gaussian glitches of non-GW origin are present in
each instrument), and we refer to its natural logarithm
as the BCI4. While the reader is directed to [38, 39] for
more details about nested sampling and these Bayes fac-
tors, we will note that a large BSN implies a loud signal,
while a large BCI implies a signal that is highly correlated
among the detectors. As a by-product, LIB produces
posterior distributions for all 9 parameters on which the
model sine-Gaussian waveform depends. While some of
them might not be of immediate use since the GW signal
may not necessarily be well-matched by a simple sine-
Gaussian, it has been shown that the sky position of the
source, as measured by LIB, can be used for electromag-
netic follow-up [24].

D. Likelihood-Ratio Test

We now explain how we use an LRT to extract infor-
mation from our search statistics and how to “train” this
LRT.

1. Using the Likelihood-Ratio Test for Detection

The primary purpose of oLIB is to optimally extract
the information contained within the data regarding the
signal-versus-noise hypothesis and to use this informa-
tion to make a detection statement. As we argue in § II,
our working assumption is that the Bayes factors pro-
duced by LIB compress the dimensionality of the raw
data streams while still preserving a sufficiently large
fraction of the original information.

With any n-dimensional set of compressed search
statistics ~xB = BSN,BCI,..., the problem of optimal in-
formation extraction immediately suggests the use of an
LRT. The motivation for this approach comes from the
Neyman-Pearson lemma [43], which states that the LRT
is the optimal method of binary hypothesis testing in that
it maximizes the probability of successfully detecting a
signal at a given false-alarm probability. The exact form
of the LRT for the signal-versus-noise binary hypothesis
test is

Λ(~xB) ≡
PxB |H(~xB |signal)

PxB |H(~xB |noise)

signal

R
noise

α (8)

3 The name BSN refers to the comparison of a signal model (S) to
a Gaussian-noise model (N).

4 The name BCI refers to the comparison of a “coherent”, i.e. cor-
related, signal model (C) to an “incoherent”, i.e. uncorrelated,
signal model (I).
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where Λ(~xB) is the value of the likelihood ratio at a
coordinate ~xB , PxB |H(~xB |signal) and PxB |H(~xB |noise)
are the likelihood distributions of getting the coordinate
point ~xB , and α is a threshold value of the likelihood
ratio. Thus, if Λ(~xB) is greater than the threshold, we
decide that there is a signal present in the data with a
false-alarm rate (FAR) set by α. The procedure for es-
tablishing a FAR is addressed later in this section. Eq. 8
essentially uses the likelihoods to divide our search statis-
tic parameter space XB into regions of detection and non-
detection, with α determining the boundary.

We emphasize that the LRT allows us to optimally
compress the n-dimensional vector of search statistics
~xB into a single scalar measure of significance Λ(~xB).
While several GW searches attempt to combine informa-
tion from multiple search statistics [26, 31], only a few
[45–47] utilize the optimality of the LRT. The LRT has
the property that the FAR associated with a decision is
a monotonically decreasing function of the threshold α.
Thus, the events with the largest values of Λ(~x) are nec-
essarily the most significant events encountered.

This monotonicity allows us to rank events by Λ(~xB)
and lets us empirically estimate the FAR of events. In
order to achieve this, the oLIB algorithm is run end-to-
end on a stretch of background data, producing a vec-
tor of Bayes factors ~xB,i for each background event i.
We then calculate a value of the likelihood ratio Λ(~xB,i)
for each background event i. Using the total coincident
livetime of our background analysis (i.e., the duration of
time during which an event could have been generated),
we can approximate the FAR of a threshold α with a
simple counting experiment:

FAR(α) ≈
No. of background events with Λ(~xB,i) ≥ α

Total coincident livetime of background analysis
(9)

Finally, for any detection candidate j (i.e., any event gen-
erated in the analysis data), the oLIB algorithm produces
a vector of search statistics ~xB,j . By calculating the like-
lihood ratio Λ(~xB,j) and setting α = Λ(~xB,j), we can use
Eq. 9 to estimate the FAR of event j.

We cannot turn off the incident flux of gravitational
waves, so multiple-detector background estimation is per-
formed by “time-sliding” the data streams beyond the
detectors’ physical separations [48]. To accomplish this,
we shift the timestamps of one detector’s data stream in
bulk (i.e., we apply the same time shift to every dis-
crete time sample) with respect to another detector’s
data stream before performing the coincidence analysis.
If this timeshift is greater than the time-of-flight between
the detectors for a GW, then the GW-induced correla-
tion of the data streams becomes non-astrophysical in our
model. Thus, any events found in coincidence among the
detectors can be modeled as non-Gaussian (commonly
Poisson-distributed) noise glitches that occur simultane-
ously but independently in the detectors. In summary,

timeslides provide a method for approximating the noise-
only background rate of our detectors using real detector
data, and as a result, we commonly refer to our analysis
data as the “0-lag” data5.

2. Training the Likelihood-Ratio Test

We stress again that while this LRT-based method is
straightforward and can be considered optimal under sev-
eral criteria (information preservation and extraction),
all optimality statements assume we have access to the
true likelihood distributions for both our signal and noise
hypotheses. Any inaccuracies in our likelihoods will lead
to both lossy compression and sub-optimal information
extraction. Thus, we need to accurately model these like-
lihood distributions before we estimate the significance of
any events.

We need models for both the signal and noise like-
lihoods, PxB |H(~xB |signal) and PxB |H(~xB |noise), respec-
tively. We choose to implement an empirical approach
to our modeling in which we simulate large sets of signal
and noise events and calculate the vector of Bayes factors
~xB for each. We then fit the resulting distribution of ~xB
using non-parametric regression, specifically the Gaus-
sian kernel density estimation (KDE) described in detail
in Appendix B. We refer to this process as “training”
the LRT.

E. Potential Limitations of oLIB

Although we justified the optimality of oLIB’s design
in § II, such optimality is not achieved in practice. Here
we will briefly review and discuss the ways in which
oLIB’s implementation can lead to sub-optimal perfor-
mance.

1. As previously mentioned, oLIB models the GW sig-
nals as sine-Gaussians, and the noise as Gaussian
with potential sine-Gaussian glitches. If the sig-
nals and detector noise only ever take these forms,
then oLIB’s data compression should lose no infor-
mation concerning H. However, in most scenarios,
these models are only approximations, so informa-
tion loss is introduced. Including a wider range
of models in our vector of Bayes factors ~xB could
help to suppress this information loss, but as we
will see in § IV D 1, oLIB can detect a wide-range
of morphologies regardless, suggesting that this in-
formation loss is not significant.

5 There are subtleties involved with timeslides with regards to
which 0-lag coincidences to remove from the data before doing
the timeslides in order to reduce GW contamination. For this
paper, we do not remove any 0-lag coincidences, although it has
become a common procedure to remove high-confidence GW de-
tections from the timeslided data.
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2. Although we are treating GW bursts as unmod-
eled, in practice we need to enforce a minimal set
of assumptions in order to distinguish GW signals
from noise. We can obtain populations of noise
events through timeslides, but we must make as-
sumptions regarding the population of GW burst
signals. These assumptions involve choosing the
set of signal morphologies on which to train (e.g.,
sine-Gaussian signals) and then specifying the dis-
tribution of these morphologies’ intrinsic parame-
ters (e.g., the distributions of f0 and Q for sine-
Gaussian signals). There are also distributions for
the extrinsic parameters, such as the source sky
location, but these distributions can be modeled
and justified theoretically (e.g., uniformly in vol-
ume when considering distant sources), making our
assumptions less arbitrary. While the arbitrariness
of selecting the signals’ intrinsic population may
seem like a substantial limitation for oLIB, the im-
pact of training on different population models is
actually quite small. We explore this feature ex-
plicitly in § IV D 3, but the intuitive understanding
is as follows: any GW signal interacts with oLIB
in a different manner than accidental noise coinci-
dences, meaning we can train our LRT to distin-
guish GW signals from incoherent noise regardless
of the exact form of our training populations.

3. In order to accurately model our LRT likelihood
functions non-parametrically, we need a large em-
pirical data set on which to train. To be sure,
some extent of modeling error will be introduced
by having a finite data set, although this error will
be negligible if the training set is sufficiently large.
Furthermore, there is a trade-off between the infor-
mation gained by adding a search statistic to ~xB
and the accuracy of our likelihood modeling. Al-
though we show that adding a search statistic can
only increase the information contained within ~xB ,
it also increases the dimensionality of the search-
statistic parameter space XB . Increasing the di-
mensionality of a parameter space further dilutes
regions where empirical training points were al-
ready sparse, leading to greater modeling errors
in the distribution’s tail. Thus, because our opti-
mality conditions require the use of the true likeli-
hoods, adding a weakly-informative search statistic
can harm the performance of our algorithm.

4. Finally, the LRT is an optimal decision-making
method at the false-alarm probability defined by
its threshold α. Our estimate of the FAR given
by Eq. 9 is an approximation that approaches the
true value in the limit that both the number of
background events exceeding the detection thresh-
old and the coincident livetime become infinite. If
we are estimating the FAR with too few above-
threshold background events, our estimate may be
poor, leading to sub-optimal performance of the

LRT (either in rejecting false-alarms or detecting
GW signals) at the claimed FAR.

IV. RESULTS FROM A SAMPLE ANALYSIS

We perform a proof-of-concept analysis in order to
demonstrate more illustratively how oLIB functions. Per-
formance comparisons with other search algorithms are
an integral part of the real GW-burst searches that have
been [23, 49] and will be continuously completed in the
advanced detector era. Completed comparisons have
shown that oLIB is competitive with other GW burst
search algorithms in terms of sensitivity, and is the most
sensitive search algorithm in certain regions of the short-
duration GW burst parameter space [49].

In order to illustrate typical features of oLIB’s end-to-
end performance, we undertook the analysis of three days
worth of data from the sixth science run of initial LIGO
(S6) [50]. Specifically, we ran on science time segments
produced for the Hanford (H1) and Livingston (L1) de-
tectors between 14-17 September 2010. These dates were
chosen since they contain a blind chirp-like hardware in-
jection [51] (removed from our analysis time segments).
The science time segments signify that the instruments
were in proper states for observation. Data-quality ve-
toes were also applied to these time segments to further
clean the data of known noise artifacts.

In order to tune the search and assess its sensitivity, we
injected simulated GW waveforms into the data streams.
These injections were taken from the S6 Burst injection
set [26]. We injected them at multiple amplitude scale-
factors to ensure that a large range of SNRs were cov-
ered. We injected three morphologies: 1.) sine-Gaussians
(SG), characterized by their central frequency f0 and
quality factor Q; 2.) Gaussians (GA), which are char-
acterized by their duration τ ; and 3.) white-noise bursts
(WNB), which consist of random white noise within a
Gaussian envelope and are characterized by a starting
frequency f0, a duration τ , and a bandwidth ∆f . More
detailed information regarding these burst morphologies
can be found in [26] and [24].

A. Omicron Analysis

We ran Omicron separately over both the H1 and L1
data streams, analyzing the frequency band of 64-2048
Hz. A single-detector SNR threshold of 5.5 was required
for Omicron to identify events. Then, using the raw Omi-
cron events, we clustered all identical-template events
(as described in § III B) using a clustering window of
∆tcluster = 100ms. We also removed vetoed livetime [26]
from our analysis at this clustering step. Next, we per-
formed identical-template coincidence between the detec-
tors using the coincidence window ∆tcoin,H1L1 = 10 ms

and required the network SNR to be greater than 6.5
√

2.
We shifted the L1 injection data stream with respect to
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TABLE I. Summary of the event rate at each step in the pre-LIB down-selection. The numbers given represent the set of
events immediately after the quoted down-selection is applied. The post-coincidence events span all of the timeslides, which is
responsible for the increase in livetime.

Step Number of Events Total livetime (s) Trigger Rate (Hz)

Unclustered H1 1410060 1.46× 105 9.66

Unclustered L1 1786080 1.46× 105 12.2

Clustered H1 623016 1.46× 105 4.27

Clustered L1 676208 1.46× 105 4.63

Clustered H1, post-Vetoes 585700 1.45× 105 4.04

Clustered L1, post-Vetoes 630606 1.45× 105 4.35

Coincident H1L1, network SNR ≥ 6.5
√

2 32779 3.15× 108 1.04× 10−4

LIB-clustering H1L1 18599 3.15× 108 5.90× 10−5

FIG. 3. The rates at which the events generated by Omi-
cron exceeded a given value of SNR in Hanford (top) and
Livingston (bottom). These events are grouped by the down-
selection steps they have just survived: either clustering,
data-quality vetoes, timing coincidence, or LIB-window clus-
tering (LC). The 68% confidence regions shown are derived
from a binomial process with a uniform prior on the true rate.

the H1 injection data stream 2500 times, from -1250s to
1250s in 1s increments, in order to estimate the back-
ground. Finally, this final set of coincident events was
clustered so that only one event was present per LIB

event time-window of ∆tLIB = 100 ms.
The net result of our down-selection is illustrated in

Table I and Fig. 3. Table I shows the total number of
events, total livetime analyzed, and the total event rate at
each step of the down-selection. Fig. 3 shows the rate at
which events exceeding a given SNR occur in each step
of the incoherent analysis for H1 and L1, respectively.
From this data, we see that the clustering reduced the
event rate by roughly a factor of 2-3, and, as expected,
most of the discarded events were low-SNR events that
were clustered into high-SNR events. The application of
data vetoes reduced the event rate by less than 10%, and
removed low-to-medium SNR events for H1 and medium-
to-high SNR events for L1.

The constraint of identical-template timing coinci-
dence was responsible for our most significant reduction
in event rate, lowering the total rate by ∼ 5 orders-
of-magnitude. This fractional reduction appears to be
roughly constant, within errors, across all SNRs, which
is consistent with a simple Poisson coincidence model.
Finally, the LIB clustering reduced the event rate by
a factor of up to 2, which, characteristic of cluster-
ing, discarded low-SNR events when they were clustered
into high-SNR events. In summary, this pre-LIB down-
selection reduced the raw Omicron event rate by ∼ 6
orders-of-magnitude.

B. LIB Analysis

We ran LIB over all events surviving the down selec-
tion, both for the injection-filled 0-lag data set and the
injection-free background data set. Our LIB runs used
256 live points and completed 256 MCMC jumps when
generating new coordinates for the live points [38]. Our
sampling frequency was 4096 Hz, and our priors were set
to be uniform between 64 Hz and 2048 Hz for f0 and uni-
form between 2 and 110 for Q. For both the signal and
noise-glitch models, we assumed sky location and signal-
strength priors consistent with a uniform-in-volume dis-
tribution. This can be justified astrophysically for our
signal model; however, it is less justifiable for the noise-
glitch model. Ongoing investigations are studying the
distributions of apparent sky position and hrss for the
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noise-glitch model, but using the uniform-in-volume prior
is a conservative approach since it biases the noise and
signal model towards each other6.

Because the calculation of the Bayes factors requires
LIB to integrate over the entirety of the sine-Gaussian
parameter space, it is the most computationally expen-
sive step in the oLIB algorithm. Executing the Omicron,
coincidence, and likelihood-ratio steps all take place on
the timescales of a few tens of seconds. When run on a
single 3 GHz CPU core, the joint-detector (H1L1) LIB
analyses had a mean runtime of about 1100 s, while
the single-detector LIB analyses had mean runtimes of
about 200 s and 600 s for Hanford and Livingston, re-
spectively. Signal-like events take longer to analyze be-
cause they have more concentrated likelihood distribu-
tions than noise-like events, which LIB needs more itera-
tions to integrate over accurately. That the average run-
times were longer for L1 than for H1 is consistent with the
analysis of IV A, which shows that L1 contained a greater
number of high-SNR events than H1. Finally, LIB took
longer to run jointly over both detector’s data streams
than it did to run over each detector’s data streams in-
dividually because the joint-likelihood constraint more
strongly distinguishes signals from noise than the single-
detector likelihoods[38]. It should be noted that the LIB
timescale for GW signals is similarly a few thousands of
seconds, or tens of minutes.

C. LRT Analysis

We trained our likelihoods using Gaussian KDE op-
timized by the Kullback-Leibler distance minimization
criterion described in Appendix B. Because the values
of the BSN covered a large dynamical range, we actually
trained on log10 BSN to improve performance. Also, be-
cause the Bayes factors are constructed so that positive
values of their logarithm favor the signal model over the
noise model, we placed an exclusion cut on all events with
a BSN or BCI less than 1 (with 1 being chosen instead of
0 because we take the logarithm of BSN). Finally we also
placed an exclusion cut on all events with a BSN or BCI
greater than 106 in order to remove events with extremely
large, non-astrophysical SNRs that are characteristic of
some morphologies of noise glitches. We trained our noise
likelihoods using 100 timeslides that were not included
in the background analysis. We trained our signal like-
lihoods on a set of astrophysically distributed SGs and
WNBs, the exact populations of which are described in
§ IV D 3. Examples of the resulting 1-D and 2-D likeli-
hood distributions are shown in Figs. 4 and 5, respec-
tively. The distributions of the Bayes factors follow the
general behavior we expect from them by construction:

6 To be sure, these biases are negligible for the likelihood-
dominated inference of loud signals.

FIG. 4. The 1-dimensional likelihoods for each Bayes factor.
In this figure, the signal training population consisted of both
sine-Gaussian and white-noise burst signals. The likelihood
ratio Λ is found by taking the ratio of the signal and noise
likelihoods.

both BCI and BSN have more support at higher values
for signals than for noise.

These distributions illustrate how information is
gained by using a combination of search statistics. For
example, referencing the BCI-BSN plot in Fig. 5, we see
that the outermost contour of the noise distribution is
completely rejected by classifying any event with a BCI
below 12 as noise. However, we can remove the same
noise contour while retaining more of the signal distri-
bution by classifying as noise any event with a BCI be-
low 12 and a log10 BSN below 2 as noise. Effectively,
we constructed a more powerful decision surface in the
latter case. The LRT optimally constructs this decision
surface, thus maximizing the probability of detecting a
signal at a given false alarm probability. Furthermore,
the amount of information contained within the search
statistics defines how well the noise and signal distribu-
tions can be separated, which in turn determines how
powerful the optimal decision surface is in terms of dis-
tinguishing signal from noise.

With these estimated likelihoods in hand, we were able
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FIG. 5. The 2-dimensional likelihoods for the Bayes factors.
The contours shown correspond to the 0.5-sigma, 1-sigma,
1.5-sigma, and 2-sigma central confidence regions. The like-
lihood ratio Λ is found by taking the ratio of the signal and
noise likelihoods.

to use our background data to estimate the FAR assigned
to events of various Λ, which is shown in Fig. 6.

FIG. 6. The FAR achieved by setting a given likelihood-ratio
threshold for detection. The LRT shown here is trained on
both sine-Gaussian and white-noise burst signal populations
and is evaluated using BCI and BSN as search statistics. The
68% confidence regions shown are derived from a binomial
process with a uniform prior on the true rate.

D. Efficiency Studies

We will now explore how the detection efficiency of
oLIB varies as a function of: 1) the injected waveform
morphologies, 2) the combination of Bayes factors used
in the LRT, and 3) the signal populations used to train
the LRT.

1. Efficiency vs. Signal Morphology

Here we examine how oLIB’s detection efficiency
changes as a function of the injected GW waveform mor-
phology. As noted, LIB uses sine-Gaussian templates
when calculating the Bayes Factors, and thus we expect
the oLIB algorithm to best recover sine-Gaussian signals.
Fig. 7 shows the detection efficiency for several different
injected morphologies as a function of the signal SNR re-
siding within LIB’s frequency bandwidth. We note that,
because Gaussian signals are centered at a frequency of
zero, only a fraction of their total SNR is accessible to
LIB. The shapes of the particular curves shown here are
characteristic of the different morphologies in general.
As expected, the efficiency curves for sine-Gaussian and
Gaussian (which are sine-Gaussians in the limit of f0 → 0
and Q → 0) morphologies rise to unity before falling off
at large SNRs that are non-astrophysical as a result of
our exclusion cut on large-BSN events. The efficiency
curves for white-noise bursts rise similarly to those of
sine-Gaussians and Gaussians for low SNRs, but fall off
before ever reaching unity.

This behavior is expected when considering the resid-
uals of template mismatch. At low SNRs, the mismatch
between the data stream and signal template is domi-
nated by noise since the noise amplitude is comparable to
the signal-template mismatch. As the SNR of the signal
increases, the amplitude of the noise remains the same,
but the amplitude of the the signal-template mismatch
residuals grows linearly with the signal amplitude. Thus,
if a template cannot perfectly match the form of a GW
signal, the signal-template mismatch will dominate the
noise-template mismatch in the limit of high SNRs. In
practice, these large residuals cause the BCI to become
extremely negative for high-SNR white-noise burst sig-
nals, which causes the LRT to declare them noise glitches
despite having large BSN. While this behavior is unfor-
tunate, we expect these types of loud-SNR signals to be
extremely rare. For example, GW150914 is considered to
be a high-SNR, non-sine-Gaussian event with its SNR of
24 [1], and it was detected confidently by oLIB [23].

Table II shows more extensive results of our simula-
tions. The results span three different LRTs, each us-
ing a detection threshold corresponding to a different
FAR to give a picture of how detection efficiency scales
with FAR. We emphasize that the FAR is better esti-
mated at higher values since there are more background
events above threshold at these values. oLIB detects sine-
Gaussians and Gaussians roughly equally-well at all three
FARs. It performs roughly a factor of 2 worse for white-
noise burst injections.

2. Efficiency vs. LRT Parameters

We now explore how the detection efficiency varies as
a function of the search statistics used as parameters in
our LRT. As shown in Appendix A, likelihood ratios are
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TABLE II. The SNRs at which the detection efficiency reached 10%, 50%, and 90% for different injected signal morphologies
using LRTs corresponding to several different FARs. The LRTs were trained on both SG and WNB signals and were evaluated
using BCI and BSN as search statistics. Detection efficiencies that were never reached at any SNR are denoted as N/A.

FAR: 1 per decade (3× 10−9 Hz) FAR: 1 per year (3× 10−8 Hz) FAR: 1 per month (3× 10−7 Hz)

Morphology SNR10% SNR50% SNR90% SNR10% SNR50% SNR90% SNR10% SNR50% SNR90%

SG: f0 = 100 Hz, Q = 8.9 16 23 130 <10 12 80 <10 <10 80

SG: f0 = 153 Hz, Q = 8.9 18 27 240 <10 13 45 <10 <10 40

SG: f0 = 1053 Hz, Q = 9 13 22 72 <10 11 52 <10 <10 17

GA: τ = 0.1 ms 14 27 N/A <10 13 68 <10 12 54

GA: τ = 2.5 ms 12 20 44 <10 <10 29 <10 <10 15

GA: τ = 4.0 ms 12 23 73 <10 11 56 <10 <10 56

WNB: f0 = 100 Hz, ∆f = 100 Hz, τ = 100 ms 35 N/A N/A 15 N/A N/A 11 N/A N/A

WNB: f0 = 250 Hz, ∆f = 100 Hz, τ = 100 ms 37 N/A N/A 16 N/A N/A 11 N/A N/A

WNB: f0 = 1000 Hz, ∆f = 10 Hz, τ = 100 ms 18 N/A N/A 11 26 N/A 11 23 N/A

WNB: f0 = 1000 Hz, ∆f = 1000 Hz, τ = 10 ms 31 N/A N/A 13 27 N/A 11 24 N/A

TABLE III. The SNRs at which the detection efficiency reached 10%, 50%, and 90% for different injected signal morphologies
using LRTs evaluated with several different vectors of Bayes factors. The LRTs were trained on both SG and WNB signals
and corresponded to an FAR of 1 per year. Detection efficiencies that were never reached at any SNR are denoted as N/A.

BSN BCI BSN-BCI

Morphology SNR10% SNR50% SNR90% SNR10% SNR50% SNR90% SNR10% SNR50% SNR90%

SG: f0 = 100 Hz, Q = 8.9 12 49 75 12 20 160 <10 12 80

SG: f0 = 153 Hz, Q = 8.9 13 45 77 17 26 310 <10 13 45

SG: f0 = 1053 Hz, Q = 9 15 42 71 <10 17 110 <10 11 52

GA: τ = 0.1 ms 28 51 72 <10 21 N/A <10 13 68

GA: τ = 2.5 ms 14 43 68 <10 14 44 <10 <10 29

GA: τ = 4.0 ms 31 45 73 <10 13 73 <10 11 56

WNB: f0 = 100 Hz, ∆f = 100 Hz, τ = 100 ms 56 N/A N/A 29 N/A N/A 15 N/A N/A

WNB: f0 = 250 Hz, ∆f = 100 Hz, τ = 100 ms 57 N/A N/A 33 N/A N/A 16 N/A N/A

WNB: f0 = 1000 Hz, ∆f = 10 Hz, τ = 100 ms 50 74 N/A 12 N/A N/A 11 26 N/A

WNB: f0 = 1000 Hz, ∆f = 1000 Hz, τ = 10 ms 60 N/A N/A 15 N/A N/A 13 27 N/A

sufficient statistics that optimally preserve the informa-
tion contained within a set of search statistics about the
binary signal-versus-noise hypothesis and adding another
search statistic to the analysis can only increase the in-
formation. Thus, we would expect that if the likelihoods
used in our LRT were accurate, an LRT with a greater
number of search statistics would have a better-than-or-
equal signal detection efficiency than an LRT utilizing
fewer search statistics. We consider three different LRTs:
one where the BSN is the only search statistic, one where
the BCI is the only search statistic, and one where both
the BCI and BSN are used as search statistics.

Table III characterizes the detection efficiency for each
of these LRTs. In order to ensure we have a reasonably
accurate estimate of the FAR, we compare the efficien-
cies at a FAR of 1 per year. As expected, the BCI-BSN
LRT outperforms both the BSN-only and the BCI-only
LRT across all morphologies We also note that the BCI-
only LRT outperforms the BSN-only LRT, meaning it is
the more informative Bayes factor for detection in real
detector noise.

3. Efficiency vs. Training Population

Finally, we explore how the signal population with
which we train our signal likelihood affects our detection
efficiency. We created three separate training popula-
tions: one consisting of only sine-Gaussians, one consist-
ing of only white-noise bursts, and one consisting of both
sine-Gaussians and white-noise bursts. The population
of sine-Gaussians were distributed consistently with a
uniform-in-volume distribution, uniformly in central fre-
quency between 40 Hz and 1500 Hz, and uniformly in Q
between 3 and 30. The population of white noise bursts
were distributed consistently with a uniform-in-volume
distribution, uniformly in starting frequency between 40
Hz and 1500 Hz, uniformly in bandwidth between 10 Hz
and 1500 Hz, and uniformly in duration between 5 ms
and 100 ms. The goal of these populations was to create
an inclusive set of events to train on that intentionally
had some mismatch with our LIB priors.

The detection efficiency results for all of these training
scenarios are quite similar at a significance FAR of 1 per
year. To be sure, there is some variation in SNR90%, but
the SNRs at which this variation occurs are extremely
large and probably of non-astrophysical interest.

This similarity is not surprising since the Gaussian
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TABLE IV. The SNRs at which the detection efficiency reached 10%, 50%, and 90% for different injected signal morphologies
using LRTs trained on several different signal populations. The LRTs were evaluated using BCI and BSN as search statistics
and corresponded to an FAR of 1 per year. Detection efficiencies that were never reached at any SNR are denoted as N/A.

SG WNB SG and WNB

Morphology SNR10% SNR50% SNR90% SNR10% SNR50% SNR90% SNR10% SNR50% SNR90%

SG: f0 = 100 Hz, Q = 8.9 <10 12 130 <10 13 80 <10 12 80

SG: f0 = 153 Hz, Q = 8.9 <10 13 150 <10 13 45 <10 13 45

SG: f0 = 1053 Hz, Q = 9 <10 11 63 <10 12 52 <10 11 52

GA: τ = 0.1 ms <10 13 91 <10 13 60 <10 13 68

GA: τ = 2.5 ms <10 <10 29 <10 <10 20 <10 <10 29

GA: τ = 4.0 ms <10 11 56 <10 11 56 <10 11 56

WNB: f0 = 100 Hz, ∆ = 100 Hz, τ = 100 ms 15 N/A N/A 15 N/A N/A 15 N/A N/A

WNB: f0 = 250 Hz, ∆ = 100 Hz, τ = 100 ms 16 N/A N/A 16 N/A N/A 16 N/A N/A

WNB: f0 = 1000 Hz, ∆ = 10 Hz, τ = 100 ms 11 25 N/A 11 25 N/A 11 26 N/A

WNB: f0 = 1000 Hz, ∆ = 1000 Hz, τ = 10 ms 13 27 N/A 13 28 N/A 13 27 N/A

KDE models the likelihoods well in regions of parame-
ter space where the sample density is high, i.e., for the
bulk of the distribution. The bulk of the distribution is
able to establish the general properties of signal events as
opposed to those of noise events. Signal events tend to be
louder than noise events (i.e., they have a larger BSN),
and signal events tend to be more correlated than noise
events (i.e., they have larger BCI). As seen in § IV D 1,
the differences in oLIB’s behavior for different morpholo-
gies only becomes pronounced at extremely-loud SNRs.
These extremely-loud-SNR events are sufficiently rare for
uniform-in-volume populations that their contribution to
the training is negligible when compared to that of the
bulk of the events. Thus, because oLIB behaves simi-
larly across morphologies for the bulk of the events that
dominate training, the likelihood models are effectively
invariant to the exact morphologies used in the training.

V. SUMMARY

In this paper, we introduced the justification and
methodology for a new end-to-end search algorithm tar-
geting GW bursts called oLIB. This algorithm takes in
calibrated strain data and compresses it into a set of
search statistics that can be used to make a detection
statement independently of other algorithms. Specifi-
cally, the compression involves several steps. First, Omi-
cron is used to flag stretches of excess power in each de-
tector, which we refer to as events. For computational
reasons, these events are down-selected by imposing con-
straints such as event clustering, vetoing based on data
quality, and requiring a time-of-flight time coincidence
across the network of detectors. Once this incoherent
down-selection is complete, these coincident events are
compressed into a set of Bayes factors with LIB, an
MCMC algorithm used to calculate Bayesian evidences.
Because Bayes factors are sufficient statistics for binary
hypothesis testing, we expect the information loss con-
cerning the signal-versus-noise hypothesis to be minimal
as long as the set of oLIB’s hypotheses model the actual

data sufficiently well. We further compress this vector
of Bayes factors into a scalar likelihood ratio, which pre-
serves all of the information regarding the signal-versus-
noise hypothesis contained within the set of Bayes fac-
tors. Finally, we use a likelihood-ratio test to assign a
detection significance to each event. This LRT allows
us to optimally extract this signal-versus-noise informa-
tion that we have been preserving in our compression and
make a detection statement.

In order to demonstrate the validity of the algorithm’s
implementation, we ran oLIB over a stretch of real in-
terferometer data taken from the initial LIGO S6 science
run. We also injected simulated GW signals into this
data in order to study the algorithm’s behavior when an-
alyzing detection candidates of varying morphology and
strength.

We showed that the algorithm is capable of detect-
ing events across a range of morphologies at astrophysi-
cally relevant SNRs. These detection statements can be
made in low-latency, on the order of tens of minutes. We
showed that, from a detection efficiency standpoint, the
most powerful search involves an LRT that considered a
combination of Bayes factors as search statistics. Thus,
this is the first GW burst search to optimally extract de-
tection information from a set of multiple Bayes factors.
Finally, we confirmed that the detection efficiency of the
LRT is quite robust against the exact choice of source
population used when modeling the likelihoods.

The development of the oLIB unmodeled search algo-
rithm is promising on several fronts. First, it provides
a new end-to-end method for detecting GW bursts in-
dependently of other algorithms. At worst, oLIB pro-
vides overlap with existing methods that would be use-
ful for consistency checks and validation, and, at best,
oLIB provides increased sensitivity to areas of the burst
parameter space. Comparison studies with existing algo-
rithms have already validated these claims [23, 49], and
further quantifying the overlap of search algorithms will
continue to be an integral part of future joint searches
for GW bursts. Finally, since the most efficient configu-
ration of the oLIB algorithm involves combining several
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FIG. 7. The detection efficiency as a function of the opti-
mal network SNR at a FAR of 1 per decade for three different
morphologies of injected waveforms: sine-Gaussian waveforms
(top) with f0 = 153 Hz and Q = 8.9, Gaussian waveforms
(middle) with τ = 2.5 ms , and white-noise burst waveforms
(bottom) with f0 = 1000 Hz, ∆ = 10 Hz, and τ = 100
ms. The LRT used here is trained on both sine-Gaussians
and white-noise bursts and is evaluated using both the BCI
and the BSN as search statistics. The 68% confidence region
shown is derived from a binomial process with a uniform prior
on the true detection efficiency.

search statistics through an LRT to make a detection sig-
nificance statement, we have successfully demonstrated a
procedure that could be used to optimally combine the
search statistics across several different search algorithms
into a joint detection significance statement.
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Appendix A: Proofs of Information-Theoretic
Motivation

1. Proof that Likelihood Ratios are Sufficient
Statistics for Hypothesis Testing

As mentioned in Section II, the Data Processing In-
equality (see Eq. 2) states the compression of a data
stream ~x into a statistic t(~x) must lose information re-
garding the true hypothesis H unless t(~x) is a sufficient
statistic. A statistic is sufficient if and only if it satisfies
Eq. 3. It can also be shown that statistics are sufficient if
and only if the likelihood Px|H(~x|H) can be factored into
a form that satisfies the Neyman-Fisher factorization [41]

Px|H(~x|H) = a(t(~x), H)b(~x) (A1)

where a can be a function only of t(~x) and H and b can
only be a function of ~x.

Using the Neyman-Fisher factorization, we can show
that the likelihood ratio Λ(~x) is a sufficient statistic with
respect to Px,H(~x,H) where ~x is a random vector of anal-
ysis statistics and H ∈ {H0, H1} is a random hypothesis
variable for binary hypothesis testing. In order to prove
this statement, we consider the form of Px|H(~x|H) under
both hypotheses:

Px|H(~x|H = H1) = Λ(~x) · Px|H(~x|H = H0) (A2)

Px|H(~x|H = H0) = 1 · Px|H(~x|H = H0) (A3)

where Λ(~x) ≡ Px|H(~x|H=H1)

Px|H(~x|H=H0) is the likelihood ratio.

Thus, by defining Λi,j(~x) ≡ Px|H(~x|H=Hi)

Px|H(~x|H=Hj) , a(Λ(~x), Hi) =

Λi,0(~x), and b(~x) = Px|H(~x|H = H0), we can complete
the Neyman-Fisher factorization, proving that Λ(~x) is a
sufficient statistic for binary hypothesis testing.

It is straightforward to generalize this proof from bi-
nary hypothesis testing to N-dimensional hypothesis test-

ing where N ≥ 2. Here, let our statistic be ~Λ(~x), the
set of all possible likelihood ratios among the N hy-

potheses ~H = {H0, H1, ...,HN}. More formally, ~Λ(~x) =
{...,Λi,j(~x), ...} for all i, j ∈ {0, 1, ..., N}. We can then
write down the form for Px|H(~x|H) for any arbitrary hy-
pothesis Hi:

Px|H(~x|H = Hi) = Λi,0(~x) · Px|H(~x|H = H0). (A4)

Thus, by defining a(~Λ(~x), H) = Λi,0(~x) and b(~x) =
Px|H(~x|H = H0), we see that we can complete the
Neyman-Fisher factorization, proving that the set of

all likelihood ratios ~Λ(~x) is a sufficient statistic for N-
dimensional hypothesis testing. Actually, closer inspec-

tion shows that we do not even need ~Λ(~x) to be the full
set of likelihood ratios between all hypotheses, but rather
only the set of likelihood ratios between all individual hy-
potheses and a particular hypothesis H0 (since the like-
lihood ratio of any two arbitrary hypotheses Hi and Hj

can be computed through the ratio Λi,j(~x) =
Λi,0(~x)
Λj,0(~x) .

This property implies that the set of likelihood ratios

spanning all possible hypotheses ~Λ(~x) is optimal in a data
processing sense. As shown by the Data Processing In-
equality, a statistic that is sufficient with respect to a
random data vector ~x and a random variable H preserves
all of the mutual information shared between those two
variables. Thus, in N-dimensional hypothesis testing, no
information about the actual hypothesis H is lost when
compressing the statistic vector ~x into the set of like-

lihood ratios ~Λ(~x). While other combinations of ~x may
also be sufficient statistics (sufficient statistics are not in-
herently unique), they cannot contain more information

about H than ~Λ(~x) does, and thus ~Λ(~x) is an optimal
statistic in N-dimensional hypothesis testing.

On a final note, let us consider the case where all of

the specific hypotheses H in the N-dimensional ~H can be
categorized as a element of a greater positive-versus-null
binary hypothesisHbin, so thatH ∈ Hbin ∈ {Hnull, Hpos}
(e.g., if ~H contains different signal and noise models, but
all are sub-models of the greater signal or noise hypothe-
ses Hsignal and Hnoise). In this scenario, assuming that

the true hypothesis is an element of ~H, the original data
vector ~x can be compressed into the set of likelihood ra-

tios spanning all possible hypotheses ~Λ(~x), and this com-
pression is lossless with respect to the information con-
cerning the specific hypothesis H. We can show that this
compression is also lossless with respect to the informa-
tion concerning the binary hypothesis Hbin by consider-
ing the likelihoods for both the null and positive binary
hypotheses:

Px|Hbin
(~x|Hnull)

=
∑
i

Px|H,Hbin
(~x|Hi, Hnull)PH|Hbin

(Hi|Hnull)

= Px|H,Hbin
(~x|H0, Hnull)

×
∑
i

Λi,0(~x)PH|Hbin
(Hi|Hnull)

(A5)

Px|Hbin
(~x|Hpos)

=
∑
i

Px|H,Hbin
(~x|Hi, Hpos)PH|Hbin

(Hi|Hpos)

= Px|H,Hbin
(~x|H0, Hnull)

×
∑
i

Λi,0(~x)PH|Hbin
(Hi|Hpos)

(A6)

By defining a(~Λ(~x), Hbin) to be the correct positive-
versus-null hypothesis summation term and b(~x) =
Px|H,Hbin

(~x|H0, Hnull), we complete the Neyman-Fisher

factorization and show that ~Λ(~x) is a sufficient statis-
tic with respect to the information contained within ~x
about Hbin in addition to being a sufficient statistic with
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respect to H7. Thus, if we further losslessly compress
~Λ(~x) into a single, scalar search statistic Λbin(~Λ(~x)), we
have not lost any information about Hbin. This is an im-
portant result. It shows that we can achieve lossless data
compression into a scalar in two ways: 1.) directly into
Λbin from the data vector ~x, or 2.) first into a set of like-
lihood ratios spanning a set of embedded sub-hypotheses
and then into Λbin.

2. Adding Search Statistics can only Increases
Information

Any vector of search statistics ~x contains a non-
negative amount of information I(H; ~x) about a hypoth-
esis H. Eq. 1 demonstrates that this mutual information
can be interpreted as the reduction in entropic uncer-
tainty of H achieved by having knowledge of the search
statistics ~x. By explicitly defining the entropy H(·) and
conditional entropy H(·|·) to be

H(a) = −
∑
a′

Pa(a′) logPa(a′) (A7)

H(a|b) = −
∑
a′,b′

Pa,b(a
′, b′) logPa|b(a

′|b′) (A8)

we can also define the mutual information I(·; ·) and con-
ditional mutual information I(·; ·|·) to be

I(a; b) =
∑
a′,b′

Pa,b(a
′, b′) log

Pa,b(a
′, b′)

Pa(a′)Pb(b′)
. (A9)

I(a; b|c) =
∑
a′,b′,c′

Pa,b,c(a
′, b′, c′) log

Pa,b|c(a
′, b′|c′)

Pa|c(a′|c′)Pb|c(b′|c′)
.

(A10)
It is interesting to study what happens to the mu-

tual information when we change the dimension of ~x,
i.e., what happens when we add or remove a given search
statistic from our vector. We can consider the mutual in-
formation with an added search statistic x+ by explicitly
writing out I(H; ~x, x+) and factoring the probabilities:

I(H; ~x, x+) =
∑

H,x,x+

PH,x(H,~x, x+) log
PH,x(H,~x, x+)

Px(~x, x+)PH(H)

(A11)

7 We note that the Neyman-Fisher factorization is still satisfied
if we define the statistic t(~x) to be the correct positive-versus-
null summation term. Thus, the set of expectation values over
all likelihood ratios with respect to both the signal and noise
hypothesis likelihoods PHi|Hbin

(Hi|Hbin) is a sufficient statistic
with respect to the binary hypothesis Hbin.

I(H; ~x, x+) =
∑

H,x,x+

PH,x(H,~x, x+)

× log
PH,x(H,~x) · Px|H,x(x+|H,~x)PH|x(H|~x)

Px(~x)PH(H) · Px|x(x+|~x)PH|x(H|~x)

(A12)

I(H; ~x, x+) = I(H; ~x) + I(H;x+|~x). (A13)

We can write any conditional mutual information
I(a; b|c) as

I(a; b|c) =
∑
c

Pc(c
′)
∑
a,b

[Pa,b|c(a
′, b′|c′) logPa,b|c(a

′, b′|c′)

− Pa,b|c(a′, b′|c′) logPa|c(a
′|c′)Pb|c(b′|c′)] .

(A14)

A straightforward application of the Gibbs inequality and
the non-negativity of probabilities makes it possible to
show I(a; b|c) ≥ 0. Thus we have

I(H; ~x, x+) ≥ I(H; ~x) (A15)

which proves that adding a search statistic can only add
to the mutual information, and thus it can only decrease
the entropic uncertainty H(H|~x) of that hypothesis. In
other words, adding a search statistic can only make
PH|x(H|~x) a more sharply-peaked distribution.

Appendix B: Gaussian Kernel Density Estimation

In order for us to use an LRT for our signal-versus-
noise binary hypothesis test, we need models of the sig-
nal and noise likelihoods. Without a given functional
form for these likelihood distributions, we must find a
way of approximating them in some optimal sense. The
Kullback-Leibler divergence between two distributions P
and Q, defined as

D(P ||Q) =
∑
i

P (i) log
P (i)

Q(i)
, (B1)

provides a measure of the distance between two distribu-
tions. It represents the reduction in entropy when using
the true distribution P instead of the wrong distribu-
tion Q, or in an information-theoretic sense, it measures
the loss of information when using the wrong distribu-
tion Q instead of the true distribution P . Thus, if we
wish to model the true distribution f(~x) of our search

statistics ~x with a model distribution f̂(~x), we should

minimize D(f ||f̂) in order to maximize the information

that is contained within f̂(~x) about ~x. By changing the
sum in Eq. B1 to an integral in order to account for con-
tinuous variables, the quantity to be minimized becomes

D(f ||f̂) =

∫
f(~x) log f(~x)d~x−

∫
f(~x) log f̂(~x)d~x. (B2)
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Since only the second term in Eq. B2 depends on our

model choice f̂(~x), the optimization problem becomes a
maximization of

B =

∫
f(~x) log f̂(~x)d~x. (B3)

With our optimization criterion in place, we must then

choose our model f̂(~x). One non-parametric approach to
this problem is that of kernel density estimation (KDE).
KDE consists of centering an N-dimensional kernel at
each of a set of N-dimensional empirical data points
drawn from f(~x). These kernels are then summed over,
and the normalized sum is used as the distribution model
f̂(~x). When identical Gaussian kernels are used for each
data point, this model takes the form

f̂(~x) =
1

n
√

(2π)N |H|

n∑
i

e−
1
2 (~x−~di)ᵀH−1(~x−~di) (B4)

where i indexes one of n data points drawn from the
true distribution f(~x) and H is a matrix representing the
squared bandwidths of the kernels. A kernel’s bandwidth
hm controls the width of the kernel (i.e., the extent to

which it models local versus distant parts of the parame-
ter space) in the mth dimension. If we choose all of the N
bandwidths (one for each dimension) to be uncorrelated,
then H is a diagonal matrix with h2

m as the mth entry
along the diagonal.

In order to evaluate Eq. B3, we need to know the func-
tional form of f(~x). We can approximate this using the
empirical approximation∫

f(~x)g(~x)d~x = Ef [g(~x)] ≈ 1

n

n∑
j

g(~dj) (B5)

where we replace the integral over ~x with a sum over

the n data points ~d1, ..., ~dn sampled from f(~x). For our

purposes, g(~x) = log f̂(~x), giving us

B ≈ 1

n

n∑
j

log

(
1

n
√

(2π)N |H|

n∑
i

e−
1
2 (~dj−~di)ᵀH−1(~dj−~di)

)
.

(B6)
Finally, in order to prevent ourselves from overtraining
the data, we use leave-one-out cross-validation by remov-
ing the jth data point from the inner sum, yielding the
expression

B ≈ 1

n

n∑
j

log

 1

(n− 1)
√

(2π)N |H|

n∑
i 6=j

e−
1
2 (~dj−~di)ᵀH−1(~dj−~di)

 . (B7)

The result of overtraining can be seen by considering the
case where H → 0. In this limit, all of the Gaussian
Kernels become Dirac delta functions centered around dj .
Thus, the i = j point provides an infinite contribution
to B, meaning a zero-bandwidth KDE is optimal and
that the optimal estimate of f(~x) is simply the set of
empirical data points. Removing the i = j point from the
sum helps prevent this overtraining, although it should

be noted that the zero-bandwidth B will be infinite and
therefore maximal if any of the data points are exact
duplicates (which becomes more and more unlikely as
the dimensionality N increases).

In practice, we find the optimal bandwidths of our
KDE likelihood estimates by maximizing Eq. B7 over
a grid in the N-dimensional parameter space. In cases
where the zero bandwidth is infinite, we search instead
for a secondary local maximum.


